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Abstract: Increasing applications for gelcast ceramic foams is making the effective, 

accurate and cost effective measurement of pore diameter and distribution of significant 

value to a wide range of research fields. Current methods either do not directly measure 

pore diameter or they require high equipment and time costs. Measuring pore diameter 

directly from sample cross sections is both rapid and cost effective but, due to the random 

nature of the pore location during sectioning of the sample, it under predicts the pore 

diameter. The proposed method identified that the mean measured pore diameter was 

79% (2 s.f.) of the actual pore diameter. Numerical methods for correcting the pore 

distribution as well as the average pore diameter are presented.  
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Introduction 

Porous materials offer advantages in many engineering applications including filtration, 

composite materials, catalysis, energy conversion and storage. Recent developments in 

porous ceramic manufacture[1,2] have resulted in the increasing application of gelcast 

ceramic foams[3,4,5,6,7] due to their improved strength and manufacturing characteristics 

when compared to ceramic foams made from other routes[8]. This increased strength is a 

result of the solid struts[1], shown in the image of a gelcast ceramic foam in Figure 1. The 

successful application of gelcast ceramic foams requires control of the porous structure, 

including the pore diameter. For example, the performance of gelcast ceramic foams in 

removing solid particulates from gas flow is highly dependent on the pore diameter of the 

foam[4]. The ability to rapidly, effectively and accurately measure the pore size of gelcast 

ceramic foams is, therefore, of interest to a wide range of engineering fields. This paper 

presents a method for accurately measuring the pore diameter from two-dimensional 

(2-D) cross sections of gelcast ceramic foams. 

 

Figure 1 SEM image of gelcast ceramic foam 
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Pore diameter can be measured in a number of ways. Calibrated instruments can infer the 

pore diameter by applying a variable gas pressure to a liquid infiltrated porous sample 

(for example TRI/Princeton AutoporosimeterTM). Direct spatial measurements can be 

made using three-dimensional (3-D) imaging techniques such as x-ray computer 

tomography (CT)[9] and nuclear magnetic resonance imaging[10,11] which require 

significant investment in time, equipment and resource. Techniques that can be 

performed in a general laboratory environment without the need for specialist equipment 

would support many fields of research using porous structures such as gelcast ceramic 

foams. Previous work with these materials has used optical measurement of sample cross 

sections to allow rapid and reliable comparison of different foam samples[1,4,12] using 

readily available and cost effective laboratory equipment. Due to the characteristics of 

sectioning a porous sample with predominantly spherical pores, statistically very few 

pores will be cut precisely at their diameter, resulting in a significant underestimate of the 

actual pore diameter of the foam sample. To use optical microscopy of gelcast foam cross 

sections to determine accurately the pore characteristics of the samples, an understanding 

of how the visible pore diameter is related to the actual pore diameter is required.  

 

Although the work presented in this paper was independently derived, similar methods 

have been used in the metallography field for determining inclusion size 

characteristics[13]. The discretisation and geometric analysis developed by Saltykov 

(described in [14]) of sections through spherical inclusions allows quantitive 

measurements of 3-D microstructures in the same general form to the equations presented 

in this paper. The Saltykov method has been applied to low porosity foams[15] where the 
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pores are isolated throughout the solid media to allow reconstruction of the foam 3-D 

microstructure. This communication presents a similar, independently derived method, 

for quantitively measuring pore size characteristics in gelcast ceramic foams, providing a 

tool for those working with gelcast ceramic foams to accurately quantify the foam 

characteristics.  

 

Methodology 

To understand the effect of the cutting plane, the gelcast geometry is simplified and 

considered as a single spherical pore, represented graphically in two dimensions in Figure 

2. The cutting plane in this image is considered to be in the y-direction (i.e. constant x).  

 

Figure 2 Graphical representation of the model of the random cutting plane for understanding the 

effect of the cutting plane position on the measurement of pore diameter 
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The probability of the cutting plane lying between the coordinates xi and xi+1 is  
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where p is the actual pore diameter and x, xi and xi+1 have the same meanings as in Figure 

2. The factor of 2 comes from the symmetry of the pore around x=0. Since the 

relationship between x and y is known from the geometry of the pore, the probability of 

the visible radius being between yi+1 and yi is the same as the probability of the cutting 

plane lying between xi and xi+1. This gives 
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The average visible pore size can be approximated by finding the probability for constant 

size intervals of y between 0 and p/2. As the interval size is reduced, the validity of this 

approximation increases. The ratio of the average measured pore size to the actual pore 

size is, therefore 
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where n is the number of discreet intervals between y=0 and 2y=p. The effect of interval 

size on the average measured pore diameter relative to the actual pore diameter is shown 

in Table 1. This demonstrates that as the interval size reduces, the mean visible pore 

diameter tends towards 79% (2 s.f.) of the actual pore diameter. 

 

The number of measurements of visible pore diameter between yi+1 and yi will be made 

from pores with diameters larger than the visible pore diameter such that the number of 

measurements will be 
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where ni is the number of pores with a diameter pi that would give n measurements of 

visible pore diameter between yi+1 and yi. A series of simultaneous equations can be 

described that can be solved to find the original pore distribution. An example follows for 

the case of a system discretised into 10 sample ranges. The data is generated from a 

conceptual pore distribution where the visible pore distribution has been calculated from 

Equation (3) with discretisation interval of p/250. The simultaneous equations solved in 

matrix form, with constants calculated using Equation (4), are 
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Solving the matrix for the actual pore diameter gave the corrected pore distribution. Since 

this is a conceptual case, the actual pore distribution is known. Figure 3 shows the 

uncorrected pore distribution, the corrected pore distribution and the actual pore 

distribution for the above case. It shows that the correction is valid and it is noted that 

reducing interval size  increased the validity of the correction.  
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Figure 3 Pore distribution correction with 10 discretised ranges 

 

Validation 

To validate the proposed method a micro-CT scan of a sample gelcast ceramic foam was 

reconstructed, a part of which is shown in Figure 4. Pore diameter measurements of the 

sample were made from both a series of random 2-D cross sections and from the 

reconstructed 3-D image. The correction was applied to the sample to validate its use. 
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Figure 4 Reconstructed micro-CT scan of a sample of gelcast ceramic foam 

 

The average visible diameter from the 2-D sections, the corrected average diameter 

(using the 0.79 factor) and the actual average diameter (from the 3-D measurements) 

were 165, 208 and 211 μm respectively for a sample size of 125 measurements. This 

shows the 0.79 factor is suitable for correcting the average pore diameter. Figure 5 shows 

the measured pore diameters from the 2-D cross sections (the visible diameters), the 

corrected distribution and the measured pore diameters from the 3-D reconstruction (the 

actual pore diameters). When applying the correction, the distribution tends to shift to the 

larger pore sizes as previously discussed. This shows that the correction of the 

distribution measured from 2-D cross sections is very effective. The magnitude in the plot 

is different due to the different number of samples taken and is not a result of the 

correction methodology. 
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Figure 5 Curve fit data to allow easy comparison of the pore distribution for each of the 

measurement methods 

 

Sample Size Considerations 

The sample size has a significant effect on the potential errors. Approximating the 

population as a log-normal distribution and using a t-distribution analysis of the 

transformed idealised data (used earlier), an estimation of the confidence intervals of the 

0.79 correction factor were found. The effect of sample size on the confidence intervals is 

shown in Figure 6. It is clear that sample sizes >100 are reasonable, although this would 

depend on the field and application of the foam under investigation. Confidence intervals 

can be determined in this way for specific samples and measurements. 
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Figure 6 Effect of number of measured diameters on the confidence intervals for an example 

measurement of average pore diameter 

 

The discretised pore distribution must be smooth the get a reasonable converted 

distribution. Intervals with very low number counts can lead to negative numbers once 

converted using Equation (4). This, however can be overcome by reducing the number of 

intervals (i.e. increasing the interval size) to smooth out the measured distribution.  

Summary and Conclusions 

Rapid, cost effective and accurate methodology is needed for measurement of the pore 

size and distribution of gelcast ceramic foams. The direct measurement of pore diameter 

from 2-D cross sections of foam structures yields an underestimate of the actual pore 

diameter. This research has developed and applied methods for using the 2-D cross 

sections to accurately measure pore diameter and distribution showing: 
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1. The average pore diameter can be found by dividing the visible average pore 

diameter on the 2-D cross section by 0.79 (2 s.f.). 

2. Numerical methods have been developed and described that allow the pore 

distribution to be corrected for the underestimate of pore size when measuring 

visible pore size from 2-D cross sections. 

3. The methodology has been demonstrated by means of an example distribution and 

has been applied to a real world case as validation of the method. This validation 

showed the described method to be very effective for correcting the pore diameter 

and distribution. 

4. An example case has been used to indicate the confidence intervals and effects of 

sample size on determining the average pore diameter. A typical sample size 

would be >100 measurements, although would vary depending on the application. 
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Nomenclature: 

ni number of pores of diameter pi that would generate the visible pore 

distribution 

ny1<y<y2  number of pores with visible diameter in the range y1<y<y2 

p  pore diameter 

P(…)  probability of (…) 

x  spatial position 

y  spatial position 
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Figure Captions: 

Figure 1 SEM image of gelcast ceramic foam 

Figure 2 Graphical representation of the model of the random cutting plane for 

understanding the effect of the cutting plane position on the measurement of pore 

diameter 

Figure 3 Pore distribution correction with 10 discretised ranges 

Figure 4 Reconstructed micro-CT scan of a sample of gelcast ceramic foam 

Figure 5 Curve fit data to allow easy comparison of the pore distribution for each of the 

measurement methods 

Figure 6 Effect of number of measured diameters on the confidence intervals for an 

example measurement of average pore diameter 
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Tables: 

Table 1 Effect of interval size on the calculation of the 

correction factor for the measured pore size. 

Interval Size Mean Measured Diameter/Actual Diameter 

p/10 0.7593 

p/20 0.7761 

p/40 0.7821 

p/100 0.7846 

p/1000 0.7854 

 

 


