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Abstract: A phased mission system represents a system whose performance is 

divided into consecutive non-overlapping phases. It is important to ensure safety 

of a phased mission system since the failure of it can have both life threatening 

and financial consequences. The focus of this paper is to develop an optimisation 

method to construct an optimal design case for a phased mission system, with the 

aim of minimising its unreliability and at the same time ensuring optimal usage of 

available resources throughout all phases. The introduced phased mission 

optimisation is represented as the constrained single objective problem. Here 

failure of the overall mission is the objective function and the introduced 

constraints are employed to determine limits for resources within which their 

optimal usage is to be determined. The implemented optimisation method 

employs Fault Tree Analysis to represent system performance and Binary 

Decision Diagrams to quantify each phase failure probability. A Single Objective 

Genetic Algorithm has been chosen as the optimisation technique.  An 

Unmanned Aerial Vehicle mission has been selected to demonstrate the methods 

application.  The results and the influence of modifications to the optimisation 

algorithm are discussed. 
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1. Introduction 

A phased mission system represents a system where performance is analysed as a sequence 
of non-overlapping phases. To complete a mission the system is required to accomplish a 
specific task without failure in each phase. A classical example of a phased mission system 
is for an aircraft which undergoes three phases: take-off, cruise and landing. The aircraft 
completes its mission if all three tasks have been completed successfully. 
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A large number of systems which can employ mechanical, chemical, electronic and 
nuclear technologies can be analysed as phased mission systems. Similarly, military 
missions can be analysed as phased mission systems. Thus system optimisation in terms of 
reliability, availability, maintainability and cost (RAM&C) is extremely relevant. In spite 
of its importance, however, there is limited demonstrated evidence in the literature for 
research that focuses on phased mission optimisation; Susova G.M. & Petrov A.N. (1997) 
introduced a model based on Markov homogeneous process which can be used to 
minimize operation cost and optimise flight safety.  

Generally, methods used for phased mission system analysis can be grouped in two 
categories: Markov analysis based approaches and combinatorial methods. Combinatorial 
methods represent fault tree and binary decision diagram (BDD) approaches. The earliest 
applications of fault tree analysis in the analysis of non-repairable phased missions were 
made by Esary J.D. & Ziehms, H. (1975). La Band R.A. & Andrews J.D (2004) 
introduced their approach that is computationally more efficient since BDD methodology 
is employed together with the fault tree approach. 

If a phased mission system is repairable or there are dependencies between 
component failures or phases, it is generally difficult to find the exact system reliability. In 
this case Markov reliability models are employed, as discussed by Kim & Park (1994) and 
Smotherman & Zemoudeh (1989). 

Both combinatorial and Markov methods have some drawbacks. For example, in 
Markov models for systems with n components, up to 2n  equations are needed to 
represent each phase.  In the combinatorial approach, however, the problem size expands 
with increasing number of phases. Therefore, employing a combination of both 
approaches for the same problem can help to overcome these individual drawbacks and 
enable the analysis of more complicated problems. As such, Ou Y. et al. (2002) and Wang 
D. & Trivedi K.S. (2007) introduced new approaches to analyse phased mission systems 
adopting this approach. 

The developed optimisation approach is based on the single objective Genetic 
Algorithm (GA). GAs are widely used in reliability optimisation problems as stated by 
Levitin G. (2006) Torres-Echeverria A.C. et al. (2008) introduced a multi-objective 
genetic algorithm of a safety-instrumented system. Marseguerra M. (2006) discussed the 
application of GAs for reliability, availability, maintainability and safety optimisation 
problems. The principals of the GA allows easy implementation and adaptation of the 
algorithm according to a solved problem. Other important advantage is that only values of 
an objective function are required which represent the search space. Therefore a 
methodology for evaluation of objective function values and GA remain independent. 

The purpose of this paper is to introduce an optimisation algorithm with implemented 
GA that aims to minimise overall mission failure probability and is applicable to different 
phased mission systems. The optimisation is based on the search of system design with the 
minimal failure probability. All different system designs introduced for the problem are 
developed by introducing redundant components and components with different reliability 
characteristics. The algorithm solves for minimum overall mission failure probability 
within the context of pre-defined resource constraints as well as system failure probability 
values during each phase. 
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2.   Phased mission design optimisation algorithm 

 
2.1.  Optimisation problem introduction 

 
A phased mission system design optimisation problem is represented as a general single 
objective minimisation problem. The problem is stated as a minimisation of overall 
mission failure probability for a system: 

( )missionQ Xmin         (1) 

where X (n–dimensional vector of independent variables) is the result of the union of 
vectors of system component failure probability values, i.e.: 
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Here, m is the number of phases in the mission and each Xi vector represents system 
components that appear in any minimal cut set of a fault tree of phase i (i = 1, 2, …, m). In 
other words, X is a vector of system components that appear in any failure event. 

In the algorithm it is considered that the system failure probability is subject to a 
number of constraints. The constraints can be grouped in two categories. The first 
constraint group represents the limits of the available resources, such as cost (Costmission), 
weight (Weightmission) and volume (Volumemission) (Eq. 3). To ensure the efficient use of 
resources minimum constraints are introduced. If only limits for maximum values are 
considered then minimum constraint values are set to zero. 
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In some case a number of system parts may not be in use during certain phases that 
results in diverse allocation of resources throughout the phases. Therefore the ability to set 
resource constraints for each phase is introduced in the algorithm. 

The second group of constraints represents the system failure probability during each 
phase: 
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where, Qi(Xi) identifies the ith phase failure probability, Qi(Xi)max is the maximum 
allowed system failure probability value at phase i and m defines the number of phases in 
the analysed mission. 
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Implementing these constraints allows component combinations to be identified that 
minimise the failure probability of the whole mission without exceeding limits set for 
system failure probability values during each phase. 

 
2.2 Objective Function Description 

 
One of the advantages of GAs is possibility to separate evaluation process of the objective 
function from the algorithm itself since the only information required for the optimisation 
process is values of the objective function. In the introduced case a value of the overall 
mission failure probability for a particular design system is an objective function value. 
However an explicit form of the objective function does not exist and methodology for the 
quantification of phased mission failures is employed instead. 

There are a number of methods that can be employed to evaluate the mission failure 
probability. In the proposed optimisation algorithm a methodology introduced by Prescott 
at al. (2008) was chosen. Their approach provides failure probabilities for each phase (Qi) 
together with the whole mission failure probability (Qmission) where 

∑
=

=
m

i
imission QQ

1

           (5) 

It means that the method can be used to evaluate the objective function value and also 
that it can be employed to check the validity of constraints for the system failure 
probability at each phase. 

In the proposed methodology, for Equation 5 to be valid, the logical expression for 
mission failure in each phase is considered as a combination of causes of success of 
previous phases and the causes of failure for the phase being considered. In other words, if 
a system fails in phase i, it means it could not have failed during any previous phase j (j = 
1, 2, …, i-1). For example, system failure in phase i can be represented by an “AND” gate 
that incorporates the success of previous phases j (using NOT logic) and the failure for the 
phase i. Figure 1 represents the failure of a system in phase 3. 

 

 
Fig 1: An Example of System Failure in Phase 3 

 
The methodology includes the following steps. At the beginning a fault tree for each 

phase is converted into a BDD using its own variable ordering scheme. The next step 
involves assigning time intervals over which each variable contributes to phase failure for 
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each BDD representing the logical expression for the failure conditions being met in phase 
i. Then the earlier described logical expression for mission failure in phase i is built. The 
resulting BDDs are then constructed. Before the quantification starts the simplification 
process for every BDD is performed. It involves the simplification of the failure logic for 
each possible path from a BDD root vertex to its terminal 1 vertices which represent 
system failure states. Finally every BDD path terminating in a 1 vertex is quantified to 
give the probability of a corresponding BDD and the sum of all probability values 
determines the failure probability value for the whole mission of a particular design 
system. 

Equation 1 expresses the objective function for the analysed problem. Even though 
the function does not have an explicit form  it can be defined as the function of variables 
X. The vector is the result of the union of vectors of system component failure probability 
values as defined by Equation 2. Since failure rates for the components are defined a 
priory mission failure probability alters due to changes in the system design. Therefore, 
the contents of the employed component sets and the number of components in the sets 
vary through the analysis. The dimension n of vector X (number of system components) is 
not fixed and is altered during the whole optimisation process. 

However it can not be affirmed that the vector X comprises decision variables of the 
optimisation problem even though it can be used as the ones. The vector is also an 
auxiliary set of data for setting a link between mission failure probability and changes of 
the system design.  

Usually, in trying to improve system performance, a certain number of components 
are chosen to be replaced. A different number of redundant components and / or 
components with different failure characteristics, i.e. different type components can 
replace existing components. Therefore the notation “design variables” is used to identify 
possible types of new components, the numbers of redundant components and redundancy 
types. Each replaceable component can be associated with more than one design variable. 
For example, an existing safety system valve was chosen to be replaced. It can be 
substituted with either two or three redundant valves. There is also possibility to use 
valves of two different types. Thus two design variables applies to the valve: the type of 
the valve and the number of redundant valves. 

One set of design variables is produced for an individual problem. Any two vectors of 
design variable values are considered to be different if at least one value of a variable is 
not the same. It means each set of design variable values corresponds to an individual 
system design which can be identified with a corresponding components set X. Therefore 
the search for the optimal design which minimises mission failure probability can also be 
performed by manipulating sets of design variable values. 

 
2.3 Design of the Genetic algorithm 

 
GAs has been initially introduced by Holland J. (1975). They are stochastic global search 
methods which can be used in a wide variety of problems. They are based on the 
mechanics of natural genetic variation and natural selection. Thus terminology used in 
GAs is analogous to biological systems. For example, strings that are used in the 
optimisation algorithm are analogues to chromosomes in biological systems. Genes form 
chromosomes and are located at particular locus (positions) on the chromosome. A total 
genetic package of an organism is called a genotype. Analogically in a GA variables 
correspond to genes and a total package of strings forms a structure. 
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A classical single objective GA can be divided into 5 main stages: initialisation, 
reproduction, crossover, mutation, and replacement. All these parts of the algorithm can be 
modified according to the particular problem that is to be solved. 

The introduced can be briefly introduced as following. The number of chromosomes 
that constitute a population (N) is denoted by the user. The size of the population remains 
constant throughout the optimisation process. At the initialisation stage a feasible 
population is generated. To produce a new population of chromosomes at first the three 
genetic operators are implemented by utilizing two nonoveralpping populations, i.e. parent 
and offspring populations are stored separately. At the next step evaluation and 
penalisation of offspring chromosomes is performed which is followed by the replacement 
procedure. As a result a new population is generated comprising chromosomes from the 
offspring population and in some cases a number of chromosomes from the parent 
population may also be included. At this stage one generation cycle is completed. The new 
generation cycle is stared with three genetic operators where the new population becomes 
a parent population. However if the number of performed generation (n) is equal to a 
predefined maximum number of generation the algorithm is terminated. 

The implemented GA is summarised by the flowchart in Figure 2. Each stage of the 
algorithm is discussed in detail in the following sections. 
 

 
Fig 2: The GA Flowchart 

 
2.3.1 Chromosome Encoding 

 
Generally a chromosome is an encoded set of decision variables. However in the discussed 
case the used objective function is not in explicit form and a number of variable sets can 
be considered as decision variables for the problem. Due to the fact that a number of 
design variables is different to a total number of system components identifying a certain 
system design, coding of these sets of variables as chromosomes would effect a size of 
search space. Depending on the choice either fixed or variable length chromosomes would 
be used. Therefore it was decided to encode design variables as chromosome genes. This 
indirect chromosome encoding influences both the development of other stages of the 
algorithm and its efficiency. First of all the genetic operators are implemented for fixed 
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size chromosomes. As a result it enables to simplify implementation of the algorithm with 
no effect to quality of optimisation results. 

Binary numbers were used for encoding of genes. In a chromosome each gene is 
allocated a particular number of bits required to code a maximum value of an associated 
variable. It ensures that the size of a chromosome is sufficient to store any values of design 
variables and its size remains constant. As a result each chromosome can be represented as 
a set of concatenated integers in binary form. 

 
2.3.2 Initialisation 

 
In the proposed algorithms a feasible initial population is generated. It is implemented in 
the following way. Each chromosomes is generated at a time by random sampling the bits. 
The generated chromosome is decomposed into genes. The obtained binary numbers are 
converted into decimal design variable values which identify a certain system design. At 
the next step it is checked if amounts of resources required for the generated design system 
do not overcome predefine limits. If all constraints for resources are satisfied the 
chromosome enters the initial population. The process is repeated until N chromosomes 
enter the initial population. Here N denotes a size of the population. 

 
2.3.3   Reproduction, Crossover and Mutation 

 
Three operators are used to create a new offspring population. At first the reproduction 
operator is implemented employing a biased roulette wheel which was discussed in detail 
by Goldberg D.E. (1989). As a result N/2 couples of parent chromosomes enter into a 
mating pool. Strings of each couple are crossed over employing one-point crossover 
operator. For each couple an integer position p which satisfies the following condition 
1≤p<l is selected randomly, where l is the length of the strings. All characters of the first 
string starting with the p + 1 position are assigned to the second string and characters of 
the second string are assigned to the first string. As a result two new string are created. 
During the crossover process, a bit-by-bit mutation is also carried out. It means each bit of 
a string is changed from 0 to 1 or vice versa with the predefined probability. 

 
2.3.4  Penalisation 

 
A new offspring population is created as a result of reproduction, crossover and mutation. 
At this stage the new strings are decoded and their corresponding fitness values are 
evaluated. Since the algorithm is developed to solve a constrained optimisation problem a 
penalty application was chosen as an approach to deal with possible violations of problem 
constraints. The main idea of this methodology is to apply some type of penalty to 
solutions which violate any constraint, i.e. a fitness function is defined as the sum of the 
objective and penalty function values. 

A penalty function proposed by Coit D.W. et. al. (1996) was employed in the 
algorithm: 
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Here, Fall is the best unpenalised value of the objective function yet found, Ffeas is the 
best feasible value of the objective function yet found, NFTi denotes the near-feasibility 
threshold that corresponds to a given constraint i, di(x,B) is the magnitude of the violation 
of a given constraint i for solution x, κi denotes a user-specified severity parameter and nc 
is the total number of constraints set for the problem. 

In the implemented algorithm the near-feasibility threshold was defined employing a 
formula which allows the penalty value to be adjusted according to the search history: 

g
NFTNFT oi

i ⋅+
=

1.01
     (7) 

Here NFToi represents the actual value of a constraint i and g denotes the generation 
number. Parameter κi was set to 2 in order to implement Euclidian distances between any 
infeasible solutions to the feasible region over all constraints. 

 
2.3.5  Population management 

 
After an offspring population is created and a fitness value is evaluated for each 
chromosome the algorithm undergoes replacement. At this stage members of both parent 
and offspring populations can be selected to form a new generation population which will 
become a parent population and is used to form the next generation chromosomes. The 
replacement procedure was implemented employing an algorithm described by Chambers 
L. (ed.) (2001). The idea of this algorithm is to replace a parent population with an 
offspring population. However if the best parent chromosome is fitter than the best 
offspring chromosome then it replaces the worst offspring chromosome. 

 
2.3.6  Improvement to the Algorithm 

 
In order to improve the performance of the algorithm, fitness scaling was introduced. 
Research show that it is especially valuable when small population GA are employed. 

A linear scaling procedure proposed by Goldberg D.E. (1989) was implemented in the 
algorithm. Parameters used in the linear scaling procedure are problem-independent. They 
depend on a population life and are found for a population in each generation. 

The linear scaling method defines a linear relationship between an initial fitness value 
and the fitness value after the scaling: 

baff initialscaled += .    (8) 

Here, finitial is an actual chromosomes’ fitness, fscaled is the chromosomes’ fitness after 
scaling and parameters a and b are linear function coefficients. In the implemented method 
these coefficients are selected so that the average fitness before scaling and the average 
scaled fitness are equal. 

In the algorithm the scaling procedure is performed following replacement as it is 
shown in Figure 2. 

 

3. Application Example and Results 

The proposed optimisation approach was applied to analyse a simplified unmanned aerial 
vehicle (UAV) mission. The aim of the optimisation was to identify modifications of UAV 
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design from the given list that would minimise failure probability of the whole mission. 
The resulting system design also had to satisfy the requirement that mission failure 
probabilities for each phase would not increase. However small violations were acceptable 
if the overall mission failure decreased. 

The optimisation problem was solved for two cases of the optimisation approach. At 
first the initially introduced GA was employed. Following, the improved GA algorithm 
with implemented scaling procedure was used to find the optimal UAV design. The results 
are presented for both cases. 

The UAV mission comprises of six phases carried out in the following order: take-off, 
climb, en-route in controlled airspace, en-route in uncontrolled airspace, descent and land. 
Given data for the introduced problem included failure properties of the UAV 
components, data of external factors that can cause mission failure, the fault tree for every 
phase and the list of possible UAV design alterations. 

To perform the optimisation analysis five UAV components were chosen to be 
replaced. The list of design variables and their values selected to characterise 
improvements in UAV performance is provided in Table 1. The structure of chromosome 
constructed according to the provided data is shown in Figure 3. 

 
Table 1: List of Design Variables 

 

Changeable 
component Description of modifications 

Possible values 
of design 
variables 

Landing gear Type of a landing gear type1, type 2 
Antiskid 
valve 

Number of feed antiskid valves 2, 1 

Cross feed 
valve 

Number of cross feed valves 3, 2, 1 
Type of a cross feed valve type1, type 2 
Minimum number of valves required for 
successful operation 

3, 2, 1 

Pump 

 
Number of pumps 2, 1 
Type of a pump type1, type 2 
Minimal number of pumps required for successful 
operation 

2, 1 

Navigation 
system 

Number of sub navigation systems 2, 1 
Type of a navigation system type1, type 2 

 
The introduced requirement of maintaining and if possible improving reliability of the 

mission throughout each phase for necessitates to include mission failure probability 
constraints. Therefore performance of the original, i.e. initial design UAV, was analysed in 
order to set the limits for UAV failure probabilities at each phase. The failure probability 
of the first phase for the initial design UAV was 0.0306. The second phase failure 
probability was 0.0174, the third phase failure probability was equal to 0.0135, the fourth 
phase failure probability value was 0.0086, the fifth phase failure probability increased up 
to 0.0299 and after the sixth increased to 0.0357. The probability that the initial design 
UAV would fail to complete the mission was 0.1356. The following values were used as 
the limits of constraints. The first phase failure probability limit was set to 0.031, the 
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second limit was set to 0.018 and correspondingly the remaining limits were set to 0.014, 
0.009, 0.03 and 0.036. 
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Fig 3: Chromosome Structure 
 

GAs are guided search methods and the best values for the GA parameters are case 
dependant. The choice of GA parameter values for the UAV optimisation problem was 
based on the theoretical model discussed by Gibbs M.S. et al. (2008) and a trial-and-error 
approach. The best result, i.e. the smallest average number of generations required to find 
the minimal failure probability values was obtained when using a 50 chromosome 
population, a crossover rate equal to 0.95 and a probability of mutation equal to 0.05. Due 
to the stochastic nature of the GA five runs were performed to investigate the convergence 
of the optimisation results. Each time the process was terminated after 50 generations. 

Obtained results presented in Figure 4 are the best fitness values in each generation. 
These results were obtained employing the GA without implemented scaling procedure. 
They show that the fitness values converge to the minimal value which is achieved on 
average after 35 generations. 

Results presented in Figure 5 evidence the improvement of the optimisation algorithm 
after implementation of fitness scaling in the GA. The termination condition of 50 
generations was reduced to 30 since the minimal value was achieved on average after 16 
generations. 
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Fig 4: Minimal Mission Failure Probability Values for Each Generation 
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Fig 5: Minimal Mission Failure Probability Values for Each Generation (Scaling is 
Applied) 

 
The minimal overall mission failure probability obtained from the model was equal to 

0.1111176759, representing the failure probability for the optimal UAV design, while the 
mission failure probability of the initial design UAV was 0.1356551172. The optimally 
designed vehicle now includes new components that have replaced the some of the 
original components. The list of the new components is presented in Table 2. 
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Table 2: Values of Design Variables for the Optimal System Design 

 

Changeable 
component Design variable description 

Design 
variable 

value 
Landing gear Type of a landing gear type1 
Antiskid 
valve Number of feed antiskid valves 2 

Cross feed 
valve 

Number of cross feed valves 3 
Type of cross feed valves type 2 
Minimum number of valves required for successful 
operation 1 

Pump 

 

Number of pumps 2 
Type of pumps type 1 
Minimal number of pumps required for successful 
operation 1 

Navigation 
system 

Number of sub navigation systems 2 
Type of  navigation systems type 1 

 
4.  Conclusions 

 
The introduced algorithm is employed to minimise phased mission system failure. The 
failure is minimised by defining a set of system components that constitutes an optimal 
system design and contributes to the improvement of system performance. 

The introduced optimisation algorithm has been successfully applied to minimise a 
UAV mission failure probability. A set of UAV components characterising the optimal 
vehicle design was also identified. As a result, the optimal design UAV mission failure 
probability represented the global minimum of the optimisation process. 

In the presented algorithm fault tree analysis was used to represent system failure 
modes during the whole mission for each system design. Fault tree and BDD approaches 
were also employed to evaluate the failure probabilities for each phase and the whole 
mission for different system designs. A single objective GA was chosen as an optimisation 
technique. It was considered two types of the GA: the GA without and with implemented 
fitness scaling. The obtained results showed the indisputable effect on the on convergence 
of the results. Fitness scaling improved the efficiency of the optimisation process. 

Given the applicability of the method to the example mission, the next step would be 
analysis of more complicated phased mission system. Future work should also focus on 
improvement of the algorithm performance and its application for multi objective 
optimisation problems. 
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