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ABSTRACT 

The expression of interleukin -13 following induction with IPTG in E. coli results in 

metabolic changes as indicated by multi-parameter flow cytometry and traditional 

methods of fermentation profiling (O2 uptake rate, CO2 evolution rate and optical 

density measurements). Induction early in the rapid growth phase was optimal 

although this led to lower overall biomass concentrations and lower maximum 

specific growth rates. In contrast, induction in the mid-rapid growth phase was the 

most detrimental to cell quality as measured by cytoplamsic membrane depolarisation. 

 

INTRODUCTION 

The over-expression of heterologous recombinant proteins in Escherichia coli often 

results in severe growth inhibition of the host cells, accompanied by metabolic 

changes.  These adverse effects, often characterised by an increased metabolic burden, 

are mainly attributed to the presence of plasmid replication systems, rDNA 

transcription and plasmid-encoded mRNA translation, to which cellular resources are 

redirected at the expense of normal host cell metabolic processes (Bentley et al. 1990, 

Anderson et al. 1996, Soriano et al. 2002). These changes may therefore manifest 

themselves as a decrease in growth rate, enhanced production of heat-shock proteins 

and inclusion body formation (Kurland & Dong 1996). This growth and metabolic 

process inhibition usually becomes apparent following transcriptional induction of the 

foreign gene but is difficult to measure in real-time.  

 

Over the last 10 years there have been many advances in the use of multi-parameter 

flow cytometry coupled with fluorescent staining techniques for the analysis of 

bacterial physiological state at the single cell level (Nebe-von-Caron et al. 2000, 
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Hewitt & Nebe-von-caron 2004). Since the analyses used in this study were 

essentially the same as in our earlier work (Hewitt et al., 2007), only a brief 

discussion will be included here.  The advantages of multi-parameter flow cytometry 

over the more conventional microbiological techniques such as dilution plating (c.f.u. 

per ml) are well documented (Hewitt & Nebe-von-Caron 2004, Nebe-von-Caron et al. 

2001) but, briefly, by using various mixtures of fluorescent dyes [e.g. propidium 

iodide, bis-(1,3-dibutylbarbituric acid) trimethine oxonol], it is possible to resolve an 

individual microbial cells’ physiological state beyond culturability based on the 

presence or absence of an intact polarised cytoplasmic membrane and the transport 

mechanisms across it, in real- time, enabling assessment of population heterogeneity.  

 

The study described here seeks to build on our earlier work (Lewis et al. 2004, 

Sundstrum et al. 2004), where the physiological consequences of the production of 

recombinant protein by E. coli using various expression strategies was studied.  The 

production of a model recombinant protein (AP50), as an insoluble inclusion body 

accumulating in the cytosol, correlates very well with any detrimental change in cell 

physiological state as measured by multi-parameter flow cytometry. Here we describe 

the use of both conventional fermentation analyses and multi-parameter flow 

cytometry to study the physiological effects of IPTG-induction on Escherichia coli 

BL21 expressing the foreign protein, interleukin-13, at different times during the cell 

growth phase.  Interleukin-13 is an important cytokine secreted by T helper type 2 

(Th2) cells implicated in the mediation of allergic inflammation in humans and a 

potential therapeutic target. The aim here was to determine the point during growth 

when induction would have the least detrimental effect on cell physiology, 

metabolism and protein expression leading to real process improvements.  
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MATERIALS AND METHODS 

Organisms and growth conditions 

The strain used, Escherichia coli IL 13, was a modified BL21 (DE3) strain containing 

a pET11a vector (Novagen, Madison, WI, USA) with the interleukin-13 gene under 

the control of an IPTG-inducible promoter.  E.coli IL-13 was cultured in Luria Bertani 

(LB) medium at 25 g l-1 with ampicillin at 100 mg l-1.  All medium components 

except ampicillin were sterilized in-situ in the fermenter by heating to 121 °C at 1 bar 

pressure for 30 min. Polypropylene glycol P 2000 (0.15 ml l-1) was added to the 

bioreactor prior to media sterilization as an antifoam. Ampicillin was filter-sterilized 

and aseptically added to the media immediately prior to inoculation.  

 

Batch fermentations were carried out in a 30 l stirred tank reactor (STR, B. Braun 

Biotechnology, Allentown, PA, USA), with a working volume of 20 l. The STR was 

inoculated with a 2.5% (v/v) overnight (16h) culture. Culture pH was maintained at 7 

± 0.2 by the addition of 1 M NaOH on demand and temperature was maintained at 

37˚C. Dissolved O2 tension (DOT) was measured using a polarographic probe 

(Ingold, Messtechnick, Urdorf, Switzerland) and maintained above the 30% saturation 

level by control of agitation speed (300-700 rpm) and aeration at 1 vvm. Vessel 

pressure was maintained at ≤ 0.5 bar. The culture was induced with 1 mM IPTG, 

dissolved in process water and filter-sterilized before being aseptically added to the 

fermentation vessel. 
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Analytical techniques 

Biomass concentration was measured as OD600 and compared to the dry cell weight 

(DCW) of samples dried at 100 °C to constant weight. The CO2 evolution rate (CER) 

and O2 uptake rate (OUR) were measured and recorded via mass spectroscopic 

analysis of exit gases from the fermenter. DOT, CER and OUR data were collected 

using FIX software (GE Fanuc, Albany, NY, USA). 

 

Flow cytometric analysis was carried out using a FACSCalibu dual laser flow, bench 

top analyser with 488 nm excitation from an argon-ion laser at 15 mW.  Two 

fluorescent dyes were used, propidium iodide (PI) and bis- (1,3-dibutylbarbituric acid) 

trimethine oxonol (sometimes referred to as DiBAC4 or BOX, Molecular Probes, 

Leiden, The Netherlands). Samples taken from the test culture were immediately 

diluted with Dulbecco’s buffered saline (DBS), pH 7.2 and stained with a mixture of 

PI and BOX. Samples were held in the 'hot-spot' of a sonication bath for 3-4 s just 

prior to analysis in order to avoid problems associated with cell aggregation. Each dye 

was added from a stock solution: 200 μg PI per ml distilled water and 10 mg BOX per 

ml dimethyl sulphoxide  (DMSO). The DMSO stock solution was held at -20oC and 

the distilled water stock solution was held at 4oC. The working concentrations of PI 

and BOX were 5 μg/ml and 10 μg/ml, respectively, in DBS. The optical filters were 

set up so that PI fluorescence was measured at 630 nm and BOX fluorescence was 

measured at 525 nm. Any interference caused by spectral overlap between the emitted 

fluorescence of the two stains was eliminated by the system’s compensation software. 

Additionally, software discriminators were set on both the FALS signal and the RALS 

signal to further reduce electronic and small particle noise. Data analysis was 
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accomplished with the CellQuest Pro software (BD Biosciences, San Jose, CA, USA), 

which allows protocol definition and batch analysis.  

 

The presence of interleukin-13 (IL-13) protein in E.coli IL-13 following induction 

with IPTG was determined via SDS-PAGE using the Laemmli protocol followed by 

silver staining to visualise the protein bands. Fermentation broth samples (10 ml) were 

harvested from the fermentation vessel prior to, and post-, induction. The cell mass 

was separated from the fermentation by centrifugation at 5000 g for 30 min. Samples 

were standardised to 1 OD unit before SDS-PAGE analysis. Protein was extracted 

from the cell pellet using the BugBuster Protein Extraction Reagent kit as directed by 

the manufacturer’s protocol for protein extraction and inclusion body (IL-13 is present 

as inclusion bodies) purification via chemical lysis. Ten µl of a 1 in 10 dilution of the 

purified protein suspension was added to 10 µl of Laemmli buffer and incubated at 

90˚C for 5 min to denature the protein, prior to being loaded onto a pre-cast 4-20%, 

10-well Novex Tris/glycine/SDS gel (Invitrogen, Carlsbad, CA, USA). The gel was 

run in Novex Tris/glycine/SDS running buffer for 90 min at 150 V. Ten µl of protein 

size markers from 10 to 255 kDa in an equal volume of Laemmli buffer, was also 

loaded on to the gel to determine the size of the protein bands seen following silver 

staining of the SDS PAGE gels. Silver staining for protein visualisation was achieved 

using the SilverXpress Silver Staining kit (Invitrogen, Carlsbad, CA, USA). 

 

RESULTS AND DISCUSSION 

A series of batch fermentations was carried out with the BL21 (DE3) strain where the 

point of induction of IL-13 by addition of 1mM IPTG was varied dependent on the 

turbidity of the culture in the range OD600 0.5 ± 0.05, 1 ± 0.2 and 3 ± 0.2, respectively. 
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In addition, control fermentations were carried out where IPTG was not added to a 

batch fermentation of the transformed host. Reproducible measurements of pH, DOT 

(% saturation), DCW g/L, OD600, CER (mmol/l.h) and OUR (mmol/l.h) were made 

(Figure 1, not all data shown). Additionally, from samples taken just prior to and 3 h 

after induction for the induced fermentations and at the end of the non-induced 

fermentation individual cell physiology was measured by multi-parameter flow 

cytometry (Figures 2 - 5). In all cases the batch fermentations were terminated when 

an OD600nm of between 2.5 and 4.5 had been achieved. In all cases, the point of 

induction has a clear effect on fermentation progression as measured by DOT (% 

saturation), OD600, CER and OUR (Figure 1).  Without induction, a maximum OD600 

of 4.5 (= DCW 2.13 g/l) was reached at 5 h with a μmax of 0.71 h-1
 and no protein was 

expressed. With induction at OD600 of 0.5 ± 0.05, which is early in the rapid growth 

phase,  a maximum OD600 of 4 (= DCW 1.48 g/l) was then reached at 7 h which is 

lower and later than with the control. In this case, the μmax before induction was 0.74 

h-1, but after induction only reached 0.41 h-1 and protein was expressed (Figure 6). 

This effect on growth was mirrored in the DOT, CER and OUR profiles.  

When induction was carried out at an OD600 of 1 ± 0.2, i.e. in the middle of the rapid 

growth phase, the maximum OD600 of 2.5 (= DCW of 1.32 g/l) was achieved at 3 h 

without any further growth thereafter. Indeed, growth only continued for 1.5 h post-

induction. The μmax (recorded just post-induction) was  0.64 h-1 and protein was 

expressed (Figure 6). This marked effect on growth is again mirrored in the DOT, 

CER and OUR profiles. When induction was carried out at an OD600 of 3 ± 0.2, late in 

the growth phase, the maximum OD600 of 4.5 (= DCW of 2.20 g/l) was achieved at 5 h 

with a μmax of 0.72 h-1. This is similar to the control except that protein was expressed 

(Figure 6). The DOT, CER and OUR profiles were also similar to the control. 
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In all cases, it was not possible to follow protein accumulation based on changes in 

the intrinsic light scatter measurements of cells alone as has been reported previously 

(Fouchet et al. 1994, Laverne-Mazeau et al. 1996, Lewis et al. 2004, Wittrup  et al. 

1988) and the characteristic bi-modal clustering with respect to forward and right 

angle light scatter associated with the rod-like shape of E. coli remained unchanged 

throughout each process (data not shown). Why this is so remains unclear and further 

work will need to be done to investigate this phenomenon further since phase-bright 

inclusion bodies could be observed in the cytosol of cells via light microscopy. 

Analysis of the fluorescent staining data as measured by flow cytometry showed that. 

in all cases, both induced and un-induced, there is a progressive detrimental change in 

cell physiological state that continues throughout the course of each fermentation and 

that the extent of this is dependent on the whether the IL-13 was induced or not and at 

which OD the IPTG was added, as revealed by BOX and PI dual (PIX) staining.  As 

described previously (Hewitt et al. 2001, 2004), in Figure 2 – 5, area A, no staining, 

represents healthy cells; area B, stained with BOX, shows cells with a reduced 

cytoplasmic membrane potential (stressed cells); and area C, stained with both PI and 

BOX (PIX), shows cells with a depolarised permeabilised cytoplasmic membrane, 

(dead cells). The greatest detrimental effect on cell physiological state was seen when 

the IL-13 was induced in the middle of the rapid growth phase. 

 

Chemical induction is a common method of initiating the expression of foreign genes 

in recombinant bacterial systems (Kosinski et al. 1992, Andersson et al. 1996, Lewis 

et al. 2004). However when this occurs during the growth period, the conditions can 

significantly affect the final quantity and quality of recombinant protein product 
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Patkar et al. 2002) as well as the physical and metabolic status of the host cell. 

Foreign protein synthesis in the host cell has been found to enhance the maintenance 

coefficient and has been reported to impose a metabolic burden on the normal 

functioning of the host cell, thus inducing severe metabolic stress (Bentley et al. 1990, 

Fouchet et al. 1994, Soriano et al. 1999).  

 

IPTG-inducible systems are widely used in recombinant bacteria and are characterised 

by high product yields (Soriano et al. 2002). The reason that the OD at which the 

IPTG is added has such an effect on cell growth and physiology is usually related to 

the concentration of IPTG per cell at time of induction. Since the IPTG concentration 

is kept the same (1 mM) for each fermentation, we know that the concentration of 

IPTG per individual cell at the exact time of IPTG addition is very different. This 

means that as the OD gets higher, fewer cells are fully induced (if at all) resulting in a 

heterogeneous culture of producing and non-producing cells. Therefore, at a low OD, 

the induction effect on the culture as a whole is stronger than at a higher OD. 

Provided that the IPTG is irreversibly bound to the repressor, this will lead to a 

greater level of expression of the protein and a greater stress for the individual 

induced cell but not at all for cells un-induced. Unfortunately, there is no reliable 

assay for IL-13 quantification so expression level data were not available however a 

correlation with the flow cytometry data can be conferred since the presence of a high 

number of dead or dormant cells at any time during the fermentation will have an 

obvious detrimental effect on total protein quantity. Why induction in the middle of 

the rapid growth phase has such an effect is more uncertain, however, any toxic 

effects of the IPTG can be largely discounted because in previous work (Lewis et al. 

2004) the addition of IPTG to a non-recombinant fermentation of E. coli B21 had no 
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effect on fermentation progression. The effect may due to a subtle metabolic switch 

since E. coli responds to various stress factors by the transcriptional induction of an 

alternative set of genes (Schweder et al. 1999) resulting in a protective effect on cells 

in or leaving the lag phase or in or entering the stationary phase that can lead to lower 

biomass concentrations and protein productivity overall.  

 

CONCLUSIONS 

 

When compared to other more traditional microbiological techniques, it is recognised 

that the relative complexity and high cost of flow cytometry equipment probably 

prohibits it from becoming a routine analytical tool for use in most fermentation 

microbiology laboratories. Nevertheless, flow cytometry is proving to be a valuable 

research analytical technique for the study of microbial population dynamics within 

bioreactors, leading to informed improvements in process performance. Here, the 

point of induction of the IL-13 by 1 mM IPTG addition had a clear effect on 

fermentation progression and the physiological consequences of this can be followed 

by multi-parameter flow cytometry.  Depending on point of induction a ~40% drop in 

maximum biomass concentration with respect to DCW g/l was achieved and 

subsequently growth rates were retarded. 
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Figure 1.  i) Profile of un-induced E.coli IL-13 batch fermentation. Early rapid 

growth phase, A; Mid rapid growth phase, B; Late rapid growth phase, C.1 ii-iv) 

Profiles for batch fermentations induced in early rapid growth phase (ii), mid rapid 

growth phase (iii) and late rapid growth phase (iv). Closed triangles, DOT; open 

squares, OUR; closed squares, CER and closed circles, OD.  

  

Figure 2. Cell samples taken at 6 h (i) and 8 h ii) during the course of a batch 

fermentation where synthesis of IL-13 was not induced. Cells were stained with PIX, 

Three main sub-populations of cells can be distinguished, corresponding to healthy 

polarised cells (A), no staining, cells with no membrane potential (B), stained with 

BOX; and cells with permeablised membranes (C), stained with both PI and BOX. 
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Figure 3. Cell samples taken (i) immediately before induction and (ii) ~ 3 h after 

induction during the course of a batch fermentation where synthesis of IL-13 was 

induced early on in the rapid growth phase (i.e. at point A Figure 1i). Cells were 

stained with PIX, three main sub-populations of cells can be distinguished, 

corresponding to healthy polarised cells (A), no staining, cells with no membrane 

potential (B), stained with BOX; and cells with permeablised membranes (C,), stained 

with both PI and BOX. 

 

Figure 4. Cell samples taken (i) immediately before induction and (ii) ~ 3 h after 

induction during the course of a batch fermentation where synthesis of IL-13 was 

induced mid rapid growth phase (i.e. at point B Figure 1i). Cells were stained with 

PIX, three main sub-populations of cells can be distinguished, corresponding to 

healthy polarised cells (A), no staining, cells with no membrane potential (B), stained 

with BOX; and cells with permeablised membranes (C), stained with both PI and 

BOX. 

 

Figure 5. Cell samples taken (i) immediately before induction and (ii) ~ 3 h after 

induction during the course of a batch fermentation where synthesis of IL-13 was 

induced late on in the rapid growth phase (i.e. at point C Figure 1i). Cells were stained 

with PIX, three main sub-populations of cells can be distinguished, corresponding to 

healthy polarised cells (A), no staining, cells with no membrane potential (B), stained 

with BOX; and cells with permeablised membranes (C), stained with both PI and 

BOX. 
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Figure 6. SDS PAGE gel of protein purified from non-induced and induced E.coli IL-

13 fermentations. (SM) Protein size marker, (A) Non-induced samples, (B) Induced 

samples. Arrows point to the IL-13 band, which is 12.5kDa in size. Protein bands are 

visualised with silver staining. 

 

  

 


