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Abstract

In the long-wave, weakly nonlinear limit a generic model for the interaction of two

waves with nearly coincident linear phase speeds is a pair of coupled Korteweg-de Vries

equations. Here we consider the simplest case when the coupling occurs only through

linear non-dispersive terms, and for this case delineate the various families of solitary

waves that can be expected. Generically, we demonstrate that there will be three

families, (a) pure solitary waves which decay to zero at in�nity exponentially fast, (b)

generalized solitary waves which may tend to small-amplitude oscillations at in�nity,

and (c) envelope solitary waves which at in�nity consist of decaying oscillations. We

use a combination of asymptotic methods and the rigorous results obtained from a

normal form approach to determine these solitary wave families.
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1 Introduction

It is well-known that the Korteweg-de Vries equation is the generic outcome of a

weakly-nonlinear long-wave asymptotic analysis of many physical systems. It is cate-

gorized by its family of solitary wave solutions, with the familiar \sech2" pro�le. How-

ever, in those circumstances when there are two wave modes with nearly coincident
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linear long-wave speeds, the generic outcome is a set of coupled Korteweg-de-Vries

(cKdV) equations. In the simplest case, these take the form,

At +�1Ax + �1AAx + �1Axxx + �1Bx = 0; (1)

Bt +�2Bx + �2BBx + �2Bxxx + �2Ax = 0; (2)

Here 41 �42 is the detuning parameter which measures the di�erence in the linear

long-wave speeds of the uncoupled system, �1; �2 are the coupling parameters, while

�1; �2 and �1; �2 are nonlinear and linear dispersive coeÆcients respectively. Note that

the coupling here occurs only through linear non-dispersive terms; more generally the

coupling may occur through linear dispersive terms and through quadratic nonlinear

terms as well. Such systems have been derived in several geophysical 
ows (see, for

instance, the recent review [11]).

This brief article has two objectives. The �rst is to describe the three families

of solitary waves that can be expected, namely (a) pure solitary waves which decay

to zero at in�nity exponentially fast, (b) generalized solitary waves which may tend

to small-amplitude oscillations at in�nity, and (c) envelope solitary waves which at

in�nity consist of decaying oscillations. The second objective is to indicate how the

normal form approach, which exploits dynamical systems theory, can be used to make

this description rigorous.

2 Linear dispersion relation and solitary waves

The linear dispersion relation is obtained by omitting the nonlinear terms in (1,2),

and then seeking solutions proportional to exp(ik(x� ct)). The result is,

(c��1 + �1k
2)(c��2 + �2k

2) = �1�2 : (3)

Also note that the linearized system is spectrally stable if the relation (3) yields only

real values of c for all real wavenumbers k. It is readily veri�ed that this is so if either

�1�2 > 0, or if when �1�2 < 0 then (�1��2)
2+4�1�2 > 0 and (�1��2)(�1��2) < 0;

otherwise there is a band of instability in k-space for a �nite range of wavenumbers

k, which may include k = 0.

This dispersion relation can take several forms, depending on the relative signs of the

coeÆcients �1;2; �1;2 and �1;2. In �gure 1 we show three typical scenarios. In each

case we take �1 = ��2 where �1 > 0 without loss of generality, and we take �1;2 > 0.

Then, in �gure 1a,b,c we show the cases when (a) �1; �2 > 0, (b) �1 > 0 > �2, and (c)

�1 < 0 < �2 respectively. In each case the dispersion relation contains two branches,

which we label as the A;B-branches respectively. The A-branch (B-branch) is that

which can be identi�ed with the A-wave (B-wave) in the limit when the coupling

2



parameters �1;2 ! 0. With �1 > 0 the A-branch (B-branch) is the upper (lower)

branch in �gure 1. Note that, in relation to the normal form analysis of Section 3,

�gure 1(a) corresponds to �gure 2(a) and �gures 1(b,c) to �gure 2(c).

From these dispersion relations we can anticipate the existence of three possible kinds

of solitary waves for which A = A(x � ct), B = B(x � ct) , namely, pure solitary

waves (PSW), generalized solitary waves (GSW) and envelope solitary waves (ESW).

In each case, the bifurcation point is identi�ed as that value of wavenumber k for

which the c = cg where cg is the group velocity, given by cg = c+ k(dc=dk); thus, the

bifurcation point is where kdc=dk = 0. Hence, there is always a bifurcation at k = 0

leading to either pure or generalized solitary waves. There may also be bifurcations

at �nite, non-zero wavenumbers k leading to envelope solitary waves. A rigorous

approach using normal form analysis to describe these bifurcations is presented in

Section 3. Here, we present an alternative (and non-rigorous) approach which uses

weakly nonlinear asymptotic methods

Pure solitary waves: These bifurcate from a dispersion curve branch at wavenum-

ber k = 0 in the sense opposed to that of the linear dispersion curve, for the case when

there is no possible resonance with the other branch for any wavenumber k. Thus

they can be found in �gure 1a by a bifurcation from the A-branch, and in �gure 1c

by a bifurcation from both the A-branch, and the B-branch. In the weakly-nonlinear

long-wave limit these solitary waves can be constructed by an asymptotic expansion,

which in e�ect leads to a Korteweg-de Vries equation. First note that in the linear

long wave limit the phase speeds determined from (3) are given by c = �c0 where

c0 = f�2+�1�2g
1=2. Suppose the bifurcation takes place from the B-branch of �gure

1c, and so takes place from the point c = �c0. Then let

(A;B) = �2(A1(X); B1(X)) + � � � ; c = �c0 + �2c1 + � � � ; where X = �(x� ct):
(4)

It is readily found that, at the leading order, O(�2), (A1; B1) = (��1; c0 + �)S(X).

At the next order, O(�4), a compatibility condition is needed on the equations for

u2; v2 which leads to the determination of S(X),

S = a sech2
X (5)

where �a=3 = 4�
2 = c1f(c0 +�)2 + �1�2g; (6)

where � = [�2(c0+�)3��1�
2
1�2], and � = [�2(c0+�)2+�1�1�2]. This leading-order

result is easily recognised as just the well-known Korteweg-de Vries solitary wave.

The expansion can, in principle, be carried through to higher orders. This procedure

is very well-known and has been used in many physical problems (see for instance,

[1] for water waves, or [12] for internal waves ).

Generalized solitary waves: These bifurcate from a dispersion curve branch at

wavenumber k = 0 in the sense opposed to that of the linear dispersion curve, for
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the case when there is possible resonance with the other branch for some �nite non-

zero wavenumber k. Thus generalized solitary waves can be found in �gure 1a by

a bifurcation from the B-branch, and in �gure 1b by a bifurcation from both the

A-branch, and the B-branch. As for pure solitary waves in the weakly-nonlinear

long-wave limit these solitary waves can be constructed by an asymptotic expansion,

as above leading to a \sech2" structure at the leading order, but this now needs to

be supplemented by a calculation of the oscillations which persist at in�nity. This

usually requires the use of exponential asymptotics (see, for instance, [4], [6] or [13]).

Here, we note that a simple alternative to directly invoking exponential asymptotics

is to assume that �1;2 are small parameters, and then perform an expansion in these

parameters (for a detailed discussion of this approach, and a comparison with the

method of exponential asymptotics in a related problem, see [13]. Let us suppose

that the bifurcation takes place from the B-branch of �gure 1(a). Again we assume

that A = A(x�ct), B = B(x�ct) and let � = x�ct. Then we see that A is O(�1) and

that, to leading order, B satis�es the steady version the Korteweg-de Vries equation,

and so, B = Bs+O(�1�2) where Bs = asech2
� and c+� = (�2a)=3 = 4�2

2. Next,

A is given by

A�� +m2A = �
�1

�2

Bs; (7)

where �1m
2 = �� c > 0, readily satis�ed here since we expect c to be close to �c0.

Equation (7) is readily solved explicitly. Seeking solutions which are symmetric in

�, we �nd that, as x ! 1 oscillations persist at in�nity, whose amplitudes may be

explicitly calculated. For small amplitudes of the solitary wave core 
 ! 0 and these

oscillations have amplitudes which are then exponentially small with respect to 
.

Envelope solitary waves: These arise here as a bifurcation from points on a dis-

persion curve where there is a minimum or maximum value of c for a �nite non-zero

value of k. As noted just above, the signi�cance of such points is that they are

locations where the phase speed c and the group velocity cg are equal, thus lead-

ing to structure where the phase and the envelope of a wave packet can propagate

at the same speed (such waves were rigorously obtained found for capillary- grav-

ity waves in [7]). They can be identi�ed in �gure 1b as a bifurcation from both

the A-branch, and the B-branch. Again, a weakly nonlinear asymptotic expansion

can be used to construct these envelope solitary waves (see, for instance, [2]), The

asymptotic approach assumes that at leading order the solution for A;B has the

form (A;B) � �(A1(X; �); B1(X; �)) exp(ik(x � ct)+ c.c. where X = �(x � cgt) and

� = �2t, and c.c. denotes the complex conjugate. Here k is that wavenumber where

dc=dk = 0, and so cg = c there. The expansion procedure leads to a nonlinear

Schrodinger equation for A1 (or B1), and with the inclusion of some higher-order

terms, steady solutions of this equation yield the desired construction of an envelope

solitary wave. We shall not give details here, but see [5] where this approach was

carried out and compared with the normal form analysis.
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3 Normal form approach

First we look for travelling wave solutions of (1,2), that is, we assume that A;B are

functions only of � = x � ct, then integrate once, and set the integration constants

equal to 0. The result may then be written as a dynamical system for (A;B;C;D)(�),

A0 = C; (8)

C 0 = ��1
1

�
(c��1)A�

�1

2
A2 � �1B

�
; (9)

B0 = D (10)

D0 = ��1
2

�
(c��2)B �

�2

2
B2 � �2A

�
: (11)

Here A0 etc. denotes the derivative with respect to �. Importantly, the system is

reversible in that the vector �eld anticommutes with the symmetry (A;B;C;D) !

(A;�C;B;�D). Note that if instead we were to choose to take arbitrary values for

the constants of integration, then there would be two additional parameters. This

case is left for further study.

Let us denote the unknown vector function by

U = (A;C;B;D)t (12)

then, the linearized operator obtained from (11) reads

L =

0
BBB@

0 1 0 0

��1
1 (c��1) 0 ���1

1 �1 0

0 0 0 1

���1
2 �2 0 ��1

2 (c��2) 0

1
CCCA : (13)

De�ning Æ1;2 = 1=2(�1 ��2), and considering the parameter plane (Æ2; c); �xing Æ1;
and the other parameters, the dispersion relation (3) takes the following form,

�1�2k
4 + (D)k2 + (H) = 0; (14)

where (H) � (c� Æ1)
2 � Æ22 � �1�2; (15)

(D) � (�1 + �2)(c� Æ1) + (�1 � �2)Æ2: (16)

Note that here the dispersion relation has been written as an equation for k with c

given, where the eigenvalues � of the linearized operator L (13) are such that � = ik.

The discussion for the location of the eigenvalues � = ik in the parameter plane

(Æ2; c) is driven by three important simple curves, given by,

(H) = 0; (D) = 0; (P ) = 0; (17)
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where (P ) = (D)2 � 4�1�2(H)

= [(c� Æ1)(�1 � �2) + (�1 + �2)Æ2]
2 + 4�1�2�1�2: (18)

(i) The curve (H) = 0 de�nes the long-wave limit k = 0, which here, in the (Æ2; c)-
plane is a hyperbola centered at the point Æ2 = 0; c = Æ1.

(ii) (D) = 0 is a line passing through the center of the hyperbola, which intersects

the hyperbola at two points 
 and 
0 provided that

�1�2�1�2 < 0: (19)

We shall see below that the sign of (D) determines the existence or otherwise of the

various categories of solitary waves.

(iii) The last curve (P ) = 0 is a set of two parallel lines if �1�2�1�2 < 0; or is empty

if (19) is not satis�ed. Moreover these two lines are tangent to (H) precisely at 


and 
0: This curve locates the possible presence of a double solution for k for a given

real c, and hence locates the presence of those wavenumbers such that c = cg.

The points 
 and 
0 correspond to cases where 0 is a quadruple root of the

dispersion equation, i.e. codimension 2 points for the reversible system. The general

discussion of the unfolding may be found in [8], and this appears generically in the

water-wave problem (see, for instance, section 3 of [10]).

A normal form analysis can now be carried out, based on the approach described,

for instance, in [10]. Let us sum up the generic results:

1. Along (H) = 0; in the half-plane where �1�2(D) > 0; we denote by L(H) the above

operator (13), which now has a double-zero eigenvalue, and two real eigenvalues (one

> 0 and one < 0. De�ning the eigenvector �0 and the generalized eigenvector �1 by

�0 = (�1; 0; c��1; 0)
t and �1 = (0; �1; 0; c��1)

t (20)

the general theory (see, for instance, [10]) says that all \small" solutions are described

in terms of a couple of real variables (�; �) by

U = ��0 + ��1 +	(�; �; c; Æ2) (21)

meaning that they lie on a two-dimensional manifold (de�ned by 	) in the four-

dimensional phase space. Moreover (�; �) satis�es the following two-dimensional

system

d�

d�
= �;

d�

d�
=

(fH)

(D)
� + a�2 + f(�; �; c; Æ2) (22)
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where (fH) =
(D)

2�1�2
[(D) �

q
(P )] � (H), f = O(j�j + �)3, f is even in �; and the

coeÆcient a (which depends on (c; Æ2)) may be computed explicitely. It can be proved

that (provided that a(0; 0) 6= 0) the above system possesses a solution homoclinic to

0, for (H)(D) > 0; which implies the existence of a pure solitary wave (homoclinic to

0) bifurcating on this side of (H) = 0. For small amplitudes this solitary wave has

the \sech2" structure identi�ed in Section 2 (see (5)).

2. Along (H) = 0, and in the region �1�2(D) < 0; the linear operator L(H) has a

double-zero eigenvalue, and two imaginary eigenvalues �ik0 where �1�2k
2
0 +(D) = 0.

Let us de�ne as above the eigenvector �0 and generalized eigenvector �1 belonging

to the eigenvalue 0, and now also the eigenvector �2 belonging to the eigenvalue ik0:

Then, the general theory (see, for instance, [10]) says that all small solutions are

described by (�; �; 
) where, as above �; � are real variables, but 
 is a complex

variable, and

U = ��0 + ��1 + 
�2 + 
�2 +	(�; �; 
; 
; c; Æ2) (23)

where 	 is a quadratic polynomial in (�; �; 
; 
); with coeÆcients smooth in (c; Æ2);
and where

d�

d�
= �;

d�

d�
=

(fH)

(D)
� + a�2 + bj
j2 + f(�; �; 
; 
; c; Æ2);

d


d�
= i
(k + d�) + g(�; �; 
; 
; c; Æ2) (24)

holds, with a; b; d real and smooth in (c; Æ2) which can be computed easily, and k =

k0 +O[(H)] is given by the dispersion relation, and

(f; g)(�;��; 
; 
; c; Æ2) = (f;�g)(�; �; 
; 
; c; Æ2); jf j+ jgj = O
h
(j�j+ j�j+ j
j)3

i
:

If we consider the above system with f � g � 0; we obtain in particular a one-

parameter family of circles of homoclinic to periodic solutions, with j
j arbitrarily

�xed between 0 and a quantity of order O[(H)]; and (�; �) ! (�1(j
j)); 0) as � !
�1. The nonlinear coupling, due to f and g in the above system, between the

oscillation produced by the eigenvalues �ik; and the slow exponential convergence to

0 of (�; �) given by O(j(H)j1=2), with l a positive constant, leads to the impossibility

of obtaining a pure homoclinic-to-zero orbit; that is there is no pure solitary wave in

this case. Indeed, for the complete system, one can prove the existence of at least two

homoclinic solutions to each of the periodic solutions whose principal part is given by

� = 0;
(fH)

(D)
� + a�2 + bj
j2 = 0; j
j = constant; (25)
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provided that j
j is not too small. A delicate mathematical analysis, made for instance

in [4], proves that the minimal limiting amplitude j
j is exponentially small of order

O
h
exp(�lj(H)j�1=2)

i
, with l a positive constant, thus leading to the existence of

bifurcating generalized solitary waves which tend to exponentially small oscillations

at in�nity.

3. Assume that �1�2�1�2 < 0: Along the line (P ) = 0; and in the region

�1�2(D) < 0; the linear operator L(P ) has a pair of double eigenvalues �ik1 such

that k21 = �(D)=(2�1�2): This is the 1:1 resonance reversible Hopf bifurcation, which
corresponds to the case c = cg: Let us denote by �0 the eigenvector and �1 the gen-

eralized eigenvector such that L(P )�0 = ik1�0; L(P )�1 = ik1�1 + �0; then the general

theory (see for instance [10]) says that all small solutions are described by the complex

variables (�; �) with

U = ��0 + ��1 + ��0 + ��1 +	(�; �; �; �; c; Æ2) (26)

where 	 is a cubic polynomial in (�; �; �; �) with coeÆcients smooth in (c; Æ2); and

where

d�

d�
= ik1� + � + i�[�1 + p1j�j

2 +
i

2
p2(�� � ��)] + f; (27)

d�

d�
= ik1� + i�[�1 + p1j�j

2 +
i

2
p2(�� � ��)] + (28)

+�[�2 + q1j�j
2 +

i

2
q2(�� � ��)] + g; (29)

where (f; g)(�;��; �; �; c; Æ2) = (�f; g)(�; �; �; �; c; Æ2);

jf j+ jgj = O[(j�j+ j�j)4]; �2 � [2�1�2(D)]�1(P ); �1 � (2k1)
�1�2:

Here q1 < 0; at least near the codimension-two points 
 and 
0 on the line (P ) = 0;

thanks to the general result of [8]. We can see in the truncated system (without f

and g) that the quantity i

2
(�� � ��) is a constant. A zero value of this �rst integral

leads easily for (P ) < 0; to a \circle" of solutions homoclinic to zero, with damping

oscillations at in�nity. One can show (see [9]) that at least two homoclinic solutions

persist for the full system (one with a maximum in the middle, the other with a

trough). It results that on the side where (P ) < 0 (i.e. where the four eigenvalues

of the linear operator L (13) are complex), we have the bifurcation of two envelope

solitary waves. Notice that if the sign of q1 changes along (P ) = 0; one should obtain

instead, in such a \defocusing" case, bifurcating \black" solitary waves on the side

(P ) > 0:

Further, in this case 3, by contrast, near the lines (P ) = 0, on the side �1�2(D) > 0;

the usual conjecture is that, on the side (P ) < 0 we have the bifurcation diagram

described by [3] (plethora of solitary waves).
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In �gure 2a we show in the (Æ2; c) parameter plane the case �1�2 > 0; �1�2 > 0

(here �1 > 0 to �xing ideas). There are two little regions where the local analy-

sis proves the existence of pure solitary waves (PSW), or generalized solitary waves

(GSW), thus giving a rigorous understanding to �gure 1a. We also plot the positions

of the four eigenvalues ik; a cross means that the eigenvalue is double, while a dot

means that it is a simple one. The case �1�2 < 0, �1�2 < 0 is analogous to this case,

just rotated by ��=2 in the parameter plane.

In �gure 2b we show the case �1�2 < 0; �1�2 > 0 (here again �1 > 0 to �xing

ideas). In this �gure we notice, in addition to the already mentioned bifurcating PSW

and GSW, along half of the lines (P ) = 0; bifurcating envelope solitary waves (ESW)

with oscillatory damping oscillations at in�nity (with two types of symmetric waves).

Next, near the two points 
 and 
0 where 0 is a quadruple eigenvalue, we have on

the sides between the two lines (P ) = 0, a plethora of solitary waves of the types

described in [3], in a region connecting the region ESW with the half lines (P ) = 0

where there are two double real eigenvalues.

In �gure 2c we show the case �1�2 > 0; �1�2 < 0, with �1 > 0 and �1 + �2 > 0

for �xing ideas. Since �1�2�1�2 < 0 this �gure is analogous to �gure 2b. The

connection with �gure 1b,c is as follows. If we make Æ1 = 0; and consider Æ2 > 0 �xed

large enough, we give a rigorous understanding of �gure 1b, while �gure 1c would

correspond to a situation analogous to that shown here when considering a cut by

Æ2 < 0 �xed small enough. Indeed, in the case of �gure 1c we have �1�2 > 0; �1�2 < 0;

but �1 + �2 < 0 which changes the sides where (D) > 0 or < 0, hence permuting the

GSW and PSW regions.
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Figure 1: The dispersion relation (4) for the parameter setting

�1 = ��2 = 1:0; �1;2 = 0:5 and �1;2 given by (a) 1:5; 1:0, (b) 1:5;�1:0 and (c) �1:5; 1:0.

In each case the dashed, dotted or dash-dot lines indicate a bifurcation to a pure

solitary wave, a generalized solitary wave or to an envelope solitary wave respectively.
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(a)

(b)
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Figure 2: Location of bifurcations in the (Æ2; c)-parameter plane, and the positions of the

eigenvalues � = ik: (a) the case �1�2 > 0 and �1;2 > 0; (b) the case �1�2 < 0 and �1;2 > 0; (c)

the case �1�2 > 0, �1 > 0 > �2 with �1 + �2 > 0.
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