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Abstract

A non-integrable, variable coefficient nonlinear Schrödinger equation which governs the nonlinear

pulse propagation in an inhomogeneous medium is considered. The same equation is also applicable

to optical pulse propagation in averaged, dispersion-managed optical fiber systems, or fiber systems

with phase modulation and pulse compression. Multi-scale asymptotic techniques are employed to

establish the leading order approximation of a solitary wave. A direct numerical simulation shows

excellent agreement with the asymptotic solution. The interactions of two pulses are also studied.
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Although localized modes in integrable, conservative systems have been studied inten-

sively, the dynamics of non-conservative systems, where gain or dissipation is allowed, is

usually less well understood. As an example, consider the variable coefficient nonlinear

Schrödinger equation (NLSE) relevant in nonlinear optics:

iAz + Att + 2|A|2A + κ2t2A + iΓA = 0, (1)

where A is the envelope of the axial electric field, κ is related to the group-velocity disper-

sion and other pulse parameters (see [1] for more details) and Γ is the loss/gain coefficient.

Equation (1) finds application in optical fiber systems with phase modulation or pulse com-

pression. Without the loss/gain term (Γ = 0), Eq. (1) has been studied in different settings

[2–4], e.g., nonlinear compression of chirped solitary waves [3] and quasi-soliton propagation

in DM optical fiber [2]. With the loss/gain term (Γ 6= 0), Eq. (1) has been reported earlier

in the literature [5–8] from the integrability point of view, where by choosing a special pa-

rameter, one soliton solution has been obtained by a Bäcklund transformation. It is also the

governing equation for an averaged, dispersion-managed (DM) optical fibre system [1, 9–13].

This averaging procedure investigates the energy enhancement of DM solitons analytically

[10] and also assists the management of large dispersion variations in a DM fiber system

[11]. Equation (1) is completely integrable when κ = Γ [14], and we have recently reported

the exact bright and dark soliton solutions in that case [1].

Here in this brief report, we consider the variable coefficient NLSE (1) in the non-

integrable case of κ 6= Γ, which is physically more significant compared to the completely

integrable form reported earlier in the literature. We derive a leading order approxima-

tion for the solitary wave for the case of arbitrary damping or gain, or in other words, the

non-integrable regime of Eq. (1).

To derive the soliton solution of Eq. (1) using modulation theory we first let

A = B(t, z) exp

(

iκt2

2

)

. (2)

Equation (1) can then be rewritten as

iBz + Btt + 2iκtBt + i(Γ + κ)B + 2|B|2B = 0. (3)

On assuming that
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B = B(ξ, z), and ξ = ξ(t, z), (4)

we get

i(Bz + Bξξz) + Bξξξ
2
t + Bξξtt + 2iκtBξξt + i(Γ + κ)B + 2|B|2B = 0. (5)

Choosing ξz + 2κtξt = 0, and ξtt = 0 gives ξ = t exp(−2κz) and Eq. (5) becomes

iBz + exp(−4κz)Bξξ + i(Γ + κ)B + 2|B|2B = 0. (6)

Now we use the slowly-varying envelope approximation for the optical soliton with respect

to z (i.e. (κ ≪ 1), and so rewrite the variable B as

B = R

(

ξ −

∫ z

V dz, z

)

exp

(

ikξ − i

∫ z

σdz

)

+ B1, (7)

where the leading order is given by

σR − iV Rξ + (Rξξ + 2ikRξ − k2R) exp(−4κz) + 2R3 = 0. (8)

Considering the real and imaginary parts of this equation, and noting that we may assume

that R is real-valued, gives

V = 2k exp(−4κz), and Rξξ + [σ exp(4κz) − k2]R + 2 exp(4κz)R3 = 0. (9)

Now looking for the soliton solution in the form:

R = asechγξ, (10)

gives

σ exp(4κz) = k2 − γ2, and γ2 = a2 exp(4κz). (11)

In general, a, γ, k, σ and V depend on the slowly varying variable κz. To determine their

behaviour we must look into the next order. We put
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B1 = R1 exp

(

ikξ − i

∫ t

σdt

)

, (12)

and then get

exp(−4κz)R1ξξ + [σ − k2 exp(−4κz)]R1 + 2R2(2R1 + R∗
1) + iRz + i(Γ + κ)R = 0. (13)

where the asterisk (f ∗) represents the complex conjugate of the variable f . On decomposing

R1 as P + iQ, we get:

exp(−4κz)[Pξξ − γ2P ] + 6R2P = 0,

exp(−4κz)[Qξξ − γ2Q] + 2QR2 + Rz + (Γ + κ)R = 0.
(14)

The equation for P is homogeneous, and the only bounded solution is P = Rξ. The equation

for Q is inhomogeneous, and the criterion for a bounded solution is that the inhomogeneous

term be orthogonal to the bounded solutions of the homogeneous adjoint operator. Here

the homogeneous equation is self-adjoint, and the only bounded solution is Q = R. Thus

we get

∞
∫

−∞

R[Rz + (Γ + κ)R]dζ = 0 (15)

which leads to

∞
∫

−∞

R2

2
dζ = (const.) exp[−2(Γ + κ)z] and so

a2

γ
= (const.) exp[−2(Γ + κ)z]. (16)

Thus we get

γ = γ0 exp[−2(Γ − κ)z] and a = a0 exp(−2Γz). (17)

Also, with k as an arbitrary constant, we get

ξ −

∫ z

V dz = t exp(−2κz) +
k

2κ
exp(−4κz) + ξ0,

∫ z

σdz = −
k2

4κ
exp(−4κz) −

∫

γ2 exp(−4κz)dz.

(18)
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After some algebra this yields

A = a0sech

{

γ0

[

t exp(−2Γz) +
k

2κ
exp(−2κz − 2Γz)

]

+ η(0)

}

× exp

[

−2Γz +
iκt2

2
+ ikt exp(−2κz) +

ik2

4κ
exp(−4κz) −

iγ2
0

4Γ
exp(−4Γz)

]

, (19)

where η(0) is a phase constant arising from the choice of origin. For the case of κ = Γ, this

reduces to the recently reported 1-soliton solution by the Hirota bilinear method [1].

To test the validity of this asymptotic approximation, we develop a numerical code for the

NLSE (1) using the Hopscotch scheme [15]. Figure 1 (a) shows the propagation of a solitary

wave under fairly weak damping, while Fig. 1 (b) demonstrates the excellent agreement

between the computational results and the asymptotic approximation (19).

Besides the context of DM fiber system, families of evolution equations related to (1)

are relevant to optical systems with pulse compression or phase modulation, and hence

stabilities of localized modes are critical issues. To supplement the analytical progress in

this brief communication, we initiate some preliminary numerical simulations on interactions

of pulses.

In the ordinary NLSE, two identical pulses will interact if they are sufficiently close

initially [16]. This interaction consists typically of periodic merger and separation. In the

present case, the scenario of merger and separation can persist for a few cycles if the damping

(or gain) is sufficiently weak, see Fig. 2. The two pulses will soon diverge from each other

and never interact again. For very strong damping or gain, this energy loss or input will of

course completely erase even the initial merger and separation cycles.

We have thus obtained a leading order approximation for a solitary wave propagating in

a dispersion-managed optical fiber medium. For families of variable coefficient NLSE (1)

documented in the literature, it appears that analytical treatment has only been given for

the case of Γ = κ, which is the integrable case. We have thus removed this constraint and

demonstrated that, at least asymptotically, localized pulse can exist for arbitrary values of

Γ and κ ≪ 1. For the special case of Γ = κ, our results reproduce the known 1-soliton

solution.

From the perspective of fiber optics, κ is related to the group-velocity dispersion of the

fiber and other pulse parameters such as the chirp, and Γ is the loss/gain coefficient of the
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transmission system. The integrability condition of κ = Γ will dictate a constraint on the

fiber and pulse parameters of the optical transmission system. The new expression (19)

with κ and Γ independent of each other will thus permit more flexibility in the design of the

optical fiber communication system.
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FIG. 1: (a) The propagation of a solitary wave under a fairly weak damping, κ = 0.05, Γ = 0.005.

(b) The comparison between the computational and the analytical approximation at z = 20.
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(a)

(b)

FIG. 2: (a) The interactions of two pulses relatively close initially, κ = 0.05, Γ = 0.005. (b) The

interactions of two pulses relatively far apart initially.
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