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ABSTRACT

A new analytical theory for multiple scattering of cylindrical acoustic waves by an array of finite
impedance semi-cylinders embedded in a smooth acoustically hard surface is derived by extending
previous results for plane waves [Linton and Martin, J. Acoust. Soc. Am. 117 (6) 3413 – 3423
(2005)]. Although the computational demands of the new theory increase as the number of the
semi-cylinders in the arrays and/or the frequency increases, the theory offers an improvement on
analytical boss theories since the latter (i) are restricted to non-deterministic (infinite) random
distributions of semi-cylinders with spacing/radii small compared to the incident wavelength and
(ii) are derived only for plane waves. The influence on prediction accuracy of truncation of the
infinite system of equations introduced by the new theory is explored empirically. Laboratory
measurements have been made over deterministic random arrays of identical varnished wooden
semi-cylinders on a glass plate. The agreement between predictions and measured relative Sound
Pressure Level spectra is very good both for single deterministic random distributions and for
averages representing non-deterministic random distributions. The analytical theory is found to
give identical results to a Boundary Element calculation but is much faster to compute.

PACS numbers: 43.50.Vt, 43.28.En

1. Introduction

Surface roughness is known to have significant influence on near-grazing sound. One approach to

modeling long wavelength sound reflection from randomly rough surfaces considers scattering

from idealized roughness elements or ‘bosses’. Several measurements have been made of relative

sound pressure level (SPL) spectra above rough surfaces, where the roughness height and spacing
are small compared to the wavelengths of interest [1-5]. These data have been compared with
predictions of models derived by Attenborough and Taherzadeh [1] from a boss theory by Tolstoy

[6],[7]. It has been found necessary to adjust the impedance of the scatterers and imbedding plane

to obtain good agreement between predictions based on Tolstoy’s boss theory and the data.

Tolstoy’s effective admittance models [6],[7] predict that a surface wave is generated at grazing-
incidence above a hard rough boundary and that the effective admittance above a hard rough

boundary is purely imaginary. However, comparison with data [2] indicates that Tolstoy-based
predictions overestimate the surface wave component, especially at grazing incidence, and that it

is necessary to include attenuation due to non-specular scatter to obtain a good fit with these data

[4]. In other comparisons of predictions and data [5], the assumed location of the effective
admittance plane has been adjusted to improve agreement with data at higher frequencies. Poor

agreement between laboratory measurements of propagation over rough convex surfaces and
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predictions based on the Tolstoy effective admittance formulation has been found [4] and it has
been suggested that the absence of a real part of admittance corresponding to non-specular

scattering effects might be responsible for this. Non-specular scattering is particularly important

for random roughness [1]. The theory of Lucas and Twersky [8] incorporates non-specular

scattering and resulting expressions have been used to model 2-D periodic and random hard
roughness elements, giving reasonable agreement with measured short-range ground effect [9]. A
heuristic extension of this model to sound reflection from rough surfaces of finite impedance has

given predictions in tolerable agreement with ground effect measured over rough surfaces in the

laboratory and outdoors [10]. However, the real part of the effective impedance obtained from

Lucas and Twersky’s theory for hard rough surfaces does not have the dominant real part low
frequency limit that is expected from physical considerations [11]. Measurements of complex
relative sound pressure level over porous roughness on a flat hard surface have been reported

[12], and effective impedance spectra have been obtained from these measurements by numerical

solution of the complex admittance equation [13] obtained from the classical expression for a

point source over an impedance boundary. It is found that predictions of Twersky’s theory [14]
do not agree at low frequencies with measured data for rough porous surfaces. Therefore, a new

theory is needed that improves modeling of low frequency effective impedance.
This work presents an analytical theory for long-wavelength plane or cylindrical acoustic waves
scattered by a finite array of finite impedance semi-cylinders embedded in a smooth hard surface.

The derivation is based on the method used by Linton et al [17] for the problem of plane wave
scattering by finite arrays of hard cylinders in water. Subsequent work [18] has yielded results for

identical finite impedance cylinders. Initially, this work extends the plane wave results to an array
of cylinders characterized by different radii and finite impedances. Subsequently, the problem of
plane waves incident on semi-cylinders embedded in a smooth hard surface is considered. Further

developments model the scattering of long-wavelength cylindrical waves incident on finite
impedance semi-cylinders embedded in a smooth hard surface. Predictions are compared to data

for relative sound pressure level spectra measured over wooden semi-cylindrical roughness
elements on a glass plate.
Section 2.1 presents a solution for plane acoustic waves scattered by a finite array of finite

impedance semi-cylinders embedded in a smooth hard surface. This section presents also the
main results from Twersky’s theory. Section 2.2 presents a solution for the field resulting when

cylindrical acoustic waves are scattered by a finite array of finite impedance semi-cylinders
embedded in a smooth hard surface. The Boundary Element Model (BEM), to which the new
theory is compared, is introduced briefly. Section 2.3 establishes an empirical relationship for the

frequency dependence of the truncation parameter used to solve the infinite number of equations

involved in the theory. Section 2.4 summarizes the theory involved to model the complex

compressibility and wave-number and hence the surface impedance of rigid-porous semi-
cylinders. Section 3 describes the experimental procedures. Section 4.1 compares laboratory
measurements of complex relative sound pressure level (SPL) over random deterministic

distributions of wooden semi-cylinders on a glass plate with predictions from the new theory and

Twersky’s theory. Comparisons with BEM calculations are presented in 4.2. Section 4.3

compares average measured relative SPL spectra representative of a given roughness density to
average predictions from the new theory. Measured data reported previously [9] are revisited and

compared to new predictions. Conclusions are drawn in section 5.

2. THEORETICAL FORMULATIONS

2.1 Scattering of plane waves by an array of porous semi-cylinders distributed on a hard plane

2.1.1. Extension of Linton’s theory Linton et al [17,18] have studied scattering of plane waves

incident on finite arrays of identical hard and finite impedance cylinders. Consider an array of N

non-identical semi-cylinders. The polar coordinates of the field point in the Cartesian reference
frame (Ox, Oy) are represented by (r, θ), and the polar coordinates of the field point in the
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reference frame (Ojx, Ojy) centered at the j
th semi-cylinder center Oj (xj, yj ) are represented by (rj,

θj) (see Figure 1). Exterior to the semi-cylinders the pressure field, P, satisfies

0
22

=+∇ PkP (1)

and interior to the semi-cylinder j, the pressure field, Pj, satisfies

0
22

=+∇
jjj

PkP . (2)

k and kj are the wave-numbers outside and inside the semi-cylinders respectively.

The scattered term Pscat can be decomposed into a sum of the contributions from the N semi-
cylinders. The scattering contribution from the jth semi-cylinder is sought in the form of a

cylindrical wave which can be expanded using the basis function set jin

e
θ

for the polar angle

contribution and Hankel functions of the first kind and order n, ( )
jn

krH , for the radial

coordinates. The total scattered wave is written as

( ) jin
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The solution to equation (2) is sought in the form
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= (4)

where ( )
jjn
rkJ is the Bessel function of the first kind and order n. The coefficients

j

n
A and

j

n
B needed for the solution of equations (1) and (2) are determined from the boundary conditions.

The coefficients
j

n
Z are chosen for later convenience to be

( ) ( ) ( ) ( )
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Equation (5) allows for cylinders having different radii and impedances. The coefficients qj are

defined as
00
c

c
q

jj

j
ρ

ρ
= where ρj and cj represent the density of fluid and the sound speed inside

the jth cylinders respectively. ρ0 and c0 are the density of air and the sound speed outside the

cylinder. The limit ∞→
j

q can be used to model acoustically hard semi-cylinders. J’n and n
H ′

are the derivatives of the Bessel and Hankel functions of the first kind respectively and aj is the

radius of the jth cylinder. Graf’s addition theorem [22] for Bessel functions is used to

express ( )
jn

krH in terms of coordinates (rs, θs) needed for the boundary conditions at the surface

of cylinder s, and equation (3) becomes
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(6)

where αjs is 0 or π depending on the respective positions of the jth and sth semi-cylinders. This

equation is valid provided rs< Rjs where Rjs is the distance between the centers of cylinders j and
s. A plane wave

( )βθ −⋅

==
cosikrrki

in
eeP

�

�

(7)

is assumed to be incident at angle β with respect to the +x-axis on an array of N infinitely long

semi-cylinders embedded in a smooth surface (Figure 1). The propagation vector k
�

is considered

to be perpendicular to the cylinder axes. When applying the boundary conditions, it is useful to
express the incident wave in terms of the radial position rj of the j

th semi-cylinder and the polar
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angle θj. Writing
jj
rOOr +=

�

, the dot product rk
�

�

⋅ enables expression of the incident plane

wave equation (7) as
( )βθ −

=
jjikr

jin eIP
cos

 (8)

where
j

I is a phase factor associated with semi-cylinder j defined as
βcosjikx

j eI = .

Figure 1 Cross-sections of two semi-cylinders and the geometry used in developing the theory

for plane waves.

To develop an expression for the wave scattered by a finite array of non-identical finite
impedance semi-cylinders embedded in a smooth hard surface, the effect of the hard embedding
plane is taken into account by assuming a reflected plane wave

( )βθ +
=

cosikr

ref eP . (9) 

This is the mirror reflection of the incident wave in the plane containing the semi-cylinder axes.
In terms of rj and θj, the reflected wave (9) is

( )βθ +

=
jjikr

jref eIP
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 (10)

The sum of the incident and reflected waves can be expanded as [21]
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Thus the total field P = Pin + Pref + Pscat can be written as
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The boundary condition
ssss
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s
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PP
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= on the sth semi-cylinder leads to expressions for the

coefficients
j
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B in terms of
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A . After substituting this result in (11), the other boundary

condition,
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, gives the infinite system of equations
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Note that the restriction rs< Rjs due to the use of Graf’s addition theorem is met at the surface of
the cylinders where the boundary conditions are applied.

To evaluate the unknowns
j

n
A , the infinite system (12) is truncated to a system of N(2M+1)

equations

( ) 2/)(

1

)cos(2 πα

β im

s
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This system is solved numerically by using the IMSL routine DLSACG [19] once an appropriate
value of truncation parameter M is chosen. Section II.C addresses the method used to choose the

truncation parameter. When the coefficients
j

n
A are known, equation (3) together with (5) is used

to compute the total pressure. Henceforth equations (3) through (13) are called the ‘new theory’.
2.1.2 Twersky’s theory for parallel porous semi-cylindrical elements in a flat hard surface The

‘boss’ theory derived from Twersky’s work [14] is detailed elsewhere [12]. Only the main results

are reported here. Consider circular semi-cylindrical roughness elements with radius a and with

their axes along the y-direction (see Figure 2).

Figure 2 A plane wave incident on a surface containing a grating of semi-cylinders.
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When the azimuthal angle φ is zero and the plane-wave incidence angle α is measured from the

vertical axis z, the effective admittance βrough relative to air of a hard plane containing randomly

spaced 2-D porous circular semi-cylinders is

βrough = η − iξ. (14)
where
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
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
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The raised cross sectional area per unit length isV n a= π
2

2/ , where n the number of semi-

cylinders per unit length. For circular semi-cylinders [14],
2*

2
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2
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( ) ( )
I

W

W

W

W
2

2
2

2

2

3
1

2 1
6
1

6
1202≅ −

−







 +

−
+











π π
. for W ≥ 08. , (17b)

The packing density of the distribution of roughness elements
b

b
nbW

∗

=
∗

= , where b is the

average roughness separation distance and b* is the size of the exclusion region around any

scatterer, i.e. is the minimum distance between the centers of adjacent roughness elements. Note
that the theory [14] is based on the approximations ka << 1 and kb* < 1. If the roughness
elements considered are non-porous, rigid and on a rigid base plane, the relative inverse mass

density ratio B, which is the density of air divided by the complex density of air in the semi-

cylinder pores, → 0. In addition, since the relative compressibility κ → 0 and C1 + iC2= κ − 1, C1

= −1 and C2 = 0. If P is the total (complex) pressure at the receiver due to a point source above an

homogeneous impedance plane and P P
e
ikR

R
1 0

1

1

= is the pressure due to the direct wave from the

source (assuming time dependence exp( )−i tω ), then

relative SPL =

1

lg20
P

P
(18)

According to the classical theory for the sound field due to a point source above an impedance

boundary [23],

P P
e
ikR

R
QP

e
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R
= +

0

1

1

0

2

2

. (19)

Q, the spherical wave reflection coefficient, is defined by )(]1[ wFRRQ −+=
, where

)(1)(
2

iwerfcweiwF w

−+=
−

π , R is the plane wave reflection coefficient, R
1
is the direct path
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length from source to receiver, R
2
is the path length through the specular reflection point, P0 is a

constant and ( )αβ cos
2

1

2
+= ikRw . For a locally- reacting surface, the plane wave reflection

coefficient is defined by

βα

βα

+

−
=

cos

cos

R . (20)

In this work, the relative SPL is computed from Twersky’s theory by inserting (16), for the rough

surface admittance βrough, into (20) and (19). 

2.2. Cylindrical waves scattered by parallel finite impedance semi-cylinders elements in a hard
plane

2.2.1. Analytical Theory Consider a cylindrical wave incident from a single source on an array of

N different finite impedance semi-cylinders embedded in a flat hard surface. The Helmholtz
equations (1) and (2) are solved using the same coordinate system as used for plane waves. The

incident pressure amplitude can be written
Pin=H0 (kρ1) (21)

where ρ1 is the source receiver distance (see Figure 3). It is useful for subsequent development to

express H0 (kρ1) in terms of the coordinates (rs, θs) by using Graf’s addition theorem [22]:

( ) ( ) ss
in

n

in

snsnin
eekSHkrJP

θσ

∑
+∞

−∞=

−

=
1

1
(22)

with the restriction rs< Ss1, where Ss1 is the radial distance between the cylinder center s and the

source 1. To develop an expression for the wave scattered by a finite array of non-identical finite
impedance semi-cylinders embedded in a smooth hard surface, the effect of the hard surface

embedding the semi-cylinders is taken into account by assuming an image source and hence a

reflected wave
Pref=H0 (kρ2) (23)

where ρ2 is the image-source/receiver distance (see Figure 3).

Figure 3 Cross-sections of two semi-cylinders and geometry used in the theory

developed for a line source.
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If the reflected wave (23) is expressed in terms of r
s
and θ

s
as in (22), the total field outside the

semi-cylinders becomes
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(24)

provided that rs < S
s1 and rs < S

s2.

The solution to the Helmholtz equation (2) is sought in the form of the pressure field (4) inside
the semi-cylinders. The boundary conditions are as before and, after some algebra, lead to the

infinite system of equations
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with unknowns
j

n
A and m∈Ζ, s=1,..., N. Note that the restrictions rs< Ss1 and rs< Ss2 due to

Graf’s addition theorem applied to the source terms, are met at the surface of the cylinders where

the boundary conditions are applied. To evaluate the coefficients
j

n
A , the infinite system of

equations (26) is truncated to a system of N(2M+1) equations
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with m = −M, ….+M and s = 1,….., N. The system of equations (26) is solved numerically using
the IMSL routine DLSACG [19] once the appropriate choice of the truncation parameter M has

been made. Section II.C addresses the method used to choose the truncation parameter. Note that
only the right hand side of (26) differs from the result (13) for plane waves.

2.2.2. The Boundary Element Model Chandler-Wilde [24,25] has developed a boundary integral
equation method for solving the Helmholtz equation for the pressure at the receiver due to a line

source above an impedance plane. The resulting boundary integral equation is solved

approximately by assuming a constant pressure over each boundary element of the ground surface
and using the (point) collocation method. The latter approximates the solution by weighted

residuals and sets the residual function to zero at a series of points. These equations for each
point plus the discretization of the integral equation give a system of equations whose dimension

is the number of collocation points. It is possible to model either a flat or a profiled ground

surface since the discretizing points can be chosen out of the horizontal plane. To save
computation time, an equivalent two-dimensional problem is solved i.e. only ground and sound

sources are modeled that show no variation along one axis. Source, receiver and specular
reflection point are assumed to be in a vertical plane perpendicular to the roughness axis, and a

line integral is solved instead of a surface integral. The acoustic impedance can be chosen
independently for each surface element of the profile. The BEM is used to predict the relative
SPL over rough surfaces by including the roughness profile in the form of node coordinates input

to the program. Acoustically-hard surfaces are modeled by setting the admittance β = 0. 
2.2 3. Influence of the truncation parameter value The effects of the value of the truncation
parameter M on the accuracy of the relative SPL spectra predicted for a given random

distributions of semi-cylinders may be investigated empirically. The relative SPL spectra are
computed from
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in

scatrefin

P

PPP ++

lg20 . (27)

Several relative SPL spectra have been obtained for a fixed random distribution of five
acoustically hard semi-cylinders as M is varied from 1 to 7. Row 1 of Table 1 is deduced from
these spectra and shows the frequency f at which the spectrum obtained for truncation parameter

M departs significantly from that obtained for M = 7. Table 1 suggests, for example, that M =1
could be used for f < 3.4 kHz, M = 2 could be used for f < 5.5 kHz etc. Since the spectra

predicted for values of M between 5 and 7 are identical in the frequency range 0.2 – 10 kHz, it
seems that M = 5 avoids any truncation error up to 10 kHz for calculations involving 5 semi-

cylinders. Effects of the variation of M on the relative SPL spectra obtained for a given random
distributions of seven acoustically hard semi-cylinders are summarized in row 2 of Table 1. It
shows the frequency at which the spectrum obtained for a given value of truncation parameter M

departs from that obtained for M = 6. As the spectra predicted for M = 5 and 6 are identical in the

frequency range 0.2 – 10 kHz, it seems that M = 5 avoids any truncation error up to 10 kHz for

calculations involving 7 semi-cylinders also.

Table 1: Upper frequency bounds of validity corresponding to the given truncation parameter

value for a random distribution of five and seven semi-cylinders

M 1 2 3 4

Upper f (kHz)
5 cylinders

3.4 5.5 6.6 9

Upper f (kHz)
7 cylinders

3.0 5.6 6.5 9

Since the results in Row 2 of Table 1 are very similar to those in row 1, it seems that the

frequency thresholds of the truncation parameters are fairly independent of the number of semi-
cylinders and the random distributions used. Consequently, these results will be used in the
following work for various numbers and distributions of semi-cylinders. Although, in principle,

the theory is valid for all wavelengths, the use of a truncation parameter means that there is an
frequency beyond which model is invalid and this is determined by the truncation parameter

value. Nevertheless, it will be shown in section IV that satisfactory agreement with measured data
has been obtained up to 25 kHz and that complete numerical agreement is found with BEM
calculations up to 20 kHz.

2.2.4. The tortuous slit-pore model for rigid-porous materials Porous roughness elements can be

included in the new theory through the use of the coefficients
j

n
Z defined in equation (5). For

simplicity, although more sophisticated models for the acoustical properties of arbitrary rigid-
porous materials are available [15], the pores in the roughness elements are considered to be
identical tortuous slits. It should be noted that, for a given flow resistivity and porosity, pore

shape has little influence on the surface impedance [16]. In a medium with flow resistivity Rs,

porosity Ω, fluid density ρ and tortuosity T, and assuming time dependence exp( )−i tω , the

effective relative compressibility C (ω) is given by
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where the dimensionless parameter λ=

2
1

S

3










Ω
0

R

Tωρ
, γ=Cp/Cv is the ratio of specific heat at

constant pressure of the gas to the specific heat at constant volume and ω=2πf is the angular
frequency. The mass density is given by

1

0

)tanh(
1)(

−







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−

−
−

Ω
=

i

iT

λ

λ
ρωρ , (29)

and the wave number inside the pores of the sth semi-cylinder is

( ) 2/1
)()( ωωρω

ssss
CTk = . (30)

Consequently, for porous semi-cylinders, the arguments k
s
a
s
of the integer order Bessel and

Hankel functions and their derivatives that appear in (5) are complex.

3. Experiments
Measurements have been made of sound propagation from a point source over nine identical

varnished wooden semi-cylinders of radius a = 0.01 m placed on a 0.006 m thick, square glass
plate with sides of 0.76m. The source-receiver separation d was 0.7 m and source and receiver

heights h were 0.07m. The semi-cylinders were randomly-spaced over a 49 cm wide area

centered at the specular reflection point (see Figure 4) and with their axes normal to the source-

receiver axis. The random semi-cylinder separations were normalized such that the sum of the

separations was 31 cm (i.e. 49 – 9×2). Table 2 summarizes the values of intervals used,
representing twenty deterministic random distributions of the semi-cylinders. More details of the

experimental procedure are given elsewhere [12].

Rough surface

76cm

76cm

49cm

x1~8

Figure 4 A distribution of nine semi-cylinders on a glass plate.

4. Comparisons between predictions and data
4.1. Predictions for individual random deterministic semi-cylinder distributions

Predictions have been made using (21) to (27) for semi-cylinder positions identical to that

measured. Although data for twenty distributions are available, Figures 5, 6 and 7 show
comparisons between measurements (thick solid line) and predictions for the first five

distributions of hard semi-cylinders listed in Table 2.
Figure 5 shows the measured and predicted relative SPL spectra over the first random

deterministic distribution of semi-cylinders according to the first line of Table 2. The dashed lines

in Figures 5 and 6 show the predictions for rigid-porous semi-cylinders with flow resistivity R
s
=

106 Pa.s.m
−2, porosity Ω = 0.1 and using equations (29) and (30) to compute the density of fluid

and the sound speed inside the pores respectively. The dashed lines in Figures 7(a) and 7(b) show
the predictions of Twersky’s theory (equations (14) - (20)).
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Table 2: Randomly-generated, normalized semi-cylinder separations

Distribution No distance (cm)

x1 x2 x3 x4 x5 x6 x7 x8

1 2.9 1.3 5.6 5.8 6.0 3.9 4.6 1.0

2 3.1 4.9 6.2 1.9 1.8 6.0 1.6 5.6

3 8.8 2.3 2.3 0.5 0.8 6.2 1.9 8.2

4 1.7 1.7 9.7 4.3 3.3 3.1 3.5 3.8

5 7.0 4.4 0.2 6.0 4.5 5.2 0.7 3.1

6 3.4 6.4 4.2 2.3 3.4 4.2 1.1 5.9

7 2.5 3.4 7.9 6.7 0.7 1.1 3.4 5.1

8 3.3 3.7 0.7 5.3 4.5 4.7 4.8 4.0

9 2.6 7.6 3.0 6.0 0.5 3.2 4.4 3.8

10 1.8 6.2 3.6 5.2 3.0 6.8 0.5 3.9

11 4.4 2.6 3.8 4.8 0.5 5.7 5.5 3.6

12 3.8 1.8 4.2 0.3 4.0 4.9 6.7 5.2

13 0.9 3.8 5.6 4.6 6.8 6.5 0.4 2.4

14 4.5 6.3 5.2 4.5 3.1 0.7 4.3 2.3

15 3.1 4.3 4.1 5.2 3.7 5.6 3.6 1.4

16 2.8 4.4 4.9 2.8 2.9 4.6 5.9 2.6

17 5.8 3.7 4.1 1.5 3.5 6.0 2.2 4.2

18 4.5 4.7 5.5 5.0 2.2 3.7 4.3 1.2

19 5.2 3.7 1.9 5.8 6.9 3.5 0.1 3.9

20 3.2 7.0 0.0 2.3 0.4 5.4 5.0 7.6

For roughness distributions four and five, the minimum distances between two semi-cylinders

(1.7cm and 0.2cm) shown in Table 2, indicate that the sizes of the exclusion regions (b*) around
any scatterer are (2a + 1.7) cm and (2a + 0.2) cm respectively. The twenty measured relative SPL

spectra and the corresponding predictions are shown in Figures 8(a) and 8(b) respectively.
In contrast with the predictions of Twersky’s theory (see Figure 7), the new theory’s predictions

are within 2 dB or less of most of the measured relative SPL spectra. However, the magnitudes of

the ground effect dips are over predicted consistently by about 5dB. Nevertheless, typically, the
ground effect dip frequency is predicted to within 1000 Hz of that measured. It should be noted

also that the new theory predicts some of the measured spectral oscillations which result from
interference between incident and scattered waves. According to Figures 5 and 6, the agreement
between predicted and measured ground effect dip magnitudes is not improved if the semi-

cylinders are modelled as slightly porous.
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Figure 5 Predictions from the new theory for acoustically hard semi-cylinders (thin solid line),
slightly porous (R

s
=103 kPa.s.m-2, Ω=0.1) semi-cylinders (dashed line), and measured (thick solid

line) relative SPL spectra over the random distribution of nine semi-cylinders corresponding to

row 1 in Table 2.
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Figure 6 Predictions of the new theory for acoustically hard semi-cylinders (thin solid line),

slightly porous (Rs =10
3 kPa.s.m-2, Ω=0.1) semi-cylinders (dashed line) and measured (thick solid

line) relative SPL spectra over random distributions of nine semi-cylinders corresponding to (a)
row 2 and (b) row 3 in Table 2.

The upper frequencies determined by the truncation parameterM required by the new theory have
been established for values up to M = 5. This value of M enables very good agreement between

theory and experiment up to the highest measured frequency (25 kHz). Additional computations

not reported here show that M = 4 gives high frequency results as good as those obtained with M
= 5. However, in this study, there is no real necessity for minimizing M since the small number of

semi-cylinders (9) means short run times (a few seconds) even forM = 5.

b

a
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Figure 7 Predictions of the new theory (thin solid line), Twersky’s theory (dashed line) and

measured (thick solid line) relative SPL spectra over random distributions of nine semi-cylinders
corresponding to (a) row 4 and (b) row 5 in Table 2.
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Figure 8Measured (a) and predicted (b) relative SPL spectra over all twenty random

distributions of nine semi-cylinders (Table 2).

Different relative SPL spectra are measured for different distributions of semi-cylinders with
identical roughness density (see Figures 5, 6 and 7). The new theory seems to predict most of the

differences. On the other hand, boss theories [1-7] predict identical results for distributions

having the same roughness density. Twersky’s theory [8,14] will predict different results for
distributions having the same roughness density as long as the sizes of the exclusion region

around a scatterer b* are different. Examples are shown in Figure 7. But the agreement with
measured data is not as good as that obtained with the new theory, particularly above 7kHz. This

is in accordance with the approximation ka < 1, which implies for the given semi-cylinder radii,

that Twersky’s theory is valid only up to about 5kHz. Twersky’s theory predicts the ground effect
dip frequency relatively well but predicts neither the correct magnitude of the dip nor the

measured oscillations.

a

b

a b
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4.2. Comparison with BEM calculations.
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Figure 9 Predictions from the new theory (thin solid line), the BEM (diamonds) and measured

(thick solid line) relative SPL spectra over the random distribution of nine semi-cylinders
corresponding to row 20 in Table 2.

Figure 9 shows results of calculations using the BEM. The thick solid line represents the relative

SPL spectrum measured over the twentieth random deterministic distribution of semi-cylinders.

The diamonds and the thin solid line show the predictions from use of the BEM and the new
theory respectively. The BEM results are based on 106 frequency points between 500Hz and
20kHz with 9 discretizing node points per semi-cylindrical profile. The BEM prediction of a

single spectrum took 33 minutes of cpu time on a standard PC. Figure 9 shows predictions of the
new theory also. These are more or less identical (i.e. to within 0.2 dB) to the results of BEM

calculations over the entire frequency range studied. It seems that use of a truncation parameter
value as low as M = 4, i.e. a run time of 6 seconds on a PC, is sufficient for the new theory to
yield good predictions up to 20 kHz of the sound field above nine semi-cylinders. In other words,

on a standard PC, the new theory achieves the same results as the BEM in 1/300th of the time.
Despite being more computationally demanding, BEM calculations could be used as an

alternative to the method described in section II.C to ascertain the upper frequency of validity of
the new theory for given values of the truncation parameter.
Measured data and predictions for sound reflection from a rough surface composed of sparse

arrays of semi-cylindrical bosses show considerable sensitivity to the actual distribution of
roughness i.e. the exact location of each roughness element. The question arises (of how many

sample distributions are needed to arrive at an average representative of reflection from a non-
deterministic random distribution of given roughness density? Also, how sensitive are predictions

to the exact roughness density? These questions are addressed in the following section.
4.3. Average predictions for random deterministic semi-cylinder distributions
Figure 10(a) shows three 5-spectra averages (dotted, dot-dashed and dashed lines) measured over

random distributions of 9 semi-cylinders compared to an average over twenty measured spectra

(solid line). All of the curves are very similar. In Figure 10(b), three 5-spectra average

predictions from the new theory (dotted, dot-dashed and dashed lines) are compared to a 20-
predicted-spectra average (thick solid line). The predicted 5-spectra averages are not based on the
same roughness distributions as those used in the average of 20 predicted spectra, whereas the

measured averages are based on the same roughness distributions as those used in the 20-

measured-spectra average. In spite of this, the measured 5-spectra averages do not show better

agreement with the 20-measured-spectra average than is the case for the predictions. The
predicted averages agree well with measured averages over the whole frequency range. The
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ground effect dip frequency of the measured 20-spectra average is near 5700Hz while the

corresponding prediction is near 5300Hz. The dip magnitude is predicted to be −8.6dB and the

measured dip magnitude is −6.5dB for the 20-spectra averages. Comparison of the predicted
averages with the exact solution for a flat hard surface (thin solid line) with identical geometry in
Figure 10(b) shows that the semi-cylindrical roughness elements have a clear influence on ground

effect.
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Figure 10 Comparison between 5- and 20-spectra averages of relative SPL over nine acoustically

hard semi-cylinders (a = 1 cm) (a) using measurements and (b) using new theory predictions.

Figure 11 shows measured relative SPL spectra averaged over five random distributions of 12

varnished wooden 2cm-radius semi-cylinders on a flat hard surface (thick solid line) compared to
the new theory predictions for (a) 5-spectra averages and (b) 20-spectra averages. The
source/receiver distance is 1 m and the source/receiver heights are 10cm. More details about the

experimental background and comparisons of these data with BEM calculations and boss theory
predictions may be found elsewhere [9]. Comparisons of the agreement of predictions with these

‘old’ data and the new data reveal the consequences of normalized and non-normalized random
intervals between semi-cylinders. The new data (in Figures 5 – 9) result from nine semi-cylinders
being randomly distributed over 49 cm centered on the specular reflection point such that the first

and ninth semi-cylinders are placed exactly at both ends of the chosen 49 cm-long segment of
rough surface. However, for the older data [9], the twelve semi-cylinders were not distributed

about the specular reflection point. As a result the 12th semi-cylinder was located either beyond
the 1m source-receiver horizontal range or at less than 1m from the first. Two 5-spectra and 20-
spectra average predictions, assuming normalized distributions of twelve 2cm-radius semi-

cylinders, are shown as the dashed and thin solid lines in Figure 11(a) and 11(b) respectively.
Although the exact locations of the semi-cylinders used for the earlier data are not known, their

non-normalized distributions are modeled such that the 12th semi-cylinder is positioned at (1 ±

0.06) m from the first roughness, i.e. there is uncertainty of ±0.06 m due to the random interval
generation. In Figures 11(a) and 11(b) show two sets of predictions. The dot-dashed and dotted

lines represent results for non-normalized separations and the dashed and thin solid lines
represent results for normalized random distributions. They show quite different ground effect dip

frequencies and magnitudes. Nevertheless, neither assumption gives predictions close to the

measured data. The result of using non-normalized distributions of semi-cylinders is that no pair

a

b
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of distributions has exactly the same roughness density. For example, a density of

12/(1m −0.06m) = 0.128 cm−1 is obtained when the last semi-cylinder falls inside the source-

receiver separation and the density is 12/(1m +0.06m) = 0.113 cm−1 when the last semi-cylinder
falls outside the source-receiver separation. In previous work [9], these two densities were
considered to be approximately equal to the average density 12/(1m) = 0.12 cm-1. However,

Figure 11 shows that a ±7% variation in roughness density leads to considerable differences in
predicted relative SPL spectra. Consequently, the measured and predicted spectra averages based

on these non-normalized distributions of semi-cylinders are not consistent with a fixed roughness
density and their comparison is suspect. This suggests an explanation for the relatively poor
agreement between predictions and average measured data reported previously [9]. Note also that,

according to Figures 11(a) and 11 (b) for the normalized distributions of twelve 2cm-radius semi-
cylinders, as well as for the normalized distributions of nine 1cm-radius semi-cylinders (Figure

10), increasing the number of distributions for averaging from five to twenty has no effect on the
predicted results.
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Figure 11 Comparison between the new theory predictions for (a) 5-spectra and (b) 20-spectra

averages of relative SPL over twelve acoustically hard semi-cylinders (a=2cm) with a 5-spectra

average data over 2cm–radii semi-cylinders (data first reported in reference 9).

5. Conclusions
A new theory has been developed that enables predictions of relative SPL spectra in good

agreement with measurements over deterministic random distributions of nine wooden semi-

cylinders on a glass plate. This analytical theory is more accurate than boss models [6]-[8], [12]
for modeling reflection from rough surfaces. Most boss models are long-wavelength

approximations. Moreover they are applicable only to non-deterministic random distributions,
since the positions of the roughness elements are not included in these theories and the roughness
distributions are characterized only by their number per unit area. Although the boss theory from

Twersky [14] enables the modeling of roughness distributions having different radii of exclusion
region around the scatterers, it does not give as good predictions as the new theory. Even when

limited to an upper frequency bound by the choice of the truncation parameter, the new theory
shows much better high frequency agreement with measured data than Twersky’s theory which
requires a small ka approximation. The model predicts that relative SPL spectra above rough

a b
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surfaces are very sensitive to roughness density. For example, results are significantly different
when the density is increased or decreased by 7%. This means that normalizing the distribution of

random roughness positions is necessary to get meaningful results that are representative of a

given roughness density. When considering different measured and modeled deterministic

random semi-cylindrical distributions with identical roughness density, averaging the relative
SPL spectra over five distributions has been found to improve the agreement between theory and
data and sufficient to obtain an average representative of the roughness density studied. Use of a

truncation parameter value as low as 4 in the new theory gives predictions that are identical to

within less than a dB over the entire frequency range studied (500 Hz to 20 kHz) to those

obtained numerically using a BEM. For the case reported here, the new theory is found to be
more than 300 times faster than the BEM to achieve the same results. Extension of the new theory
to 3-D roughness is underway.
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