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Abstract 

 
             The extended Korteweg de Vries model governs the evolution of weakly dispersive 

waves under the combined influence of quadratic and cubic nonlinearities, and is relevant to 

finite-amplitude wave motions in the atmosphere and the ocean. Analytic expressions for a 

multi-soliton are obtained by the Hirota bilinear method, and are shown to agree with those 

for isolated solitary waves or breathers obtained earlier in the literature. In particular, the 

interaction of a breather and a soliton can now be studied. Both the soliton and the breather 

retain their identities after interaction except for some phase shifts. Detailed examination of 

the interaction process shows that the profile of the breather will depend critically on the 

polarity of the colliding soliton. 
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1.  Introduction 
 

The Korteweg - de Vries (KdV) equation, or one if its cousins, is now well 

established as a canonical model for the description of weakly nonlinear and weakly 

dispersive long waves in a variety of physical systems [1-10]. In particular, the extended 

Korteweg - de Vries (eKdV) equation, 

02 =δ+β+α+ xxxxxt uuuuuu ,     (1) 

has recently become a popular model for the description of internal solitary waves in shallow 

seas (see, for instance, the review article by Grimshaw [7] and the article by Grimshaw et al 

[10]). The competition among dispersion, quadratic and cubic nonlinearities constitute the 

main interest here. The asymptotic derivation of (1) from the fully nonlinear equations of 

fluid dynamics has been described in various works [1-4]. Hence the focus of the present 

work is on the dynamics of the fundamental localized travelling waves. Like the KdV 

equation, the eKdV equation is integrable with a supporting Lax pair and an inverse 

scattering transform. Depending on the sign of the cubic nonlinearity (or βδ of Eq.(1)), the 

eKdV equation can support a single family of solitons (βδ < 0), or two families of solitons of 

opposite polarities, and a family of breathers (βδ > 0). Our interest here is in this latter case. 

While the soliton solutions are well-known [1], an explicit expression for the breather was 

obtained from the inverse scattering transform by Pelinovsky and Grimshaw [5],  and later by 

Slyunyaev [9] from the coalescence of two solitons with complex parameters; the 

identification of this breather as a form of wave packet is discussed in Grimshaw et al [8]. 

Some aspects of the initial-value problem were considered for the special case when Eq. (1) 

reduces to the modified KdV (mKdV) equation (i.e. α = 0 in Eq. (1)) by Clarke et al [6].   

Our concern here is with the case βδ > 0, which is considerably richer in its dynamics 

than the case βδ < 0. In this latter case there is only a single family of solitons, all of the same 

polarity. But in the former case there are two families of solitons, with opposite polarities, 
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and a family of breathers. One family of solitons has the polarity of αδ, and ranges from 

small-amplitude solitons of the familiar “sech2” profile of the KdV equation to large 

amplitude solitons with the “sech” profile of the mKdV equation. The other family of solitons 

has polarity opposite to αδ, but ranges from large amplitude solitons with the “sech” profile 

of the  mKdV equation, to an algebraic soliton with a certain minimum amplitude and mass 

(in absolute value). The breather solutions have a mass with the same polarity as this family 

of solitons, and the mass ranges from that of the afore-mentioned algebraic soliton to zero. 

Slyunyaev [9] obtained the two-soliton solution for this case when βδ > 0, using the Darboux 

transformation, and showed that while the interaction of two solitons of the same polarity was 

qualitatively similar to the scenario for the KdV equation, the interaction of two solitons of 

opposite polarities produced some essentially different features. In this paper our main aim is 

to obtain explicit expressions describing the interaction of solitons and breathers. At the same 

time we also obtain the expressions for a three-soliton interaction. Unlike the previously 

mentioned works, we will use the Hirota bilinear transform [11-13], a method proven over 

several years to be effective and powerful, to obtain our results. 

The structure of this paper is as follows. The soliton and breather will first be 

calculated from the bilinear method and shown to agree with those obtained earlier in the 

literature. The power of the present approach is that a higher order soliton can be generated 

systematically, and hence the interaction of a soliton and a breather can be obtained from the 

expression for the 3-soliton solution. 

2.  Analysis 

First we rescale Eq. (1) in the case βδ > 0 to obtain,  

06 2 =δ+δ+α+ xxxxxt uuuuuu .    (2) 
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Here, without loss of generality, we may suppose that δ > 0. To use the Hirota method we 

first obtain the bilinear forms, 

0)( 3 =⋅δ+ FGDD xt ,      (3) 

06 2 =⋅α+⋅δ FGDiFGD xx .     (4) 

These are related to the eKdV equation (2) through the mapping 
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A more familiar and convenient form is given in terms of the real-valued functions f and g, 

G = f + ig,    F = f – ig,      

,0)(3

,0)(
2

3

=⋅α−⋅+⋅δ

=⋅δ+

fgDggffD

fgDD

xx

xt     (6) 

.tan2 1

x
f
gu ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −       (7) 

Multi-soliton, breather and other related solutions can now be obtained in explicit forms. 

They will be given below in order of increasing complexity. 

(A)  Basic 1-soliton: The 1-soliton is 
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This can be rewritten in the more familiar forms. For α > 6δp1, we have a solitary wave of 

elevation: 



 6

,
36
6)exp(

,
)](cosh[36

6

2
1

22
1

0

0
2
11

2
1

22

2
1

p
ppx

xtpxpp
pu

δ+α

δ−α
=

−δ−δ+α+α

δ
=

  (9) 

and hence the amplitude is 
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For α < 6δp1, we have a solitary wave of depression 
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where x0 is again given by Eq. (9). This difference in representation arises purely from the 

use of the hyperbolic cosine. No such difference will result if the exponential function form 

(Eq. (8)) is used. 

(B)  2-soliton: The 2-soliton solution is 
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These expressions can be shown to agree with those obtained by Slyunyaev [9]. The phase 

shift after the interaction can be obtained by considering one of the phases, say φ, as fixed 

and then allowing the other phase (ψ ) to go to plus or minus infinity.  
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(C) 3-soliton: The 3-soliton solution is 
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A remark on the interaction of solitons is now needed. In general, the interaction of two 

solitons in the classical Korteweg-de Vries equation is accomplished either by a merger of the 

two peaks, if the amplitudes of the two solitons differ sufficiently, or by an exchange of 

identities (but without actual merger), if the two are sufficiently similar to each other. For the 

present eKdV model, a similar scenario also holds. A major difference, and additional 

flexibility, is the possibility of solitons with opposite polarities. Earlier work has 

demonstrated that a depression soliton can suffer a downward impulse during interaction with 

an elevation soliton. 

            With an analytical expression for three solitons, we focus on situations where solitons 

with opposite polarities are present. Figure 1 illustrates the interactions of three solitons, (a 
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relatively small) one of elevation and two of depression with similar amplitude. The two 

depression solitons would normally interact by a simple exchange of identities without 

merger. However, as they travel past the elevation soliton, each one will receive a downward 

push in turn. This whole sequence of events will thus create a few cycles of changes for the 

relative amplitudes of the two depression solitons (Figure 1).  

            The other case, two solitons of elevation and one of depression, is less remarkable as 

the positive solitons are typically much smaller than the depression soliton. 

(D)  Breather: Similar to the technique used by Slyunaev [9], the breather is obtained from 

the 2-soliton solution (11) by choosing a pair of complex conjugate wave 
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(E)  Soliton-breather interaction: Similarly, the interaction of a breather and a soliton can be 

studied by choosing the three wave numbers of the 3-soliton expression Eq. (12) as p1 = m + i 

n, p2 = m - i n, p3 = p. Due to the complexity of the expressions involved, the details of the 

interaction can best be studied by a computer program. However, one can first show that the 

soliton retains its identity after interaction, except for a phase shift. For φ1, φ2 → −∞, u is 

given by 
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but for φ1, φ2 → +∞, u is given by 
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The maximum amplitude in the second expression (Eq. (15)) is 
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for the case of an elevation soliton. This is the same as that obtained by Eq. (9). Thus the 

amplitude is preserved and the soliton is changed only by a phase shift. Similar reasoning will 

apply to the case of a depression soliton. Likewise the breather also remains unchanged 

except for a phase shift.  

            For a more precise description of the stages of interaction between a soliton and a 

breather, we shall further subdivide into two cases, solitons of depression and those of 

elevation. For the first case (Figure 2), we choose, as a typical example, a breather travelling 

to the left colliding with a depression soliton going to the right. The breather may be regarded 

instantaneously as two ‘small hills’ on both sides of a deep valley, with polarities reversed 

half a cycle later. In the initial stage of the collision, the soliton will collide with the ‘small 

hill’ on the left, while the central valley remains almost frozen. After crossing the small hill 

on the left, the soliton then interacts with this central valley by exchanging identities, i.e., 

without the two valleys actually merging. Finally the central valley detaches, becomes the 

depression soliton, and propagates steadily to the right, while all the remaining structures 

exhibit well defined oscillatory features and travel to the left as a breather. The breather and 
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soliton retain their identities after all these intermediate stages, save for certain specified 

phase shifts. 

            For the second case, an elevation soliton moving to the right collides with a breather 

travelling to the left (Figure 3). We again regard the breather as two small hills on the 

adjacent sides of a deep central valley, with polarities reversed half a cycle later. The 

interaction starts here with the small hill on the left running into the elevation soliton. 

Without actual merger, the two entities exchange identities while the central valley again 

remains almost frozen. The elevation soliton seems to avoid any major contact or interference 

with the central structure, as this structure just maintains its original oscillations from valley 

to peak. Instead, the small hill on the right enlarges, detaches, moves to the right, and 

becomes an elevation soliton. In accordance with the analytical theory, the breather and 

soliton retain their identities after all these actions, except for some phase shifts. 

(F) A double pole solution: Finally, a double pole solution for the eKdV Eq. (2) is calculated 

as a special 2-soliton solution. Conceptually, in the inverse scattering transform, the double 

pole solution will arise when two simple poles in the reflection coefficients coalesce to form 

a double pole. In the Hirota bilinear mechanism, such solutions can arise from a ‘coalescence 

of wave numbers’. Similar solutions for the modified KdV, the nonlinear Schrodinger and the 

sine Gordon models can be found in [14-17]. By choosing nearly identical wave numbers and 

special phase factors, this double pole solution is calculated as 
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A pair of elevation and depression waves travels to the right as an approximate ‘bound state’ 

(Figure 4). The elevation wave leads the depression wave in the left far field, but the role is 

reversed in the right far field. At time t about zero, the profile is very similar to a breather. 

Analytically this double pole solution consists of mixed algebraic – exponential expressions. 

Physically it can be regarded as a breather of nearly zero frequency.  

            The major difference between a double pole solution and a 2-soliton is that the peaks 

in the former are separated like the logarithm of time t, and hence the separation distance is 

effectively constant. For a two-soliton pattern, the peaks will diverge like the difference in 

velocities multiplied by time. 

3. Conclusions 

            The interaction between a soliton and a breather for the case of the extended 

Korteweg–de Vries equation with positive cubic nonlinearity has been described. Our 

analytical descriptions were obtained using the Hirota bilinear method. Not surprisingly, both 

the soliton and the breather retain their identities except for a phase shift. The breather can be 

regarded as two small hills of elevation on the adjacent sides of a deep depression (a ‘central 

valley’), with polarities reversed half a cycle later. The collisions of a breather with  a soliton 

of elevation, or with a soliton of depression, were studied. During the collision phase, the 

‘central valley’ may maintain its oscillations, or  rendered ‘frozen’, depending on the polarity 

of the colliding soliton and the physical parameters of the breather, e.g., its frequency. Such 

motions are highly time dependent, and will have important implications for the physical 

processes which can be modeled with this eKdV equation; for instance the dynamics of the 

currents and density perturbations in an evolving internal oceanic tide can be modeled in this 

way, and one of the implications of this present study is that possibly some, at least, of the 
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temporal and spatial variability that has been observed in oceanic internal soliton fields may 

be due to the presence of breathers and their interactions with solitons. 

            The next phase of this project is to conduct a similar investigation for the case of 

negative cubic nonlinearity. In this regime, plateau-type solitons and bore-like structures  

arise. The dynamics of such entities will also be of great interest.  
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Figures Captions 

(1) Figure 1 - Interaction of three solitons, two of depression and one of elevation, Eqs. (7) 

and (12), α = 6, δ = 1, p1 = 2, p2 = 1.5, p3 = 0.9, (a) general picture, profile of u versus x for 

(b) t = -3.6, (c) t = -1.2, (d) t = -0.35, (e) t = 0.45, (f) t = 2.6. 

(2) Figure 2 – Interaction of a soliton of depression with a breather, Eqs. (7) and (12), α = 6, 

δ = 1, m = 0.7, n = 0.7, p = 1.5, (a) general picture of u versus x and t, (b) profile of u versus x 

at t = -3, (c) t = -2 , (d) t = -1, (e) t = 0, (f) t = 1, (g) t = 2, (h) t = 3. 

(3) Figure 3 – Interaction of a soliton of elevation with a breather, Eqs. (7) and (12), α = 6, δ 

= 1, m = 0.5, n = 1, p = 0.9, (a) general picture of u versus x and t, (b) profile of u versus x at t 

= -3, (c) t = -2 , (d) t = -1, (e) t = 0, (f) t = 1, (g) t = 2, (h) t = 3. 

(4) Figure 4 – A double-pole solution or a breather of nearly zero frequency of Eq. (14), α = 

6, δ = 1, m = 0.7, n = 0.7 (a) profile of u versus x at t = -50, (b) t = 0, (c) t = 50. 
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Figure 1a. Interaction among three solitons for α = 6 and δ = 1 



 

Figure 1b. Interaction among three solitons at t = -3.6s with α = 6 and δ = 1 



 

Figure 1c. Interaction among three solitons at t = -1.2s with α = 6 and δ = 1 



 

Figure 1d. Interaction among three solitons at t = -0.35s with α = 6 and δ = 1 



 

Figure 1e. Interaction among three solitons at t = 0.45s with α = 6 and δ = 1 



 

Figure 1f. Interaction among three solitons at t = 2.6s with α = 6 and δ = 1 



 

Figure 2a. Interaction between a breather and a negative soliton for α = 6 and δ = 1 

 

 



 
Figure 2b. Interaction between a breather and a negative soliton at t = -3 with α = 6 and δ = 1 

 

 



 

Figure 2c. Interaction between a breather and a negative soliton at t = -2 with α = 6 and δ = 1 

 

 



 
Figure 2d. Interaction between a breather and a negative soliton at t = -1 with α = 6 and δ = 1 

 

 



 

Figure 2e. Interaction between a breather and a negative soliton at t = 0 with α = 6 and δ = 1 

 

 



 

Figure 2f. Interaction between a breather and a negative soliton at t = 1 with α = 6 and δ = 1 

 

 



 
Figure 2g. Interaction between a breather and a negative soliton at t = 2 with α = 6 and δ = 1 

 

 



 
Figure 2h. Interaction between a breather and a negative soliton at t = 3 with α = 6 and δ = 1 

 

 



 
Figure 3a. Interaction between a breather and a positive soliton for α = 6 and δ = 1 

 

 



 

Figure 3b. Interaction between a breather and a positive soliton at t = -3 with α = 6 and δ = 1 

 

 



 

Figure 3c. Interaction between a breather and a positive soliton at t = -2 with α = 6 and δ = 1 

 

 



 

Figure 3d. Interaction between a breather and a positive soliton at t = -1 with α = 6 and δ = 1 

 

 



 

Figure 3e. Interaction between a breather and a positive soliton at t = 0 with α = 6 and δ = 1 

 

 



 

Figure 3f. Interaction between a breather and a positive soliton at t = 1 with α = 6 and δ = 1 

 

 



 

Figure 3g. Interaction between a breather and a positive soliton at t = 2 with α = 6 and δ = 1 

 

 



 

Figure 3h. Interaction between a breather and a positive soliton at t = 3 with α = 6 and δ = 1 

 

 



 
Figure 4a. Motion of a double pole solution at t = -50 with α = 6 and δ = 1 

 

 



 
Figure 4b. Motion of a double pole solution at t = 0 with α = 6 and δ = 1 

 

 



 
Figure 4c. Motion of a double pole solution at t = 50 with α = 6 and δ = 1 

 

 


