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The behavior of a crack as a resonator radiating acoustic emission (AE) pulses at instants of sudden growth
is investigated theoretically and experimentally. This resonance behavior of a growing crack is determined to
a large extent by surface waves propagating along its edges. The crack can therefore be regarded as an acoustic
resonator excited at the instant of growth of its tip. Transformations in the form of high-frequency harmonic
and combination-frequency subharmonic generation are observed in the spectra of the AE signals. The final
stage in the evolution of AE is characterized by the transition to a wideband noise spectrum. These facts lead
to the hypothesis that bifurcations analogous to those encountered in the onset of dynamic chaos take place
in the AE process. This hypothesis forms the basis of a mathematical model of the AE process as a system of
coupled nonlinear oscillators, each corresponding to an individual crack. The initial displacement in one of the
interacting cracks is adopted as the bifurcation parameter. Spectra calculated by computer simulation exhibit
qualitative agreement with the evolution of the spectra obtained in the processing of data from physical
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experiments.

Irreversible fracture processes in materials are known to
be accompanied by a characteristic pulsed acoustic radiation,
or acoustic emission (AE). The sources of the AE signals are
the growing cracks themselves.

A numerical solution of the problem of the dynamics and
radiation from a finite crack subjected to tensile stresses
shows! that the instantaneous application of a load to the edge
of a crack causes it to open up and move by an oscillating
route to the next static position. This suggests that the response
of the crack to an applied force is a resonance phenomenon.
The same conclusion can be drawn on the basis of an analysis
of the numerical solution of the problem of the dynamics' the
edges of a crack subjected to a harmonic exciting force?;
according to the analysis, the frequency wg of maximum re-
sponse depends only on the dimensions of the formative crack
and on the elastic properties of the medium. For example, if
the Poisson ratio is » = 0.25, we find that vy = Cj/2l, where
C; is the longitudinal wave velocity, and 2/ is the length of the
crack. Unfortunately, definite conclusions as to the nature of
the resonances cannot be made on the basis of these numerical
calculations. However, it is readily verified that the resonance
behavior of the crack is determined to a large extent by Ray-
leigh surface waves propagating along its edges.

We consider a two-dimensional crack of length 2/, which
is situated in a medium subjected to uniform tensile stresses
a(?).

According to Ref. 3, the spectrum of normal displace-
ments generated by the expanding crack can be described by
means of the integral representation

Usx,2,0)= [ 00 (6, )G, %~ £, w)at, )

where U,(x, z, w) is the z-component of the displacement
spectrum in the body, o,(x, w) is the spectrum of normal
elastic stresses acting in the plane z = O drawn through the
crack, and ng (z, x — £, w) is the corresponding component of
the dynamic Green’s tensor for free-surface boundary condi-
tions. According to Eq. (1), it is necessary to know the stress
0, in the entire plane z = 0 in order to determine the dis-
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placements of the edges of the crack, i.e., the values of UZO =
U,z = 0) at |[x| < I However, because of the mixed bound-
ary conditions in the plane of the crack, o, is known only at
|x| < I, where it is required to set o (w) = —o(w) [o(w) is
the temporal spectrum of the tensile stresses]. The values of
0y at |x| = I can be determined by means of an integral
equation, which is readily obtained from Eq. (1) through one
of the boundary conditions in the plane z = 0, specifically the
condition that the normal displacements U, are equal to zero
for |x| = I With this in mind, we can write the required
integral equation in the form

I ! =ik
_fl 0(@) G (x— £, w)dE= [ 07§, w)Gr: (x ~ £, w)dE
P o 0 (.
+If UIZ (E: w)GZZ (x E’ w)dsy (2)
where ¢, denotes the unknown values of the stresses o at

x| 21, and o(w) = (1/27) [ o(Yexp (wn)ds is the spectrum
of tensile stresses. Equation (2) has the physical significance
that the tensile stresses o(w) acting in the region |x| = !/
create a field of sources o, , which generates in this region a
displacement field opposite to the field generated directly by
the forces o(w) localized in the zone |x| < [. Taking the
symmetry of the problem into account: G; (—g&) = U:Z &), we
can rewrite Eq. (2) in the form

Jon@oke g o= o), ©)
where the kemnel is given by the expression
K(e,§,w)=GLx—§w)+ G +E w),
and

!
dx,w)=0(w) J G lx—E w)dE.
=t
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FIG. 1. Empirical graphs of parameters of AE signals vs the length L of
formative cracks. a) AE signal energy E; b) dominant frequency f in the
AE signal spectra.

We note that Eq. (3) is exact and represents a Fredholm
integral equation of the first kind. The component of the
Green’s tensor ngused in Eq. (3) has the form

G-t z=0)=(12m) [ (niMe™* +ikNI ") "Ddk,  (4)
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FIG. 2. Solitary AE pulses recorded at instants of .discrete crack growth.
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FIG. 3. Nonlinear spectral variations during the evolution of acoustic emission with the formation of an even subharmonic (from a
physical experiment on the fracture of a composite material). a) Narrowband AE signal spectrum; b) AE signal spectrum with high-
frequency harmonic components; c) AE signal spectrum with an even subharmonic; d) continuous wideband AE signal spectrum.
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FIG. 4. Nonlinear spectral variations during the evolution of acoustic emission with the formation of an even subharmonic (from a
physical experiment on the fracture of reinforced concrete). a) f = 115 kHz, 262 kHz; b) 115, 262, 147, 230; c) 115, 262, 147, 230,

77, 185; d) 115, 262, 147, 230, 77, 185, 377, 202, 409 kHz.

where M = — (2% — K)IuF(®), N = 20kV/uF®K), Vi, = (&
= klz,)llz, k; and k, are the longitudinal and transverse wave
numbers, F(k) = (2K — k2)* — 4k*V,V, is the so-called Ray-
leigh determinant, and p is the shear modulus. The direct
substitution: of the Green’s function (4) in Eq. (3) excludes its
analytical solution for all practical purposes, because the inte-
gral in Eq. (4) can be evaluated analytically only in the far
field. The corresponding asymptotic expansion of the Green’s
function has the form

G2 (x—E)=Aexp(ikg | x—E )+ Bl (k| x — £ |~ ¥?) Cexp(ik/| x - £I)
+lk x=E17¥)Dexp(ik, I x—ED)}+ ... ®))

where A4, B, C, and D are constants, which depend on the
Poisson ratio of the medium, and kg is the Rayleigh wave
number, which is the real root of the equation F(k) = 0. The
first term in Eq. (5) represents a Rayleigh surface wave, and
the second and third terms represent rapidly decaying longitu-
dinal and transverse bulk waves propagating along the surface
z=0.
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Since we are interested primarily in resonance phenome-
na, which we shall consider to be associated with Rayleigh
waves propagating along the edges of a crack, it is natural to
keep only the Rayleigh branch [the first term of the expansion
(5)] in the Green’s function G?Z; this makes sense for any |x
— £/, despite the asymptotic character of Eq. (5). In other
words, we represent the Green’s function by the approximate
expression

Grz(x — £)= Aexp(ikg | x — £ ). (6)

We see at once that the coefficient A enters into both
sides of the integral equation (3) as a factor. We therefore
drop it in the solution. The substitution of Eq. (6) in Eq. (3)
reduces the latter to the form

[ ote (5 wlexa(ikg | x — £1)+ exp(ike (x + £)]a

- (7

= [2o(w)/kg]sinkg ! exp(ikg X),
It is interesting that the simplified equation (7) is solved

Krylov et al. 57



"z/,ao( 007
14228 3o}
-390~ ’ 500 +
~EB5- - 11,00}

sl ilbes.

1

n . 1 1 L . A J T A L % L i J
800 159 30 477 837 196 8§55 1,4 1273 1937 1597 OB 135 3B 477 637 196 855 LW 1473 132 1592
=300 -Fgﬂﬂr
~19,50 |- -29,75
-3400 - 4550/
-48.501 -6125
6300\ S A A -77.00 seme: sl oot A VO SN R
‘g
Go0 155 3% 477 £37 395 8% n1 1B M7 1592 Q00 158 316 477 £37 7965 855 1Ly 113 1432 1552
23007 ﬁﬂﬂ[‘
gL 501
[ b
-350+ -3.00|
-1675 + ~1E50
—Jzzoﬂk : s i L ) -340 : " . i A 3 \ |
o 155 38 477 37 1% 835 1M 1575 MIZ 15827 GO0 1,59 308 477 £37 39 855 144 15,73 14,37 1392
-5,,70( -15,00T
~2390 -2}
~3500+ =6350
-5450} -8475}
7800 Mas_ghees neeed I ST R - | TN, SO ST S D
800 159 318 477 631 396 8§55 mM 1513 M37 1592 400 159 38 477 637 79 8§35 nwM 12,73 1432 1552

FIG. 5. Results of the numerical simulation of two coupled nonlinear oscillators (a; = a, = 0.5, b = 10) for various values of the

bifurcation parameter x. a) x = 0.1; b) x = 0.14; ¢)x = 0.21; d) d = 0.24.

exactly. Let us assume, in fact, that the solution az’; has the
form*

0, (x,w)=f(w)s(x-1), (8)
where flw) is a function yet to be determined and 8(x — ) is
the Dirac delta function, and let us substitute Eq. (8) in 7. It
is readily verified by appropriate transformations that Eq. (7)
is satisfied if

f(w)=Qow)/kg)tgtkg!) .

Consequently, the total distribution of the unknown stresses
beyond the limits of the crack (at |x| > I)is

07z (x, ) = (2o(w)/kr)tg(kp ) [B(x = 1) + (x +1)] . ®)
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The quantities of interest, i.e., the normal displacements
of the edges of the crack, are readily calculated by means of
Eq. (9) and the integral representation (1), in which we need
to set z = 0. Making use of the fact that 04(w) = —o(w) at
|x| < I and going through simple but rather cumbersome
transformations, we obtain

214 (w) COSKkp x
- —=—, |x|<L (10)
kg coskg/

U(x,w)=
We recall that Uzo(x, w) = 0 at |[x] = [ as a result of the
boundary conditions, which follow from the symmetry of the
problem about z = 0.

It is readily perceived that the amplitude Ug(x, w) in Eq.
(10) becomes infinite for kgl = 7/2 + an, n = 0, 1, 2,...,0r
for (\g/2)(2n + 1) = 2I, indicating the onset of resonance.
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The existence of only odd resonances in this case is a conse-
quence of the symmetry of the problem. Thus, within the very
crude approximation used here, a crack of length 2/ is a reso-
nator something like a two-mirror Fabry—Perot interferometer
with resonance frequencies w, = wCg/2l — (2n + 1), where
Cg = wlkg is the Rayleigh wave phase velocity. The reflection
coefficient R for two surface waves propagating along the
edges (we call this wave pair a symmetric Rayleigh mode for
brevity) from the tip of the crack is equal to —1 in the given
approximation. In accordance with the well-known resonance
condition for a two-mirror resonator:

w .
—6;—21+\11=1m, (11)
where ¥ is the phase shift of the symmetric Rayleigh mode in
reflection, and »n is an integer, we at once deduce the above
relation w, = (wCg/2D)(2n + 1). The fact that the displace-
ment amplitudes U, become infinite at resonance is evidence
of the crudeness of the approximate model used here, in which
damped bulk acoustic waves and their associated losses, i.e.,
losses in acoustic radiation from the oscillating crack or in
acoustic emission per se, are completely ignored (formally,
this assumption is a consequence of the relation |R| = 1).

The inverse Fourier transformation of Eq. (10) is needed
in order to obtain a time-dependent solution Uo(x, 5. We
calculate U, (x, ¢) for the important special case of an instanta-
neously apphed load o(f) = ogh(r), which simulates instanta-
neous crack formation [here A(f) is the Heaviside unit step
tunctlon) We now have o(w) = igg/27w, and the expression
for U (x, ©) has the form

0o AC; o ]
__O___R_—f _(;;.[1_

cos(wx/Cgr)
cos(w!/Cgr)
6

U2(x, )= — Je ' @lda. (12)

Using the well-known representation
1 = -1y
- |
cosfw  j=-1 Bw—(2j-)n/2

we calculate the integral (12) by the method of residues. As a
result of this operation and several simple transformations, we
find that at £ = 0

Uxo (x, 1)

8004mCr = (—=1)/Tlcos{(2j- D(mx/2D] . . .
= z = sin [(2/ —
l i=t [@i- D#Cr/2D))?

13

1t follows from Eq. (13) that the displacements of the edges of
the crack represent the superposition of undamped modes with
resonance frequencies w; = wCR/2I(2] — D,j=1,72,.

the given approximation, i.e., without radiation losses. We see
at once that the amplitudes of the correspondmg normal modes
(harmonics) are proportional to Ile for an external excitation
in the form of a step function. We shall therefore include the
mode at the fundamental resonance wg = wCg/2l in the ensu-
ing discussion. This value of the fundamental frequency wg 1s
approximately 1.5 times the values calculated numerically.?
The difference is attributable to the fact that radiation of bulk
waves by the crack is not taken into account. Another conse-
quence of this omission, as already mentioned, is the excursion
of the amplitude to infinity [or, related to this, the infinite Q
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of the crack as a resonator and the fact that the oscillations are
damped in Eq. (13)]. Moreover, the given model does not
describe the monotonic opening of the crack to its static posi-
tion.

We note that the omission of the complete Green’s func-
tion from Eq. (3) and the subsequent numerical solution of this
equation on a computer* yield results consistent with numerical
calculations!»? by other methods.

1t follows from Eq. (13) that the fundamental frequency
of the excited waves becomes lower, and their energy increas-
es as the crack grows; this relationship has been confirmed by
appropriate experiments (Fig. 1).

Consequently, the crack can in fact be regarded as a
certain acoustic resonator driven at the instant when the tip of
the crack grows larger. Indeed, physical experiments show that
the AE signals are in the form of isolated trains of damped
oscillations, whose occurrence correlates with discrete times of
crack growth (Fig. 2). The evolution of the AE signal spectra
with increasing load has the following characteristics.

When microdefects originate in the material in the initial
stage of loading, the AE signal spectrum represents a narrow
line, whose maximum occurs at relatively high ultrasonic
frequencies (Fig. 3a). As the defects enter subsequent stages of
growth and interact, transformations are observed in the AE
spectra in that the maximum shifts into a lower frequency
range. This process is accompanied by the onset of high-fre-
quency harmonic components in the spectrum (Fig. 3b).

With a further increase in the external load, an even
subharmonic component is formed in the AE signal spectra
(Fig. 3¢), and in the final stage of active fracture the spectrum
becomes continuous and wideband (Fig. 3d). The stage involv-
ing the formation of a wideband noise spectrum is preceded by
the onset of multiple-frequency even harmonics in some cases
and by the onset of combination frequencies in other cases
(Fig. 4).

These facts lead to the assumption that the evolution of
AE is accompanied by bifurcations analogous to those encoun-
tered in the inception of dynamic chaos. This hypothesis pro-
vides the foundation of a mathematical model of AE in the
form of a system of coupled nonlinear oscillators, each corre-
sponding to an individual crack.

The initial displacement in one of the interacting oscilla-
tors can be adopted as the bifurcation parameter. Stepped
increments of the bifurcation parameter simulate the growth of
one of the interacting cracks.

The coupling of the oscillators simulates the coupling of
the cracks through radiation. The oscillators are made quad-
ratically nonlinear by virtue of the fact that the elasticity of a
crack in tension is substantially smaller than in compression.

To avoid further complications of the model, we consider
two oscillators, assuming that their coupling and the damping
forces are linear and that the coupling and damping coeffi-
cients and the eigenfrequencies of the oscillators are constants.

The equations of this model can be written in the form

$+2hxtwix+ax?)+by =0, ”

Y +2hyy + Wh(y tay?)+bx=0. (14)

We choose the initial displacement of the first oscillator as
the bifurcation parameter. We track its influence on the struc-
tural transformation of the dynamic regime of nonlinear oscil-
lations on the basis of the corresponding spectral variations.
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FIG. 6. Results of the numerical simulation of two coupled nonlinear oscillators (a; = ay = 0.5, b = 0.5) for various values of the

bifurcation parameter x. a) x = 0.03; b) x = 0.05; ¢) x = 0.08; d) 4 = 0.11.

This approach enables us to explain certain transformations
previously observed in AE signal spectra in physical experi-
ments.

A numerical simulation of the system (14) has shown that
when the initial displacement of the first oscillator is increased,
and provided that the coupling coefficient b is sufficiently large
(b > b, = 1), the spectrum of the second oscillator acquires
the second subharmonic, whereas the spectrum of the first
oscillator changes very little (Fig. 5a).

A further increase in the initial displacement of the first
oscillator is accompanied by an increase in the number of even
subharmonics of the second oscillator. The spectrum of the
first oscillator still does not contain any subharmonics (Figs.
5b and 5c¢).

When the control parameter exceeds a certain critical
value, the spectrum of the second oscillator becomes continu-
ous (Fig. 5d). The spectrum of the first oscillators still does
not exhibit any visible changes.

It is evident from Fig. 5 that the transition to a continuous
spectrum in the second oscillator is analogous to the transition
to chaos as a consequence of a series of period-doubling bifur-
cations. In our case, however, these bifurcations are instigated
by a transient rather than a periodic process, where the number
of bifurcations appears to be finite. A numerical experiment

60 Acoust. Phys. 39(1), Jan.-Feb. 1993

has disclosed that the number of such bifurcations increases as
the damping of each oscillator decreases. The calculated values
of the bifurcation parameter have been used to calculate con-
stants analogous to the Feigenbaum constant. They are found
to depend on the damping coefficient & = h; = hy:

Damping Number of Convergence
coefficient bifurcations constant
h n 5
0,3 4 2,375
0,03 4 4,611
0,003 5 9,179
0,0003 6 11,237

The spectra obtained for the second oscillator agree qualitative-
ly with the AE signal spectra in Fig. 3.

The transition to chaos proceeds differently if the coupling
coefficient b is smaller than b,. As the initial displacement of
the first oscillator is increased, the spectrum of the second
oscillator acquires the third subharmonic. Next comes a cas-
cade of period-doubling bifurcations of this subharmonic until
finally chaos sets in. We note that another avenue to the for-
mation of chaos in the evolution of AE — through the onset of
combination frequencies — could possibly be explained by
increasing the number of oscillators in the proposed model.
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Calculation of an acoustic field in a coastal zone of the ocean

with an intricate bottom relief
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A new tracing technique is described for rays joining a source and receiver in the propagation of sound ina
coastal wedge with an intricate bottom relief, where the sound velocity depends only on the depth. It is
established that a significant gain in computing. speed can be achieved by concentrating the receivers in a
limited region of space. Examples of calculations are discussed.

The calculation of acoustic fields in the ocean with an
intricate bottom relief is still an underdeveloped activity, de-
spite the fair number of papers (e.g., Refs. 1-3) on methods

and algorithms designed to solve this complex problem. The.

main difficulty is the large volume of calculations needed to
determine the acoustic field in situations of practical interest.
For example, ray tracing requires the emanation of an enor-
mous number of rays from the source within the limits of a
prescribed sector of angles of emergence in order for neigh-
boring rays to be of the same type and thus to ensure conver-
gence of the iterative scheme? used to find the ray incident on

FIG. 1. Deviation of horizontal projections of ray paths from the position
of the receiver array. 1) Source; 2) site of the vertical line array of receiv-
ers; 3) shore; 4) isobaths; 5) horizontal projections of ray paths. The 7 axis
is orthogonal to the line 1-2.
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the receiver. In some cases the "fan" of rays must have a
density of 100 rays per degree both in the azimuth angle and
in the vertical angle. This means that millions of rays are
needed in order to calculate the acoustic field in the entire
water. region covered by the rays.

It is not always necessary, however, to calculate the
acoustic field in the entire region under investigation. If a
large number of receivers is used, it is theoretically possible to
simplify the problem on the basis of a priori information about
the angle of emergence of rays leaving the source and entering
the vicinities of the receivers. In practice, however, such
information is very difficult to obtain. Nonetheless, a major
simplification of the problem can be achieved on this basis in
at least one case, which is described below. Results of calcula-
tions will also be given.

Al S ¢

g

o

FIG. 2. Tracing around a limit ring. a) Sector of angles of emergence; 2)
limit ring; 3) starting point for tracing; 4) region in which 7 < 0; 5) region
in which n > 0. The dots represent the points at which the ray paths are
calculated in the plane of angles of emergence.
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