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The behavior of a crack as a resonator radiating acoustic emission (AE) pulses at instants of sudden growth

is investigated theoretically and experimentaily. This resonarce behavior of a growing crack is determined to

a large extent by surface waves propagating along its edges. The crack can therefore be regarded as an acoustic

resonator excited at the instant of growth of its tip, Transformations in the form of high-frequency harmonic

and combination-frequency subharrronic generation are observed in the spectra of the AE signais. The final

stage in the evolution of AE is characterized by the transition to a wideband noise sPectmm. These facts lead

to the hypothesis that bifurcations analogous to those encountered in the onset of dynamic chaos take place

in the AE process. This hypothesis lorms the basis of a mathematical model of the AE process as a system of
coupled nonlinear oscillators, each corresponding to an individual crack. The initial displacement in one of the

interacting cracks is adopted as the bifurcation parameter. Spectra caiculated by computer simuiation exhibit

qualitative agreem€nt with the evolution of the spectra obtained in the processing of data from physical

experiments..

placements of the edges of the crack, i.e., the vaiues of Uro :
Ur{z = 0) at lxl ( l. However, because of the mixed bound-

ary conditions in tie plane of the crack, or. is known oniy at

Irl < /, where it is required to set o..(co) : -o(o) [o(r,:) is

the temporal spectrum of the tensile stressesl. The values of
ou at lxl > / can be determined by means of an integral

equation, which is readiiy obtained from Eq. (1) through one

of the boundary conditions in the plane e 
^ 

0, specihcally the

condition that the normal dispiacements Uf are equai to zero

for lxl > /. With this in mind, we can write the required

integral equalion in the form

I -l
I o(u)Gt,(x - t,a)dt,-- I oi"G, e)G|"@ - t, u)dE
-r*

+ [ oi,(1, u)G!,(x - E, t':)dE, e)

wherc o!, denotes the unknown values of the stresses oa at

lrl > l, and o(or) : (L12fl { oQ)exp(iut)d.tis the spectrum

of tensile stesses. Equation (2) has the physicai significance

that the tensile stresses o(o) acting in the region l.rl > I

create a field of sources olr, which generates in this region a

displacement field opposite to the fieid generated directiy by

the forces o(ta) localized in the zone l-ri < i. Taking the

symmerry of the problem into account: "Lt-tl 
: 4 ({), *"

can rewrite Eq. (2) in the form

i oi,G,u)K{x,E,t':)dt=<D(x,o:), (3)

where the kernel is given by the expression

K(x, l, a) = Gl"@ - t, e) + GlzG + E, e),

and

I

O(x't':1 = a(o:\ | G!'(x- !'o)dt'
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Irreversible fracture processes in materials are known to

be accompanied by a characteristic puised acoustic radiation,

or acoustic emission (AE). The sources of the AE signals are

the growing cracks themselves.

A numerical solution of the problem of the dynamics and

radiation from a hnite crack subjected to tensile sffesses

showsl that the instantaneous application of a load to the edge

of a crack causes it to open up and move by an oscillating

route to the next static position. This suggests that the response

of the crack to an applied force is a resonance phenomenon'

The same conclusion can be drawn on the basis of an analysis

of the numerical solution of the problem of the dynamics the

edges of a crack subjected to a harmonic exciting fotc&;

according to the analysis, the frequenc] og of maximum re-

sponse depends only on the dimensions of the formative crack

and on the elasiic properties of the medium. For exampie' if
thePoisson ratio is v :0.25, we find that o9 = C/2l,whete
C; is the longitudinal wave velocity , and 2l is the length of the

crack. Unfortunately, definite conclusions as to the nature of
the resonances cannot be made on the basis of these numerical

calculations. However, it is readily verified that the resonance

behavior of the crack is determined to a large extent by Ray-

leigh surface waves propagating along its edges.

We consider a two-dimensional crack of length 2/, which

is situated in a medium subjected to uniform tensile stresses

o(t).
According to Ref. 3, the spectrum of normai displace-

ments generated by the expanding crack can be described by

means of the integral representation

u,(x,2,<,t)= _Lo,,rr,to)G!,(z,x- E,u)dt, (1)

where U.(x, z, c,l) is the z-component of the displacement

spectrum in the body, or2(x, u) is the spectrum of normal

eiastic stressers acting in the plane z : 0 drawn through the

crack, and CN1z, x - t, ,) is the corresponding component of
the dynamic 

'Green's 
tensor for free-surface boundary condi-

tions. According to Eq. (1), it is necessary to know the stress

o., in the entire plane z : 0 in order to determine the dis-

.!
l

r
I

55 Acoust. Phys. 39{1), Jan'-Feb. 1993 1063-7710/93/01 0055-07 $ 10.00 O 1993 American lnstitute of Phvsics 55



b
O,J

0,?

0,1

*J -J -t ,.tgt I t0 /00 t000

FIG. 1. Empirical graphs of parameters of AE signals vs tbe iength I of

formetive cracks. a) AE signal eneryy E; b) dorrinant frequeocy / ia tbe

AE signal sPectra-

We note that Eq. (3) is exact and represents a Fredholm

inteeralequationofthefirstkind'Thecomponentofthe
GrJn's tensor Glused in Eq. (3) has the form

G:"(x -f, z = 0) = (U2n) i (vtMe-u'z n '*r1-ut'1etk(x -E) dk, (4)
40 4r0 420 0J0 4w 4t0 nfl 470 4800p0 Ip? tlo 

\

FIG. 2. Solitary AE pulses recorded gt instsnts of discrete'crack growth
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FIG. 3. Nonlineer spectral vsristions during the evolution of acoustic emission with the formation of an even subharmonic (from a

physical experiment on the fracture of a composite matenal). a) Narrowband AE signal spectrum; b) A-E signal spectrum with high-

frequeney harmonic components; c) AE signal sPectrum with an even subhannomc; d) contrnuous wrdeband AE signal sPectrum'
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FIG. 4. Nonlinear spectral variations during the, evolutioc of acoustic emission with the formation of an even subharmomc (from a

physicaiexperimentonthefractureof reinforcedconcrete). a).f : II5kLIz,262kl{z; b) 115,262, 147,23O;c)115,262, 147,23O,

77, r85; d) rts, 262, r47, 23O,77, 185, 377, 2m, 4o9 ktlz-

where M.: -Qt? - t?)tpr(t), N : 2ikv/rtF(k), v1,, : (?
- kfi)''', k7 and kl are th€."longitu"dinal and mnwerse wave

numbers, F(k) : (2f - 6)' - 4l(V1\ is the so-cailed Ray-

leigh determinant, and p is the shear modulus- The direct
substitution of the Green's function (4) in F4. (3) excludes is
analytical solution for ail practical pu{pose{i, because the inte-
grai in Eq. (4) can be evaluated analytically only in the far
field. The corresponding asymptotic expansion of the. Green's
function has the form

G!, $ - f) =,4 exp(rkn I x - | | ) + I | (&1 1 x - I ; xt 2) Cexp(ikr I x - f | )
+ (krlx- g;tt21Oexp(ikrlx- I l)l + . . . (t
where A, B, C, and D a"re constants, which depend on the

Poisson ratio of the medium, and kp is the Rayleigh wave

number, which is the real root of the equation F(k) : 0. The

first term in Eq. (5) represents a Rayleigh surface wave, and

the second and third tenns represent rapidly decaying longitu-
dinal and transverse bulk waves propagating aiong the surface

z=0,

57 Acoust. Phys. 39(1), Jan.-Feb' 1993

Since we are interested primarily in resonance phenome-

na, which we shail consider to be associated with Rayleigh
waves propagating along the edges of a crack, it is natural to
keep only the Rayleigh branchJthe f,rrst term of the expansion
(5)l in the Green's function G|; this makes sense for any jx

- f | , despite the asymptotic character of Eq. (5). In other
words, we represent the Green's function by the approximate
expression

G!,(x - l)= Aexp(ikp rx - I l). (6)

We see al once that the coefficient /t enters into both
sides of the integral equation (3) as a factor. We therefore
drop it in the solution. The substitution of Eq. (6) in Eq. (3)

reduces the latter to the form

i ":"tt,c,;)[exp(/k6 | x- I l)+ exp(ikp (x+ f))ld{

= fZa{a)lkfl sin kp /. exp(lkp 1), X> t. Q)

It is interesting that the simplified equation (7) is solved

40 540 t00! Eqp 20q0 ?540 30q0 r4g
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FIG. 5. Results of the numerical simulation of two coupied aonlinear oscillalors (at = ez : 0.5, b: l0) for various values of thc
bifurcotion pararneter x. a) x : 0.1; b) .x : O.l4; c) x : 0.21; d) d. : 0.24.
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exactly. I-et us assume, in fact, that the solution o| has the
form-

oi, (x , a) = /(o) 6 (x - /), (g)

where fir^r) is a function yet to be determined and d(.r - D is
the Dirac delta function, and let us subsritute F4. (g) in (7). Ir
is readily verified by appropriate transformarions thar U. e)
is satisfied if

f (6) = (2 o (Q) | kp ) tg(&R /)

Consequently, the total distribution of the unknown stresses
beyondthelimitsof thecrack(at lxl > f is

oi,(x,o>)=(2o(<,:)lkp)tg(kRl)[6(r_r)+S(r+/)] (9)
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The quantities of interest, i.e., the normal displacements
of the edges of the crack, are readiiy calculated by means of
Eg. €) and the integral representation (1), in which we need
to set z = 0. Making use of the fact that oo(u) = -o(<,l) at
Irl < / and going through simple but raiher cumbersome
transformations, we obtain

2iA(t:\ c'rskpxUi@,o:1= (l-------). i.rt(1.kp cos*a/

We recatl tnat ffqx, co) : 0 at l.xl > / as a result of the
boundary conditions, which follow from the symmetry of the
problemaboutz:0.

It is readily perceived that the amplitude lf,e, or) in Eq.
(10) becomes infinitefor ftpl : rl2 + rn, n : -0, 

1, 2,..-, or
for Qtfl2)Qn + 1) : 21, indicating the onset of resonanee.

(10)
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where f is the phase shift of the symmetric Rayleigh mode in
reflection, and n is an integer, we at once deduce the above

reiation a, : QrCgl2I)(2n + 1). The fact that the displace-

ment ampiitudes U.o become infinite at resonance is evidence

of the crudeness of the approximate model used here, in which
damped bulk acoustic waves and their associated losses, i.e.,
iosses ia acousiic radiation from the oscillating crack or in
acoustic emission per se, are completely'ignored iformalY'
this assumption is a consequence of the relation lRl : 1).'

The inverse Fourier transformation of Eq. (1Q) is needed

in order to obtain a lime-dependent solution Ul@, t). We

calculate U!1x, t) for the important special case of an instanta-

neously applied load o(r) : ooh(t), which simulates instanta-

neous crack formation [here ft(r) is the Heaviside unit step

tunction). we now have o(co) : iool2ru, and the expression

tor u.o(x, r) has the form

- osACp 1 I cos(cux/Cp),--,u
u!(x,t) i - - [l- --: ..=le-tatdcs' (I2)

t -* u)2 ' cos(<,r//Cp)

Using the well-known representation6

l*
-s

cosP<,.r l= - t

(-1)i

we caiculate the integral (12) by the method of residues. As a

result of this operation and several simple transformations' we

find that at t > 0

u! @, t)

The existence of only odd resonances in this case is a conse-

quence of lhe symmetry of the probiem. Thus, within the very

crude approximation used here, a crack of length 2/ is a reso-

nator something fke a fwo-mirror Fabry-Perot interferometer
rvith resonance frequencies on : rCRl2I - (2n * 1), where

Cn = ulkn is the Rayleigh wave phase velociry. The reflection

coefficient R for two surface waves propagating along the

edges (we call this wave pair a symmetric Rayleigh mode for
brevify) from the tip of the crack is equal to -1 in the given

approximation. In accordance with the well-known resonance

condition for a two-mirror resonator:

a

-21+\Y 
= fin,

Cp
(1 1)

of the crack as a resonator and the fact that the oscillations are

damped in Eq. (13)1. Moreover, the given model does not

describe the monotonic opening of the crack to its static posi-

tion.
We note that the omission of the complete Green's func-

tion from Eq. (3) and the subsequent numerical soiution of this

equation on a computera yield results consistent with numerical

calculationsl'z by other methods.
It follows from Eq. (13) that the fundamental frequency

of the excited waves becomes lower, and their energy increas-

es as the crack grows; this relationship has been confirmed by

appropriate experiments Gig. 1).

Consequently, the crack can in fact be regarded as a

certain acoustic resonator driven at the instant when the tip of
the crack grows iarger. Indeed, physicai experiments show that

the AE signals are in the form of isolated trains of damped

oscillations, whose occurrence correlates with discrete times of
crack growth (Fig. 2). The evolution of the AE signai specua

with increasing load has the foilowing characteristics.
When microdefects originate in the material in the initial

stage of loading, the'AE signal spectrum represents a narrow

line, whose maximum occurs at relativeiy high ultrasonic

frequencies (Fig. 3a). As the defects enter subsequent stages of
growth and interact, transformations are observed in the AE
spectra in that the maximum shifts into a lower fiequency

range. This process is accompanied by the onset of high-fre-
quency harmonic components in the spectrum (Fig. 3b).

With a further increase in the external load, an even

subharmonic component is formed in the AE signai spectra

ffig. 3c), and in the final stage of active tiacfure the spectrum

becomes continuous and wideband (Fig. 3d). The stage involv-
ing the formation of a wideband noise specfium is preceded by

the onset of multiple-frequency even harmonics in some cases

and by.the onset of combination frequencies in other cases

(Fig.+).
These facts lead to the assumption that the evolution of

AE is accompanied by bifurcations anaiogous to those encoun-

tered in the inception of dynamic chaos. This hypothesis pro-

vides the foundation of a mathematicai model of AE in the

form of a system of coupied nonlinear oscillators, each corre-

sponding to an individual crack-
The initial displacement in one of the interacting oscilia-

tors can be adopted as the bifurcation parameter. Stepped

increments of the bifurcation parameter simuiate the growth of
one of the interacting cracks.

The coupling of the oscillators simulates the coupling of
the cracks through radiation. The osciilators are made quad-

ratically nonlinear by virnre of the fact that the elasticity of a

crack in tension is substantiaily smaller than in compression.
To avoid further compiications of the modei, we consider

two osciilators, assuming that their coupiing and the damping

forces are linear and that the coupling and damping coeffi-
cients and the eigenfrequencies of the oscillators are constants.

The equations of this modei can be written in the form

i + znri + o1Q, + a62) + by = o,

i + zn;y + ully + ast21+ bx = o
( 1,t;

We choose the initial displacement of the trrst osciilator as

the bifurcation parameter. We track its int'luence on the struc-

tural transformation of the dynamic regime of nonlinear osctl-

lations on the basis of the corresponding spectral variations.

SosAltCp :
I i=t

Ao:-(.2i -I)trlZ

(- l)i * 1 cos [(21 - \@xl2l)1 trC.
sin[(2i - 1) zirl.[Qi- I){ttc*l2l)]z

(13)

It foilows from Eq. (13) that the displacements of the edges of
the crack represent the superposition of undamped modes with
resonance frequencies @j = rCnl2l(2i - L), i : 1,2,..., in

the given approximation, i.e., without radiation losses' We see

at once that the amplitudes of the corresponding normal modes

(harmonics) are proportional to llai for an exemal excitation

in the form of a step function. We shali therefore include the

mode at the fundamental resonance ag = tcpl2l in the ensu-

ing discussion. This value of the fundamental frequency cdo is

apiroximateiy 1.5 times the values calcuiated numerically.2

The difference is attributable to the fact that radiation of bulk
waves by the crack is not taken into account. Another conse-

quence of this omission, as already mentioned, is the excursion

of the amplitude to infinity [or, related to this, the infinite 0

59 Acoust. Phys. 39{1), Jan.-Feb. 1993 Krylov et al. 59
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['IG. 6. Results of the numerical simulation of two coupled nonlinear oscillators (at = h : 0.5, b : 0.5) for various values of tbe
bifurcationparameterr. a).r: 0.03; b).x :0.05; c).r:0.08; d)d:0.11.

This approach enabies us to explain certain transformations
previousiy observed in AE signal spectra in physical experi-
ments.

A numerical simuiation of the system (14) has shown that
when the initial displacement of the fust oscillator is increased,
and provided that the coupling coeffrcient D is sufficientiy iarge

{b ) b", = 1), the spectrum of the second osciliator acquires
the second subharmonic, wllereas the spectrum of the first
oscillator changes very little (Fig. 5a).

A further increase in the initial dispiacement of the first
oscillator is accompanied by an increase in the number of even
subharmonics of the second oscillator. The spectrum of the
first osciliator still does not contain any subharmonics (Figs.
5b and 5c).

When the eontrol parameter exc€eds a certain critical
value, the spectrum of the second oscillator becomes continu-
ous (Fig. 5d). The spectrum of the first oscillators still does
not exhibit any visible changes.

It is evident from Fig. 5 that the transiiion to a continuous
spectrum in the second osciliator is analogous to the transition
to chaos as a consequence of a series ofperiod-doubling bifur-
cations. In our case, however, these bifurcations are instigated
by a transient rather than a periodic process, where the number
of bifurcations appears to be finite. A numerical experiment

60 Acoust. Phys. 39(1), J3n.:ps5. 1993

has disclosed that the number of such bifurcations increases as
the damping of each oscillator decreases. The calculated values
of the bifurcation parameter have been used to calculate con-
stants analogous to the Feigenbaum constant. They are found
to depend on the damping coefficient h : ht : hz'

Damping
mefficient

h

0,3
0,03
0,003
0.0003

Number of Convergence

bifurcations constant

nE
I t,5lJ
4 4,611
s 9,179
5 tt,237

The spectra obtained for the second osciliator agree qualitative-
ly with the AE signal spectra in Fig. 3.

The transition to chaos proceeds differentiy if the coupling
coefficient D is smaller than b".. As the initiai displacement of
the first oscillator is increased, the spectrum of the second
oscillator acquires the third subharmonic. Next comes a cas-
cade of period-doubling bifurcations of this subharmonic until
finally chaos sets in. We note that another avenue to the for-
mation of chaos in the evolution of AE - tfuough the onset of
combination frequencies - could possibly be expiained by
ilcreasing the number of oseillators in the proposed model.
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Calculation of an acoustic field in a coastal zone of the ocean
with an intricate bottom relief
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A new tracing technique is described for rays joining a so\uce and receiver in the propagation of sound in a

coastal wedge with an intricate bottom relief, where the sound velocity depends only on the depth. It is

established that a significant gain in computing. speed can be achieved by concentrating the receivers in a

limited region of space" Examples. of calculations are discussed.
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The calculanon of acoustic fieids in the ocean with an

intricate bottom relief is still an underdeveloped activify, de-

spite the fair number of papers (e.g., Refs. 1-3) on methods

and algorithms designed to soive this complex problem. The

main difficulty is the large volume of calcuiations needed to

determine the acoustic field in situations of practicai interest.

For example, ray tracing requires the emanation of an enor-

mous number of rays from the source within the limits of a

prescribed sector of angles of emergence in order for neigh-

boring rays to be of the same rype and thus to ensure conver-

gence of the iterative scheme4 used to find the ray incident on

FIG. 1. Deviation of horizonlal projections of ray paths from the position

of the receiver array. 1) Source; 2) site of the vertical line array of receiv-

ers; 3) shore; 4) isobaths; 5) horizontal projections of ray paths' The 4 axis

is orthogonal to the lhe 1-2.

and Struaures, Proceedings [in Russian], Part 1, Rostov-on-Don (1984),

pp.30-31.
sV. V. Krylou and A. P. Ponomarev, Alast. Ztt. 32, 622 (1986) [Sov.

Phys. Acoust. 32, 386 (1986)1.
6A. I. Markushevich, S&orr Course in the Theory of Analytic Funaions lin
Russianl, Nauka, Moscow (1978).

Translated by J. S. Wood

the receiver. In some cases the "fan" of rays must have a

density of 100 rays per degree both in the azimuth angle and

in the vertical angie. This means that millions of rays are

needed in order to calcuiate the acoustic fieid in the entue

water. region covered by the rays.
It. is not always necessary, however, to calculate the

acoustic freld in the entire region under investigation. If a

large number of receivers is used, it is theoretically possible to

simplify the problem on the basis of a priori information about

the angle of emergence of rays leaving the source and entering

the vicinities of the receivers. In practice, however, such

information is very diffrcult to obtain. Nonetheiess, a major

simplif,ication of the probiem can be achieved on this basis in
at least one case, which is described beiow. Results of calcuia-

tions will also be given.

FIG. 2. Tracing arouod a limit ring. a) Sector of angles of emergence; 2)

limit ring; 3) starting point for tracing; 4) region in which q < 0; 5) regioa

il which z ) 0. The dots represent the points at which the ray paths are

calculated in the plale of angles of emergence.
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