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Abstract

Representations for Green’s functions suitable for water-wave problems involving

porous structures are obtained by integrating solutions to appropriate heat conduc-

tion problems with respect to time. By utilizing different representations for these

heat equation solutions for small and large times, the changeover being determined

by an arbitrary positive parameter a, a one-parameter family of formulas for the

required Green’s function is derived and by varying a the convergence character-

istics of this new representation can be altered. Letting a → 0 results in known

eigenfunction expansions. The results of computations are presented showing the

accuracy and efficiency of the resulting formulas.

1 INTRODUCTION

A number of mathematical models have been proposed to describe the interaction of water

waves with permeable breakwaters. One class of models employs the theory of Sollitt and

Cross (1972) which is an extension of the standard linearized theory of water waves. In

the Sollitt and Cross theory, the whole flow field is described by a velocity potential

that satisfies the Laplace equation. Within a surface-piercing permeable structure the

free-surface condition has the same form as in the standard theory, but the frequency

parameter is complex rather than real.

This theory has been applied by a number of authors. For example, Sulisz (1985)

considered the two-dimensional problem of wave interaction with a permeable breakwater

of arbitrary cross section. He employed a hybrid method in which the flow field within the

constant-depth regions on either side of the breakwater was described using an eigenfunc-

tion expansion, and within and around the breakwater an integral-equation formulation

based on an application of Green’s theorem was used. The Green’s function used was a

simple source and therefore it was necessary to discretize all boundaries including the free

surface.

In the two-dimensional problem, when the sides of the breakwater are vertical and the

water depth is constant, it is possible to use an eigenfunction expansion throughout the
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fluid domain, including the interior of the breakwater. Indeed, this was done for normal

incidence by Sollitt and Cross (1972) and subsequently extended to oblique wave incidence

by Dalrymple, Losada, and Martin (1991). An application to breakwaters constructed

from two layers of different material was made by Yu and Chwang (1994). The interaction

of waves with a three-dimensional structure of arbitrary shape, but with vertical sides, was

considered by Ijima, Chou, and Yumura (1974). They used an eigenfunction expansion in

the vertical direction to reduce the full three-dimensional problem to an infinite sequence

of two-dimensional problems which were solved using integral equations.

All of the works mentioned in the previous paragraph used vertical eigenfunctions

satisfying the bed and free surface conditions. To construct these eigenfunctions, it is

required to determine the solutions for µ of the dispersion relation

K + µ tanµh = 0, (1)

where K is the specified frequency parameter and h is the water depth. In the standard

water-wave problem for time-harmonic waves, K = ω2/g where ω is the angular frequency

and g is the acceleration due to gravity. Thus, in the standard problem, K is real and it is

known that there are two purely imaginary solutions and an infinity of purely real solutions

for µ. In each case, the zeros of a function of one real variable are required, and it is a

straightforward procedure to determine these zeros numerically and hence construct the

vertical eigenfunctions. Within a permeable structure, the Sollitt and Cross model gives

K = ω2(s + if)/g where s > 0 is an inertia coefficient and f > 0 is a friction coefficient.

Thus K is complex and the solution of (1) for the now complex roots µ is more difficult

as it is required to find the zeros of a function of two real variables. Newton’s method can

be used to find these zeros provided a good initial guess in available. Dalrymple, Losada,

and Martin (1991) describe a procedure based on Newton’s method in which the roots

for a particular complex K are found by gradually increasing the imaginary part from

zero. In fact, this procedure is unnecessary because it has been pointed out by McIver

(1998) that explicit formulae are available for all of the solutions of (1), thus making the

construction of the vertical eigenfunction relatively straightforward.

For structures with vertical sides, an alternative to the eigenfunction technique is to

use integral equations based on a Green’s function that satisfies both the free surface and

bed conditions. When such a Green’s function is used, it is necessary to discretize only

the vertical sides of the breakwater. This approach has been validated by McLean (1999)

for the problem solved by Dalrymple, Losada, and Martin (1991). A similar idea could

also be used in three dimensions for breakwaters of arbitrary horizontal cross section.

McLean (1999) used an integral representation for the Green’s function to avoid the

need to compute the complex roots of (1). The integral representation has the disadvan-

tage that it is very difficult to compute accurately when the source and field point are
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both very close to the free surface. However, Linton (1999), hereafter referred to as I, has

recently devised a very efficient method for the computation of water-wave Green’s func-

tions that achieves high accuracy for all values of the parameters involved. The purpose

of the present paper is to extend the work of Linton to complex K, and hence provide effi-

cient and accurate Green’s function algorithms for the breakwater problem. The method

does require a small number (typically three to six) of the roots of (1), but the work of

McIver (1998) (described in the Appendix) makes this straightforward.

We begin with the observation that solutions to Poisson’s equation are related to

solutions of the heat equation. Thus if

∇2φ = f in Ω

and

∇2u = ut in Ω,

u = −f at t = 0,

with φ and u satisfying the same time-independent boundary conditions on ∂Ω, then

φ =
∫ ∞

0
u dt,

provided this integral exists. If the integral does not exist we choose ũ so that
∫∞

0 (u+ũ) dt

does exist and then

φ =
∫ ∞

0
(u+ ũ) dt− φ̃,

where

∇2φ̃ = −ũ
∣∣∣
t=0
.

If we can then find two complementary representations for u+ ũ, u1 and u2, the first of

which converges rapidly for small values of t, the latter being easily evaluated for large t,

we can then introduce an arbitrary positive parameter a and hence obtain a one-parameter

family of formulas for φ in the form

φ =
∫ a

0
u1 dt+

∫ ∞
a

u2 dt− φ̃.

These ideas were used by Strain (1992) to derive rapidly convergent series for the Green’s

function associated with Laplace’s equation in an n-dimensional cube.
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2 TWO HEAT CONDUCTION PROBLEMS

In order to apply the method described above we need to solve certain heat conduction

problems and it turns out that all the solutions we will need can be derived from two

particular one-dimensional heat problems.

Consider first the problem corresponding to the release of a unit quantity of heat at

x = 0 at time t = 0. In other words, taking the thermal diffusivity to be unity,

vxx = vt t > 0,−∞ < x <∞, (2)

v = δ(x) at t = 0, (3)

where δ(x) is the Dirac delta function. It is easily verified that the solution is

v =
e−x

2/4t

(4πt)1/2
, (4)

for which
∫∞
−∞ v dx = 1 for all t > 0.

Secondly we consider the problem

wzz = wt t > 0,−h < z ≤ 0, (5)

wz = 0 on z = −h, (6)

wz = Kw on z = 0, (7)

w = δ(z − ζ) at t = 0,−h < ζ ≤ 0. (8)

In terms of heat conduction, the boundary condition on z = 0 is only physically realistic

if K is real and negative. In the water-wave problem considered in I, K was taken to be

a positive real constant, but here we will consider the case when K is complex.

Our objective is to find two representations for the solution w which converge rapidly

for small t and large t respectively. First we separate out the singular behaviour of w and

write

w =
e−(z−ζ)2/4t

(4πt)1/2
+ w1. (9)

The method of Laplace transforms was used in I to show that

w = − 1

2πi

∫ c+i∞

c−i∞

cosh q(z< + h)(K sinh qz> + q cosh qz>)

q(K cosh qh− q sinh qh)
ept dp (10)

=
e−(z−ζ)2/4t

(4πt)1/2
+

1

2πi

∫ c+i∞

c−i∞

[
e−qχ0,4 +

∞∑
n=1

(
q +K

q −K

)n 4∑
i=1

e−qχn,i
]

ept

2q
dp, (11)

where q2 = p,

z< = min(z, ζ), z> = max(z, ζ), (12)
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χn,1 = 2(n− 1)h− ζ − z, (13)

χn,2 = 2nh− ζ + z, (14)

χn,3 = 2nh+ ζ − z, (15)

χn,4 = 2(n+ 1)h+ ζ + z, (16)

and c is such that all the singularities of the integrand lie to the left of the line (c− i∞, c+

i∞).

Since the integrand in (10) is an even function of q = p1/2, there are no branch points

in the complex p-plane. We write

g(p) = K cosh p
1
2h− p 1

2 sinh p
1
2h (17)

and this is zero when p = −µ2, where µ is a solution of the dispersion relation (1). From

McIver (1998) we know that the roots of this equation are nearly always simple but that

for some specific values of K we may have a double root. We also know that if Im(K) > 0

then Re(µ) > 0 and Im(µ) < 0. The roots of the dispersion relation (1) will be labelled

as follows. The simple poles are at p = −µ2
m and m begins from 1 if there is no pole

for which Re(µ2) ≤ 0. If there is such a pole then we denote it p = −µ2
0. Numerical

calculations suggest that there is at most one such pole, but we have been unable to

prove this. In the event that more than one such pole can exist for a given complex K,

the necessary modifications to the method below are straightforward. If there is a double

pole we denote it by p = −µ̃2 and it follows from the work of McIver (1998) that there

is at most one double pole. The argument principle can be used to count the number of

poles in the sector | arg z| ≤ π/4, |z| < C for any constant C and this can be used to

show that any double pole must satisfy Re(µ̃2) > 0.

At a simple pole the integrand in (10) has a residue

Rm = −e−µ
2
mt

Nm

cosµm(z + h) cosµm(ζ + h), (18)

where

Nm =
h

2

(
1 +

sin 2µmh

2µmh

)
. (19)

At a double pole, p = −µ̃2, we get a residue

R̃ =
2e−µ̃

2t

h cos2 µ̃h

[(
2µ̃2t− 1 +

4

3
sin2 µ̃h

)
Z(1) + Z(2)

]
, (20)

where

Z(1) = cos µ̃(z + h) cos µ̃(ζ + h) (21)

Z(2) = µ̃(ζ + h) cos µ̃(z + h) sin µ̃(ζ + h) + µ̃(z + h) cos µ̃(ζ + h) sin µ̃(z + h). (22)
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From (10), closing the contour in the left half plane, we thus obtain

w = −R̃−
∞∑
m=0

Rm, (23)

where R̃ = 0 is there is no double root, and the sum starts from 1 if all the µm satisfy

Re(µ2
m) > 0. The sum in (23) is rapidly convergent for large t.

An expression for w that is rapidly convergent for small t can be obtained by integrat-

ing (11) term by term exactly as in I. We obtain

w =
e−(z−ζ)2/4t

(4πt)1/2
+

e−(2h+ζ+z)2/4t

(4πt)1/2
+
∞∑
m=1

(−1)m
4∑
i=1

Im(χm,i), (24)

where the functions Im(χ) are defined by the formula

Im(χ) =
m∑
j=0

m!

j!(m− j)!(−1)j(2K)m−j Ĩm−j(χ) (25)

and the recurrence relation

(n− 1)Ĩn(χ) = 2tĨn−2(χ) + (χ− 2Kt)Ĩn−1(χ), (26)

with the initial values

Ĩ0(χ) =
e−χ

2/4t

(4πt)1/2
, Ĩ1(χ) = −1

2
eK

2t−Kχ erfc
(

χ

2t1/2
−Kt1/2

)
. (27)

In particular

I0(χ) =
e−χ

2/4t

(4πt)1/2
, I1(χ) = − e−χ

2/4t

(4πt)1/2
−KeK

2t−Kχ erfc
(

χ

2t1/2
−Kt1/2

)
. (28)

The series in (24) converges rapidly for small t and we note that this representation is

unaffected by the nature of the solutions to the dispersion relation (1). If we write wN

for the solution to (5)–(8) with K = 0, it was shown in I that

w = wN +
∞∑
m=1

∞∑
j=0

(m+ j)!

m!j!
(−2K)m

4∑
i=1

Ĩm (χm+j,i) . (29)

3 TWO-DIMENSIONAL GREEN’S FUNCTIONS

We consider the two-dimensional fluid domain −∞ < x <∞, −h < z ≤ 0 with the undis-

turbed free surface being z = 0 so that the Green’s function representing an oscillating

point source at x = 0, z = ζ is Re{Ge−iωt} (this t is of course unrelated to the t of §2 and

that which appears following (36) below) where G is the solution to

∇2
xzG = δ(x)δ(z − ζ) − h < z ≤ 0,−h < ζ ≤ 0, (30)

Gz = KG on z = 0, (31)

Gz = 0 on z = −h, (32)
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and we require G to decay to zero as |x| → ∞. Here K = ω2(s + if)/g is a complex

number for which both the real and imaginary parts are positive. As f → 0 with s = 1 this

Green’s function should go over to the standard free-surface water-wave Green’s function,

which behaves like outgoing waves as |x| → ∞. The following definitions will be used:

ρ = [x2 + (z − ζ)2]1/2, ρ′ = [x2 + (2h+ z + ζ)2]1/2.

Various representations exist for this Green’s function. For example

G = − 1

π

∫ ∞
0

K sinh kz> + k cosh kz>
k sinh kh−K cosh kh

cosh k(z< + h) cos kx
dk

k
, (33)

where z< and z> are defined in (12), and this can be converted into an eigenfunction

expansion as described in Dalrymple, Losada, and Martin (1991). If all the poles of the

integrand in (33) are simple we obtain

G = −
∞∑
m=0

cosµm(z + h) cosµm(ζ + h)

2µmNm

e−µm|x|, (34)

but if there is a double pole at k = µ̃, we get an extra contribution

e−µ̃x

µ̃h cos2 µ̃h

[(
µ̃|x|+ 4

3
sin2 µ̃h

)
Z(1) + Z(2)

]
. (35)

The integral (33) can be difficult to evaluate numerically, particularly when |z| and |ζ|
are both small. The eigenfunction series (34) converges very slowly if |x| is small.

The method described in the introduction shows that in order to derive a new repre-

sentation for G we require the solution to the initial boundary-value problem

∇2
xzu = ut t > 0,−h < z ≤ 0, (36)

uz = Ku on z = 0, (37)

uz = 0 on z = −h, (38)

u = −δ(x)δ(z − ζ) at t = 0,−h < ζ ≤ 0. (39)

From the results in §2 and the fact that the solution of the two-dimensional problem

(36)–(39) can be written as a product of solutions to two one-dimensional problems (see

Carslaw and Jaeger 1959, §1.15), this is simply

u(x, z, t) = − e−x
2/4t

(4πt)1/2
w(z, t), (40)

where w is given by (23) or by (24), the two representations converging rapidly for large

t and small t respectively.

First we will assume that there is no double root of the dispersion relation. If there

is a pole for which Re(µ2) ≤ 0 (labelled µ0), then
∫∞

0 u dt does not exist, so we consider

the function u+ ũ, where

ũ =
e−x

2/4t−µ2
0t

(4πt)1/2N0

cosµ0(z + h) cosµ0(ζ + h). (41)
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which satisfies the initial condition

ũ = N−1
0 δ(x) cosµ0(z + h) cosµ0(ζ + h) at t = 0, (42)

and hence, since (d2/dx2 − µ2
0) exp(−µ0|x|) = −2µ0δ(x),

∫ ∞
0

(u+ ũ) dt =
e−µ0|x|

2µ0N0

cosµ0(z + h) cosµ0(ζ + h) +G. (43)

In order to obtain exponentially convergent representations for G we introduce an arbi-

trary positive parameter a, split the range of integration at a2h2/4 and use the appropriate

form for u+ ũ in each part of the integral. We obtain

G =− e−µ0|x|

2µ0N0

cosµ0(z + h) cosµ0(ζ + h)−
∞∑
m=0

Λm

Nm

cosµm(z + h) cosµm(ζ + h)

− 1

4π
E1

(
ρ2

a2h2

)
− 1

4π
E1

(
ρ′2

a2h2

)
−
∞∑
n=1

(−1)nLn,

(44)

where E1(·) is an exponential integral,

Λ0 = −
∫ a2h2/4

0

e−x
2/4t

(4πt)1/2
e−µ

2
0t dt, (45)

Λm =
∫ ∞
a2h2/4

e−x
2/4t

(4πt)1/2
e−µ

2
mt dt, (46)

and

Ln =
∫ a2h2/4

0

e−x
2/4t

(4πt)1/2

4∑
i=1

In(χn,i) dt. (47)

If we let a→ 0 in (44) we recover the eigenfunction expansion (34).

It is straightforward to evaluate the integrals Λm numerically since (with the exception

of Λ0 when x = 0) the integrands decay exponentially. In fact the integrals in (46) and

(47) can be written in terms of error functions. From Abramowitz and Stegun (1965),

eqn 7.4.33, we can show that

Λ0 = − 1

4µ0

[
eµ0|x|erf

(
µ0ah

2
+
|x|
ah

)
+ e−µ0|x|erf

(
µ0ah

2
− |x|
ah

)
− 2 sinh(µ0|x|)

]
, (48)

Λm =
1

4µm

[
eµm|x|erfc

(
µmah

2
+
|x|
ah

)
+ e−µm|x|erfc

(
µmah

2
− |x|
ah

)]
, (49)

which simplify to

Λ0 = − 1

2µ0

erf

(
µ0ah

2

)
, Λm =

1

2µm
erfc

(
µmah

2

)
, (50)

when x = 0. Chaudhry, Temme, and Veling (1996) give a number of series expansions

which can also be used to compute Λm.
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The integrals Ln must be evaluated numerically but, as will be demonstrated below,

provided a is small enough, only L1 is required. From (28) we have that

L1 = − 1

4π

4∑
i=1

E1

(
x2 + χ2

1,i

a2h2

)
− K

π1/2

∫ ah/2

0
eK

2u2−x2/4u2
4∑
i=1

e−Kχ1,ierfc
(
χ1,i

2u
−Ku

)
du

(51)

and, from (25)–(27), we can show that

L2 =
1

4π

4∑
i=1

E1

(
x2 + χ2

2,i

a2h2

)
+
K2a2h2

2π

4∑
i=1

E2

(
x2 + χ2

2,i

a2h2

)

− 2K

π1/2

∫ ah/2

0
eK

2u2−x2/4u2
4∑
i=1

(Kχ2,i − 2K2u2 − 1)e−Kχ2,ierfc
(
χ2,i

2u
−Ku

)
du.

(52)

If we introduce the truncation parameter M and ignore the terms Ln, n ≥ 2, in (44),

we have the formula

G = − e−µ0|x|

2µ0N0

cosµ0(z + h) cosµ0(ζ + h)−
M∑
m=0

Λm

Nm

cosµm(z + h) cosµm(ζ + h)

− 1

4π

[
E1

(
ρ2

a2h2

)
+ E1

(
ρ′2

a2h2

)
+

4∑
i=1

E1

(
x2 + χ2

1,i

a2h2

)]
(53)

− K

π1/2

∫ ah/2

0
eK

2u2−x2/4u2
4∑
i=1

e−Kχ1,ierfc
(
χ1,i

2u
−Ku

)
du+ . . . ,

where Λ0 is given by (45) and Λm, m ≥ 1, by (46). If there is no pole for which Re(µ2) ≤ 0,

the terms containing µ0 are simply removed from this formula. If there is a double root

the only change is that we must add a term

D =
∫ ∞
a2h2/4

e−x
2/4t

(4πt)1/2
R̃ dt (54)

to (53), where R̃ is given by (20). It follows that

D =
2

h cos2 µ̃h

[
2µ̃2Q1Z

(1) +Q2

((
−1 +

4

3
sin2 µ̃h

)
Z(1) + Z(2)

)]
, (55)

where, see Chaudhry, Temme, and Veling (1996),

Q1 =
∫ ∞
a2h2/4

t1/2e−x
2/4t−µ̃2t

(4π)1/2
dt

=
1

8µ̃2

[
eµ̃|x|

(
1

µ
− |x|

)
erfc

(
µ̃ah

2
+
|x|
ah

)
+ e−µ̃|x|

(
1

µ
+ |x|

)
erfc

(
µ̃ah

2
− |x|
ah

)]

+
ah

4µ̃2π1/2
exp

(
− µ̃

2a2h2

4
− x2

a2h2

)
, (56)

Q2 =
∫ ∞
a2h2/4

e−x
2/4t−µ̃2t

(4πt)1/2
dt

=
1

4µ̃

[
eµ̃|x|erfc

(
µ̃ah

2
+
|x|
ah

)
+ e−µ̃|x|erfc

(
µ̃ah

2
− |x|
ah

)]
. (57)
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When x = 0 the extra contribution due to the double pole is simply

D =
1

µ̃h cos2 µ̃h

[
µ̃ahπ−

1
2Z(1)e−µ̃

2a2h2/4 +
(

4

3
Z(1) sin2 µ̃h+ Z(2)

)
erfc

(
µ̃ah

2

)]
. (58)

An alternative expression for the Green’s function can be obtained by writing

G = GN +GK , (59)

where GN satisfies Neumann boundary conditions on z = −h and z = 0. The function

GN can be written in closed form:

GN =
1

2π
ln

(
2

∣∣∣∣∣cos
πζ

h
− cos

π

h
(z + ix)

∣∣∣∣∣
)
. (60)

The method used to derive (44) can now be used to obtain a rapidly convergent expansion

for GK . Instead of (41) we use

u+ ũ = − e−x
2/4t

(4πt)1/2

(
w − wN −

e−µ
2
0t

N0

cosµ0(z + h) cosµ0(ζ + h) +
1

h

)
, (61)

where w is the solution to (5)–(8) and wN is the solution to the same boundary-value

problem with K = 0. A formula for w − wN suitable for large times is, from (23),

w − wN = R̃ +
∞∑
m=0

[
Rm −

εm
h

e−m
2π2t/h2

cos
mπz

h
cos

mπζ

h

]
, (62)

where ε0 = 1, εm = 2, m ≥ 1, and a form for w − wN which converges rapidly for small

times can be obtained from (29). Now, at t = 0,

u+ ũ = N−1
0 δ(x) cosµ0(z + h) cosµ0(ζ + h)− h−1δ(x)− δ(x)δ(z − ζ), (63)

and hence ∫ ∞
0

(u+ ũ) dt =
e−µ0|x|

2µ0N0

cosµ0(z + h) cosµ0(ζ + h) +
|x|
2h

+GK . (64)

Following the same procedure as before yields

GK =− e−µ0|x|

2µ0N0

cosµ0(z + h) cosµ0(ζ + h)− |x|
2h
−
∞∑
m=1

∞∑
j=0

(m+ j)!

m!j!
(−2K)mLmj

−
∞∑
m=0

[
Λm

Nm

cosµm(z + h) cosµm(ζ + h)− εm
h
Mm cos

mπz

h
cos

mπζ

h

]
,

(65)

where Λm is given by (45) and (46),

M0 = −
∫ a2h2/4

0

e−x
2/4t

(4πt)1/2
dt = − |x|

4π1/2
Γ

(
−1

2
,
x2

a2h2

)
, (66)

Mm =
∫ ∞
a2h2/4

e−x
2/4t

(4πt)1/2
e−m

2π2t/h2

dt

=
h

4mπ

[
emπ|x|/herfc

(
mπa

2
+
|x|
ah

)
+ e−mπ|x|/herfc

(
mπa

2
− |x|
ah

)]
, (67)
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and

Lmj =
∫ a2h2/4

0

e−x
2/4t

(4πt)1/2

4∑
i=1

Ĩm(χm+j,i) dt. (68)

In particular

L10 = − 1

2π1/2

∫ ah/2

0
eK

2u2−x2/4u2
4∑
i=1

e−Kχ1,ierfc
(
χ1,i

2u
−Ku

)
du (69)

and we note that when x = 0,

M0 = − ah

2π1/2
, Mm =

h

2mπ
erfc

(
mπa

2

)
. (70)

From (59), (60) and (65) we have, neglecting the all terms Lmj except L10,

G =− |x|
2h

+
1

2π
ln

(
2

∣∣∣∣∣cos
πζ

h
− cos

π

h
(z + ix)

∣∣∣∣∣
)
− e−µ0|x|

2µ0N0

cosµ0(z + h) cosµ0(ζ + h)

−
∞∑
m=0

[
Λm

Nm

cosµm(z + h) cosµm(ζ + h)− εm
h
Mm cos

mπz

h
cos

mπζ

h

]

− K

π1/2

∫ ah/2

0
eK

2u2−x2/4u2
4∑
i=1

e−Kχ1,ierfc
(
χ1,i

2u
−Ku

)
du+ . . . . (71)

If there is a double pole we must add a term D given by (55) and if there is no pole for

which Re(µ2) ≤ 0, the terms containing µ0 are simply removed from this formula; exactly

as before.

4 THREE-DIMENSIONAL GREEN’S FUNCTIONS

Next we consider the three-dimensional fluid domain −∞ < x < ∞, −∞ < y < ∞,

−h < z ≤ 0 with the undisturbed free surface being z = 0 so that the Green’s function

representing a point source at x = 0, z = ζ, again factoring out a time dependence of

exp(−iωt), is the solution to

∇2G = δ(x)δ(y)δ(z − ζ) − h < z ≤ 0,−h < ζ ≤ 0, (72)

together with (31) and (32), and we require G to tend to zero as R = (x2 + y2)
1
2 → ∞.

The following definitions will be used:

r = [x2 + y2 + (z − ζ)2]
1
2 , r′ = [x2 + y2 + (2h+ z + ζ)2]

1
2 .

As in the two-dimensional case we can represent G as an integral or as an eigenfunction

expansion:

G = − 1

2π

∫ ∞
0

K sinh kz> + k cosh kz>
k sinh kh−K cosh kh

cosh k(z< + h)J0(kR) dk (73)

= −
∞∑
m=0

K0(µmR)

2πNm

cosµm(z + h) cosµm(ζ + h). (74)

11



Again, direct numerical integration is difficult when |z| and |ζ| are both small and evalu-

ation of the eigenfunction sum is difficult when |R| is small.

To derive a new representation for G we require the solution to the initial boundary-

value problem

∇2u = ut t > 0,−h < z ≤ 0, (75)

u = −δ(x)δ(y)δ(z − ζ) at t = 0,−h < ζ ≤ 0. (76)

together with (37) and (38). This is simply

u(x, y, z, t) = −e−R
2/4t

4πt
w(z, t), (77)

where w is given by (23) or by (24).

Once again
∫∞

0 u dt does not exist if there is a pole for which Re(µ2) ≤ 0, so instead

we consider the function

u+ ũ = −e−R
2/4t

4πt

[
w − e−µ

2
0t

N0

cosµ0(z + h) cosµ0(ζ + h)

]
. (78)

so that ũ satisfies the initial condition

ũ = N−1
0 δ(x)δ(y) cosµ0(z + h) cosµ0(ζ + h) at t = 0, (79)

and hence, ∫ ∞
0

(u+ ũ) dt =
K0(µ0R)

2πN0

cosµ0(z + h) cosµ0(ζ + h) +G. (80)

Following the same procedure as in the two-dimensional case we obtain, introducing

a truncation parameter M ,

G =−
M∑
m=0

Λm

Nm

cosµm(z + h) cosµm(ζ + h)

− 1

4πr
erfc

(
r

ah

)
− 1

4πr′
erfc

(
r′

ah

)
−

4∑
i=1

erfc
[
(ah)−1(R2 + χ2

1,i)
1/2
]

4π(R2 + χ2
1,i)

1/2

− K

2π

∫ ah/2

0
eK

2u2−R2/4u2
4∑
i=1

e−Kχ1,ierfc
(
χ1,i

2u
−Ku

)
du

u
+ . . . , (81)

where now

Λ0 =
K0(µ0R)

2π
−
∫ a2h2/4

0

e−R
2/4t

4πt
e−µ

2
0t dt, (82)

Λm =
∫ ∞
a2h2/4

e−R
2/4t

4πt
e−µ

2
mt dt. (83)

If there is no pole for which Re(µ2) ≤ 0, the terms containing µ0 are removed. If there is

a double root we must add a term

D =
∫ ∞
a2h2/4

e−R
2/4t

4πt
R̃ dt (84)

12



to (81), where R̃ is given by (20). This integral is evaluated numerically except when

R = 0 in which case the extra contribution due to the double pole is simply

D =
1

πh cos2 µ̃h

[
Z(1)e−µ̃

2a2h2/4 +
1

2
E1

(
µ̃2a2h2

4

) [(
−1 +

4

3
sin2 µ̃h

)
Z(1) + Z(2)

]]
. (85)

If we let a→ 0 in (81) we recover the eigenfunction expansion (74). By letting a→ 0 in

(84) we find that the additional contribution to the eigenfunction expansion due to the

double pole is

1

πh cos2 µ̃h

[
Z(1)µ̃RK1(µ̃R) +

[(
−1 +

4

3
sin2 µ̃h

)
Z(1) + Z(2)

]
K0(µ̃R)

]
.

This is the three-dimensional equivalent of the expression (35) derived by Dalrymple,

Losada, and Martin (1991) and, as far as the authors are aware, has not been derived

previously.

The expression (82) is not suitable for the numerical evaluation of Λ0 when R is small.

If we expand K0(µ0R) for small R and expand e−µ
2
0t in a power series we can show that

−4πΛ0 = 2 ln
µ0ah

2
+ 2

∞∑
n=1

(µ0R)2n

22n(n!)2

[
ln
µ0R

2
− ψ(n+ 1)

]

+ γ +
∞∑
n=1

(−1)n

n!

(µ0ah

2

)2n

En+1

(
R2

a2h2

)
− 1

n

(
R

ah

)2n
 , (86)

where γ is Euler’s constant and ψ(·) is the Digamma function. To evaluate the limit as

R→ 0 of the right-hand side of (86) we note that for m ≥ 2, Em(0) = 1/(m− 1) and use

Abramowitz and Stegun (1965), eqn 5.1.11. We obtain

lim
R→0

Λ0 =
1

4π
E1

(
µ2

0a
2h2

4

)
(87)

and, directly from (83),

Λm

∣∣∣
R=0

=
1

4π
E1

(
µ2
ma

2h2

4

)
. (88)

5 RESULTS

In this section, the value of h has, without loss of generality, been fixed at unity. The

value of K with the smallest modulus for which a double root occurs will be labelled

Kd and to 12 decimal places Kd = 1.650611293540 + 2.059981457180i. All the numerical

computations below were performed using Mathematica.

There are a number of considerations which effect the choice of algorithm for the

evaluation of G in particular application. Many of the formulas listed in this paper involve

special functions and so if these are to be used, efficient algorithms for the computation
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of these functions must be available. A survey of algorithms available for the evaluation

of special functions is provided by Lozier and Olver (1995). Below we will concentrate on

determining the number of terms in each series that are required to achieve an accuracy

of 8 decimal places in both the real and imaginary parts of G. Whilst this accuracy

will be adequate for most practical applications it should be noted that, because of the

exponential convergence rate of the representations for G derived in this paper, very little

extra effort is required to increase this to 10 or 12 decimal places of accuracy. In many

applications it is the spatial derivatives of G that are required; these can be obtained

by differentiating the formulas in this paper term by term and the resulting expressions

will converge slower than those for G. Typically this process introduces an algebraically

growing factor which multiplies the exponentially decaying factor. As a result one can

usually expect 1 or 2 decimal places less accuracy for the same truncation parameters.

We will not address the question of the relative CPU usage of the various methods

however, except with the following general remarks. Our experience shows that, except

when |z| and |ζ| are both small, the integral representation is the quickest method, not

least because there is no need to compute any of the roots to the dispersion relation. The

situation is better for the case of complex K than for the standard water-wave case, for

which K is real, because in the latter case there is a pole of the integrand on the real

axis which necessitates the evaluation of a principal-value integral. However for small

|z| and |ζ| the integral converges very slowly and the representation is not useful. Just

when the integral representation can be used efficiently is hard to determine. For large

|x| (R in three dimensions) the eigenfunction expansion converges quickly and only a few

of the roots to the dispersion relation are required. However as |x| decreases more and

more terms are required in the series and hence more and more solutions to (1) must be

computed. In many practical applications the Green’s function does need to be evaluated

in situations where the source and field point are fairly close together and it is in just

such cases where the eigenfunction expansion becomes unsuitable. The advantage of the

representations which have been derived in this paper is that they appear to work equally

well throughout the whole range of physical parameters. Since the choice of a is at our

disposal we can always set it to zero whenever |x| is sufficiently large so that we simply

recover the eigenfunction expansion. We will thus concentrate on the case of small |x|
below. The individual terms in the series for the new representations are of course more

difficult to compute than in the eigenfunction expansion and so the trade off between a

few complicated terms and a lot of simple terms will determine which method to use for

a particular value of |x|. Finally it should be noted that very often a large number of

calculations are made for the same value of the frequency parameter K, in which case the

computation of the roots of the dispersion relation becomes less significant.

We will begin with the two-dimensional case. For (53) or (71) to be useful, the
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−(z + ζ)

a 0 0.5 1 1.5 2

0.2 2× 10−45 3× 10−70 3× 10−100 2× 10−135 1× 10−176

0.3 5× 10−21 4× 10−32 2× 10−45 3× 10−61 2× 10−79

0.4 2× 10−12 1× 10−18 2× 10−26 2× 10−35 2× 10−45

0.5 2× 10−8 2× 10−12 3× 10−17 5× 10−23 1× 10−29

0.6 6× 10−6 6× 10−9 2× 10−12 2× 10−16 5× 10−21

0.7 2× 10−4 1× 10−6 3× 10−9 2× 10−12 9× 10−16

0.8 1× 10−3 3× 10−5 2× 10−7 1× 10−9 2× 10−12

0.9 5× 10−3 2× 10−4 6× 10−6 8× 10−8 5× 10−10

1.0 1× 10−2 1× 10−3 6× 10−5 2× 10−6 2× 10−8

Table 1: 4b−2e−b
2
, b = (2− z − ζ)/a.

contribution from the neglected terms must be less than the desired accuracy for G.

These terms are different in the two expressions (53) and (71); the part of L2 (given by

(52)) that does not depend on K is in effect included in (71). This is

1

4π

4∑
i=1

E1

(
x2 + χ2

2,i

a2

)
.

Now, since E1(x) ≤ x−1e−x and χ2,i ≥ 2−z−ζ, it follows that this term is bounded above

(for all x) by 4b−2e−b
2
, where b = (2−z−ζ)/a. The other terms that have been neglected

in (53) and (71) are of the same or smaller order of magnitude than this one. (The

neglected terms do increase with |K| and so for large values of |K| care must be taken

in making sure that the neglected terms do not affect the accuracy of the computations;

however for values of K of practical interest, |K| < 10 say, this is not significant.) The

value of the bound above is listed in Table 1 for various values of a and z + ζ. It is clear

from the table that for a given value of z + ζ, there is an upper bound on the value of

a that can be used in (53) or (71). On the other hand, the larger a is the faster the

convergence of the series in the expressions for G. From the table we can see that the

choice

a =
2− z − ζ

5
(89)

will ensure the required accuracy, and because this choice is quite conservative it will also

take care of any slight increase in the terms due to a large value of |K|. Hence, in the

results below, we will always take a to be given by (89).

The convergence of the new representation, (53), is shown in Table 2, compared with

that of the eigenfunction expansion (34), for K = 1 + i. When x = 0, thousands of terms

15



z = −0.5 z = −0.01

ζ = −0.2 ζ = −0.02

x Eqn (34) Eqn (53) Eqn (34) Eqn (53)

0 4 5

0.05 100 4 100 6

0.1 50 4 50 5

0.2 24 4 20 5

0.5 10 4 10 5

Table 2: The number of terms required to achieve 8 decimal place accuracy whenK = 1+i.

are required to make the eigenfunction expansion converge. The rapid convergence of the

representation (53) is clear, as is the insensitivity of the convergence on the values of x, z

and ζ. For z = −0.5, ζ = −0.2, the integral representation (33) provides another efficient

method for the evaluation of G, but for z = −0.01, ζ = −0.02 it does not.

Our numerical computations suggest that there is little to choose between the repre-

sentations (53) and (71) as methods for computing G. The main criterion for choosing

between the two is whether one wishes to compute the exponential integrals in (53) or

the error functions that are required for the evaluation of Mm in (71).

Next we will consider the case when there is a double root to the dispersion relation.

The convergence of the new representation, (53) (with the additional contribution D given

by (55)), is shown in Table 3, compared with that of the eigenfunction expansion (34), for

K = Kd and it is clear that the presence of the double root does not significantly affect

the convergence characteristics of either the eigenfunction expansion or the new represen-

tation. However, our computations suggest that there is little difficulty in computing G

accurately on the assumption that all the roots of (1) are simple, even when K is very

close to Kd. In such a case two of the roots are very close together, but provided they

are computed to very high accuracy (which is not difficult), the representations (34), (53)

and (71) will all produce accurate values for G. As an extreme example, we computed

G without using the double root formula for a value of K with |K −Kd| ≈ 10−10. The

roots of (1) were computed to 16 decimal digits and the representations (53) and (71)

both converged rapidly to a value for G accurate to 5 decimal places.

The convergence characteristics of the new representation, (81), for the three-dimensional

Green’s function are very similar to those shown above for the two-dimensional case. We

will use this representation to exhibit another important property of the new formulas.
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z = −0.5 z = −0.01

ζ = −0.2 ζ = −0.02

x Eqn (34) Eqn (53) Eqn (34) Eqn (53)

0 3 4

0.05 85 3 100 5

0.1 45 3 45 4

0.2 21 3 20 4

0.5 7 3 9 4

Table 3: The number of terms required to achieve 8 decimal place accuracy when K = Kd.

The function G, defined by (72), is singular as r → 0. Indeed

G ∼ −(4πr)−1 as r → 0 (ζ < 0)

∼ −(2πr)−1 as r → 0 (ζ = 0).

In applications it is important to be able to accurately determine the non-singular part

of G, since the singular part can be treated analytically. Hence it is usually desirable

to have a representation which contains the singularity explicitly. For example the term

−(4πr)−1erfc(r/ah) in (81) can be written as

− 1

4πr
+

1

4πr
erf

(
r

ah

)
and as r → 0 the second term tends to a constant. Table 4 shows that the representation

(81) (unlike the standard eigenfunction expansion which is singular as R → 0) is suffi-

ciently accurate and computationally efficient for direct computation near to the singular

point to be feasible. In the Table we show the value of the regular part of ReG to 8

decimal places and the truncation parameter required to achieve this accuracy, as the

field point approaches the singular point along a horizontal line. Two sets of parameter

values are considered: in both cases K = 1 + i and the values of z and ζ are chosen to

make the accurate evaluation of G awkward. In the example on the left z = ζ = −0.01

so that G ∼ −1/4πR as R → 0 whereas in the example on the right z = ζ = 0 so that

G ∼ −1/2πR as R → 0. The appropriate behaviour is clearly demonstrated, as is the

fact that the number of terms required to achieve an accuracy of 8 decimal places in the

regular part of G does not increase as we approach the singular point.
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z = ζ = −0.01 z = ζ = 0

R M ReG+ (4πR)−1 M ReG+ (2πR)−1

0.1 6 -0.69267867 6 0.07077096

0.01 6 -3.63578886 6 -0.29143855

0.001 5 -4.05987077 6 -0.65784498

0.0001 5 -4.06488325 6 -1.02431195

0.00001 5 -4.06493346 6 -1.39077971

Table 4: Truncation parameters required to achieve an accuracy of 8 decimal places in

the regular part of G using (81), when K = 1 + i.

6 CONCLUSION

In one class of models that is used to describe the interaction of water waves with surface-

piercing permeable structures the flow field inside the structure is described by a harmonic

velocity potential that satisfies the standard linear free-surface boundary condition with

the complication that the frequency parameter is complex rather than real. In this paper

we have considered that accurate evaluation of the Green’s function, G, in both two and

three dimensions, for a situation in which the permeable structure is of constant height

and there is no flow through the bottom.

New representations for the Green’s function have been obtained using a method

developed in I for the standard water wave problem. A one-parameter family of formulas

for G has been derived and by varying the parameter the convergence characteristics of

our new representations can be altered. Letting a → 0 results in known eigenfunction

expansions.

Results of computations have been presented and these demonstrate the accuracy and

efficiency of the new formulas. Other methods are available for the computation of G,

in particular the Green’s function can be represented as an integral and, unlike in the

standard water wave problem, there are no poles of the integrand on the real axis and

so evaluation of this integral is straightforward. The exception is when the source and

field point are both close to the free surface, in which case the integral representation is

no longer useful from a computational point of view. The eigenfunction expansion for G

represents an efficient method of computation provided the horizontal distance between

source and field points is not too small, but when they are close together the expansion

becomes very slowly convergent (in the two-dimensional case) or singular (in the three-

dimensional case). The new representations that have been derived have the advantage

that they appear to offer an efficient method for the evaluation of G throughout the fluid
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domain.

APPENDIX

In this appendix, brief details are given of a method for determining explicitly the complex

roots of certain equations g(w) = 0. An outline of the technique, that includes sufficient

information to solve the water-wave dispersion relation, is given below; full details are

given in McIver (1998).

Outline of the method

Suppose that g(w) = 0 has an infinity of roots (or, equivalently, g(w) has an infinity

of zeros) in the complex w plane. First of all it is required to identify a part D of the

complex w plane that contains only a finite number m of the zeros of g(w), and is such

that a function F (z) can be constructed with m zeros in the whole complex z plane that

can be related to the zeros of g(w) in D. The method then uses complex variable theory

to determine a polynomial

Pm(z) =
m∑
j=0

bjz
j (90)

whose zeros correspond, both in location and multiplicity, to the zeros of F (z). In the

present problem, it is possible to construct an F such that m = 1 or m = 2, and thus

Pm(z) = 0 can be solved explicitly for z. The coefficients {bj; j = 0, . . . ,m} that appear

in Pm are given by choosing bm = 1 and solving the m linear equations

m∑
j=0

[A−k−j−1 + Ik+j] bj = 0, k = 0, . . . ,m− 1, (91)

where

Ij =
1

2πi

∫ 1

−1

M+(t)−G(t)M−(t)

X+(t)
tj dt, (92)

and the coefficients Aj and the functions M± depend on the particular F . The functions

G and X+ are chosen for convenience and are given below.

Distribution of roots

Consider now the dispersion relation

g(w) ≡ Γ + w tanw = 0, (93)

where Γ = α + iβ is a given complex number and α and β are non-negative. From the

form of g, it is clear that for each root w = w0 there is a root w = −w0, but only
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those roots with Rew ≥ 0 are needed here. McIver (1998) uses the argument principle of

complex-variable theory to show that the number of roots in the strips

Rn−1 < Rew < Rn (94)

of the complex w plane, where n is an integer and Rn = (2n+ 1)π/2, can be identified as

follows. Let In be the condition

tanh
αRn

β
<
Rn

β
(95)

and let Jn be the condition

tanh
αRn

β
>
Rn

β
. (96)

1. If either In−1 and In or Jn−1 and Jn are both true then there is exactly one zero

of g(w) for Rn−1 < Rew < Rn.

2. If In−1 and Jn are both true, then there are no zeros of g(w) for Rn−1 < Rew < Rn.

3. If Jn−1 and In are both true, then there are exactly two zeros of g(w) for Rn−1 <

Rew < Rn.

After the change of variable

w = −iΓz, (97)

equation (93) may be rewritten as

F (z) ≡ z +
1

2Γ

(
log

z − 1

z + 1
− 2nπi

)
= 0 (98)

where the principal branch of the logarithm is to be taken and the branch cut is chosen

to be the interval (−1, 1) on the real axis. For each n, the zeros of F (z) in the whole cut

z plane correspond to the zeros of g(w) in the strip (94).

Explicit calculation of the roots

The algorithm may be summarized as follows. For a given Γ = α + iβ, the number of

roots of (93) in each strip Rn−1 < Rew < Rn, n = 0, 1, 2, . . . , is determined from the

inequalities in section 6. Explicit formulae for these roots are found by taking G(t) = −1,

X+(t) = 1/
[
i(1− t2)1/2

]
, (99)

M±(t) =
[
t+

1

2Γ

(
log

1− t
1 + t

− (2n∓ 1)πi
)]−1

, (100)
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A−1 =
inπ

Γ
, (101)

A−2 =
1

2 Γ2

[
2 Γ− Γ2 − 2n2 π2

]
, (102)

A−3 = − inπ

2 Γ3

[
2n2 π2 + Γ2 − 4 Γ

]
, (103)

A−4 =
1

24 Γ4

[
24n4 π4 + 12n2 π2 Γ (Γ− 6) + Γ2

(
24− 4 Γ− 3 Γ2

)]
, (104)

and then solving the system (91) to determine {bj; j = 0, . . . ,m − 1}. (Note that the

integrals Ij must be calculated numerically.) The zeros of Pm(z) are then calculated and

finally (97) is used to transform these to zeros of g(w).

Double roots

Double roots of g(w) = 0 occur at isolated values of Γ = −w tanw when w is a roots of

sin 2w + 2w = 0. (105)

Explicit formulae for these values of w may be found by the above method (see McIver

1998), however numerical values only are given here in Table 5 for the five roots within

the fourth quadrant that have smallest modulus. It should be noted that if w = w0 is a

root of (105), then so is −w0 and ±w0.

w/2 Γ

4.21239− 2.25073i 1.65061 + 2.05998i

10.7125− 3.10315i 2.05785 + 5.33471i

17.0734− 3.55109i 2.27847 + 8.52264i

23.3984− 3.85881i 2.43112 + 11.6888i

29.7081− 4.09370i 2.54799 + 14.8458i

Table 5: Values of Γ for which there are double roots of the dispersion
relation (93) together with the corresponding roots w of (105).

APPENDIX. REFERENCES

Abramowitz, M., & Stegun, I. A. (1965). Handbook of Mathematical Functions.

Dover, New York.

Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of Heat in Solids (2nd ed.).

Oxford University Press.

21



Chaudhry, M. A., Temme, N. M., & Veling, E. J. M. (1996). Asymptotics and

closed form of a generalized incomplete gamma function. J. Comput. Appl. Math., 67,

371–379.

Dalrymple, Robert A., Losada, Miguel A., & Martin, P. A. (1991). Reflection

and transmission from porous structures under oblique wave attack. J. Fluid Mech.,

224, 625–644.

Ijima, T., Chou, C. R., & Yumura, Y. (1974). Wave scattering by permeable and

impermeable breakwater of arbitrary shape. In Proc. 14th Intl Conference on Coastal

Engineering, ASCE, pp. 1886–1905.

Linton, C. M. (1999). Rapidly convergent representations for Green’s functions for

Laplace’s equation. Proc. Roy. Soc. Lond., A. To appear.

Lozier, D. W., & Olver, F. W. J. (1995). Numerical evaluation of special functions.

In W. Gautschi (Ed.), Mathematics of Computation 1943–1993: A half-century of

computational mathematics. American Mathematical Society.

McIver, P. (1998). The dispersion relation and eigenfunction expansions for water waves

in a porous structure. J. Engng. Math., 34, 319–334.

McLean, N. (1999). Water wave diffraction by segmented permeable breakwaters. Ph. D.

thesis, Loughborough University. In preparation.

Sollitt, C. K., & Cross, R. H. (1972). Wave transmission through permeable break-

waters. In Proc. 13th Intl Conf. on Coastal Engineering, ASCE, pp. 1827–1846.

Strain, John (1992). Fast potential theory. II. Layer potentials and discrete sums. J.

Comput. Phys., 99, 251–270.

Sulisz, W. (1985). Wave reflection and transmission at permeable breakwaters of arbi-

trary cross-section. Coastal Eng., 9, 371–386.

Yu, X., & Chwang, A. T. (1994). Wave motion through porous structures. J. Engrg.

Mech., 120, 989–1008.

22


