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ABSTRACT 

 A numerical model for simulating the microhydrodynamics inside different pore sizes was 

developed in this work, using a continuous penalty finite element scheme. This scheme 

combines the flexibility in modelling two phase systems, as the one simulated in this work 

with accuracy. The volume of fluid (VOF) method was applied to track the motion of the gas-

liquid interfacial boundary as an approach to monitor the repulsion of the wetting liquid from 

the pores to detect  their bubble pressures. To resolve the complexities arising from the 

inclusion of the surface tension at the liquid-gas interface as an unknown dynamic condition  

it is treated as a resistance force in the equations of motion. The effects of the surface tension 

and other forces such as the buoyancy are then determined by model calibration with respect 

to a set of experimental data. To obtain the experimental data, the bubble point test was used 

to characterise different Nuclepore track etched membrane samples, which provided insights 

into the mechanisms underlying the test and into the interpretation of the pore size 

distribution. The experimental data are used to calibrate the numerical model. The calibrated 

model was,  in turn, used to predict the outcome of bubble point tests for a range of inlet 

boundary conditions. The results obtained from these simulations are shown to be in good 

agreement with of the experimental data, indicating the ability of the developed model to 

accurately predict the bubble point pressure.  
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INTRODUCTION 

Membrane is one of the most widely used means  of physical separations and has broad 

industrial applications.  Traditionally, the main objective of applying the membranes has been  

either  clarification of liquor or separation of particles  for recovery or others. More recently, 

membranes have been also used in tissue engineering for variety of purposes, e.g., to support 

cell/tissue growth in bioreactors, screening of cells and molecules, etc.  

 

To obtain high efficiency, the  membranes should have the ability to separate  a wide size 

distribution of particles , offer appropriate hydraulic resistance to the filtrate flow and, if 

necessary, allow easy discharge of  accumulated solids from its surface. Also, it should be 

resistant to chemical attack and swelling when in contact with filtrate and  show good heat 

resistance within the temperature ranges of the filtration process, in addition to having 

sufficient strength to withstand filtering pressure and mechanical wear. These  characteristics 

point to the need to understand the importance of comprehensively characterising the 

morphology of the membranes  and  their potential capability to retain the dispersed phase, 

and why this knowledge is vital in the design and selection of the appropriate membranes  to 

maximise the efficiency of the processes involved.. Many methods can be applied to 

characterise a membrane,  e.g., mercury porosimetry, scanning electron microscopy (SEM), 

and others (Mulder, 2003). All the methods are generally dependent on different physical 

and/or chemical phenomena. Each of these tests provides limited knowledge about certain 

parameters; combining the results gained from different methods presents a broad and more 

in-depth understanding about the media properties.  

 

Measurement of the bubble point test is one of the characterisation methods, which can also 

act as a test of monitoring membrane integrity (Adham et al, 1998; Mulder, 2003).  Mietton-

Peuchot et al (1997) and Hirt and Nichols (1981) were able to use the same procedure to 

measure the pore size distribution for both clean and fouled membranes and thus were able to 

define a methodology for choosing membranes appropriate to microfiltration applications for 

the use of recycling alkaline cleaning solutions in dairy products industry. Calvo et al (1995) 

and Hernandez et al (1996) studied the surface of several track etched microporous 

polycarbonate membranes using the bubble point test to define the pore size distribution and 

have combined their results with SEM pictures as an additional supporting method. The 

bubble point test has been used to characterise stainless steel membranes (Ames et al, 2003), 

ceramic membranes (Jakobs and Koros, 1997), woven cloths (Rideal et al, 2004), and non-
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woven nanofibre filter media (Jena and Gupta, 2004), tissue engineering membranes/scaffold 

(Safina et al., 2005), etc, showing that the test can be applied in  a wide range of applications 

after appropriate experimental protocols and settings have been established. Jena and Gupta 

(2005) further extended the methodology to characterise the pore structure of complete filter 

cartridges. 

 

The primary flow mechanism that occurs inside the membrane pores during the bubble point 

test involves drainage of a liquid (wetting phase) by gas (non-wetting phase). This  two-phase 

flow is characterised by the movement of the gas/liquid interfaces, determined by a number of 

factors such as surface tension at the gas/liquid interfaces. Dynamics of  the gas/liquid 

interfaces have been studied in different context by many researchers. For example, Polynkin 

et al (2004) considered liquid displacement by investigating two scenarios: a) maintaining a 

steady state gas penetration velocity along the cylindrical tube, and b) a constant gas pressure 

applied at the inlet. Their main concern was to examine the inertial effects on the two cases 

and to relate the shape of the bubble developed inside the cylindrical tube to the Reynolds 

number. In their research conducted at a macro scale the surface tension, which is a prime 

factor within the bubble point test, was excluded from the governing equations. Taha and Cui 

(2002) studied the gas liquid interfacial effect on cross flow operations in ultra-filtration by 

monitoring the injection of the gas phase into the feed and applied the volume of fluid (VOF) 

technique to detect the interfacial boundaries between the two phases. They used a 

commercial software (FLUENT) to carry out their simulations and obtained an improvement 

in the permeate flux by introducing the gas bubbles into the filtration process and were able to 

predict the shape of the bubbles inside a tubular membrane with reasonable accuracy. 

 

However, it seems there is a lack of numerical tool to  analyse the bubble point test, the 

dynamics of the gas/liquid interfaces inside the membrane pores during the test, and, hence 

the morphology of the membrane. In this paper, we present a general, in-house  approach to 

address these issues. We consider  the effects of the surface tension of the wetting liquid and 

introduce  it into the working equations; different types of boundary conditions were 

investigated to determine conditions which are the most representative of the experimental 

results.We use in house data from the bubble point test on Nuclepore track etched membrane 

to develop and validate the numerical tool. Nuclepore track etched membranes have well 

defined pore structures (Figure 1), have almost cylindrical parallel pores and are used in many 

applications including biological engineering (e.g., separation of cells). However, the 
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developed numerical tool is a general tool and can be applied to analyse the characteristics of 

other membranes including tissue engineering membranes/scaffold. Furthermore, please note 

we only apply the methodology to study the movement of gas/liquid interfaces inside 

membranes pores. But, the methodology may be extended to study the dynamics of liquid-

liquid interfaces within membranes, in necessary. The purpose of the present paper is 

therefore simply to present the developed model and demonstrate its validity for simple 

membranes (e.g., Nuclepore track etched membranes).  

 

EXPERIMENTALS PROCEDURE As mentioned earlier the main purpose of conducting 

our in house experiments on bubble point test was to validate the numerical model developed 

in this work. In this section, we present the experimental procedures and some results briefly.  

 

In general, the bubble point tests   rely on imposing  an incrementally increasing pressure on a 

membrane sample wetted by a low surface tension liquid, such as alcohol, Porofil, Galwick or 

Silwick. This wetting liquid then spontaneously fills  the pores of the sample. The increase of 

pressure difference across the sample during a test results in a gradual expulsion of the 

wetting liquid from the largest to the narrowest filled pores resulting in a flow throughout the 

membrane (Meltzer, 1987; Mayer, 2002; Reichelt, 1987). Air is passed through the membrane 

to drain the liquid out of the sample. The flow of air is monitored by a sensitive flow 

transducer. The pressure required to obtain this flow is recorded and the diameter of the pore 

is calculated using a form of Young-Laplace equation as presented in equation (1), before 

incrementing the pressure until the relation between the applied pressure and the flow rate 

becomes linear, which indicates that all the pores within the sample are now emptied.  This is 

known as the wet curve.  The shape of the wet curve obtained provides an insight into the 

pore size distribution within the tested sample. It was noticed that the expulsion of the wetting 

liquid generates a residual liquid layer in the pore but it has no impact on the pore diameter 

calculations. 

d

cos4
P


           (1) 

where ΔP being the applied pressure, d is the pore diameter,    is the surface tension of the 

wetting liquid and    is its contact angle with the solid matrix of the membrane.  

 

A  dry curve is obtained by applying the same technique on  a dried sample and, the 

intersection between the two curves is usually at the pressure required to dry the minimum 
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pore size within the tested sample.  A half dry curve is determined  from the values obtained 

from the dry curve, and is  obtained using half of the flow rate through the dry sample.  

 
During this work  a PMI Porometer was used to measure the pore size distributions and,  to 

verify the results. Some of the measurements were repeated using a Coulter II Porometer.  In 

both cases  the membrane pore size distributions were indirectly measured using the gas flow 

detected after evacuating each group of pores to calculate the fraction of a pore diameter from 

gas flow differential data using equation (2): 
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where F is the wet (subscript w) and dry (subscript d) flow at time i. 

 

The theory behind the process is that the ratio of an incremental change in the gas flow 

through a wetted membrane to the total gas flow through the dry membrane (over the 

increment of ΔPi−1 to ΔPi+1) can be used to estimate the fraction of the total pores with a 

specific diameter at ΔPi by using Young–Laplace equation (Farahbakhsh and Smith, 2004; 

Martinez-Diez et al, 2000). 

 

Nuclepore track etched polycarbonate membranes manufactured by Whatman international 

Ltd were used in this work with different nominal mean pore sizes ranging from 0.2 to 12 μm. 

These membranes (Figure 1) have a low porosity of about 5% and the pores are defined to be 

cylindrical through pores, i.e. there are no blind or closed pores. The wetting liquid used in 

this work was Galwick (supplied by PMI) with surface tension of 15.9 dyne/cm. A PMI 

capillary flow porometer was used to analyse the samples.  

 

As an example of the results, those for a 1 μm sample will be presented in what follows. 

Figure 2 shows the wet, dry and half dry curves. Initially the applied pressure has no impact 

on the wet curve until the pore with the largest diameter starts to drain at pressure of about 40 

kPa. The sharp increase of the flow rate after the bubble point is a result of the narrow pore 

size distribution of the tested sample. Increasing the pressure results in detecting more 

narrower pores till the sample is completely dried at 60 kPa and the relation between the 

pressure and the flow rate becomes linear. At this point the wet curve ends and the dry test 

starts. The intersection of the wet and dry curves occurs after the location of the minimum 

pore within the tested sample. The minimum pore diameter detected for the nominal 1 μm 
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sample was 0.26 μm. The half dry curve in Figure 2 shows a mean pore size detected at 

pressure of 46 kPa. 

 

The pore size distributions measured for the track etched membranes is very narrow, as 

shown in Figure 3. The measured mean pore sizes were found to be close to the manufactures 

specification. For example, in the case of the 1 μm sample, 93% of the pores had a diameter 

of 0.97 μm. Table 1 presents the summary of a range of pore sizes measured.  For all data 

presented in this work, the results are the average of 5 tested samples and the manufacturers’ 

nominal rating is used as the identifier of the samples. 

 

The presence of multiple pores generated from double and sometimes triple overlapped pores 

causes the detection of pore sizes beyond the range specified by the manufacturers.  This can 

also be seen in the SEM in Figure 1. 

 

MATHEMATICAL MODEL 

In the modelling techniques described in this paper, the finite element method (FEM) is used 

to discretize the fluid flow equations in conjunction with the volume of fluid (VOF) technique 

to keep track of the gas/liquid  interfaces in the pores.  The FEM is chosen due to its 

flexibility in dealing with complex geometries, whereas the VOF technique provides a 

convenient method to relocate the interfacial boundary between the gas and the wetting liquid 

after the fluid velocity field is known. This method has proven to be both effective and 

convenient in solving two phase flow problems (Nassehi, 2002). 

 

The numerical modelling of the flow is based on the fundamental governing equations that 

reflect the fluid dynamical characteristics of the regime. Due to the very low Reynolds 

number of the gas-liquid flow inside pores , the resulting fluid flow is described by the 

creeping incompressible Stokes equation.  

 

For an isothermal transient flow in a two dimensional Eulerian framework the conservation of 

mass is written as: 

0








y

v

x

v yx            (3) 

where vx, vy are the x and y components of the velocity vector in a planar coordinate system. 
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The components of the equation of motion (representing conservation of momentum) for 

creeping (Re<1) flow of Newtonian fluids are described  in terms of Stokes equation as: 
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where ρ is the fluid density, μ is the viscosity, p is the pressure,  fx and fy are the components 

of body forces such as buoyancy and gravity, and xR  and yR  are the components of the 

surface tension which is included as an additional resistance force affecting the two-phase 

flow regime.  

  

The advancing flow front of the gas within a pore is simulated using the VOF technique as 

mentioned earlier. In a fixed two dimensional Cartesian coordinate system the flow front 

position is traced by a variable 0 ≤ F ≤ 1. The substantial time derivative of this variable is:  
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In a two phase system separated by an interface, the variable F in equation (5) is a probability 

density function taken to be zero in all locations where, say liquid (or phase one) is the only 

existing phase. Therefore in locations where purely gas (phase two) is present its value is 1. 

Along the interface separating the phases the value of F is between 0 and 1. Starting from an 

initial configuration (e.g. F=1 every where which may mean in the present case as completely 

gas filled pores) the solution of equation (5) in conjunction with the model equations provides 

a simple method for updating the position of phases and hence the interface boundary 

between the gas and liquid phases (Nassehi, 2002; Das and Nassehi, 2004). In this work we 

have used a version of the VOF technique in which the moving boundary regime is 

considered as a two phase flow regime where the filled pores (wetting liquid) and the empty 

pores (gas) sections are considered as different phases. This is similar to the method 

developed by Hirt and Nichols (1981) and Jeong and Yang (1998).  

 

The flow model is solved for the entire domain with the correct physical properties introduced 

into each region. A decoupled solution of equation (5) with the flow model generates the 
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values of F. These values range between 0 and 1. The values of F are interpreted in the 

following way: for a generated value of 3.00  F , F is considered to be 0; for 

75.03.0  F , F is taken as 0.5; and for 75.0F , F is then taken as 1, where 1 signifies 

that an element is filled with gas and 0 indicates that it is filled by the wetting liquid (Nassehi, 

2002). A value of 5.0F  indicates the location of the interfacial boundary separating the 

two phases. Hence in the context of the present work it represents the displacement of the 

wetting liquid by the compressed gas. Values of physical parameters of each phase in the flow 

field are related to the position of this interfacial boundary using the following equation: 

)1( FF gl                            (6) 

where χ is a given physical parameter (e.g. density) and l  and χg refer to the wetting liquid 

and gas values of this parameter, respectively. As is evident from the above explanations in 

the VOF technique a change in the density of the fluid continuum occurs at the interface 

between the phases. Therefore the buoyancy resulting from this effect should be taken into 

account. This force appears as a body force in the equation of motion. 

 

Formulation of the weighted residual statement 

Substitution of the field variables (i.e., velocity components and pressure) in the equation of 

motion by approximate forms (indicated by iv~  and p~  )results in the generation of residuals. 

These residuals are weighted by appropriate functions and integrated over the solution domain 

to disappear. Therefore:   

 




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dfWdRWdpWdvWd
t

v
W ijijjij

i
j  ~~

~
2    (7) 

                                                                                                                                 i=x,y 

where jW  are the weight functions (j=x, y),   is the solution domain and  represents the 

interface boundary between the liquid and gas phases in the pores.  

 

The surface tension acting on the interface between the two phases is given as: 

HnR ii 2                         (8) 

Where in  is the component of unit vector normal to the interface (i.e. n ),  H is the interface 

curvature and σ is the surface tension coefficient (a physical parameter depending on the 

properties of the fluid and surface) . Using Frenet’s first formula (Olson and Kock, 1994):  
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nH
ds

td
2            (9) 

where t  is the tangent vector to the interface surface. Therefore the surface tension term in the 

weighted residual statement (7) is written as: 

   
21

2

1

2

1

2

1

22 tWtWdst
ds

dW
ds

ds

td
WdsnHWdnHW jj

s

s

j
s

s

j

s

s

jj   


  (10) 

where s is the arc length along the interface curve.  

 

From equation (10) we get: 
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The load vector appearing on the right hand side of the weighted residual statement 

representing the surface tension is hence derived as  
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The direct use of equation (13) in a computational scheme presents significant difficulties and 

can only be attempted under very restrictive simplifying conditions. This is because that at the 

edges of the interface the tangential terms in the right hand side of equation (13) should be 

written in terms of the contact angle   as: 

T= cos                                                                                                                               (14). 

 

The contact angle depends on the physical properties of the wetting liquid and surface of 

contact and ideally it should be measured experimentally. In addition in an Eulerian frame 

work (as is the case in the present study) the line integral representing the first term in the 

right hand side of equation (13) should be calculated in each element by determining the 

points of intersection of the interface curve with element boundaries corresponding to F= 0.5. 

Therefore, for example, the x component of this term is found as: 
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where (  , ) represent a local elemental coordinate system, q is an index identifying a 

particular element side and m is the total number of element sides, qt  and qt  are local 

components of xt . The arc length ( qs ) should be calculated in terms of the global 

coordinates of the points of intersections of the interface curve with the sides of each element 

as: 

      212

2

12
qqqq

q yyxxs          (16) 

 

Derivatives of the weight function originally given in terms of global (x,y) coordinates should 

also be transformed into the local elemental system using the Jacobian of coordinate 

transformation. As the geometry of the interface is expected to change continuously with the 

flow deterministic calculation of the surface tension force through equation (16) is not 

possible. Furthermore under general conditions a priori determination of the points of 

intersection of the interface boundary will also be impossible. Iterative techniques based on an 

initial assumption and repetitive solutions can be attempted. However, there is no proof that 

such a computationally expensive procedure will converge at all or if it converges it will 

provide a physically realistic result. In addition, physical factors which affect the surface 

coefficient, in general, and the contact angle along the edges of the interface cannot be easily 

measured. To avoid these problems, in the present work, a single set of experimental results is 

used to adjust the value of the surface tension term in the right hand side of the original 

weighted residual statement (equation 7) so that the model results fit the experimental data. 

After this initial calibration the fitted value of the surface tension is stored and kept constant 

for subsequent computations for which the model predictions are compared with the 

experimental data. Effects of other forces such as the buoyancy and gravity can also be 

determined during this calibration. Thus, the present bubble point test combined with the 

described model calibration can be viewed as a method for the determination of the surface 

tension for any given membrane. The outlined methodology provides a very convenient way 

of resolving the almost impossible problem of the inclusion of a realistic surface tension in 

the model simulations. Furthermore one should bear in mind that, although, a totally 

independent experimental measurement of the surface tension potentially provides a general 

predictive mathematical model the measurement should be repeated for each membrane as the 

physical conditions will be different in each case. Therefore, despite significantly high 

computational cost and effort a universally applicable predictive model can only yield 
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meaningful results for only a single type of membrane after inserting a set of uniquely 

measured parameters. In contrast in the present work using a single set of easily measurable 

experimental results (i.e. bubble point test) surface tension for any given type of porous 

membrane can be calibrated. This data can then be used to predict the performance of the 

membrane under a wide variety of conditions without resorting to time consuming 

experiments.  

 

 Solution Methodology 

The weighted residual equation (7) involves both pressure and velocity components as the 

field unknowns. Therefore to make the system of equations determinate they should be 

augmented by a similar weighted residual statement derived using the continuity equation. 

The divergence free equation representing the mass balance in an incompressible flow system 

does not include a pressure term. Therefore its numerical solution in conjunction with the 

equation of motion presents a classical stability problem. In order to resolve this difficulty the 

numerical scheme used should satisfy a stability condition known as the  Ladyzhenskaja–

Babuška–Brezzi (LBB) condition (Reddy, 1993). In the present work we have used the 

continuous penalty scheme which, in addition to fulfilling the LBB condition, results in a 

compact form of the working equations, hence minimizing computational costs. The 

continuous penalty formulation eliminates the pressure as an unknown variable through 

relating it to the incompressibility constraints as: 
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where λ is a penalty parameter represented as the product of a very large dimensionless 

number  and fluid viscosity (Nassehi, 2002):   

 *            (18) 

where μ is the fluid viscosity and *  is a large positive number determined by numerical 

experiments conducted to examine the stability of the solution. Inclusion of fluid viscosity in 

the penalty parameter is a necessary condition to make equation (17) dimensionally 

consistent. After the substitution of pressure in the components of equation of motion via the 
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penalty formulation the solution domain is discretized into a number of sub-domains of finite 

size (finite elements) as  

E

e e1
, where E is the total number of elements in the 

computational mesh. Following the normal finite element procedures within each element 

components of velocity, which are now the remaining field unknowns, are replaced by 

approximations in terms of interpolation functions and their corresponding nodal values as:  
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where l
xv (t) and l

yv (t) are nodal values of the components of the velocity vector at node 

number l of a given element Ω e  as function of time,   is the total number of nodes per 

element and N l  is the interpolation function associated with node number l. Using the 

standard Galerkin method in which the weight functions in the weighted residual statement  

are identical to the interpolation functions the elemental working equations of the present 

model are derived in a matrix form as: 
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etc. (Nassehi, 2002). As already explained in the continuous penalty method used here the 

pressure is removed from the working equations. However, in order to impose the pressure as 

the inlet boundary condition it needs to be maintained explicitly in the load vector. Therefore 

the right hand side terms in equation (21) are written, for example, as: 
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In equation (24) eu  is an elementally interpolated value of velocity and xg  represents the 

effects of surface tension and other body forces (e.g., buoyancy). The time derivatives of the 
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velocity components in equation (21) are treated using the implicit θ method. Taking tθ  to be 

a time level between tn and tn+1 the system of equations (21) is written as: 

         BXKXM           (25) 

where the subscript θ indicates that the weighted residual statement is derived using a value 

for  θ between 0 and 1, therefore: 

     
t

XX
X nn




 1 ,        11  nn XXX  , and        11  nn BBB   (26) 

After the time stepping the final working equation of the present scheme is obtained as: 

 

                  tBBXKtMXKtM
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 111

1)1(   (27) 

 

Working equation (27) is used to obtain the velocity field in the gas/fluid system.  

 

The pressure field is found using the following variational recovery method. Using the 

penalty formulation,  
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The discretization of equation (28) using the Galerkin finite element yields a scheme for the 

calculation of nodal pressures as: 

 

  
 




















e e

e
yx

IeKKI d
y

v

x

v
NdpNN        (29) 

where the penalty parameter in equation (28) is substituted using equation (18). The 

coefficient matrix on the left-hand side of equation (29) is the mass matrix given by: 

 





e

eKIIK dNNM           (30) 

This matrix is diagonalized using a simple mass lumping technique to minimize the 

computational cost of the pressure calculations. After the computation of the velocity field the 

r.h.s. of equation (29) is determined and hence the pressure can be found. The important point 

to note that the integration of r.h.s in equation (29) should be based on a reduced quadrature 

(Nassehi, 2002). 
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Assumptions and Boundary conditions 

The following assumptions were made to reduce the complexity of the problem being 

analysed:  

1. The pores of Nuclepore tack etched membranes being simulated were cylindrical, thus 

the tortuosity factor is 1. 

2. The amount of gas absorbed by the wetting liquid is negligible, hence solubility is not 

included within the model. 

3. No diffusion occurs on the walls of the pores by either the air or the wetting liquid. 

4. The air compressibility, and hence change in air density, is negligible within the pores. 

The value of the inlet pressure boundary condition is increased manually at the end of each 

simulation until the bubble point is reached.  

 

The effects of slip and no-slip boundary conditions imposed on the pore walls were 

investigated. Imposition of no slip velocity conditions at the solid wall is based on the 

assumption that the shear stress at these surfaces always remains below a critical value to 

allow a complete wetting of the wall by the fluid.  The second type of boundary condition, the 

slip condition, occurs when the shear stress exceeds the threshold causing the fluid to move 

over the surface of the wall and was introduced by directly incorporating the slip condition 

into the working equations using the following forms: 
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where xbv and ybv are the components of solid wall velocity (in the present case the pore walls 

are stationary and hence these are equal to 0) the slip coefficient β is defined as
l

0  .  β0 is 

the initial slip coefficient and l is a characteristic flow domain dimension. The limits of β are 

0 and ∞. These limits correspond to no slip conditions where (vx= vxb, vy= vyb) and complete 

wetting of the walls simultaneously. In cases where partial slip occurs, the value of slip 

coefficient must be found using experimental measurements. As discussed later in this paper 
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in this study the perfect slip case is used as a numerical experiment to prove the validity of the 

adopted solution scheme. 

 

Solution Algorithm 

 

The computer code constructed to carry out the present simulations is based on the following 

algorithm.  

 

Step 1- The domain under investigation is discretized into a mesh of finite elements. 

 

Step 2- Initial configurations representing the filled domain are considered and an array 

consisting of the appropriate values of F = 0 along the filled domain and F = 1 at the inlet 

nodes where the applied air that is introduced after the initial values for nodal pressure are 

imposed, obtained from the experimental settings.  An array containing the non-slip boundary 

conditions along the external boundaries of the investigated domain is set up and stored. 

 

Step 3- The time variable is updated by incrementing it by t. 

 

Step 4- Initial boundary conditions are used to solve the flow and distribution function 

equations to obtain the velocity distribution and then by using the Variational Recovery 

Method  to calculate the pressure along the tested domain (Ghoreishy and Nassehi, 1997). 

 

Step 5- New values of the material properties, density and viscosity, are determined from the 

computed velocity field by solving equation (5). 

 

Step 6- Steps 4 and 5 are repeated until convergence occurs before using the velocity field to 

solve the surface position function. 

 

Step 7- Using the updated values of the surface position function, the location of the 

interfacial boundary between the two phases is identified showing the penetration of the 

applied gas into the filled domain. 

 

Step 8- When the final time is reached the calculations terminate, otherwise steps 3-8 are 

repeated and the solution progresses with time. 
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Physical Data 

The physical data used in the solution of the governing equations are: wetting liquid density = 

1830 kg m-3; wetting liquid viscosity = 0.0372 Pa s; density of air = 1.2929 kg m-3; viscosity 

of air = 0.251×10-4 Pa s.  The penalty parameter 


  = 7.5×1011 , time increment Δt = 0.025 s, 

and the time stepping parameter θ =0.75. The flow domain is discretized into nine nodded bi-

quadratic finite elements and the convergence of the solution is checked via mesh refinement 

by increasing the number of elements after the first simulation. 

 

SIMULATION RESULTS AND DISCUSSIONS 

Results obtained for two different solution domains are presented in this paper. The first 

domain consists of pore diameters 1, 2, 3, 4 and 6 μm (Figure 4).  The length of the pores was 

assumed to be the same as the thickness of the membrane samples, and an extra length was 

added at the inlet to initialise the model calculations. The ability of the model to predict the 

bubble point for a membrane having a number of pores with different diameters was tested. 

The applied pressure required to detect each pore diameter was recorded. This investigation 

monitored the gas liquid displacement and also provided knowledge about both velocity and 

pressure profiles which helped understand the microhydrodynamics occurring inside the 

pores. 

 

These are a multiple pores domain where a number of pores with a range of diameters 

between 1 μm and 6 μm are connected together at the inlet (Figures 5) and another consisting 

of a single 1 μm pore. The length of the pores is 10 μm in each case. The 

microhydrodynamics occurring inside both domains were studied using the developed model. 

A comparison between the results obtained experimentally and numerically was carried to 

validate the effectiveness of the model in detecting the bubble point for different pore 

diameters. 

 

 

Starting from an inlet pressure of 1 kPa, the pressure was incremented until a displacement of 

the air-liquid interface into a pore was obtained.  This occurred at about 10 kPa with the slip 

boundary conditions applied on the pore walls. Some results generated from this boundary 

condition are presented in Figure 5. These results, obtained after 1 s, 3.75 s and 6.35 s, show 
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the gas liquid displacement inside the domain and how the gas moves in a plug flow fashion 

regardless of the pore diameter. This is indicative of the failure of the slip conditions to model 

the pressure flow (Poiseuille flow) occurring inside the pores which leads to failure in 

detecting the bubble point within the tested domain. The simulated output showing a uniform 

rise of the liquid in pores of different diameters, which is expected under perfect slip 

conditions, provides a strong indication of the model accuracy. 

 
To overcome these difficulties in the model, non-slip boundary conditions were introduced at 

the pore walls. A typical velocity profile is shown in the Figure 6, indicating the direction of 

the fluid flow from the inlet (the bottom of the diagram) towards the exit of the domain. The 

magnitudes associated with the profiles in the pores in Figure 6 indicate that the velocity of 

the fluid increases with the pore diameter, as would be expected due to the same pressure 

difference existing across the length of all the pores. The diagram also shows the development 

of parabolic profile in each pore, even though the velocity distribution at the entrance to the 

pores is asymmetric due to the presence of flow in neighbouring pores. 

 

The velocity profiles infer that the amount of fluid passing thorough a single pore is related to 

its diameter, as would be expected. The non-slip condition leads to a zero velocity of the 

wetting fluid at the pore boundaries (the resolution of the diagram in Figure 6 prevents this 

from being shown) which suggests the presence of a thin film sticking at the pore walls 

(which is apparent  in Figure 7).  This is consistent with what has been observed in many 

studies, e.g., the deliquoring of filter cakes and other porous media, where liquid is retained 

by the pore structure and is only subsequently removed by evaporative mechanisms. The 

same situation prevails experimentally in porometry, although with membranes the duration 

of the evaporation period is short due to their thinness. Similar findings were also reported by 

Polynkin et al (2004). 

 

Figure 7 shows the penetration of the gas into the filled pores after different time periods with 

a pressure of 10 kPa applied at the inlet.  The surface tracking function (F, equation (5)) is 

used to locate the surface front; the approximations described following equation (5) 

(assuming 0F  when the generated value of 3.00  F , 5.0F  when 75.03.0  F , 

and 1F  when 75.0F ) cause the low resolution, and hence the lack of smoothness, of the 

profile of the gas-liquid interface shown when 0t . 
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Figure 7 shows the development of the air penetration into the pores at an inlet pressure of 10 

kPa after 1, 3.75 and 6.25 seconds. Air breakthrough at the outlet can be observed and 

complete displacement of the wetting liquid is obtained from the pore except in the region 

close to the pore walls where the thin film is retained. Hence, the bubble point for the 

membrane has been passed after 6.25 seconds at an applied pressure of 10 kPa. Whilst the 

results show the penetration of the applied gas into the pore at different pore sizes, it is clear 

that with the 6 μm pore diameter air breakthrough is reached before that of 4 μm diameter, 

and even before the gas has penetrated into the 1 μm pore. This suggests that the pressure 

applied at the inlet was not sufficient to detect the bubble point for a 1 μm pore when it exists 

within the pore size distribution shown in Figure 7.  

 

Numerical simulations were also carried out for a single sized pore (it was assumed that this 

would be representative of a truly monosized pore size distribution). For a single 1 μm pore, 

an inlet pressure was increased incrementally up to 10 kPa, the no-slip boundary conditions 

were specified on the walls of the pore, and the results showed no displacement of the wetting 

liquid. At a pressure of 30 kPa, air breakthrough occurred and displacement of the wetting 

liquid was obtained throughout the pore; breakthrough occurred after 3.125 seconds.  Figure 8 

shows the progress of the gas penetration as the air-liquid interface moves through the pore 

after 0.375, 1.5, 2.5 and 3.125 seconds. The imposition of the non-slip boundary conditions 

on the wall again resulted in the presence of a film of the wetting liquid along the pore walls.  

Further, gas penetration rate into the pore accelerated during the displacement process; for 

example, in the case of the single pore shown on Figure 8 the air had penetrated into about 

6% of the pore length in 0.375 s, but after 1.5 s the penetration had reached about 55%. 

 

The velocity profile for displacement from the single 1 µm pore is shown in Figure 9, 

indicating the establishment of a parabolic profile a short distance into the pore. This is  in 

agreement with predictions by previous researchers (Reddy, 1993; Zienkiewicz and Taylor, 

2000). After entrance effects, the pressure profile in Figure 9 shows a constant pressure 

gradient along the pore length. 

 

The aim of the model development was to calculate bubble point pressures for membranes  

with different sizes of pores. Porometers were used to measure the bubble point pressure and 

pore size distributions.  These instruments measure the pressure at which air flow breaks 

through the porous material and thereafter the relationship between air flow rate and air 
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pressure as more liquid is expelled from the medium. This information is then used to 

calculate the pore sizes of the membrane. Since the pressure at which an air flow through the 

porous body is initiated is used to calculate the bubble point, for consistency with those 

experimental apparatuses the same is used in the numerical calculations here. Strictly the 

bubble point pressure is the minimum pressure needed to initiate displacement of the wetting 

fluid, that is, the pressure at which air first enters a pore (Bear, 1975). An implicit assumption 

is therefore made in this work (and in the analysis of data from porometers) that the 

breakthrough pressure is equal to the bubble point pressure; this is not strictly true but one is a 

good approximation of the other when the porous material is very thin, which is the case with 

the membranes used in this study. 

 

The developed model does not include all factors that affect either bubble point or 

breakthrough pressures; for example, surface wettability, contact angle and surface tension are 

important factors to consider when working with membrane materials, as is any form of 

heterogeneity in the pore structure. In the case of the membranes used in the experiments 

here, the main heterogeneity arises from the existence of pore coincidence (usually as 

doublets or triplets) and from curvatures at the pore ends. The pores are not therefore perfect 

cylinders as assumed in the model. These several factors will cause deviations between the 

calculated and experimental breakthrough pressures. 

 

To compare the results obtained from the porometry experiments with those generated from 

the model, a factor (herein referred to as a calibration factor) was introduced into the 

equations (31) and (32).  The calibration factor was found to play a significant role on the 

results obtained. Several values of this factor were examined numerically, each yielding a 

pressure-diameter curve of similar form but displaced on the pressure axis as shown on Figure 

10. For comparison, the data obtained from the porometer experiments is also presented on 

Figure 10.  From this it is seen that a calibration factor value of 75 gives good agreement 

between the numerical computations and the experimental data. The experimental and 

simulated breakthrough pressures for different pore diameters are summarised on Table 2. It 

is recognised that the “best” calibration factor value is likely to be dependent on the 

hydrophobicity/ hydrophilicity of the membrane and the tortuousity of the pores, and that at 

the moment it is not known how specific the factor is to the particular type of membranes 

used in this study. 
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CONCLUSIONS 

The bubble point was measured for a range of tack etched membranes with different nominal 

pore size ratings. These  data gave baseline information for the development of a 

mathematical model to simulate membrane testing in a porometer. The  model was developed 

using the finite element method with a penalty scheme to study the microhydrodynamics 

inside a single pore. The adopted penalty scheme provides flexibility in the imposition of inlet 

pressure boundary conditions reflecting the way in which porometers operate, as well as the 

automatic satisfaction of the stability condition required in the modelling of divergence free 

(incompressible flow). The model was used to study the microhydrodynamics occurring 

inside single pores and a distribution of pore sizes. The volume of fluid (VOF) method was 

incorporated into the model to study the movement of the air-liquid interfacial boundary. This 

enabled the bubble point (or breakthrough pressure) for the pores to be calculated 

numerically, and the results were compared with the experimental data. The general forms of 

the experimental and computed relationships between bubble point pressure and pore 

diameter agreed well, and a calibration factor enabled agreement of the breakthrough 

pressures to within 10%. 

 

The penetration of the applied air at the inlet of the pores was simulated with time for 

multiple pores, where a number of pores with a wide range of diameters were connected at the 

inlet. The microhydrodynamics  were presented showing how the velocity profile inside each 

pore is developed. The interfacial boundary between the gas and the liquid has also been 

studied and it was found that liquid in pores with the larger diameters is displaced sooner than 

that in smaller diameter pores. This penetration of air into differing sized pores at different 

pressures led to simultaneous flow in the different pores, with air breakthrough at the outlet 

face occurring for the larger pores earlier than for the smaller ones. 

 

The results obtained from the experimental porometer settings were compared with those 

generated from the mathematical model. The calibration factor was used to minimize the error 

between the results obtained experimentally and those generated by the model. Use of 

different values for the calibration factor led to the same shape of curve describing the 

relationship between the breakthrough pressure and the pore diameter, but the factor had the 

effect of displacing the curve up/down on the pressure axis. A value of 75 was found to give a 

good fit of the model to the experimental data, and the results demonstrated the capability of 

the model to simulate the bubble point for different pore diameters. 
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Manufacturers’ 
nominal rating 

(μm) 

Bubble point pore 
diameter 

(μm) 

Mean flow pore 
diameter 

(μm) 

Minimum flow 
pore diameter 

(μm) 

0.2 0.308 0.242 0.15 

0.8 1.15 1.146 0.666 

1 1.746 0.97 0.505 

5 7.148 5.817 1.048 

12 18.496 15.301 2.834 

 

Table 1.  Samples of  pore diameters for different track etched membranes used in the 

experiments. 
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Pore diameter (μm) 

1 3 5 7 12 

Experimental breakthrough pressure (kPa) 64.13 21.02 13.0 9.1 5.34 

Simulated breakthrough pressure (kPa) 65.0 21.0 12.0 10.0 5.0 

Deviation of simulated values from 
experimental values (%) 

1.4 0.1 7.7 9.9 6.4 

 

Table 2. Breakthrough pressures related to pore diameters using a calibration factor of 75. 

 
Show where in equation is calibration factor ? 
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Figure 1.   Scanning electron microscope (SEM) picture of a Nuclepore track etched 

membrane. 

 
 



 26

 

Inlet Air Gauge Pressure (kPa)
0 20 40 60 80 100 120 140 160 180 200

A
ir 

F
lo

w
 R

at
e 

(L
/s

)

0

2000

4000

6000

8000

Wet Curve
Dry Curve
1/2 Dry Curve

 
 

Figure 2.   Wet, dry and half dry flow rate vs. applied pressure curves for a nominal 1 µm 

membrane. 
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Figure 3.   Pore size distribution for the nominal 1μm sample. 
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Figure 4.   Dimensions for multi-pore domain. 
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Figure 5.   Pressure  scale profiles showing the air-liquid interfacial boundaries at different 
time steps for the multi-pore domain with slip boundary conditions with an inlet pressure of 

10 kPa (dimension of the domains are shown in Figure 4)  
 

t = 1 s 
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Figure 6.   Simulated flow field in the multi-pore domain with a non-slip condition at steady 

state, 0.125 s after applying a pressure of 10 kPa at the inlet (dimension of the domains are 

shown in Figure 4). 

 
Unit of scale?
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Figure 7.   Pressure profiles showing the air-liquid interfacial boundaries at different time 
steps for the multi-pore domain with non-slip boundary conditions with an inlet pressure of 10 

kPa (dimension of the domains are shown in Figure 4).  
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Figure 8.  The air-liquid interface at different times for a 1 µm diameter pore with an inlet 

pressure of 30 kPa and a non-slip boundary condition. 

 

t = 0.375 s t = 1.5 s t = 2.5 s t = 3.125 s 
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Figure 9.   Simulated flow field and pressure distribution within a single 1 μm pore after 0.075 

seconds with an inlet pressure of 11.5 kPa. 
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Figure 10.  Comparison of computed breakthrough pressures with experimental values, 

showing the effect of the calibration factors, for various pore diameters. 


