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Abstract

We compute bound-state energies in two three-dimensional coupled waveguides,

each obtained from the two-dimensional configuration considered in part I by ro-

tating the geometry about a different axis. The first geometry consists of two

concentric circular cylindrical waveguides coupled by a finite length gap along the

axis of the inner cylinder and the second is a pair of planar layers coupled laterally

by a circular hole. We have also extended the theory for this latter case to include

the possibility of multiple circular windows. Both problems are formulated using a

mode-matching technique, and in the cylindrical guide case the same residue calcu-

lus theory as used in I is employed to find the bound-state energies. For the coupled

planar layers we proceed differently, computing the zeros of a matrix derived from

the matching analysis directly.
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1 Introduction

Here we extend the ideas from part I to three dimensions and consider two distinct types

of problem. First we treat the case where the two-dimensional laterally coupled waveguide

discussed in I is rotated about the x-axis to produce a three-dimensional waveguide. The

guide then consists of pair of concentric circular cylindrical guides of widths b and d

coupled by a finite gap in the inner cylinder. We seek bound states whose energies are

below the first cut-off for wave propagation down the guide using the residue calculus

technique. Secondly, we consider the case where the coupled waveguide considered in I

is rotated about the y-axis. The waveguide consists of two planar layers of widths b and

d− b coupled through a circular hole of radius a in the common boundary. In fact we set

up the problem for an arbitrary number of arbitrarily sized circular windows.

Early work on acoustic resonances in circular cylindrical waveguides was done by Ursell

(1991), who considered a rigid cylinder with a rigid sphere placed on the axis. Using the

method of multipole expansions Ursell was able to prove the existence of resonant states

with certain angular variation, provided the sphere was sufficiently small. The method

presented in this paper is similar to that used by Evans and Linton (1994), who developed

an approximate solution for the existence of trapped modes in an infinitely long, rigid,

circular cylindrical tube containing a concentric, rigid, open-ended circular cylinder of

finite length. Linton and McIver (1998) proved that acoustic resonances can exist when

any rigid, thin obstacle is placed in a rigid cylindrical waveguide of constant cross-section

in such a way that its normal is everywhere perpendicular to the generators of the cylinder.

Similar results were also given in Groves (1998) and Davies and Parnovski (1998). The

example of a cylindrical sleeve inside a circular cylindrical waveguide with Neumann

conditions on all boundaries considered in Evans and Linton (1994) was recalculated

using the residue calculus technique and extended to cover different angular variations.

In all the above examples, Neumann boundary conditions were imposed on the cylin-

drical waveguide. A cylindrical guide with Dirichlet conditions on the boundary was

considered by Witsch (1990). Witsch used the same idea as Ursell in that he specified the

angular variation to produce a cut-off and then used a minimum-maximum principle to

provide examples of eigenvalues that can occur in the waveguide.

Much less work has been done on the second problem. Exner and Vugalter (1997)

considered the case when the hole was sufficiently small so that only one eigenvalue

occured below the continuous spectrum. The authors were then able to provide upper

and lower asymptotic bounds on the gap between the eigenvalue and the continuous

spectrum. Further asymptotic results were derived in Popov (2002).

2 Coupled cylindrical guides

In this section we consider a rotation of the waveguide used in I about the x-axis. We

introduce cylindrical polar coordinates (r, θ, x) so that the outer surface of the guide is at
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Figure 1: Definition sketch.

r = d. Inside the guide is placed an infinite, concentric cylinder of radius b (< d) which

has a gap of length 2a along its axis. The inner cylinder is placed so that its surface is

at r = b and the gap is at −a < x < a, as shown in Figure 1. The resulting geometry

is axisymmetric about the line r = 0, hence we are able to look for modes with angular

variation cos mθ, where m ∈ N0. The quantity m is to be regarded as fixed in what

follows.

The geometry is symmetric about x = 0, allowing us only to consider the region x > 0

and seek modes which are either symmetric or antisymmetric about x = 0. We begin

by seeking modes symmetric about x = 0 by looking for non-trivial solutions φ(r, θ, x),

which satisfy
∂φ

∂x
= 0 on x = 0, 0 < r < d. (2.1)

The function φ(r, θ, x) must also satisfy the Helmholtz equation within the waveguide,

(∇2 + k2) φ = 0, 0 < r < d, x > 0 except on r = b, x > a, (2.2)

and is subject to Dirichlet boundary conditions on the cylinders

φ = 0 on r = b, x > a, (2.3)

φ = 0 on r = d, x > 0, (2.4)

and a radiation condition that stops waves propagating to infinity,

φ → 0 as x → ∞. (2.5)

Finally we assume that φ is non-singular and

∂φ

∂ρ
= O(ρ−

1

2 ) as ρ = [(x − a)2 + (r − b)2]
1

2 → 0, (2.6)
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anticipating singular behaviour in the derivative of φ at the edge. The changes resulting

from replacing (2.1) by an antisymmetric condition will be discussed later.

As in the two-dimensional case considered in I, we divide the interior of the guide into

three parts. Region I is the annular region between the outer and inner cylinders, i.e.

{r, θ, x : b < r < d, x > a}, region II is the interior of the inner cylinder, i.e. {r, θ, x :

0 < r < b, x > a}, and region III is the gap of the inner cylinder, i.e. {r, θ, x : 0 < r <

d, 0 < x < a}. We can represent the function φ by a function φi(r, θ, x) = φ̂i(r, x) cos mθ,

(i = 1, 2, 3, m ∈ N0) in each region and apply the following continuity conditions at each

region’s boundary

φ̂i = φ̂3,
∂φ̂i

∂x
=

∂φ̂3

∂x
, on Li, i = 1, 2, (2.7)

where L1 is x = a, b < r < d, L2 is x = a, 0 < r < b and we write L3 = L1 ∪ L2.

Complete orthogonal sets of functions of r in each of the three regions are defined in

terms of Bessel functions as follows. Let νmn be the nth positive zero of the cross-product

Jm(ηd) Ym(ηb) − Ym(ηd) Jm(ηb), then functions appropriate for region I are

Ψ(1)
mn(r) = p(1)

mn[Jm(νmnr) Ym(νmnb) − Ym(νmnr) Jm(νmnb)], n ∈ N. (2.8)

This function satisfies (2.3) and (2.4), and with

p(1)
mn =

νmnπ
1

2

2
1

2

(J2
m(νmnb)

J2
m(νmnd)

− 1
)

−
1

2

, (2.9)

we have the orthogonality condition (see Jones 1986, p. 228)

∫

Li

r Ψ(i)
mn(r) Ψ(i)

ms(r) dr = δns, n, s ∈ N, (2.10)

with i = 1, where δns is the Kronecker delta.

Similarly, for region II we let jmn be the nth non-negative zero of Jm(η) and define

µmnb = jmn. We then define

Ψ(2)
mn(r) = p(2)

mn Jm(µmnr), n ∈ N, (2.11)

where

p(2)
mn =

2
1

2

b Jm+1(µmnb)
, (2.12)

which satisfies (2.3) and the orthogonality condition (2.10) with i = 2.

For region III we let λmnd = jm,n+1 and define

Ψ(3)
mn(r) = p(3)

mn Jm(λmnr) n ∈ N0, (2.13)

where

p(3)
mn =

2
1

2

d Jm+1(λmnd)
. (2.14)
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Then Ψ
(3)
mn satisfies (2.4) and the orthogonality condition (2.10) with i = 3.

The appropriate eigenfunction expansions for φ̂ are now

φ̂1(r, x) =
∞
∑

n=1

U (1)
mn

e−αmn(x−a)

−αmn
Ψ(1)

mn(r), αmn = (ν2
mn − k2)

1

2 , (2.15)

φ̂2(r, x) =

∞
∑

n=1

U (2)
mn

e−βmn(x−a)

−βmn
Ψ(2)

mn(r), βmn = (µ2
mn − k2)

1

2 , (2.16)

φ̂3(r, x) =

∞
∑

n=0

U (3)
mn

cosh γmnx

γmn sinh γmna
Ψ(3)

mn(r), γmn = (λ2
mn − k2)

1

2 . (2.17)

For decay down the guide we require αmn and βmn to be real and positive for all n and

so we must have

kd < νm1d and kd < µm1d. (2.18)

So as to allow one wave-like mode in the inner region, we also require γm0 to be purely

imaginary, but γmn to be real and positive for all other values of n, and hence

kd > λm0d = jm1. (2.19)

We therefore anticipate that a necessary condition for the existence of bound states is

jm1 < kd < min (µm1d, νm1d) . (2.20)

Bound states below the first cut-off

We now use the continuity conditions (2.7) and proceed as in I. We obtain

U (3)
ms =

∞
∑

n=1

U (1)
mn dns +

∞
∑

n=1

U (2)
mn ens, s ∈ N0, (2.21)

U (3)
ms

coth γmsa

γms

=
∞
∑

n=1

U
(1)
mn

−αmn

dns +
∞
∑

n=1

U
(2)
mn

−βmn

ens, s ∈ N0, (2.22)

where we have defined

dns =
1

d

∫

L1

rΨ(1)
mn(r)Ψ(3)

ms(r) dr, (2.23)

ens =
1

d

∫

L2

rΨ(2)
mn(r)Ψ(3)

ms(r) dr. (2.24)

Using various standard integrals, recurrence relations, and Wronskian relations for Bessel

functions, we can show that provided νmn 6= λms and µmn 6= λms,

dns = −
2 νmn Jm(λmsb)

(ν2
mn − λ2

ms) π
1

2 d Jm+1λmsd

(J2
m(νmnb)

J2
m(νmnd)

− 1
)

−
1

2

, s ∈ N0, n ∈ N, (2.25)

ens =
2 µmn Jm(λmsb)

d Jm+1(λmsd) (µ2
mn − λ2

ms)
, s ∈ N0, n ∈ N. (2.26)

5



Eliminating U
(3)
mn from (2.21) and (2.22) and using (2.25) and (2.26), we obtain after

some simplification

∞
∑

n=1

Umn

( 1

αmn − γms
+

ζms

αmn + γms

)

−

∞
∑

n=1

Vmn

( 1

βmn − γms
+

ζms

βmn + γms

)

= 0, (2.27)

where s ∈ N0 and we have defined

Umn =
U

(1)
mn νmn

π
1

2 αmn

(J2
m(νmnb)

J2
m(νmnd)

− 1
)

−
1

2

, Vmn =
U

(2)
mn µmn

βmn
, and ζms = e−2γmsa. (2.28)

The singular behaviour required by condition (2.6) again influences the asymptotic be-

haviour of Umn and Vmn as n → ∞. As in I we can show that the edge condition is

satisfied if both Umn = O(n−
1

2 ) and Vmn = O(n−
1

2 ) as n → ∞.

We now use the residue calculus technique of Mittra and Lee (1971), exactly as in I;

the details are different but the procedure is essentially the same as before. We will make

just one remark. The standard infinite product representation of the gamma function can

be used to show that

∞
∏

n=1

(

1 − zd
(n+m/2+3/4)π

)

(

1 − zc
nπ

)(

1 − zb
(n+m/2−1/4)π

) =
Γ(m/2 + 7/4) Γ(1 − zc/π) Γ(m/2 + 3/4 − zb/π)

Γ(m/2 + 7/4 − zd/π) Γ(m/2 + 3/4)

(2.29)

and then the asymptotic forms (see Abramowitz and Stegun 1965, eqns 9.5.12 and 9.5.27)

λmnd = jm,n+1 ∼ (n + m/2 + 3/4)π + O(1/n), (2.30)

µmnb = jmn ∼ (n + m/2 − 1/4)π + O(1/n), (2.31)

νmn(d − b) ∼ nπ + O(1/n) (2.32)

as n → ∞ can be used together with Stirling’s formula to derive the necessary asymptotic

form for the function f(z) equivalent to (3.18) of I.

The condition for the existence of bound states turns out to be

γ′

m(a − Θ) = χm + σm +
(

n − 1
2

)

π, n an integer, (2.33)

where

Θ =
1

π

(

b ln(d/b) + c ln(d/c)
)

, (2.34)

χm =

∞
∑

n=1

(

tan−1
( γ′

m

γmn

)

− tan−1
( γ′

m

αmn

)

− tan−1
( γ′

m

βmn

))

, (2.35)

and

σm = arg

(

1 −

∞
∑

n=1

Amn

γmn + iγ′

m

)

, (2.36)
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where the coefficients Amn are the solutions to the exponentially convergent system of

equations

Ams + Dms

∞
∑

n=1

Amn

γms + γmn
= Dms, s ∈ N, (2.37)

with

Dms = 2γms e2γms(Θ−a) (αms − γms)(βms − γms)

(αms + γms)(βms + γms)

×

∞
∏

n=1

n6=s

(1 + γms/γmn)(1 − γms/αmn)(1 − γms/βmn)

(1 + γms/αmn)(1 + γms/βmn)(1 − γms/γmn)
. (2.38)

For the case of antisymmetry about x = 0 we replace the boundary condition (2.1) by

φ = 0 on x = 0, 0 < r < d, (2.39)

and the equivalent condition to (2.33) is

γ′

m(a − Θ) = χm + σ′

m + nπ, n an integer, (2.40)

where χm and Θ are as before and σ′

m is as in (2.36) but with the coefficients Amn coming

from the system of equations

Ams − Dms

∞
∑

n=1

Amn

γms + γmn
= −Dms s ∈ N. (2.41)

Results

The results in this section are computed with the systems of equations (2.37) and (2.41)

truncated to 5 × 5 systems. Typical results for the bound-state energies when m = 0

and 1 are shown in Figure 2 and Figure 3. In both figures the solid lines correspond to

modes symmetric about x = 0 and the dashed lines to modes antisymmetric about x = 0.

In Figure 2 bound-state energies are plotted against a/d when b/d = 0.5. As a/d

increases more and more modes appear alternately symmetric and antisymmetric about

x = 0 for each value of m. The upper and lower cut-offs for the existence of bound

states are given by (2.20) and depend on m. When m = 0 the modes appear from the

cut-off given by the minimum of kd = j01/0.5 ≈ 4.810 and kd = ν01d ≈ 6.246, i.e.

kd = 2j01, and tend to kd = j01 ≈ 2.405 as a/d increases. This minimum value changes

however when m = 1, as the upper cut-off becomes kd = ν11d ≈ 6.393 which is less

than kd = 2 j11 ≈ 7.663. As a/d increases the modes corresponding to m = 1 tend to

kd = j11 ≈ 3.832.

In Figure 3 trapped-mode wavenumbers are plotted against b/d when a/d = 3. The

upper plot corresponds m = 1 and the lower plot to m = 0. The dotted lines appearing

on both plots are the upper and lower cut-offs for the two different m values and show
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Figure 2: Bound-state energies for modes symmetric (—) and antisymmetric (– –) about

x = 0 plotted against a/d when b/d = 0.5.

where the frequency ranges lie with respect to each other. When b/d → 0 the only upper

cut-off present for both plots is the one corresponding to kd = ηm1, whereas when b/d → 1

the upper cut-off is shown by kd = d jm1/b for both values of m. When m = 0 the upper

cut-off changes from kd = η01d to kd = j01d/b when b/d ≈ 0.436, and the largest number

of modes appears at this value. Results for higher values of m show that as m increases

the value of b/d when the upper cut-off changes also increases.

3 Laterally coupled planar waveguides

We now turn our attention to the case where the two-dimensional laterally coupled waveg-

uide considered in I is rotated about the y-axis to produce a three-dimensional waveguide

consisting of two planar layers of widths b and c = d−b coupled laterally through a circular

hole of radius a in the common boundary. We assume for convenience that b > d/2.

Circular cylindrical polar coordinates (r, θ, z) are introduced so that the waveguide

is axisymmetric about r = 0 and the planes lie at z = 0, z = b and z = d. We seek

non-trivial solutions φ(x, y) to

(∇2 + k2) φ = 0, 0 < z < d, r ≥ 0 except on x = b, r > a, (3.1)

subject to the boundary conditions

φ = 0 on z = 0, r ≥ 0, (3.2)

φ = 0 on z = b, r > a, (3.3)

φ = 0 on z = d, r ≥ 0, (3.4)
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Figure 3: Bound-state energies for modes symmetric (—) and antisymmetric (– –) about

x = 0 plotted against b/d when a/d = 3.
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and a radiation condition specifying that no waves propagate out to infinity,

φ → 0 as r → ∞. (3.5)

The guide is divided into three regions. Region I is {r, θ, z : r > a, b < z < d}, region II is

{r, θ, z : r > a, 0 < z < b} and region III is {r, θ, z : r < a, 0 < z < d}. As the geometry

is axisymmetric about r = 0, we are able to look for a mode with angular variation cosmθ,

m ∈ N0 and can write φi(r, θ, z) = φ̂i(r, z) cos mθ, (i = 1, 2, 3), in each region and apply

the continuity conditions

φ̂i = φ̂3,
∂φ̂i

∂r
=

∂φ̂3

∂r
, on Li, i = 1, 2, (3.6)

where L1 is r = a, b < z < d, L2 is r = a, 0 < z < b and we write L3 for L1 ∪ L2.

Suitable eigenfunction expansions in each region are

φ̂1(r, z) =

∞
∑

n=1

U (1)
mn

Km(αnr)

αnK ′

m(αna)
Ψ(1)

n (z), αn = (ν2
n − k2)1/2, (3.7)

φ̂2(r, z) =
∞
∑

n=1

U (2)
mn

Km(βnr)

βnK ′

m(βna)
Ψ(2)

n (z), βn = (µ2
n − k2)1/2, (3.8)

φ̂3(r, z) =
∞
∑

n=0

U (3)
mn

Im(γnr)

γnI ′

m(γna)
Ψ(3)

n (z), γn = (λ2
n − k2)1/2, (3.9)

where Im and Km are modified Bessel functions and

Ψ(1)
n (z) = 21/2 sin νn(d − z), νn = nπ/c, n ∈ N, (3.10)

Ψ(2)
n (z) = 21/2 sin µn(b − z), µn = nπ/b, n ∈ N, (3.11)

Ψ(3)
n (z) = 21/2 sin λn(d − z), λn = (n + 1)π/d, n ∈ N0, (3.12)

which satisfy
1

|Li|

∫

Li

Ψ(i)
n (y)Ψ(i)

m (y) dy = δmn, i = 1, 2, 3. (3.13)

As in part I we anticipate that a necessary condition for the existence of bound states

will be

π < kd <
dπ

b
, (3.14)

since then γ0 will be purely imaginary whereas αn, βn and γn, n ∈ N, will all be real and

positive. The mode corresponding to γ0 will therefore be oscillatory in region III and all

the other modes will decay away from the hole.

We now apply the continuity conditions (3.6), multiply each of the resulting equations

by Ψ
(3)
s , s ∈ N0 and integrate over L3, then eliminate U

(3)
ms to obtain

∞
∑

n=1

U (1)
mn dns

( Im(γna)

γsI
′

m(γsa)
−

Km(αna)

αnK ′

m(αna)

)

+
∞
∑

n=1

U (2)
mn ens

( Im(γna)

γsI
′

m(γsa)
−

Km(βna)

βnK ′

m(βna)

)

= 0, s ∈ N0, (3.15)
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Figure 4: Bound-state energies, kd/π, plotted against a/d when b/d = 0.6. The solid

lines correspond to m = 0, the dashed lines to m = 1, the dotted lines to m = 2 and the

dot-dashed lines to m = 3.

where dns and ens are given by

dns =
1

d

∫

L1

Ψ(1)
n (y)Ψ(3)

s (y) dy =
2νn(−1)n sin λsc

d(γ2
s − α2

n)
, s ∈ N0, n ∈ N, (3.16)

ens =
1

d

∫

L2

Ψ(2)
n (y)Ψ(3)

s (y) dy =
2µn sin λsc

d(γ2
s − β2

n)
, s ∈ N0, n ∈ N. (3.17)

Equation (3.15) is not amenable to the same residue calculus treatment as we have used

in our other examples. Here we solve it directly by truncating the value of n and s + 1

with a truncation parameter N . We then have to find the values of kd for which the

determinant of a (real) 2N × 2N matrix is zero.

Figure 4 shows a typical set of bound-state energies, kd/π, plotted against a/d when

b/d = 0.6. The results were computed using a truncation parameter N = 5. The solid

lines correspond to the modes when m = 0, the dashed lines are when m = 1, the dotted

lines are when m = 2 and the dot-dashed lines are for m = 3. As the value of a/d is

increased the bound states appear from the upper cut-off kd = 5π/3 and tend to the lower

cut-off kd = π. The results suggest that that bound states occur for all a/d except when

the hole is small, and that as the value of m is increased the value of a/d below which

modes do not exist increases.

However, Exner and Vugalter (1997) used variational techniques to show that for

sufficiently small a/d there is just one bound state and that the ground-state eigenvalue,

11



kd, then satisfies

d

b

(

1 −
1

π2
exp(−c1/a

3)

)
1

2

≤ kd ≤
d

b

(

1 −
1

π2
exp(−c2/a

3)

)
1

2

, (3.18)

for some positive c1 and c2. It is clear that for small windows, this will produce values of

kd which differ from the upper cut-off by an extremely small amount and this explains

why we were unable to compute bound-state energies when a/d is less than about 0.25.

It is fairly simple to extend the work above and consider the case of a pair of planar

layers coupled laterally by a number of holes. For simplicity we will consider the case where

the two layers have the same width (i.e. b/d = 0.5) and the additional symmetry allows

us to consider the symmetric and antisymmetric parts of the solution independently. The

antisymmetric part is trivial, and so the problem then reduces to that of a planar guide of

width b with Dirichlet boundary conditions on both walls, except for a number of circular

discs on one side on which Neumann conditions are applied. The method that we use to

analyse multiple circular windows is a standard technique in studying the scattering of

waves by arrays of circular cylinders; see, e.g., Linton and McIver (2001) chapter 6.

We consider P (≥ 1) discs and introduce P + 1 cylindrical polar coordinate systems,

so that (r, θ, z) is centred at the origin and (rj , θj , z), j = 1, . . . , P , are centred at the

centre of the jth disc, which is assumed to have radius aj. The walls of the waveguide

are at z = 0 and z = b. The various parameters relating to the relative positions and

sizes of the discs are shown in Figure 5. The domain is divided up into P + 1 parts and

we represent the solution in the region above the jth disc by φI
j , j = 1, . . . , P and the

solution exterior to the discs by φII . We look for non-trivial solutions to the Helmholtz

equation in the guide subject to the boundary conditions

φII = 0 on z = 0, (3.19)

φI
j = φII = 0 on z = b, j = 1, . . . , P, (3.20)

∂φI
j

∂z
= 0 on z = 0, rj < aj , j = 1, . . . , P, (3.21)

φII → 0 as r → ∞. (3.22)

We also need to apply continuity conditions at each region’s boundary

φI
j = φII ,

∂φI
j

∂rj

=
∂φII

∂rj

on rj = aj , j = 1, . . . , P. (3.23)

Separation of variables reveals that the appropriate eigenfunction expansions are

φI
j =

∞
∑

m=−∞

∞
∑

n=0

Aj
mn

Im(αnrj)

αnI ′

m(αnaj)
Ψ(1)

n (z) eimθj , j = 1, . . . , P, (3.24)

φII =

P
∑

p=1

∞
∑

m=−∞

∞
∑

n=0

Bp
mn

Km(βnrp)

βnK ′

m(βnap)
Ψ(2)

n (z) eimθp , (3.25)
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Figure 5: Plan view of two discs.

where αn = (µ2
n − k2)1/2, βn = (ν2

n − k2)1/2, and

Ψ(1)
n (z) = 21/2 sin µn(b − z), µn = (n + 1

2
)π/b, n ∈ N0, (3.26)

Ψ(2)
n (z) = 21/2 sin νnz, νn = nπ/b, n ∈ N. (3.27)

If we restrict the energy so that

π < kd < 2π, (3.28)

then α0 is purely imaginary whereas αn and βn, n ∈ N will all be real and positive. This

restriction allows for wave-like modes local to each disc, with decay as r becomes large.

In order to apply the continuity conditions (3.23) the eigenfunction expansion in re-

gion II must be written in terms of the coordinates rj and θj . This can be achieved using

Graf’s addition theorem which shows that provided rj < Rjp for all p, we can write

φII(rj , θj , z) =
∞
∑

m=−∞

∞
∑

n=1

Bj
mn

Km(βnrj)

βnK ′

m(βnaj)
Ψ(2)

n (z) eimθj

+

P
∑

p=1

p 6=j

∞
∑

m=−∞

∞
∑

n=1

∞
∑

s=−∞

Bp
mn

Is(βnrj)

βnK ′

m(βnaj)
Km−s(βnRjp) eisθp Ψ(2)

n (z) ei(m−s)αjp , (3.29)

where Rjp is the distance between the centres of discs j and p, and αjp is the angle of the

centre of disc p from disc j, measured as shown in Figure 5.

We can then apply the matching conditions (3.23) and convert the resulting equations

into an infinite system by multiplying each by Ψ
(1)
t (z)e−iwθj , t ∈ N0, w ∈ Z, j = 1, . . . , P,

and integrating over z in (0, b) and θj in (0, 2π). We obtain, after eliminating Aj
mn,

P
∑

p=1

∞
∑

m=−∞

∞
∑

n=1

Bp
mnZnmp,twj = 0, t ∈ N0, w ∈ Z, j = 1, . . . , P, (3.30)
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where

Znmp,twj =

{

dttXtwjδmwδnt p = j,

dntYnmp,twj p 6= j,
(3.31)

Xtwj = Xt(−w)j =
Iw(αtaj)

αtI ′

w(αtaj)
−

Kw(βtaj)

βtK ′

w(βtaj)
, (3.32)

Ynmp,twj = Km−w(βnRjp) ei(m−w)αjp

(

Iw(αtaj)I
′

w(βnaj)

αtI ′

w(αtaj)K ′

m(βnaj)
−

Iw(βnaj)

βnK ′

m(βnaj)

)

(3.33)

and

dnt =
2

d

∫ d/2

0

Ψ(2)
n (z)Ψ

(1)
t (z) dz =

4νn(−1)t

d(µ2
t − ν2

n)
. (3.34)

Results

We solve (3.30) by introducing truncation parameters M and N so that m and w vary

between ±M , and n and t + 1 vary between 1 and N . Then we write

λ1 = n + N(m + M) + N(2M + 1)(p − 1), (3.35)

λ2 = 1 + t + N(w + M) + N(2M + 1)(j − 1), (3.36)

so that any positive integer λi between 1 and N(2M +1)P corresponds to a unique triple,

(n, m, p) for i = 1, or (t, w, j) for i = 2. To find a solution of (3.30) we are required to

find frequencies kd so that the determinant of the resulting N(2M + 1)P ×N(2M + 1)P

matrix is zero. For the results below truncation parameters N = 5 and M = 3 were used.

We consider the case of two circular windows. In this situation the bound-state energies

will be independent of the angle between the centres of the two discs (α12 and α21, in

Figure 5). That this is the case can be demonstrated as follows. The matrix Z has a

2 × 2 block structure and if we multiply the rows in the blocks corresponding to j = 1

by exp(−imα12), the rows in the blocks corresponding to j = 2 by exp(−imα21), the

columns in the blocks corresponding to p = 1 by exp(iwα21), and the columns in the

blocks corresponding to p = 2 by exp(iwα12), the resulting matrix is independent of the

angles α12 and α21 and its determinant is a non-zero multiple of the determinant of Z and

so will vanish for the same values of kd.

Figure 6 shows the bound-state energies, kd/π plotted against non-dimensional sep-

aration R/d for two identical windows with radius a = d. The dotted lines are the

trapped-mode wavenumbers from the single window case when a/d = 1 and are labelled

with the appropriate values of m. They represent the limits for the energies as R/d → ∞.

The dashed line is the upper cut-off kd = 2π. All possible modes appear in the fig-

ure. However, if we took a larger value of a/d we would have to use a larger truncation

parameter M to find all the modes.

When the two discs are touching, i.e. when R/d = 2, there are fourteen bound states.

There are two modes around each dotted line corresponding to m = 0 and four modes
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Figure 6: Bound-state energies, kd/π, plotted against R/d for the case of two identical

windows with radius a = d. The dotted lines correspond to the bound states from the

single disc case with a/d = 1 and are labelled with the appropriate values of m. The

dashed line corresponds to the upper cut-off.
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around the other dotted lines (two for the positive value of m and two for the negative

value of m). The exception occurs when m = ±3 as this mode is close to the upper cut-off

and so only a single mode appears below the dotted line for each m. As the value of R/d

is increased, which means that the discs are moved apart, each pair of modes converges

towards the limiting case.

Figure 7 shows the bound-state energies, kd/π plotted against R/d for two circular

windows for which a/d = 1 and a/d = 0.75, respectively. The dotted lines are the

bound-state energies from the single window cases when a/d = 1 and a/d = 0.75 and are

labelled with the appropriate values of m and again represent the limits for the energies

as R/d → ∞. The dashed lines are the upper and lower cut-off’s. All possible modes

appear in the figure. Between the two cut-off’s we find that there are five modes from

the single window case with a/d = 1 and three modes from the single window case when

a/d = 0.75. When the two windows are touching, i.e. when R/d = 1.75, the bound-

state energies are very different from the single window values, but as the separation is

increased, the energies quickly approach the single window values. Similar types of results

were found by Evans and Porter (1997) who computed trapped modes in the vicinity of

multiple cylinders in a channel.

4 Conclusion

We have computed bound-state energies below the first cut-off in two three-dimensional

coupled waveguides, each obtained from the two-dimensional configuration considered in I

by rotating the geometry about a different axis.

First, we have studied bound states in a waveguide consisting of two concentric circular

cylindrical waveguides coupled by a finite length gap along the axis of the inner cylinder.

The same residue calculus method which was used in I was used to compute bound-state

energies below the first cut-off for wave propagation down the guide. We were able to look

for modes with a given angular variation cosmθ, m ∈ N0, and the bound states found are

either symmetric and antisymmetric about the line of symmetry perpendicular to the axis

of the cylinder. The available energy band for bound states is dependent on the values of

m and the ratio of the two radii. The results show that bound states occur for any value

of the gap length and ratio of radii, and the energies increase as m increases.

Secondly, we have considered the problem in which a pair of planar layers are coupled

laterally by a circular hole. The sophisticated residue calculus theory is not available in

this case, but we were able to compute bound states by searching for the zeros of the

determinant of a matrix found from a mode-matching approach. For this problem we can

again consider a given angular variation cos mθ, m ∈ N0, and find modes in each case.

We then extended the theory to cover the case of a number of circular windows con-

necting two planar guides of equal width and presented results for two circles; both when

they have the same radius and when they do not. In both situations we find that when
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Figure 7: Bound-state energies, kd/π, plotted against R/d for the case of two windows of

radii a/d = 1 and a/d = 0.75. The dotted lines correspond to the bound states from the

single window case with a/d = 1 and a/d = 0.75 and are labelled with the appropriate

values of m. The dashed lines correspond to the upper and lower cut-off’s.
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the windows are far apart the bound states are equivalent to those occuring in the single

window cases, but that the energies vary considerably as the windows are moved closer

together.
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