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ABSTRACT 
 
The mechanical properties of PVC sheets can be modified substantially by both uniaxial and 
biaxial stretching of the material above its glass transition temperature.  Previous experimental 
studies have established a clear pattern in the relationship between tensile properties of oriented 
PVC products and imposed strains.  Several mathematical models have been scrutinised to assess 
whether the established pattern of behaviour can be modelled and predicted.  Of these, "the 
filament theory", proposed by Turner, emerged as the best candidate.  The filament theory has 
been refined and developed further into "the composite model".  In its present form it gives a 
good correlation between predicted and measured yield stress values of oriented rigid PVC 
sheets and is also capable of predicting the "established pattern" of property dependence upon 
imposed strain. 
 
 
1. INTRODUCTION 
 
The mechanical properties of rigid PVC can be improved substantially by stretching at 
temperatures above the glass transition temperature of the polymer, gT , which is typically in the 
range 75°C–80°C.  As PVC has its peak elongation at 90°C [1–4], the mechanical properties of 
the oriented product can be optimised by drawing at this temperature.  After stretching, the 
material must be held under restraint to ensure that the oriented structure is "frozen-in" on 
cooling below gT  to ambient temperature.  Removal of the restraint at the draw temperature will 
enable the stretched material to recover its original dimensions.  Experimental data gathered 
from previous studies at IPTME [5–8] has shown the tensile strength properties of oriented PVC 
sheets are related to the strains imposed at 90°C in a very systematic way.  This behaviour is 
clearly ideally suited to the application of mathematical modelling.  In pursuit of this goal 
several mathematical models from the literature have been evaluated.  Of these, one particular 
treatment, "the filament theory" proposed by Turner [9], emerged as having the best potential to 
achieve the goal.  This theory has been refined and developed into the composite model by 
Miroshnychenko et al. [10, 11].  To reflect the application of "the filament theory" to oriented 
PVC and its ongoing refinement this paper is divided into three main sections:  First, a selection 
of data is presented that illustrates the systematic pattern of tensile strength versus imposed strain 
for oriented rigid PVC.  Second, the filament theory is presented in terms of its concept, its key 
assumptions and its use to predict the properties of oriented PVC.  The third section will examine 
the scope for further refinements to the filament theory and composite model and their 
validation. 
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2. THE DEPENDENCE OF MECHANICAL STRENGTH OF ORIENTED RIGID PVC 

UPON IMPOSED STRAINS 
 
From the studies at IPTME [5–8] on the effects of orientation on the properties of rigid PVC it 
has been found that both yield strength and tensile strength follow the same pattern when 
properties are plotted against planar strain. (This is essentially the product of the draw ratios 
applied to the material, for example, PVC sheets stretched uniaxially to draw ratios of 3.0 x 1.0 
and equally biaxially to 1.73 x 1.73 have the same planar strain of 3.0.)  Figures 1 and 2 illustrate 
the systematic pattern for both tensile properties.  In both figures a selection of draw ratios have 
been included adjacent to data points: for unequal draw ratios the direction of property 
measurement is indicated by the underlined draw ratio.  It can be seen that at a given planar 
strain tensile strength can be ranked according to the stretching mode:  uniaxial (machine 
direction, MD) > unequal biaxial (major draw direction) > equal biaxial > unequal biaxial (minor 
draw direction) > uniaxial (transverse direction, TD).  Note: Brady [12] advocated the use of the 
planar strain parameter to correlate data of oriented products and Figure 1 is consistent with his 
findings on the yield stress of uniaxially and biaxially oriented PVC. 

 
Figure 1: Dependence of yield strength of oriented PVC-U on strains imposed at 90°C 
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Figure 2: Dependence of strength at break of oriented PVC-U on strains imposed at 90°C 
 
It must be pointed out that the uniaxially oriented sheets were produced under a constant width 
stretching mode, i.e., in effect a low strain was applied in the TD so that the draw ratio in this 
direction was maintained at 1.0. 
 
The patterns of behaviour can be understood in terms of the physical structure of PVC that is 
well known.   This effectively consists of a three-dimensional amorphous network of long chains 
linked together by very small crystallites, of around 10nm in size, that typically account for 10% 
of the structure.  When the material is stretched above gT  the long chains are progressively 
straightened and become loosely aligned in the direction of the applied draw.  At the same time 
the crystallites are drawn into the plane of the sheet.  Naturally, the greatest chain alignment, and 
consequently the greatest enhancement in tensile strength, will occur in the MD of a material that 
has been highly oriented uniaxially.  There is, of course a down side, little chain alignment is 
produced in the TD and this results in very poor tensile strength relative to the MD.  In PVC 
products this differential in mechanical performance may be advantageous or a serious problem. 
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Replication of the patterns of Figures 1 and 2 became the prime objective of work to develop a 
mathematical model.  Allied to this the model needs to recognise the factors that modify the 
yield and stress-strain behaviour of rigid PVC. A tensile sample of unoriented rigid PVC at 
ambient temperature will yield by the formation of a neck.  This is reflected by a sharp drop in 
the measured load-extension curve: the yield point.  The necked region then grows until the 
whole gauge length of the sample has undergone necking.  This is then followed by uniform 
deformation of the gauge length until failure occurs.  However, as the test temperature 
approaches gT , yield behaviour and subsequent deformation is modified significantly (Figure 3). 
 

Figure 3: Stress - strain curves for PVC-U 
 
A number of other important points can be taken from Figure 3.  It shows how PVC deforms in a 
rubberlike manner at temperatures above gT .  Also, it neatly illustrates how elongation at break 
(strain) passes through a maximum at around 90°C.  The reduction in elongation at 105°C is 
related to the network structure of PVC.  At 100°C the least prefect crystallites in the network 
are melted and so the ability of the network to sustain loading is diminished and elongation is 
reduced.  This effect continues to reduce the elongation at break of PVC up to temperatures ~ 
140°C to 150°C, after which elongation at break rises again as sufficient destruction of the PVC 
network has occurred to allow viscous flow [4]. 
 
In the orientation of PVC to enhance properties, whether by uniaxial or biaxial stretching just 
above gT , the drawing process is terminated before the elongation at break is reached.  This has 
the effect of introducing a residual state of stress into the polymer network.  In its simplest form 
it is assumed that two mechanisms operate to determine behaviour: elastic stretching of the long 
chains and a viscoelastic resistance to the relative motion of the chains.  When the material is 
stretched above gT  the elastic chain stresses dominate (as the viscoelastic stresses have relaxed), 
such that if the applied force is removed, the material will recover to its original dimensions.  
However, if the material is cooled under restraint and the applied force is then removed below 

gT , the viscoelastic resistance dominates and acts to oppose recovery so that the sheet remains in 
the stretched state.  This means that to produce yielding of the oriented product (at ambient 
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temperature) it is now necessary to apply a stress that exceeds the yield stress of the unoriented 
material (Figure 4).  If sufficiently high strain is imposed on rigid PVC by orientation above gT , 
no necking is observed on subsequent testing of tensile samples at ambient temperature, and the 
yield point is seen as little more than an inflection point in the load extension curve. 
 
 

 
Figure 4: Uniaxial stress strain curves at ambient for rigid PVC sheets biaxially oriented 

at 90°C 
 
 
3. FILAMENT THEORY 
 
The content of this section has been drawn from the published work of Miroshnychenko et al. 
[10, 11]. Much of the previous work on the mathematical modelling of the uniaxial and/or 
biaxial deformation of polymers concerns itself with modelling of the deformation process at a 
temperature above gT .  While this remains an essential element for any model to predict stress-
strain behaviour of a polymer, the work reported here has attempted to take the modelling a stage 
further.  That is, to develop a model whereby the mechanical behaviour of rigid PVC at room 
temperature can be predicted after the polymer has been stretched to a prescribed planar 
deformation above gT . 
 
To achieve the objective the basis of the model has to be capable of determining the residual 
stress and ideally go on to replicate the various yielding processes undergone by the polymer.  
For the determination of the residual stress several models reported in the literature were 
considered [10].  From these, two particular treatments, by Turner [9] and by Arruda and Boyce 
[13, 14], were selected for more rigorous evaluation using experimental data on the deformation 
of rubberlike materials of Treloar [15] and of Kawabata et al. [16].  The composite model, based 
on the filament theory of Turner, gave the best correlation, and the filament theory has been used 
as the foundation of the model to predict the yield stress of oriented PVC. 
 
3.1.  Single filament formulation 
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This was proposed by Turner [9] to describe the orientation in polymers. He argued that a single 
filament could be used to represent the average spatial deformation undergone by the chains 
within a polymer network.  Initially, before stretching, the filament is assumed to be the longest 
diagonal within a cube (Figure 5(a)) and after drawing filament orientation (Figure 5(b)) can be 
represented by a unit vector 
 

332211f coscoscos nnnn ααα ++= , (1)  
 
that characterises the direction of the filament with respect to 1n , 2n  and 3n , which define the 
stretched frame. 
 

 
 
Figure 5: A single filament in (a) unstretched and (b) drawn configurations 
 
In this configuration, the angle, iα , between the filament and a direction of stretch is given by 
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and the filament extension, fe , is defined as follows 
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The tension in the filament, ft , gives rise to the stresses and based upon experimental data 
Turner proposed an empirical relation for the filament tension 
 



 7

p
maxf

ff
f 1

t
/e-e
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in terms of filament elasticity parameter (or filament modulus), fE , and limit of filament 
extensibility, maxe .  It is clear that the first term in (4) accurately expresses what happens in 
practice: at low stretches the filament tension is directly proportional to the filament extension 
and then the filament tension rises steeply as the filament extension approaches its maximum.  
The second term in (4), pt , has been included here ad hoc.  It is the pre-existing tension acting 
upon the filament that may arise due to factors other than the applied deformation (e.g., 
processing), which will contribute towards the prediction of the yield stress in oriented PVC. 
 
Principal tensile forces itf  can be determined directly from their bulk resolution in the deformed 
configuration (Figure 5 (b)) 
 

ff33f22f11f nnnn tttt =++ , (5) 
 
substituting the expression (4) for the filament tension. Thus, true tresses for the filament theory 
can be expressed in the form  
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3.2.  Application of the filament theory to predict yield stress in oriented PVC 
 
To predict the yield stress of an oriented material the anisotropy resulting from the stretching 
above gT  has to be taken into account (equal biaxial drawing is a specific case of this treatment).  
During stretching above gT  tension is applied to a filament, which is frozen in the material as a 
residual stress on cooling.  It is assumed that stresses exceeding the residual stress are now 
required to produce yielding in the oriented material. 
 
If the initial yield stress of an unoriented material is equal to Y, then after orientation the 
principal yield stresses are 
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where σ′  stand for the “frozen in” stresses. It is the deviatoric part of overall stress σ  and it can 
be written as 
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At this stage, the constitutive equation can be taken in the form 
 

fσIσ +−= p , (9) 
 
in which p is a hydrostatic pressure, I  is the identity tensor, and fσ  is the filament stress given 
by (6). 
 
Hence, these deviatoric stresses (8) can be calculated using (9) and the filament theory (1)–(6) 
and then used to produce values for 1Y , 2Y  and 3Y  through (7). Furthermore, the principal yield 
stresses (7) can be combined to give the yield stress in a particular direction θ  as 
 

θθθ
2

2
2

1 sincos YYY += . (10) 
 
Yield values in more familiar directions can be determined as ο90=θ  and ο0=θ correspond to 
the MD and the TD respectively.  Thus, if required, the yield strength can be calculated in any 
direction relative to the main draw directions. 
 
Experimental data on yield stress of oriented PVC 
 
A series of PVC-U sheets (120mm by 120mm squares of 1mm thickness) were uniaxially 
stretched using at 90°C and 50mm/min to different draw ratios.  After drawing the sheet was 
cooled to ambient under restraint.  Tensile testpieces were then cut from the various sheets and 
yield properties were measured.  The filament theory (1)–(6) depends upon knowledge of a 
number of physical properties of the material needed to apply the formula (10).  In this case, 
these have been derived [10] through a weighted statistical analysis of the experimental data on 
yield stress in MD direction shown in Table 1.  This resulted in values of maxe =1.36, 

fE =2.96MPa and pt =6.97MPa for the limit of filament extensibility, the filament modulus and 
the pre-tension respectively.  Table 1 also provides a value for the initial yield stress, i.e., 
Y =73.7MPa. 
 
 
Table 1: Yield data for uniaxially oriented PVC-U 
 
 Pre-stretch 

in  MD 
Number of tests Yield stress, 

(MPa) 
Extension 

at yield, (mm) 
 

Unstretched 1.0 10   73.7 2.17 
 

MD 1.5  9   72.1 1.85 
 2.1  8   84.3 1.91 
 2.5  6   91.9 2.16 
 3.3  8 108.9 1.87 

 
TD 1.5  11  63.4 1.85 
 2.2  7  68.4 1.87 
 2.4  4  68.3 1.84 
 3.0  6  63.7 1.63 
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The predicted yield stress values are plotted as continuous lines in Figure 6.  The line for 
properties in the MD of uniaxially oriented sheet lies close to the measured yield properties 
(solid squares): an expected result as the data was used to generate the material parameters for 
the filament theory.  There is reasonably good correlation between the predicted and measured 
yield values (unfilled squares) in the TD for uniaxially oriented sheet. It appears from Figure 6 
that measured yield values at a planar strain of 1.5 are inconsistent with the other measured data. 
This may have been due experimental error (unlikely as the results of 9 tests contributed to the 
calculated average) or more likely the original sheet had relatively poor properties prior to 
stretching (a factor that has been experienced on a number of occasions during the work on 
orientation of PVC at IPTME).  Discarding the uniaxial data point in the MD for the pre-stretch 
of 1.5 may well have improved the quality of the predicted yield properties.  However, even with 
its inclusion the really positive result that can be seen from Figure 6 is that the filament theory 
reproduces the systematic pattern of yield stress as a function of planar strain.  The core line of 
the plot represents the predicted yield stress for equally biaxially oriented PVC and its branches 
correspond to the predicted yield stress of unequally biaxially oriented sheets in both the major 
and minor draw directions. Note: as well as determining properties in MD and TD (Table 1), 
yield stress was also measured in the directions of ο60=θ  and ο30=θ  over a similar range of 
uniaxial draw ratios [10].  Yield stress values predicted by equation (10) correlated well with this 
experimental data. 
 

 
Figure 6: Prediction of yield stress for oriented rigid PVC:   and  represent measured 

yield values of uniaxially oriented sheets in the MD and TD respectively. 
 
 
4. COMPOSITE MODEL AND FURTHER DEVELOPMENTS  
 
In a recent paper, Miroshnychenko et al. [11] have developed the filament theory further by 
coupling it to the approach of Poisson's function [17] to form thus the "composite" model. In the 
development of the composite model a different expression for filament tension (4) has been 
proposed [11] and in its final refined form it can be written 
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maxf
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where fλ  is the filament stretch (with maxλ  being its maximum value) given by 
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This expression (11) conveys the asymptotic behaviour of polymer material in the large-tension 
limit more neatly than (4). 
 
The concept of the composite model is to have a linear element, pσ , that accurately describes the 
deformation of a polymer network at low strains (the approach of Poisson's function) coupled 
with a non-linear element, fσ , that begins to exert an influence at moderate stretches and then 
dominates at large deformations (the filament theory). Thus, the overall stress, σ , can be 
expressed in the additive form 
 

fp σσIσ ++−= p . (13) 
 
The composite model [11] allows us to predict the stress–strain relations for elastomeric 
materials more accurately than either the filament theory (9) alone or the eight-chain model [13]. 
 
4.1. Approach of Poisson's function 
 
Turner and Brennan [17] considered the stresses in the area of low strain: starting from the well-
known stress–strain relationships of linear elasticity 
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where iσ  and iλ  are the principal true stresses and principal stretches respectively, and E  is 
Young's modulus. Poisson's ratio is one of the core concepts of linear elasticity, and for 
incompressible materials 1321 =λλλ , it is constant, i.e., 2/1=ν . In order to extend the 
applicability of (14) into finite elasticity, Turner and Brennan invoked the concept of a Poisson's 
function, which corresponds to a variable Poisson's ratio. This concept is not new and its relation 
to Poisson's ratio has been reported [18]. 
 
For thin polymer sheets, one stress (say, 3σ ) can be considered as negligible and taken to be 
zero.  After some manipulation of the equations the stress-strain relations can be written in terms 
of the difference of two stresses 
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in which the Poisson's function, ν , is given by 
 

321

3

1
1

λλλ
λν
−−+

−
= . (16) 

 
However, due to setting 3σ  to zero, the Poisson's function (16) is asymmetrical (i.e., it is 
disadvantaged in the 3λ  stretch direction).  Thus, Miroshnychenko et al. [11] proposed that ν  
could be approximated by the interpolation formula 
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321 −++
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λλλ
ν , (17) 

 
which is symmetrical in all three principal stretches and follows closely the limiting behaviour of 
(16). 
 
4.2. Constitutive equations for the composite model 
 
The stresses arising from the approach of Poisson's function (15) and from the filament theory 
(6) constitute the composite model (13) and can be stated in terms of the difference of two 
stresses 
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The model now depends upon knowledge of three material parameters: the elastic modulus, E , 
the filament modulus, fE , and the maximum filament stretch, maxλ , whilst ν  is not a material 
constant but a variable (17) depending upon the three principal stretches.  The model exhibits 
non-linear elastic behaviour at high strains: an intrinsic property of elastomeric material.  The 
composite model has been able to accurately reproduce the experimental data of Treloar [15] and 
Kawabata et al. [16].  However, to date it has yet to be tested with data on the properties of 
oriented PVC. 
 
Further improvement to the composite model (18) can be achieved by proposing a relationship 
between the elastic modulus, E , of the linear element, and two other parameters, fE  and maxλ , 
of the non-linear part.  Such a relationship would reflect common macromolecular origin 
(nature) of linear elastic deformation and of orientation and limiting extensibility in polymer 
chains. One such relation was proposed in [11], 
 

maxfλEE = , (19) 
 
and the composite model (18) complemented by (19) has been named "the filament model" and 
it has shown considerable promise. 
 
 
5. DISCUSSION AND CONCLUSIONS 
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It can be seen that the equations of the filament theory are quite simple mathematically and the 
theory has complied with the prime objective of the work: it can be used to predict the systematic 
variation of yield stress of oriented rigid PVC as a function of imposed planar strain.  The use of 
the theory does depend upon knowing certain properties of the material.  However, these can be 
derived from the yield properties of the unoriented material and from a small number of 
uniaxially oriented sheets.  This provides the prospect of being able to generate a complete 
understanding of how any combination of draw ratios might affect the yield strength of any 
oriented PVC formulation from the results of a limited number of experiments.  This could be 
extremely valuable when selecting draw ratios for biaxially oriented products, such as pipes, as 
combinations that produce poor mechanical strength in the minor draw direction can be 
identified and avoided. 
 
To have complete confidence in the filament theory, its predictive capability needs to be tested 
with further sets of yield data for a range of oriented rigid PVC formulations. At the same time it 
would be extremely interesting to evaluate the refined composite model (18) and to assess 
whether the composite and filament models improve the accuracy of predictions for the yield 
stress in oriented PVC.  From that point, the next step would be to address the question: can the 
composite and filament models predict the strength at break values for oriented PVC as a 
function of imposed planar strain? Intuitively, the answer would be affirmative, as the tendency 
for strength at break (Figure 2) is similar to the tendency for yield strength (Figure 1). 
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