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Abstract 
 
A common scenario in engineering is that of a system which operates throughout 
several sequential and distinct periods of time, during which the modes and 
consequences of failure differ from one another. This type of operation is known as a 
phased mission, and for the mission to be a success the system must successfully 
operate throughout all of the phases. Examples include a rocket launch and an 
aeroplane flight. Component or sub-system failures may occur at any time during the 
mission, yet not affect the system performance until the phase in which their 
condition is critical. This may mean that the transition from one phase to the next is a 
critical event that leads to phase and mission failure, with the root cause being a 
component failure in a previous phase. A series of phased missions with no 
maintenance may be considered as a Maintenance Free Operating Period (MFOP). 
This paper describes the use of a Petri net to model the reliability of the MFOP and 
phased missions scenario. The model uses a form of Monte-Carlo simulation to 
obtain its results, and due to the modelling power of Petri Nets, can consider 
complexities such as multi-mission periods, component failure rate 
interdependencies, and mission abandonment. The model operates three different 
types of Petri Net which interact to provide the overall system reliability modelling.  

Keywords:  phased missions, Petri nets, maintenance free operating period, MFOP 

1. Introduction 
 
The success of a mission may depend upon the completion of a sequential series of 
objectives of varying time intervals. If this is the case, the mission may be referred to 
as a phased mission, with each individual time period referred to as a phase. The 
phases of a mission may be distinguished by phase number, time interval, system 
configuration, desired tasks, performance metrics, etc, and may differ from one 
another such that the logic, modes and consequences of system failure are different. 
An example of this type of mission is a military aircraft flight pattern, with phases 
such as taxi to runway, take-off, ascent, level flight to target, ingress, attack, egress, 
level flight to runway, descent, land, and taxi to base. Combining several sequential 
phased missions without maintenance may be considered to produce a Maintenance 
Free Operating Period (MFOP). These are discussed further in Section 2. 
 
There is a need to express the phase and mission failures in terms of the various 
system, sub-system or component level (basic event) failures that can cause them. It 
is also necessary to be able to quantify the top event occurrence probability and 
frequency from the reliability information of the basic events. 
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The main techniques used in solving phased mission problems are fault tree analysis 
(FTA), Markov analysis and simulation. FTA is a widely-used method of assessing 
the failure probability of non-repairable systems, representing the causes of a 
particular failure in terms of basic events (such as component failures). This has been 
extended to phased missions where each phase has a different failure logic model, 
making the modelling of the scenario more complex. The first publication of work 
regarding phased missions and fault trees was written by Esary and Ziehms [1]. They 
considered the analysis of non-repairable systems, regarding the success of a mission 
as being the successful completion of all the phases therein. Conversely, the failure of 
a mission is expressed as the loss of function of the system during at least one of the 
phases. The probability of this is the mission unreliability. The paper shows how the 
phase fault trees can be combined into one overall mission fault tree. An effective 
solution method is given for mission but not phase unreliability. The key problem is 
the calculation, as efficiently as possible, of either the exact value or the bounds of 
the mission unreliability metric. Burdick et al [2] took this method further, making 
the computation of the overall mission fault tree more efficient by allowing the 
exclusion or combination of certain cut sets, and discussed methods of estimating 
bounds to the mission unreliability.  
 
A problem in these earlier works is the lack of ability to compute the probability of 
system failure in each phase. This may be necessary or useful where the 
consequences of phase failure differ. Andrews and La Band [3], using non-coherent 
fault trees (NOT gates included), developed a method of establishing this. They 
combined the causes of system failure by the end of phase p with the causes of system 
success by the end of phase p-1. The Binary Decision Diagram method was used to 
speed up both the qualitative and the quantitative analysis. 
 
If the independence between component failures cannot be ensured, or if the system 
being analysed is repairable, then it may be necessary to use a Markov approach to 
find mission unreliability [4]. The Markov method considers each possible state of 
the system and the transitions between these states in terms of component failures or 
repairs. Transition rates correspond to the failure and repair rates of components from 
which the probability of phase success and failure can be established. By considering 
the conditions at the end of one phase as the initial conditions of the next phase, and 
reapplying the method throughout the mission, a value of mission reliability can be 
reached. It is not possible to find the mission reliability by simply multiplying the 
phase reliabilities, due to the statistically dependent nature of the phases. At phase 
change times, the system must occupy a state allowing both phases to function, to 
progress to the next phase or the mission will fail at these times. Smotherman and 
Zemoudeh [5] consider a non-homogeneous Markov model (where the component 
failure rates change with time), and generalise state transitions to include phase 
changes as well as component failure. They solve this model using a numerical 
solution, an adapted fifth-order Runge-Kutta method. In a later paper, Smotherman 
and Geist [6] describe a similar approach but include a reward model to provide 
figures of merit for work performed.  
 
Simulation techniques can also be used to model phased missions, as their 
computational nature allows the inclusion of many complexities of analysis which 
cannot be considered with techniques such as Fault Tree Analysis or Markov 
modelling. This includes using a broad range of different component failure time 



221 

distributions and repair queuing, as well as all the benefits of the other methods, such 
as component failure rate interdependence and repairable basic events. [7] discusses 
phased missions and simulation. 
 
One method that allows simple graphical representation as well as significant 
modelling power is the Petri net. Petri nets are explained in Section 3. They can be 
applied to the field of phased missions, and allow for the inclusion of many different 
system designs.  
 
This paper discusses the analysis of Phased Missions using Petri nets, and provides a 
method of modelling Maintenance Free Operating Periods. Discussed in Section 2, 
this is a figure describing the usefulness of a system with regards to carrying out 
military missions. To date, no papers have been published discussing the combined 
analysis of Phased Missions and MFOP. 

2. Maintenance Free Operating Period 
 
The concept of the Maintenance Free Operating Period, or MFOP, was first proposed 
in 1996 by the UK Ministry of Defence as a means of aiding manufacturers of 
military aircraft to meet its needs [8]. These needs include better operational planning 
capability, improved operational availability of aircraft and reduced running costs.  
 
The MFOP is described as a period of operation during which the equipment must be 
able to carry out all its assigned missions without any maintenance action and without 
the operator being restricted in any way due to system faults or limitations [9]. 
Attached to this idea is that of MFOP Survivability, which is the confidence level of 
successfully completing the MFOP. Following each MFOP is a period, known as a 
Maintenance Recovery Period or MRP, where the aircraft is repaired to such a level 
that it is capable of completing the next MFOP. This may not necessarily involve 
repairing all systems, rather those that are necessary for the completion of all the 
forthcoming missions.  
 
Five different areas have been identified as being important to achieving a high value 
of MFOP with a high confidence level [10]: 

 
1. Inherent reliability of systems and components: By improving the quality 

and reliability levels of these, and understanding better the reasons for 
their failure and what can be done to prevent them, an increase in the 
reliability of the platform will result.  

 
2. Redundant Systems: MFOP has not been designed to provide complete 

failure-free operation throughout the period; rather, it involves the 
understanding that, upon the failure of a system or component, the 
platform should be able to withstand this and continue its operation. 
Redundant systems provide the most obvious way of doing this. They will 
usually remain dormant until the failure of a system, at which point they 
are brought online to provide the same functions as the now failed system. 
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3. Reconfigurable Systems: Another way of allowing the platform to 
continue normal operation after the failure of a system is by providing 
reconfigurable systems. These are usually online during a mission, but 
with the ability to alter their behaviour to take into account the failure of a 
system. 

 
4. Prognostics: The ability to detect the likely failure of a component or 

system within the next MFOP would be of great benefit. Health 
Monitoring systems, greater understanding of the life expectancy and 
reasons for failures of systems and components, and better inspection 
methods will allow a system to be replaced before an MFOP, with 
confidence that it would not have lasted to the next MRP. 

 
5. Diagnostics: The location and isolation of a particular failed component or 

system will enable the reconfiguration of systems or mission objectives. 
 
There is currently a tool available which is capable of analysing these aspects of 
MFOP, known as the Ultra-Reliable Aircraft Model (URAM) [11, 12]. A bespoke 
discrete event simulation tool, it is capable of considering many aspects of real-life 
reliability analysis, such as various reliability distributions, environmental 
considerations, usage wear and many aspects of maintenance (repair queuing, spares 
management, etc.). The approach presented in this paper is designed to extend the 
modelling capability currently provided by URAM. 

3. Petri Nets 
 
First created in 1962 and reported in the thesis of C.A. Petri [13], Petri Nets (PNs) are 
an adaptable and versatile, yet simple, graphical modelling tool used for dynamic 
system representation. The various modelling applications of PNs to date include use 
in computer software and hardware systems, manufacturing systems and reliability 
evaluation. They have undergone much adaptation and variation from the initially 
proposed diagrams, and, often confusingly, many of these variants exist concurrently, 
which could be a factor hindering their wide adoption throughout industry. 
 
A Petri Net is a bipartite directed graph with two types of node: places, which are 
circular, and transitions, shown as bars. Places link only to transitions, and vice versa, 
using directed arcs, and each may have infinite inputs/outputs. It is possible for a 
place to have several arcs to or from the same transition, which is condensed down 
into a single arc with a weight or multiplicity, and denoted by a slash through the arc 
with a number next to it [14]. If there is no slash, the multiplicity is assumed to be 1. 
The dynamic aspect of the Petri Net is formed by tokens or marks, which abide within 
places, and are passed between them by the switching of transitions. An example of 
transition switching is shown in Figure 1. 

Figure 1 – Transition Enabling and Switching 
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The figure shows a transition which has three places as inputs. The first place has an 
arc weight of 2, the middle one has a single multiplicity while the third has a weight 
of 4. Because the number of tokens in all of the input places to the transition contains 
at least the weight-number of tokens, that transition can be said to be enabled. 
 
Although the original Petri Nets [13] did not have a concept of time, transitions can 
also be associated with a delay, which forces the transition to postpone switching for 
a period upon being enabled [15]. This delay can be zero (in which case the transition 
is drawn as a solid bar), deterministic or randomly sampled from a given 
distribution[16-18]. In Figure 1, there is a time delay of t applied once the transition 
is enabled.  
 
Finally, once the time period has passed and the transition remains enabled, the 
switching takes place. This process removes and ‘destroys’ the number of tokens in 
each input place corresponding to the multiplicity of the relevant arc, and ‘creates’ the 
weight-number of tokens in each output place. This is shown in Figure 1 where the 
switching removes 2, 1 and 4 tokens from each of the input places, and deposits three 
tokens in the output place. The transition is then disabled, as the input places do not 
have the correct number of tokens. 
 
It is possible to prevent a transition switching by using an inhibitor arc. This special 
arc, shown by a line with a small circle on the end instead of an arrow, connects only 
an input place to a transition: see Figure 2. It acts such that if the number of tokens 
within the place is at least that of the arc weighting, the transition cannot switch, 
regardless of whether it is enabled or not [19]. In Figure 2, the otherwise enabled 
transition can wait for time t to expire, but cannot switch – no tokens are moved by 
that transition while the inhibiting place contains the relevant number of tokens. 

 

 
Figure 2 – Inhibitor arc preventing switching 

 
It is the switching of the transitions which represents the dynamic behaviour of the 
Petri net model – the ability to transport tokens around the net, thereby changing the 
marking with each switch. The net marking is a term given to the distribution of the 
tokens throughout the whole Petri net, and each form of it represents a different 
system state. It is this which is of interest to the analyst. 
 
The following section details a new method of modelling phased missions and 
MFOPs, using three distinct types of PNs. 
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4. Modelling Phased Missions 
 
Mura and Bondavalli [20], in their paper detailing a method of modelling phased 
missions using Petri nets, employed a concept of having two distinct Petri nets to 
model the situation. The first was the Phase Net, which showed the progression from 
the first phase of the mission to the last. It allowed for the mission profile to include 
changes of mission, for instance where a primary objective has to be abandoned in 
favour of a secondary objective, thus making the method more relevant. The current 
phase then fed into and affected a separate PN known as the System Net, which 
governed the system failure throughout the mission. 
 
The method  proposed in this paper to model phased missions extends this approach, 
allowing analysis of a more complex scenario, and offers a more structured modelling 
technique, using three different types of net: 
 

• Phase Petri Nets (PPN) – Each phase of the mission has a given 
failure logic which expresses the system failure in that phase in terms 
of component or basic event failures. This logic is expressed here in 
Petri net form. 

• Component Petri Net (CPN) – Fails components according to 
randomly sampled times and allows their repair at the end of missions 

• Master Petri Net (MPN) – Governs phase progression, mission 
abandonment and entering period of maintenance for components. 

 
The different Petri nets must interact, and that function is provided by arcs linking 
places and transitions in the relevant Petri nets. The following sections consider these 
elements of the proposed model in more detail: 

4.1.  Phase Petri nets 
 
The PPNs express the system failure logic in a particular phase, in terms of the basic 
events or component failures. In order to develop the PPNs they must be able to 
model the logic gates which combine the basic event occurrences in the correct way. 
In standard Fault Tree logic, the two main fundamental logic operators are AND and 
OR gates, shown along with their Petri net representations in Figures 3 and 4. A 
transition has AND logic built in, so it is simple to model its behaviour – all input 
places must have a token to switch the ‘gate’. An OR gate has one place and one 
transition for each input to the gate. If any one of these inputs gets a token, the 
corresponding transition will switch, depositing it in the output place. 
 

    
 Figure 3 – Petri Net AND Gate  Figure 4 – Petri Net OR Gate   
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It is also possible to model NOT gates. These are used in non-
coherent fault trees and have been used in the modelling of 
Phased Missions [3]. In the Petri Net for a NOT gate, shown in 
Figure 5, two transitions are required to model the correct 
behaviour. In the Figure, where an arc is two-way, that arc is 
combined into a single arrow, including where an arc inhibits in 
one direction but is normal in the other. The right-hand 
transition places a single token in the output place (top) only if 
there is no token in the input place (bottom left). Once a token 
exists in the input place, the output place becomes unmarked 
by the left-hand transition, and no more tokens can enter it until the input place 
becomes unmarked.  
 
The PPNs take inputs from the components in the CPN that feed into immediate 
transitions. These then combine the various basic event inputs into cascading higher 
level events, using AND, OR, NOT or possibly other logical permutations, with each 
output place of a gate referring to the occurrence of an intermediate failure event (this 
could be a more serious occurrence than a basic event or the failure of a sub-system 
or system). The top event is failure of the overall system or platform in that particular 
phase. Figure 6(a) shows the general layout of an example PPN, while Figure 6(b) 
shows the equivalent Fault Tree. The place corresponding to “TOP” has five input 
transitions, making it a 5-input OR Gate. Of these, two take their tokens directly from 
component failures provided by the CPN, indicated by the dotted arrow in Figure 
6(a), while three come from intermediate events. Inputs to Gate 1 are linked by OR 
logic; these are Gate 4 and a component failure. Similarly, Gate 2 is an OR gate, with 
Gate 5 and two component inputs. Gates 5 and 3 are AND gates with three inputs 
each. Note that the presence of inhibiting arcs from a place to its input transition 
prevent an infinite number of tokens being passed to it. 

 

 
Figure 6(a) – Example PPN  Figure 6(b) – Example Phase Fault Tree   
 

Figure 5 – Petri Net 
NOT Gate 
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4.2. Component Petri net 
 
The Petri net models of basic event failures, which may combine to cause top event 
failure, are located in the Component Petri Net (CPN). This net also models the repair 
of the basic events during the MRP. 
 
A basic event is very simply modelled using Petri Net depiction, using two places to 
define a ‘working’ and ‘failed’ state, and two or more transitions to model the shift 
between these states. An example CPN is shown in Figure 7. 

  
Figure 7 – Example Component PN Figure 8 – Component Dependencies 

 
If component n fails, the token currently in the “compt n up” place is passed to 
“compt n down”, which then feeds into a PPN. The model is designed to consider 
repair only after all missions in a particular sequential set (this can be considered to 
be a Maintenance Free Operating Period or MFOP) have been completed. When this 
period of repair, called a Maintenance Recovery Period or MRP, is entered, a token is 
placed in the “repairing” place at the top of Figure 7. Each component which has 
failed will find that its immediate transitions are now enabled, and these switch, 
placing a token back in the “compt n up” place and the repairing place. Once all 
components have been repaired, the immediate end-of-repair transition switches. 

4.2.1. Dependency Modelling  

It is conceivable that dependencies can exist in the system and failures do not occur 
independently. In this circumstance a component failure probability may change 
depending upon the functionality or failure of a different component or system. A 
simple example of this is the processor and fan in a computer – if the fan fails, the 
processor overheats and fails at a higher rate. This behaviour is dealt with in the 
model by allowing a component to have more than one failure transition. Only one of 
these can be enabled at any one time, depending on the components or systems which 
cause the acceleration of failure, as shown in Figure 8. In the figure, the dependent 
component has four failure transitions, due to the dependency between itself and 
components A and B. Figure 8 shows the dependent and independent components to 



227 

be operational. This state means that transitions A.B, .BA and BA. are inhibited, while 

transition B.A  is operational. If, however, A fails but B remains operational, then 
transition BA would be enabled, while all the others, including A.B, would be 
inhibited. If a component fails, and causes the failure rate of the operational 
component to increase, it can be regarded that the operational component is now more 
‘stressed’. The nature of this stress may vary: it may be due to heat, pressure, 
humidity, vibration. Whatever the cause, the new time to failure can now be sampled 
from an alternative distribution. 

4.3. Master Petri Net 
 
The net which controls the operation of the simulations and governs the performance 
of phases and missions is called the Master Petri Net. This is a complex net and as 
such is considered in three interdependent sections, as shown in Figure 9: 
 

• Control of the sequence of phases, and failure or success of each mission 
(solid line border) 

• Ending each mission or MFOP and performing repairs (dotted line border) 
• Abandoning the mission due to specific component or system failures (dashed 

line border). 
 
The section surrounded by a solid line controls the changing of the phases. Each 
phase has a place which, if marked, indicates that that phase is currently in operation. 
These output to timed transitions whose switching times are the lengths of the phases. 
Whilst these are often considered to be deterministic, it is possible to have randomly 
sampled phase lengths. 
 

 
Figure 6 – Master Petri Net 
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If a particular phase top event occurs, then a token will be present in its “Phase n 
failure” place. Only when a phase has failed and the mission is currently in that phase 
can the system and mission be considered a failure. This means that if a phase has 
completed before the top event occurs, then the mission will still complete, whereas if 
a phase failure occurs before that phase has started, the mission will fail upon phase 
commencement, and a token will be placed in the “System Failed” place. This style of 
modelling phases was adapted from [19]. 
 
If the mission manages to complete successfully, it is possible either that another 
mission will take place straight away, before any maintenance, or that the system will 
enter a period of maintenance. If the former is true, the system will replace the phases 
token back in the phase 1 place and restart the mission. If not, the token enters the 
“repair” section of the Master PN. This is the dotted part of Figure 9. The phases 
token will enter the “MFOP Finished” place to begin system repair, as mentioned in 
the previous section. Once repair has finished, a new set of maintenance-free missions 
can begin. Only after all of these have completed and a token is placed in the 
“Simulation success” place, or a mission failure occurs, is the simulation considered 
to be over. 
 
The final section has a dashed border in the figure and allows for a mission to be 
abandoned. This abandonment occurs when a particular basic or intermediate event 
occurs, which will lead to a safety related feature or the system being unable to 
provide the necessary functions for a particular mission objective, such as loss of 
weapons capability preventing attack. In such cases, the platform is returned to base 
to undergo repairs. This means that the overall set of missions will cease and an MRP 
will begin. 
 
For the modelling of abandonment, once the “Phase 1” place is marked, it also marks 
a “Mission Active” place. If a particular component or sub-system fails, the relevant 
place representing its failure will be marked, causing an immediate transition to 
become enabled. This will place a token in the “Mission Abandoned” place. Each 
phase place has a corresponding immediate transition which, if the mission is active 
and that particular phase is operational, becomes enabled and places the phase token 
in the “MFOP Finished” place, to begin the MRP. 

5. Conclusions 
 
Petri nets provide an effective, easily understood and powerful way of predicting the 
reliability of a system or platform. The Petri net technique extends to the area of 
Phased Missions, where complexities of modelling such as component failure rate 
dependencies, varying distributions and repairable systems are included. The 
technique can also be used to model a basic Maintenance Free Operating Period, 
without extensive modelling of many of the expected future technologies which will 
allow high values of this metric.  
 
The model outlined in this paper can account for various reliability considerations 
such as component, system, phase, mission and MFOP failure, mission abandonment, 
the MRP and component failures affecting the failure rate of another component.  
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