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ABSTRACT 

 

Here we tried to develop a standard flow cytometry protocol for measuring the 

physiological state of the Gram +‟ve bacterium Bacillus cereus, and attempted to 

understand more of the resulting staining phenomena using cell sorting. Specifically the use 

of DiOC6(3) and the proprietary RedoxSensor Green
TM

 (an indicator of bacterial reductase 

activity) both counter stained with propidium iodide. The data presented here has identified 

at least 4 distinguishable physiological states based on the two staining protocols alone and 

dependent on the position in the growth cycle single cells gave rise to varying numbers of 

colonies when sorted individually onto nutrient agar plates. Further that these growing 

colonies derived from single cell sorts had widely different lag phases. This highlights 

further the unexpectedly complex population dynamics of bacterial cultures and lays to rest 

the microbiological dogma that all bacterial cells in a culture behave in exactly the same 

way since they are clearly members of a physiologically heterogenous and dynamic 

population. 

 

INTRODUCTION 

Multi-parameter flow cytometry has many advantages over conventional microbiological 

analyses such as dilution plating (c.f.u. per ml) and these have been extensively reviewed 

elsewhere (Nebe-con-Caron et al., 2000; Hewitt & Nebe-von-Caron 2001, 2004) but 

briefly, using various mixtures of fluorescent dyes, it is possible to resolve an individual 

microbial cell‟s physiological state beyond culturabilty, in „real-time‟ based on the 

presence or absence of an intact polarised cytoplasmic membrane and the transport 

mechanisms across it. The presence of both an intact polarised cytoplasmic membrane and 

active transport systems across it are essential for a fully functional healthy cell. The 

cytoplasmic membrane potential (CMP) of prokaryotes is between 100 – 200 mV, the exact 



magnitude depending on the physiological state of the cell with the inside of the cell 

negative with respect to its exterior (Shapiro 2003). In general Gram -ve cells have a higher 

maximum CMP than Gram +ve cells so anionic stains such as bis-(1, 3-dibutylbarbituric 

acid) trimethine oxonol (bis-oxonol) are often used (Jepras et al., 1997; Hewitt et al., 1998) 

to reflect CMP in preference to fluorescent probes that are accumulated actively (e.g. 

Rhodamine 123). This is because Gram -ve bacteria, like E. coli, frequently do not take up 

cationic stains unless the outer membrane of the cell is permeablised (e.g. by repeatedly 

washing with an EDTA solution (Hewitt et al., 1998)). Therefore it is not known if any 

subsequent staining reflects the true CMP at the time of sampling or whether it is an 

artefact due to the treatment regime employed (Davey & Kell 1996). This can be further 

complicated if active transport systems exist that pump the fluorescent stain out of the cell, 

since interference with or from such transport systems will obviously influence CMP  

(Nebe-von-Caron & Badley 1995).  

 

In theory distributional probes should distribute themselves as described in the Nernst 

equation, 
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However, theory and practise are often not in perfect alignment. In the case of cationic 

probes such as Rhodamine 123, potential based staining is perceived to be reduced at high 

dye concentrations, leading to indistinguishable dye uptake in polarised and depolarised 

cells (Nebe-von-Caron & Mueller 2007). For anionic probes an increase in target sites even 

with low level uptake of dye can lead to accumulation of dye intracellularly. Thus if the 

CMP does not overcome the affinity of the probe to the intracellular target or a temporary 

„leakage‟ across the cytoplasmic membrane exists, the dye accumulates inside the cell. The 

control applied to test for CMP independent accumulation of a dye is to collapse the CMP 



using decouplers (Hewitt et al., 1999). However, this method fails if the cells do not stain 

because of their outer membrane or active dye export or because of uptake due to 

temporary „leakiness‟. In those cases the best control is to attempt staining with a CMP 

probe of the opposite charge. 

 

In the case of a Gram +ve Rhodococcus sp. only ~40% of the cell population showed 

exclusion of bis-oxonol during nutrient sufficient conditions (Hewitt & Nebe-von-Caron 

2004). Since it is unlikely for the cells not to possess a CMP during exponential growth this 

indicates that the uptake of bis-oxonol in this case does not reflect the complete collapse of 

the CMP. Additionally, the cells still excluded propidium iodide, indicating that a certain 

degree of cytoplasmic membrane integrity remained. Such counter intuitive phenomena are 

not unique, PI straining during exponential phase has been observed in actinomycetes 

(Sebastine et al., 1999; Stocks & Thomas 2001) and mycobacteria (Shi et al., 2007).  While 

it may be possible to construct explanations for the reasons that “live” cells fail to stain -‟ve 

with bis-oxanol, or can stain +‟ve with PI, one must also consider that such populations 

contain cells which are in fact CMP negative, with intact membranes, or that there can be a 

minimum in “viability” during exponential growth. 

 

There are also obvious differences between Gram +‟ve and –„ve organisms, precisely in 

their membrane architectures. The cationic stain 3,3‟-dihexylocarbocyanine iodide - 

DiOC6(3) that accumulates actively (i.e. that enter and stain the cell when the cytoplasmic 

membrane is polarised) was seen to be preferential for reflecting changes in CMP for Gram 

+ve organisms (Müller et al., 1996; Lopes da Silva et al., 2005) especially since they do not 

have to cross an outer cell membrane. Alternatively, intracellular reduction-oxidation 

activity can also be used as a measure of cell metabolic activity since such activity is also 



related to the function of the electron transport chain (hence CMP) in addition to the 

anabolic and catabolic activity of the cell (Haughland 2002).  

 

In the work presented here we tried to develop a standard flow cytometry protocol for the 

Gram +‟ve bacterium Bacillus cereus, and understand more of the resulting staining 

phenomena using cell sorting. Specifically the use of DiOC6(3) and the proprietary 

RedoxSensor Green (an indicator of bacterial reductase activity, Molecular Probes, 

Invitrogen, UK) both counter stained with propidium iodide to monitor the physiological 

state of Bacillus cereus throughout its growth cycle. Bacillus spp. are widely used in 

industry for the manufacture of commercially important extracellular enzymes (mainly 

amylases or proteases), bioinsecticides and for aerobic waste water treatment (Reis et al., 

2005). In this way it was hoped to develop a method for tracking Gram+ve bacterial 

physiological state that would be useful for the bioprocessing industries.  

 

MATERIALS AND METHODS  

Organism and growth conditions. 

Bacillus cereus NCTC1143, an asporulating mutant, was chosen as a model organism 

because it is a common rod shaped, soil-dwelling bacterium that is easy to grow in the 

laboratory and was found in this study to be very sensitive to culture conditions. Cultures of 

B. cereus were grown by adding 100 l of the glycerol stock to 50 ml nutrient broth 

(Oxoid, UK) without glucose, in 500 ml baffled shake-flasks at 37 °C and 200 rpm in an 

orbital shaker for ~14 h. This culture was then used to inoculate 24 similarly prepared 

flasks, with duplicate flasks taken periodically for analysis. 

 

Flow cytometry protocols. 

Flow cytometric analysis and cell sorting were done by a Coulter EPICS ELITE flow 



cytometer (High Wycombe, UK) with 488 nm excitation from an argon-ion LASER at 15 

mW.  Samples taken from the culture were immediately diluted (at least 1:2000 v/v) with 

Dulbecco‟s buffered saline (DBS, pH 7.2) and stained with one of two mixtures of 

fluorescent stains either PI/DiOC6(3) or PI/RedoxSensor Green. Samples were kept in a 

sonication bath for 10 s prior to analysis, in order to reduce problems associated with cell 

aggregation. Individual cells were sorted directly onto nutrient agar plates (at least 100 cells 

on each of a minimum of 5 plates per sort) such that each cell could give rise to a discrete 

visible colony after 24 hours incubation at room temperature. For fluorescent microscopic 

examination, populations of like cells were sorted onto filter disks pre-wetted with 

Dulbeco‟s buffered saline (DBS, pH 7.2) and examined under the fluorescent microscope 

within 1 minute.  Stock solutions of each dye were prepared as follows: DiOC6(3) was 

made up at 10 g.ml
−1

 in dimethyl sulphoxide (DMSO), PI was made up at 2 mg.ml
−1

 in 

distilled water and RedoxSensor Green was added at the concentration supplied by the 

manufacturer. The working concentrations of DiOC6(3), RedoxSensor Green and PI were 

0.3 µg.ml
−1

, 3.0 µM and 0.3 µg.ml
−1

, respectively in Dulbecco's buffered saline (pH 7.2, 

DBS). All solutions were passed through a 0.2 m filter, immediately prior to use, to 

remove particulate contamination. Signal discrimination was set on Forward Angle Light 

Scatter (FALS or FS) and Right Angle Light Scatter (RALS or SS) signal. The optical 

filters were set up so that PI fluorescence was measured using a 630 nm long pass while 

DiOC6(3) and RedoxSensor Green fluorescence were measured using a 525 nm band pass. 

In all cases there was some spectral overlap between the emitted fluorescence of the stains 

in mixtures however, due to the large dynamic range of the signals compensation was kept 

to a minimum to aid cluster differentiation but to avoid overcompensation. Bacteria were 

identified by their light scattering cluster which was used as a gate for the fluorescence 

density plots. 

 



Other analytical techniques. 

Cell growth was monitored by optical density (580 nm) using a double-beam 

spectrophotometer, with samples being diluted, with DBS, into the range 0-0.6 absorbance 

units prior to analysis. Microscopy was performed using a Leitz Ortholux II microscope 

and a 100x oil immersion objective and images were taken using a with a Nikon DS-2Mv 

camera. 

 

RESULTS AND DISCUSSION 

 

Duplicate batch fermentations of Bacillus cereus were carried out in which samples were 

taken periodically and stained with one of two mixtures of fluorescent stains, either 

DiOC6(3)/PI or RedoxSensor Green/PI, over the course of a standard growth curve (Figure 

1). A 2 h lag phase was followed by 2 h of rapid growth, with a maximum specific growth 

rate (μmax) of 1.02 h
-1

 recorded at 3 h, after which the culture entered the stationary phase 

before being terminated at 24 h. It can be seen from the pH curve that the initial fall, 

resulting from the depletion of the complex carbon-source present, was arrested after only 3 

h. Following this point, the pH steadily and continuously rose, probably as a consequence 

of deamination as amino acids are consumed as a carbon source, with the rising pH further 

influencing the metabolism of the cells, the culture eventually entering the conventionally 

termed stationary and decline phases. This illustrates the suitability of this system as a 

model for evaluating fluorescent dyes in a range of physiological states for the cell 

population. 

 

For samples stained with DiOC6(3)/PI the presence of up to three populations of cells could 

be expected. These correspond to cells with an intact depolarised cytoplasmic membrane, 

not stained (A), cells with an intact polarised cytoplasmic membrane, stained with 



DiOC6(3) (B), and cells with a permeablised depolarised cytoplasmic membrane stained 

with PI only (D). This was found to be true here (Figure 2) although in the case of 

lag/stationary phase Bacillus cereus cells a fourth sub-population was also identified (C). 

This corresponded to cells stained with both PI and DiOC6(3); paradoxically this would 

mean that these cells had a permeablised but polarised cytoplasmic membrane. The 

presence of the fourth sub-population has been shown previously (Montfort & Baleux 

1996; Lopes da Silva et al., 2005) and it has been proposed that with lipophilic cationic 

carbocyanine dyes such as DiOC6(3) non-specific energy independent binding can occur 

when the hydrophobic regions of the cytoplasmic membranes are exposed to relatively 

harsh conditions such as exposure to lethal heat, dehydration in ethanol or high 

concentrations of the fluorochrome. However this was not the case here. Indeed when 

double DiOC6(3)/PI stained cells were sorted onto a filter paper and examined under the 

microscope it could be seen (Figure 5) that this population was made up of doublets i.e. two 

cells attached together, one stained positively for PI and the other stained positively for 

DiOC6(3). Due to the site of connection being along the longitudinal axis of the cells, it is 

likely that these doublets were the result of incomplete cell division (Haeusser & Levin 

2008) rather than cells simply „sticking together‟. This is also indicated by the fact that the 

cells are connected at their ends. The same events sorted onto nutrient agar plates gave rise 

to a colony >65% of the time (Figure 5) with each colony presumably being derived from 

the PI negative cell, approximately the same as that derived from the DiOC6(3) only stained 

population where a colony was produced ~70% of the time.  

 

For cells stained with RedoxSensor Gree/PI, the existence of three populations of cells 

could also be expected. These correspond to cells with an intact cytoplasmic membrane 

with a low reductase activity, not stained (A), cells with an intact cytoplasmic membrane 

with a higher reductase activity stained with RedoxSensor Green (B), and cells with a 



permeablised cytoplasmic membrane with no reductase activity stained with PI only (D). 

This was the case here (Figure 6) although in the case of lag/stationary phase Bacillus 

cereus cells a fourth sub-population could again be identified (C). This corresponds to cells 

stained with both PI and RedoxSensor Green; counter intuitively this would mean that cells 

had a permeablised cytoplasmic membrane but retained a reductase activity. Whilst this 

could be the case, as enzyme activity is independent of cell permeabilisation, the retention 

of the substrate would be less likely once the cell integrity is lost.  Indeed when 

RedoxSensor Green and PI double stained cells were sorted onto a filter membrane and 

examined under the microscope it could indeed be seen (Figure 6) that this population was, 

again, made up of doublets i.e. two cells attached together, one stained positively for PI and 

the other stained positively for RedoxSensor Green. As previously observed, this 

subpopulation, when sorted onto nutrient agar plates gave rise to a colony >70% of the time 

(Figure 6) with each colony being derived from the PI negative stained cell.  This 

percentage was approximately the same as that derived from the RedoxSensor Green only 

stained population, where a colony was produced ~72% of the time. For cells stained with 

RedoxSensor Green/PI, a fifth sub-population of cells could also be identified in the bottom 

corner of quadrant A. Following sorting, events did not give rise to any colonies on nutrient 

agar. Back gating identifies those events mainly to consist of debris by their typical 

meandering light scatter clustering (data not shown). Although some events scatter like 

bacterial cells the conclusion here is that these events were related to cell ghosts, cell debris 

or other particulate „noise‟ (Lewis et al., 2004).  

 

It is clear that the quality of the inoculum for the growth experiments was sub-optimal with 

only ~28% of cells being positively stained with only either DiOC6(3) or RedoxSensor 

Green at the start. In both cases within 4 h of inoculation almost all cells were either only 

DiOC6(3) or RedoxSensor Green positive, as was to be expected, because the culture had, 



by then, entered the period of most rapid growth. This remained unchanged through 8 h 

until the culture began to enter the stationary phase of growth whereupon there was a 

progressively detrimental change in cell physiological state until the experiment was 

terminated at 24 h. 

 

Further analysis of the cell sorting data revealed some interesting points. Unstained cells 

from the most rapid phase of growth when sorted directly onto nutrient agar produced a 

colony >90% of the time (Figure 4). Therefore it can be concluded that passage through the 

flow cell and laser at 15 mW had little detrimental effect on the reproductive viability of 

the cells. Whilst in the absence of staining it is not possible to eliminate interfering particles 

by the absence of dye uptake, it is to be noted that a 100% recovery of cells on the nutrient 

agar plate should not be expected since cells only divide when conditions are absolutely 

perfect such that sub-lethally injured and other so called „viable but non culturable‟ cells 

are often missed (Hewitt & Nebe-von-Caron 2004) unless the right artificial growth 

medium is employed. Indeed a 3 log difference in the number of cells recovered from the 

same Salmonella spp. sample has been observed dependent on the type of solid agar 

medium used (Nebe-von-Caron & Badley 1995). When cells from the most rapid phase of 

growth, stained only with DiOC6(3) were sorted based on light scatter only, a colony was 

produced  >99% of the time and when stained only with RedoxSensor Green >90% of the 

time (Figure 4) implying that positive staining with DiOC6(3) somehow increased the 

ability of cell to produce a colony on nutrient agar. Why this is so is not clear and will need 

further investigation. Closer examination of the data reveals that cells positively stained 

with either DiOC6(3) or RedoxSensor Green taken from the phase of most rapid growth 

gave rise to a colony ~95% of the time, almost 3x as often as cells (~30%) stained 

positively with either fluorochrome during the lag phase of growth. This demonstrates that 

a cell‟s future ability to grow and divide is not contingent on having a higher intracellular 



reductase activity or a polarised cytoplasmic membrane. Indeed, the fact that >40% of cells 

unstained with DiOC6(3)/PI and >85% unstained with RedoxSensor Green/PI gave rise to a 

colony when sorted onto nutrient agar shows that an absence of a detectable cytoplasmic 

membrane potential or reductase activity is not sufficient to render cells incapable of future 

growth and division. Further, that since it is impossible for a cell to replicate without a 

cytoplasmic membrane potential or any reductase capability then their absence must be 

reversible or a staining artefact to be challenged by further staining methods, as cells would 

be unable to divide on the nutrient agar.   

 

Closer examination of the colonies derived from sorted cells highlights another level of 

heterogeneity. Colonies of varying size appear on all of the sorts, implying variations in lag 

time, as it is unlikely that the cells have altered their growth rate. In all cases cells stained 

only with PI when sorted onto nutrient agar did not produce a colony implying that under 

the conditions investigated here the cells staining with PI only are dead. 

 

CONCLUSION 

 

Recently, we have attempted to develop a universal dual staining technique, suitable for all 

bacterial cell types, to be used in the measurement by multi-parameter flow cytometry of 

bacterial cell physiological state during the course of various types of commercially 

important bioprocesses. This has proved difficult because of the difference in magnitude of 

membrane potential between Gram +ve and Gram -ve cells and the hindrance to entry of 

fluorchromes presented by the additional, outer membrane in the latter. However, the 

conclusion from this study (and informed by our previous work) is that the dual staining 

combination with PI/DiOC6(3) is likely to be suitable for use with the Gram +ve cells e.g. 

Bacillis cereus, Bacillus licheniformis, Corynebacter glutamicum, Rhodococcus spp, 



(Lopes da silva et al., 2005; Chamsartra et al., 2005; Amanullah et al., 2002) and the dual 

staining combination with PI/bisoxanol is suitable for Gram –ve cells e.g. E. coli, 

Salmonella spp., Acinetobacter johnsonii (Boswell et al., 1998; Want et al., 2009.; Hewitt 

& Nebe-von-Caron 2001; Nebe-von-Caron et al., 2000; Boswell et al., 1998). This is likely 

to be species and process specific whilst the interpretation of such data can only be reliably 

made when the necessary control experiments have been carried out properly. Whilst 

progressive differential staining of cells is observed throughout a growth curve with 

RedoxSensor Green the interpretation of the data is difficult because the identity and exact 

mode of action of the stain remains unknown. 

 

It is recognised that the relatively complex and high cost of quantitative fluorescent 

microscopy or flow cytometry equipment, when compared with other more traditional 

microbiological techniques, has prohibited it from becoming a routine analytical tool for 

use in most microbiology laboratories. Nevertheless, the data presented here has identified 

at least 4 distinguishable physiological states with the two staining protocols alone, 

highlighting further the unexpectedly complex population dynamics of bacterial cultures. 

This lays to rest the microbiological dogma that all bacterial cells in a culture behave in 

exactly the same homogenous way; they are clearly members of a physiologically 

heterogenous population. Such a conclusion, if correct, could cast doubt on the 

interpretation of many „omic array‟ analyses which assume a population of bacterial cells to 

be homogeneous with respect to their physiological state. 

 

 

 

 

 

 



NOMENCLATURE 

 

   Electro potential 

i  Inside,  

o  Outside,  

a  Active (diffusible or unbound) concentration,  

R  Universal gas constant,  

T  Absolute temperature,  

z  Charge,  

F  Faraday constant 
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Figure 5. 

 

 

 

 

 

 

                                         

 

 

 

 

 

 

 

Figure 6 

 



Figure 1. Optical density (OD580nm) and pH profiles show mean values for four replicate 24 

h batch fermentations with Bacillus cereus. Error bars show the standard deviation of the 

data used to calculate the mean values (minimum 14 measurements). 

 

Figure 2. Flow cytometric analysis of cell samples taken i) pre-inoculation then at ii) 2 h, 

iii) 4 h, iv) 8 h, v) 9 h and vi) 24 h post inoculation during the course of a 24 h batch 

fermentation with Bacillus cereus stained with DiOC6(3)/PI. Up to four populations of cells 

could be identified. These correspond to cells with an intact depolarised cytoplasmic 

membrane, not stained (A), cells with an intact polarised cytoplasmic membrane, stained 

with DiOC6(3) (B), cells with a permeablised depolarised cytoplasmic membrane stained 

with PI only (D), and cells stained with both PI and DiOC6(3) (C). 

 

Figure 3. Flow cytometric analysis of cell samples taken i) pre-inoculation then at ii) 2 h, 

iii) 4 h, iv) 8 h, v) 9 h and vi) 24 h post inoculation during the course of a 24 h batch 

fermentation with Bacillus cereus stained with RedoxSensor Green/PI. Up to four 

populations of cells could be identified. These correspond to cells with an intact 

cytoplasmic membrane with a low reductase activity, not stained (A) cells with an intact 

cytoplasmic membrane with a higher reductase activity stained with RedoxSensor Green 

(B), cells with a permeablised cytoplasmic membrane with no reductase activity stained 

with PI only (D) and cells stained with both PI and RedoxSensor Green (C). 

 

Figure 4. Functional assessment i) unstained, ii) stained with DiOC6(3)/PI, iii) 

RedoxSensor Green/PI and cell sorting. Rapid growth phase cells of Bacillus cereus i.e. 4 h 

after inoculation sorted directly onto Nutrient Agar plates. 

 

Figure 5. Functional assessment by multicolour staining with DiOC6(3)/PI and cell sorting. 



Lag phase cells of Bacillus cereus i.e. 2 h after inoculation stained and sorted directly onto 

Nutrient Agar plates. 

 

Figure 6. Functional assessment by multicolour staining with RedoxSensor Green/PI and 

cell sorting. Lag phase cells of Bacillus cereus i.e. 2 h after inoculation stained and sorted 

directly onto Nutrient Agar plates. 

 


