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Abstract

The variable-coe�cient Korteweg-de Vries is used to present a basic

model, which has the form of a Korteweg-de Vries equation with a pe-

riodically varying third-order dispersion coe�cient, that can take both

positive and negative values. More generally, this model may be extended

to include �fth-order dispersion. Such models describe, for instance, a

periodically modulated waveguide for long gravity-capillary waves. We

develop an analytical approximation for solitary waves in the weakly non-

linear case, from which it is possible to obtain a reduction to a relatively

simple integral equation, which is readily solved numerically. Then, we

describe some systematic direct simulations of the full equation, which

use the soliton shape produced by the integral equation as an initial con-

dition. These simulations reveal regions of stable and unstable pulsating

solitary waves in the corresponding parametric space. Finally, we consider

the e�ects of �fth-order dispersion.

1 Introduction and model formulation

Classical models which give rise to solitons, such as the Korteweg{de Vries
(KdV) or nonlinear Schr�odinger (NLS) equations, describe uniform nonlinear
waveguides. For example, the NLS equation is a basic model to describe light
propagation in optical �bers and other guiding structures [1], while a well-
known application of the KdV equation is the description of internal waves in
strati�ed uids, propagating in waveguides which exist naturally in the ocean,
or can be created in a laboratory [2, 3]. In both these models, a (bright) soliton
exists under a certain condition: in the NLS equation, the dispersion must be
anomalous [1], while in the KdV equation, the soliton must have a de�nite
polarity.

The necessity to improve stability, bit rate, and other operation character-
istics for soliton streams in optical �bers, which are expected to be a basis for
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a new generation of optical telecommunications, have recently attracted a great
deal of attention to the technique of \dispersion management" (DM), i.e., trans-
mission of solitons in an optical �ber which consists of periodically alternating
sections with opposite signs of the dispersion, so that the average dispersion
of the long communication link is nearly equal to zero [4, 5]. The correspond-
ing NLS equation with a variable dispersion coe�cient is no longer integrable
by means of the inverse scattering transform, and no exact soliton solution is
known for it. Nevertheless, very accurate numerical simulations show that, to
an extremely high accuracy, this equation gives rise to solitons with an approx-
imately Gaussian (rather than the classical sech), pulsating shape [5, 6]. The
existence of dispersion-managed solitons of this type is also strongly supported
by analytical results produced by the variational approximation developed for
the DM model in di�erent forms [7, 8], as well as by analysis of the model
transformed into an integral equation [9].

A remarkable property of DM solitons is that they may exist, in a stable
form, even when the average dispersion, which is not necessarily exactly zero,
but may be much smaller than the local dispersion in the alternating �ber seg-
ments, is normal [10, 8] (recall that the classical NLS solitons cannot exist in the
case of the normal dispersion). It is necessary to mention that, prior to the ap-
pearance of the DM models with the above-mentioned piece-wise constant form
of the dispersion pro�le, the NLS equation with a sign-changing harmonically
(sinusoidally) modulated dispersion term had already been studied in detail,
with a conclusion, based on both the variational approximation and direct sim-
ulations, that stable pulsating solitons exist also in that smoothly modulated
model [11].

In fact, the NLS equation with the local dispersion subject to strong peri-
odic modulation belongs to a class of periodic heterogeneous systems, in which
stable pulsating solitons with nontrivial properties may be expected (in this
work, we use the term \soliton" without assuming integrability of the corre-
sponding model). In nonlinear optics, other systems belonging to this class are
tandem waveguides for optical solitons supported by quadratic (�(2)) nonlinear-
ity, based on alternation of �(2) and linear segments [12], split-step �ber links,
in which linear segments alternate with those dominated by the Kerr (�(3))
nonlinearity [13], layered bulk media, with the �(3) coe�cient varying between
the layers so that an optical beam propagating across the layers has its power
oscillating around a critical value leading to the wave collapse [14], and alter-

nate nonlinear waveguides, composed of periodically alternating waveguiding
and antiwaveguiding segments [15]. A remarkable feature, common to all these
systems, despite their very di�erent physical nature, is the strong robustness of
the propagation modes, and the absence of any apparent instability, even when
this might naively have been expected.

The identi�cation of this class of models, essentially based on the NLS equa-
tion, makes it natural to ask whether other classical soliton-generating equa-
tions, if subjected to a periodic modulation of the dispersion coe�cient , can
give rise to the propagation of pulsating robust solitary wave. The �rst candi-
date to be investigated is the Korteweg-de Vries (KdV) equation. In fact, the
KdV equation with variable coe�cients is a traditional object for the applica-
tion of the perturbation theory for solitons [16]. However, the case of periodic
modulation, and the consequent possibility of the existence of a quasi-stable
pulsating soliton in this case has not yet been studied.
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We start with consideration of the propagation of weakly nonlinear long
waves in a periodically inhomogeneous waveguide, based on the variable-coe�cient
KdV equation:

ut + c(�x)ux + �(r(�x)uux + s(�x)uxxx) = 0(�2); (1)

where � � 1 is a basic small parameter. Equations of this general form are
commonly used to describe the propagation of solitary waves in inhomogeneous
media, for instance, internal waves in strati�ed uids inhomogeneous in the
longitudinal direction, which is a generic case for internal waves in the ocean
[3]. Provided that the local nonlinear coe�cient, r, and phase velocity, c, are
nonvanishing functions of �x, one can introduce a propagation coordinate � and
a temporal variable � as follows:

� = �

Z
�r

6c2
dx; � = t�

Z
dx

c
: (2)

Then Eq. (1) reduces, in the same approximation at which it is valid, to

u� + 6uu� +D(�)u��� = 0; (3)

where the local dispersion coe�cient in the modulated system is

D(�) = 6s=
�
rc

2
�
: (4)

Two integral quantities, which are frequently called mass and momentum,

M =

Z +1

�1

u(�)d�; P =

Z +1

�1

u
2(�)d�; (5)

are exact dynamical invariants of Eq. (3), i.e., dM=d� = dP=d� = 0. Note that
in this context P is more accurately described as the wave action ux.

Our objective is to consider the case when D(�) is a periodic function, and
in particular, when it periodically changes its sign. For instance, as is shown
in the Appendix, Eq. (3) describes the propagation of gravity-capillary waves
over a periodically-varying-bottom topography near the critical Bond number.
It is also a possible model equation for the propagation of internal waves and
Rossby waves against the background of a slowly varying shear ow [2]. In the
latter case, wave modes in critical layers, where the long-wave speed is within
the range of the shear velocity, may have both positive and negative third-order
dispersion coe�cients. Generally speaking, in all these applications, one should
also take into regard the �fth-order dispersion; nevertheless, it will initially be
assumed here that the higher-order dispersion is negligible.

We assume that the variable dispersion coe�cient D(�) in Eq. (3) can be
represented in the following, quite general, form:

D = SD0(�=T ) +D1(�); (6)

where D0 is a periodic function with period 1 (i.e., the actual period of the
�rst term in Eq. (6) is T ), mean value exactly equal to zero, and amplitude
1. Following the analogy with the DM models in nonlinear optics, we will
then refer to the parameter S as the map strength. The function D1 then
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represents the local average dispersion, which may also be subjected to a long-
range modulation (a situation with the average dispersion slowly varying along
the propagation distance is known in optics DM as well [17]). Since we are
interested in the case of a sign-changing local dispersion, it is usually assumed
that jD1j � S=2. In fact, without loss of generality, one may set S = T = 1.
Indeed, it is straightforward to see that Eq. (3) is mapped into itself, but with
S = T = 1, by transformation to new variables,

eu � uT

(ST )1=3
; e� � �

T
; e� � �

(ST )1=3
; eD(�) � D0(�) + S

�1
D1(T�): (7)

In section 2, we develop an analytical approximation for solitary-wave solu-
tions to Eq. (3) in the weakly nonlinear case, when the model can be reduced
to a relatively simple integral equation. Results of direct simulations of the full
model are displayed in section 3, demonstrating the existence of both stable
and unstable solitons. In section 4, we briey consider e�ects of the �fth-order
dispersion, and the paper is concluded by section 5. The appendix gives a short
account of the derivation of Eq. (3), including the �fth-order-dispersion term,
in a particular hydrodynamic problem.

2 Dispersion-dominated waves

Following the approach of Ref. [9], where the �ber-optic DM model was trans-
formed into an integral equation, we consider Eq. (3) with the modulated
dispersion (6) taken in the form

D(�) = D0(�) + �D1(��); (8)

where � is a small parameter, D0(�) is a periodic function with period 1, am-
plitude 1 and zero mean value and �D1(��) is the slowly-varying small local
average dispersion. We also assume that the initial value supplementing Eq.
(3) is small, i.e. f(�) � u(�; � = 0) = O(�). It is then natural to introduce a
slow timescale � � ��, rede�ne the initial value, so that

f(�) � �g(�); (9)

and look for a solution in the form

u(�; �) = �u
(0)(�; �) + �

2
u
(1)(�; �) + � � � : (10)

De�ning the \accumulated dispersion"

W (�) �

Z �

0

D0(�) d�; (11)

the zeroth-order solution to Eq. (3) can be found in the form

u
(0) = F�1

�
exp

�
ik

3
W (�)

�
F fA(�; �)g

	
; (12)

F and F�1 represent the Fourier transform with respect to � and its inverse.
From the initial condition (9), it follows that A(�; 0) = g(�) in the solution (12).
Because the function D0 is periodic with zero mean, the functions W (�) and
u
(0) given by Eqs. (11) and (12) are also periodic.
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At �rst order in �, Eq. (3) is reduced to

u
(1)
� +D0u

(1)
��� = �

h
u
(0)
� + 6u(0)u

(0)
� +D1(�)u

(0)
���

i
(13)

with u
(1)(�; 0; �) = 0. De�ning

h(k; �; �) � F
n
u
(0)
� + 6u(0)u

(0)
� +D1(�)u

(0)
���

o
; (14)

Eq. (13) with the zero initial value has a solution

u
(1) = �F�1

�
exp

�
ik

3
W
� Z �

0

exp
�
�ik3W (�)

�
h(k; �; �)d�

�
: (15)

To avoid the growth of secularities in the �rst-order solution (15), we must
impose a condition Z 1

0

exp(�ik3W (�))h(k; �; �)d� = 0; (16)

which can be written in terms of the Fourier transform, Â(k), of the function
A(�) introduced in Eq. (12) asZ 1

0

�
Â� � iD0k

3
Â+ 3ik

Z
1

�1

Â(�)Â(k � �) exp [3ik�(�� k)W (�)] d�

�
d� = 0:

(17)

If we introduce a function

V (�) �

Z 1

0

exp [i�W (�)] ; (18)

then it follows from Eq. (17) that the amplitude A(�; �) satis�es the evolution
equation:

A� + 3F�1
�
ik

Z
1

�1

V (3k�(�� k))Â(�)Â(k � �)d�

�
+D0(�)A��� = 0; (19)

with the initial condition that A(�; 0) = g(�).
The kernel (18) of the integro-di�erential equation (19) can be easily calcu-

lated in the case of the piecewise-constant dispersion, which is similar to the
standard DM scheme in �ber-optic communications [4, 5],

D0(�) =

(
�1=2 ; 1=4 < � < 3=4;

+1=2; 3=4 < � < 5=4;
(20)

which is repeated with period 1. In this case, the result is

V (�) = (8=�) sin (�=8) : (21)

For the sinusoidal modulation of the dispersion, with

D0(�) = (1=2) cos (2��) ; (22)
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the kernel can be found in the form

V (�) =

1X
n=0

(�1)n

(n!)
2

�
�

4

�2n
: (23)

In general, V (�) ! 1 + O(�2) as � ! 0, while for � � 1 the integral can
be evaluated using the stationary-phase approximation. The main contribution
then comes from a vicinity of the point whereW 0(�) � D0(�) = 0. Assume that
D0(�) has two zeroes, �1 and �2, which are symmetric, such that �2 = 1� �1

and D
0

0(�1) = �D0

0(�2) < 0 and W (�1) = �W (�2). Then, the method of
stationary-phase yields

V (�) �

s
8�

�D0

0(�2)
cos

�
�W (�2) +

�

4

�
: (24)

Hereafter, we focus on steady-state solitary-wave solutions to Eqs. (19),
following the approach of Ref. [9]. To this end, we assume that the average
dispersion D1 is a positive constant, and look for solutions in the form A =
A(� � S�) with a constant velocity S. Anticipating that S � 0, we set S � �

2,

so that the Fourier transform Â(k) must satisfy an equation following from Eq.
(19),

(�2 +D1k
2)Â = 3

Z
1

�1

V (3k�(�� k))Â(�)Â(k � �)d�: (25)

By means of the de�nition Â(k) � �
2
B̂(k), one can combine two free parameters

D1 and �
2 into a single one, D1=�

2. Then, given the numberN of Fourier modes,
the following iterative scheme is used to solve the discrete truncated version of
Eq. (25):

B̂
(n)
k =

3

�2 +D1k
2

N=2X
l=�N=2

V (3kl(l� k))Â
(n)
l Â

(n)
k�l; (26)

Â
(n+1)
k =

P̂fÂ(n)g

P̂fÂ(n)g
B̂
(n)
k : (27)

Here, the superscript is the iteration number, while the integer argument k is
written as the subscript attached to the amplitudes B̂(n) and Â

(n), and

P̂fÂg �

N�1X
j=0

�
Âj

�2
; (28)

is the momentum (see Eq. (5)) of the discrete �eld Âj .
In Figs. 1 and 2, localized solutions obtained by means of the numerically

implemented iterative scheme (26), (27) are shown as D1 is varied for the two
forms (20) and (22) of the dispersion modulation. Note that localized solutions
with positive extrema appear to be only possible for D1 � 0. By symme-
try, localized solutions with negative extrema and negative velocity are then
only possible for D1 � 0. As can be seen, a signi�cant di�erence between the
waves for each dispersion-modulation form is observed only near D1 = 0. For
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(a)

(b)

Figure 1: Localized solutions of Eq. (25), obtained for the piecewise-constant
dispersion modulation (21) and �

2 = 1. In (a) the shape of the pulse, and in
(b) the variation of the momentum P̂ are shown as D1 is varied.
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(a)

(b)

Figure 2: The same as in Fig. 1, but for the harmonic dispersion modulation
(23).
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Figure 3: The stability boundary for soliton solutions to Eq. (3) for the piece-
wise dispersion modulation (20). Stable and unstable solutions are denoted by
asterisks and triangles respectively.

larger D1, the mean dispersion dominates, and the waves for both types of the
modulation approach the classical sech2 soliton of the constant-coe�cient KdV
equation. For clarity, only the domain �20 � x � 20 is shown in these �gures;
in larger domains, the oscillations apparent in Fig. 2 near D1 = 0 decay to zero.

3 Numerical results

A crucially important issue is stability of the stationary solitary waves obtained
in the previous section by means of the perturbation expansion. This could
be addressed by extending the perturbation expansion to the next order, but
this approach proves unwieldy. A simpler approach is to use solutions of Eq.
(25) as initial conditions for the underlying equation (3), and then to follow
the evolution in direct simulations. To solve Eq. (3) numerically, we used a
standard method combining pseudo-spectral techniques in � and third-order
Runge{Kutta integration in �.

In this section, we consider only the case when average dispersion D1 is con-
stant. Further, the results presented here are obtained for a slightly smoothed
version of the piecewise-constant dispersion modulation (20). Results for other
forms of the dispersion modulation, including the sinusoidal form (22), are very
similar. Quantitative results, such as the exact position of the stability bound-

ary in Fig. 3, see below, may be a�ected by the choice of the modulation form.
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The transformation (7) demonstrates that, given a particular form of the
dispersion modulation, the ratio D1=S and momentum P uniquely de�ne a
dispersion-dominated solution. Thus, when investigating the stability of dispersion-
dominated solutions of Eq. (3), we only have the two free parameters D1=S and
P . For the modulation form (20), numerically found stability boundaries of the
dispersion-dominated solutions are shown in �gure 3.

In classifying the solutions as stable or unstable, we have used a simple
criterion that, for unstable solutions, in some region the Poincar�e map of the
solution's amplitude (maximum value) will undergo sustained mean algebraic
decay in the variable �. Since we solve Eq. (3) with periodic boundary condi-
tions in �, at a late asymptotic stage of the evolution, the decay of the soliton
will be followed by establishment of a nearly uniform state, in which maximum
and minimum values of the �eld are approximately equal and constant in �.
Conversely, for stable soliton solutions, we expect that, asymptotically, the ab-
solute mean of the Poincar�e map of the maximum value of the �eld will be much
larger than its minimum-value counterpart. The stability boundary depends on
a number of factors, in particular, the computational domain size L and grid
size ��. However, we have taken care to keep L su�ciently large and �� su�-
ciently small to minimize their e�ect. The boundary also depends on the �nal
propagation distance, �f . All the solutions shown in �gure 3 used �f = 400,
which was found to be su�ciently large to make it possible to conclude whether
a stable soliton was established, or the solution underwent decay.

Figure 3 clearly shows that for this problem there are two distinct regions
of stable solitary-wave solutions. The stability boundary corresponds to some
curve Pb = P (D1=S), with the minimum value of Pb occurring at a critical
value Rc of D1=S, where for the piecewise-constant modulation Rc � 0:25.
Then, the stable region in 0 � D1=S < Rc will be referred to as \dispersion-
dominated", while that in D1=S > Rc will be referred to as the \classical"
region. The numerical results suggest that the dispersion-dominated region
decreases exponentially with the increase of D1=S, while the classical region
increases algebraically with the increase of D1=S. In the dispersion-dominated
region for D1 � 0, it is apparent that localized solutions of Eq. (3) are only
possible up to a �nite value of the momentum. For the piecewise-constant
dispersion modulation, this critical value was found to be P � 0:95. Thus, for
the variable-dispersion KdV equation both nonlinearity and mean dispersion
act to destabilize the dispersion-dominated solitons. The growth of the classical
region as D1=S is increased is easily understood. In this region, solitary-wave
solutions are due to balance between nonlinearity and mean dispersion, the e�ect
of variable dispersion is then simply to modulate the form of the wave. In this
region, solutions can be investigated using perturbation theory for the classical
sech2 solitons [16], or using methods similar to the guiding-center technique,
which were developed for solitons in optical �bers [18].

In Figs. 4, 5 and 6 examples of solutions corresponding to particular points
in Fig. 3 are shown. These three soliton solutions are, respectively, stable, un-
stable, and stable again. The dispersion-dominated solution in Fig. 4 demon-
strates that some momentum is lost from the localized wave to higher mode
oscillatory waves. The subsequent interaction between the oscillatory waves
and the solitary wave causes relatively large variability in the Poincar�e map of
the maximum value of the �eld; however, both the maximum and minimum
values eventually set down to mean values not signi�cantly di�erent from their
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(a)

(b)

Figure 4: A stable dispersion-dominated solution, corresponding to the point
P = 0:25, D1=S = 0:05 from Fig. 3. (a) The Poincar�e map of the maximum
and minimum values of the �eld, i.e., the maximum and minimum values shown
at integer values of the propagation distance (evolutional variable) �. These
plots clearly show that stable nearly stationary solitons have been found. (b)

The form of the soliton at � = 0 (displaced by 0:2) and 400.

initial values. The decay of a localized wave is apparent in Fig. 5, where the
mean of both the maximum and minimum values of the �eld can be seen to
decrease. Eventually, at large enough propagation distance they would be ex-
pected to become approximately equal in the absolute values and opposite in
the sign. At this stage, the mass and momentum contained initially in the lo-
calized wave would be completely transferred to the oscillatory waves apparent
in Fig. 5(b). For large values of the average dispersion, as is shown in Fig. 6,
which is an example of a soliton belonging to the classical region, it is apparent
that the solitary wave solutions are now very similar to the sech2 solitons of
the constant-dispersion KdV equation. Here, only a small amount of the mo-
mentum from the initial wave is lost to the oscillatory waves. Because of the
reduced amplitude of the oscillatory wave, the oscillations in the Poincar�e map
of the maximum �eld value are now much slower than in Fig. 4.
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(a)

(b)

Figure 5: The same as in Fig. 4 for P = 0:25 and D1=S = 0:25. In this case,
the soliton is unstable.

12



(a)

(b)

Figure 6: The same as in Fig. 4 for a stable soliton solution with P = 0:25 and
D1 = S in the classical region.
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Figure 7: The Poincar�e map of the maximum values of the �eld, as obtained
from the numerical solution of Eq. (29) for �2 = 0, 10�3, 5 � 10�3, and 10�2.
Increasing �

2 corresponds to quicker decay of the amplitude. This shows the
e�ect of the �fth-order dispersion on the otherwise stable dispersion-dominated
solution from �gure 4.

4 E�ects of �fth-order dispersion

As it was mentioned above, the �fth-order dispersion should, generally speaking,
be added to the model of the DM type with a small average dispersion (similarly,
the third-order dispersion should be included into the optical DM models [19]).
The main e�ect on the solitons will be to cause them to disperse. In particular,
one may expect that, for small values of the average dispersion, the addition of
�fth-order dispersion to Eq. (3) will eventually cause stable solutions to become
unstable. It is expected that this e�ect is most important when the third-order
dispersion undergoes a change in sign, i.e. for D1 < S=2 in Fig. 3. For larger
values of D1, it is expected that the main e�ect of the �fth-order dispersion will
be to enhance the generation of oscillatory waves [20]. Therefore, we concentrate
here on the e�ect of �fth-order dispersion on the dispersion-dominated solutions.

With the addition of �fth-order dispersion, Eq. (3) becomes

u� + 6uu� +D(�)u��� + �
2
u����� = 0; (29)

where, as shown for the case of gravity-capillary waves in the Appendix, one can
assume that the coe�cient �2 is constant, in contrast to the strongly modulated
third-order-dispersion coe�cient. In Fig. 7, the e�ect of varying this parameter
on the stable solution from Fig. 4 is shown. First, the case of �2 = 10�4 was
investigated, but it is not shown in Fig. 7, as it turns out to be practically
identical to �

2 = 0. Thus, for su�ciently small �2, stable solitary waves are
established as well as in the case �

2 = 0. However, as �2 is increased, the
solitons disperse, leaving oscillatory-wave radiation. Other simulations in the
dispersion-dominated region con�rm that the critical (maximum) value of �2,
at which the solitary waves are able to form, decreases as both D1=S and P

increase, so that on the stability boundary from Fig. 3 the critical value is
�
2 = 0.
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5 Conclusions

In this work we have introduced a KdV model with a periodically varying disper-
sion coe�cient that takes both positive and negative values. Using a perturba-
tive expansion based on integral equations and direct numerical simulations, we
have shown that for the case when the dispersion undergoes a periodic change
in sign, stable solitary-wave solutions are possible in a region de�ned by the av-
erage dispersion and the initial momentum of the system. Further, it has been
shown that su�ciently weak �fth-order dispersion, which should be considered
when the third-order dispersion attains a value of zero, does not destroy these
solitary waves structures.

It should be noted that only one analytical approach to investigate the possi-
bility of solitary-wave solutions has been presented in detail in this work. Other
approaches may predict the existence of a larger region for solitary-wave solu-
tions than that found numerically and shown in Fig. 3. We have also tried two
additional approaches for considering soliton solutions. The �rst of these is the
balance-equation method. Equation (3) can be derived from the Hamiltonian

H =

Z +1

�1

�
�
1

2
D(�)u2� + u

3

�
d�; (30)

which, unlike the mass and momentum given by Eq. (5), is not conserved when
the dispersion coe�cient is variable. Instead, it evolves with � according to an
immediate corollary of (3),

dH

d�
+

1

2

dD

d�

Z +1

�1

u
2
�d� = 0: (31)

The balance-equation approach then demands a choice of a slowly varying ansatz
for the form of the solitary wave. Using the conservation equations for the mass
and momentum, and the evolution equation (31) for the Hamiltonian, evolution
equations for parameters of the ansatz can be derived. The second approach
is a numerical averaging procedure, involving successive Poincar�e maps from
direct numerical simulations of Eq. (3) in an attempt to iterate to a stable
soliton solution. However, neither of these methods have proved successful for
the variable-dispersion KdV equation.

The reason for solitary-wave solutions being less forthcoming from the variable-

dispersion KdV equation than for the variable-dispersion NLS equation may
have to do with the zero-dispersion limit of these two equations. For the
KdV equation, it is a singular limit with wavebreaking occurring in �nite time,
whereas for the NLS equation in the zero-dispersion limit, nothing but pure
phase modulation takes place. Thus, when nonlinearity dominates over the
variable dispersion in the KdV equation, as in the limit D1=S = 0 and P � 1
in Fig. 3 above, one would not expect that stable solutions are possible, as
the evolution generated by the nonlinearity is much faster than that under the
action of the variable dispersion. Nonetheless, combining the results presented
here with the well-known ones for the dispersion-managed solitons in the NLS
models of long �ber-optic links consisting of alternating segments with anoma-
lous and normal dispersion, we conjecture that stable pulsating solitary waves
may be possible in a vast class of nonlinear wave equations subject to strong
periodic modulation of the dispersion coe�cient.
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A Long, weakly-nonlinear gravity-capillary waves

over slowly varying topography near the crit-

ical Bond number

Consider the propagation of long, weakly-nonlinear gravity-capillary waves in

water of depth h with horizontal lengthscale L = h=� and amplitude a = �h,
such that �; �� 1. Let g be the gravity acceleration, � the density of the water,
and � the coe�cient of surface tension. Then the evolution of the free-surface
displacement, ��, as a function of the time, t=�, and horizontal coordinate, x=�,
for one-dimensional waves propagating to the right, is governed by the extended

KdV equation [20]
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1 + �
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2
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4 @
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@x5
= O(�2; ��2; �6); (32)

where
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1

2

�
1

3
�B

�
; � =

1

2

�
2

15
�
B

3
� �

2

�
; c0 = (gh)1=2: (33)

and B = �=�gh
2 is the Bond number. Now assume in addition that the depth

is a slowly varying function of x, such that h = h(�x), and introduce the new
variables

� = �x; � = g
1

2 (t�

Z
dx

c
); (34)

Further, we put A � �h
1

4 and note that in a slowly varying environment the
wave action ux density A

2 is conserved [3, 16]. Hence, the corrected form of
Eq. (32) is
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A
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= O(�2; ��2; �6): (35)

Typically � is O(1); then, let � = �
2 and the propagation of waves is governed

by the variable-coe�cient KdV equation
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= 0: (36)

However, B = 1=3 is a singular limit of this equation; in this limit we set � = �
2


and � = �
4, then Eq. (35) becomes
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= 0; (37)
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where now � = 1=90. Thus, if the topography and Bond number are such that
the coe�cient � is close to zero, and can change its sign, then a uniformly valid
model equation including the �fth-order dispersion is

@A
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2h
7

4
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1

2

@
3
A

@�3
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2
h

3

2

90

@
5
A

@�5
= 0: (38)
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