

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288385362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

219

Phased Mission Modelling of Systems with Maintenance Free Operating Periods
Using Simulated Petri Nets

S. P. Chew, S. J. Dunnett and J. D. Andrews

Department of Aeronautical and Automotive Engineering, Loughborough University,
Loughborough, Leics, UK

Abstract

A common scenario in engineering is that of a system which operates throughout
several sequential and distinct periods of time, during which the modes and
consequences of failure differ from one another. This type of operation is known as a
phased mission, and for the mission to be a success the system must successfully
operate throughout all of the phases. Examples include a rocket launch and an
aeroplane flight. Component or sub-system failures may occur at any time during the
mission, yet not affect the system performance until the phase in which their
condition is critical. This may mean that the transition from one phase to the next is a
critical event that leads to phase and mission failure, with the root cause being a
component failure in a previous phase. A series of phased missions with no
maintenance may be considered as a Maintenance Free Operating Period (MFOP).
This paper describes the use of a Petri net to model the reliability of the MFOP and
phased missions scenario. The model uses a form of Monte-Carlo simulation to
obtain its results, and due to the modelling power of Petri Nets, can consider
complexities such as multi-mission periods, component failure rate
interdependencies, and mission abandonment. The model operates three different
types of Petri Net which interact to provide the overall system reliability modelling.

Keywords: phased missions, Petri nets, maintenance free operating period, MFOP

1. Introduction

The success of a mission may depend upon the completion of a sequential series of
objectives of varying time intervals. If this is the case, the mission may be referred to
as a phased mission, with each individual time period referred to as a phase. The
phases of a mission may be distinguished by phase number, time interval, system
configuration, desired tasks, performance metrics, etc, and may differ from one
another such that the logic, modes and consequences of system failure are different.
An example of this type of mission is a military aircraft flight pattern, with phases
such as taxi to runway, take-off, ascent, level flight to target, ingress, attack, egress,
level flight to runway, descent, land, and taxi to base. Combining several sequential
phased missions without maintenance may be considered to produce a Maintenance
Free Operating Period (MFOP). These are discussed further in Section 2.

There is a need to express the phase and mission failures in terms of the various
system, sub-system or component level (basic event) failures that can cause them. It
is also necessary to be able to quantify the top event occurrence probability and
frequency from the reliability information of the basic events.

220

The main techniques used in solving phased mission problems are fault tree analysis
(FTA), Markov analysis and simulation. FTA is a widely-used method of assessing
the failure probability of non-repairable systems, representing the causes of a
particular failure in terms of basic events (such as component failures). This has been
extended to phased missions where each phase has a different failure logic model,
making the modelling of the scenario more complex. The first publication of work
regarding phased missions and fault trees was written by Esary and Ziehms [1]. They
considered the analysis of non-repairable systems, regarding the success of a mission
as being the successful completion of all the phases therein. Conversely, the failure of
a mission is expressed as the loss of function of the system during at least one of the
phases. The probability of this is the mission unreliability. The paper shows how the
phase fault trees can be combined into one overall mission fault tree. An effective
solution method is given for mission but not phase unreliability. The key problem is
the calculation, as efficiently as possible, of either the exact value or the bounds of
the mission unreliability metric. Burdick et al [2] took this method further, making
the computation of the overall mission fault tree more efficient by allowing the
exclusion or combination of certain cut sets, and discussed methods of estimating
bounds to the mission unreliability.

A problem in these earlier works is the lack of ability to compute the probability of
system failure in each phase. This may be necessary or useful where the
consequences of phase failure differ. Andrews and La Band [3], using non-coherent
fault trees (NOT gates included), developed a method of establishing this. They
combined the causes of system failure by the end of phase p with the causes of system
success by the end of phase p-1. The Binary Decision Diagram method was used to
speed up both the qualitative and the quantitative analysis.

If the independence between component failures cannot be ensured, or if the system
being analysed is repairable, then it may be necessary to use a Markov approach to
find mission unreliability [4]. The Markov method considers each possible state of
the system and the transitions between these states in terms of component failures or
repairs. Transition rates correspond to the failure and repair rates of components from
which the probability of phase success and failure can be established. By considering
the conditions at the end of one phase as the initial conditions of the next phase, and
reapplying the method throughout the mission, a value of mission reliability can be
reached. It is not possible to find the mission reliability by simply multiplying the
phase reliabilities, due to the statistically dependent nature of the phases. At phase
change times, the system must occupy a state allowing both phases to function, to
progress to the next phase or the mission will fail at these times. Smotherman and
Zemoudeh [5] consider a non-homogeneous Markov model (where the component
failure rates change with time), and generalise state transitions to include phase
changes as well as component failure. They solve this model using a numerical
solution, an adapted fifth-order Runge-Kutta method. In a later paper, Smotherman
and Geist [6] describe a similar approach but include a reward model to provide
figures of merit for work performed.

Simulation techniques can also be used to model phased missions, as their
computational nature allows the inclusion of many complexities of analysis which
cannot be considered with techniques such as Fault Tree Analysis or Markov
modelling. This includes using a broad range of different component failure time

221

distributions and repair queuing, as well as all the benefits of the other methods, such
as component failure rate interdependence and repairable basic events. [7] discusses
phased missions and simulation.

One method that allows simple graphical representation as well as significant
modelling power is the Petri net. Petri nets are explained in Section 3. They can be
applied to the field of phased missions, and allow for the inclusion of many different
system designs.

This paper discusses the analysis of Phased Missions using Petri nets, and provides a
method of modelling Maintenance Free Operating Periods. Discussed in Section 2,
this is a figure describing the usefulness of a system with regards to carrying out
military missions. To date, no papers have been published discussing the combined
analysis of Phased Missions and MFOP.

2. Maintenance Free Operating Period

The concept of the Maintenance Free Operating Period, or MFOP, was first proposed
in 1996 by the UK Ministry of Defence as a means of aiding manufacturers of
military aircraft to meet its needs [8]. These needs include better operational planning
capability, improved operational availability of aircraft and reduced running costs.

The MFOP is described as a period of operation during which the equipment must be
able to carry out all its assigned missions without any maintenance action and without
the operator being restricted in any way due to system faults or limitations [9].
Attached to this idea is that of MFOP Survivability, which is the confidence level of
successfully completing the MFOP. Following each MFOP is a period, known as a
Maintenance Recovery Period or MRP, where the aircraft is repaired to such a level
that it is capable of completing the next MFOP. This may not necessarily involve
repairing all systems, rather those that are necessary for the completion of all the
forthcoming missions.

Five different areas have been identified as being important to achieving a high value
of MFOP with a high confidence level [10]:

1. Inherent reliability of systems and components: By improving the quality

and reliability levels of these, and understanding better the reasons for
their failure and what can be done to prevent them, an increase in the
reliability of the platform will result.

2. Redundant Systems: MFOP has not been designed to provide complete

failure-free operation throughout the period; rather, it involves the
understanding that, upon the failure of a system or component, the
platform should be able to withstand this and continue its operation.
Redundant systems provide the most obvious way of doing this. They will
usually remain dormant until the failure of a system, at which point they
are brought online to provide the same functions as the now failed system.

222

3. Reconfigurable Systems: Another way of allowing the platform to
continue normal operation after the failure of a system is by providing
reconfigurable systems. These are usually online during a mission, but
with the ability to alter their behaviour to take into account the failure of a
system.

4. Prognostics: The ability to detect the likely failure of a component or

system within the next MFOP would be of great benefit. Health
Monitoring systems, greater understanding of the life expectancy and
reasons for failures of systems and components, and better inspection
methods will allow a system to be replaced before an MFOP, with
confidence that it would not have lasted to the next MRP.

5. Diagnostics: The location and isolation of a particular failed component or

system will enable the reconfiguration of systems or mission objectives.

There is currently a tool available which is capable of analysing these aspects of
MFOP, known as the Ultra-Reliable Aircraft Model (URAM) [11, 12]. A bespoke
discrete event simulation tool, it is capable of considering many aspects of real-life
reliability analysis, such as various reliability distributions, environmental
considerations, usage wear and many aspects of maintenance (repair queuing, spares
management, etc.). The approach presented in this paper is designed to extend the
modelling capability currently provided by URAM.

3. Petri Nets

First created in 1962 and reported in the thesis of C.A. Petri [13], Petri Nets (PNs) are
an adaptable and versatile, yet simple, graphical modelling tool used for dynamic
system representation. The various modelling applications of PNs to date include use
in computer software and hardware systems, manufacturing systems and reliability
evaluation. They have undergone much adaptation and variation from the initially
proposed diagrams, and, often confusingly, many of these variants exist concurrently,
which could be a factor hindering their wide adoption throughout industry.

A Petri Net is a bipartite directed graph with two types of node: places, which are
circular, and transitions, shown as bars. Places link only to transitions, and vice versa,
using directed arcs, and each may have infinite inputs/outputs. It is possible for a
place to have several arcs to or from the same transition, which is condensed down
into a single arc with a weight or multiplicity, and denoted by a slash through the arc
with a number next to it [14]. If there is no slash, the multiplicity is assumed to be 1.
The dynamic aspect of the Petri Net is formed by tokens or marks, which abide within
places, and are passed between them by the switching of transitions. An example of
transition switching is shown in Figure 1.

Figure 1 – Transition Enabling and Switching

223

The figure shows a transition which has three places as inputs. The first place has an
arc weight of 2, the middle one has a single multiplicity while the third has a weight
of 4. Because the number of tokens in all of the input places to the transition contains
at least the weight-number of tokens, that transition can be said to be enabled.

Although the original Petri Nets [13] did not have a concept of time, transitions can
also be associated with a delay, which forces the transition to postpone switching for
a period upon being enabled [15]. This delay can be zero (in which case the transition
is drawn as a solid bar), deterministic or randomly sampled from a given
distribution[16-18]. In Figure 1, there is a time delay of t applied once the transition
is enabled.

Finally, once the time period has passed and the transition remains enabled, the
switching takes place. This process removes and ‘destroys’ the number of tokens in
each input place corresponding to the multiplicity of the relevant arc, and ‘creates’ the
weight-number of tokens in each output place. This is shown in Figure 1 where the
switching removes 2, 1 and 4 tokens from each of the input places, and deposits three
tokens in the output place. The transition is then disabled, as the input places do not
have the correct number of tokens.

It is possible to prevent a transition switching by using an inhibitor arc. This special
arc, shown by a line with a small circle on the end instead of an arrow, connects only
an input place to a transition: see Figure 2. It acts such that if the number of tokens
within the place is at least that of the arc weighting, the transition cannot switch,
regardless of whether it is enabled or not [19]. In Figure 2, the otherwise enabled
transition can wait for time t to expire, but cannot switch – no tokens are moved by
that transition while the inhibiting place contains the relevant number of tokens.

Figure 2 – Inhibitor arc preventing switching

It is the switching of the transitions which represents the dynamic behaviour of the
Petri net model – the ability to transport tokens around the net, thereby changing the
marking with each switch. The net marking is a term given to the distribution of the
tokens throughout the whole Petri net, and each form of it represents a different
system state. It is this which is of interest to the analyst.

The following section details a new method of modelling phased missions and
MFOPs, using three distinct types of PNs.

224

4. Modelling Phased Missions

Mura and Bondavalli [20], in their paper detailing a method of modelling phased
missions using Petri nets, employed a concept of having two distinct Petri nets to
model the situation. The first was the Phase Net, which showed the progression from
the first phase of the mission to the last. It allowed for the mission profile to include
changes of mission, for instance where a primary objective has to be abandoned in
favour of a secondary objective, thus making the method more relevant. The current
phase then fed into and affected a separate PN known as the System Net, which
governed the system failure throughout the mission.

The method proposed in this paper to model phased missions extends this approach,
allowing analysis of a more complex scenario, and offers a more structured modelling
technique, using three different types of net:

• Phase Petri Nets (PPN) – Each phase of the mission has a given
failure logic which expresses the system failure in that phase in terms
of component or basic event failures. This logic is expressed here in
Petri net form.

• Component Petri Net (CPN) – Fails components according to
randomly sampled times and allows their repair at the end of missions

• Master Petri Net (MPN) – Governs phase progression, mission
abandonment and entering period of maintenance for components.

The different Petri nets must interact, and that function is provided by arcs linking
places and transitions in the relevant Petri nets. The following sections consider these
elements of the proposed model in more detail:

4.1. Phase Petri nets

The PPNs express the system failure logic in a particular phase, in terms of the basic
events or component failures. In order to develop the PPNs they must be able to
model the logic gates which combine the basic event occurrences in the correct way.
In standard Fault Tree logic, the two main fundamental logic operators are AND and
OR gates, shown along with their Petri net representations in Figures 3 and 4. A
transition has AND logic built in, so it is simple to model its behaviour – all input
places must have a token to switch the ‘gate’. An OR gate has one place and one
transition for each input to the gate. If any one of these inputs gets a token, the
corresponding transition will switch, depositing it in the output place.

 Figure 3 – Petri Net AND Gate Figure 4 – Petri Net OR Gate

225

It is also possible to model NOT gates. These are used in non-
coherent fault trees and have been used in the modelling of
Phased Missions [3]. In the Petri Net for a NOT gate, shown in
Figure 5, two transitions are required to model the correct
behaviour. In the Figure, where an arc is two-way, that arc is
combined into a single arrow, including where an arc inhibits in
one direction but is normal in the other. The right-hand
transition places a single token in the output place (top) only if
there is no token in the input place (bottom left). Once a token
exists in the input place, the output place becomes unmarked
by the left-hand transition, and no more tokens can enter it until the input place
becomes unmarked.

The PPNs take inputs from the components in the CPN that feed into immediate
transitions. These then combine the various basic event inputs into cascading higher
level events, using AND, OR, NOT or possibly other logical permutations, with each
output place of a gate referring to the occurrence of an intermediate failure event (this
could be a more serious occurrence than a basic event or the failure of a sub-system
or system). The top event is failure of the overall system or platform in that particular
phase. Figure 6(a) shows the general layout of an example PPN, while Figure 6(b)
shows the equivalent Fault Tree. The place corresponding to “TOP” has five input
transitions, making it a 5-input OR Gate. Of these, two take their tokens directly from
component failures provided by the CPN, indicated by the dotted arrow in Figure
6(a), while three come from intermediate events. Inputs to Gate 1 are linked by OR
logic; these are Gate 4 and a component failure. Similarly, Gate 2 is an OR gate, with
Gate 5 and two component inputs. Gates 5 and 3 are AND gates with three inputs
each. Note that the presence of inhibiting arcs from a place to its input transition
prevent an infinite number of tokens being passed to it.

Figure 6(a) – Example PPN Figure 6(b) – Example Phase Fault Tree

Figure 5 – Petri Net
NOT Gate

226

4.2. Component Petri net

The Petri net models of basic event failures, which may combine to cause top event
failure, are located in the Component Petri Net (CPN). This net also models the repair
of the basic events during the MRP.

A basic event is very simply modelled using Petri Net depiction, using two places to
define a ‘working’ and ‘failed’ state, and two or more transitions to model the shift
between these states. An example CPN is shown in Figure 7.

Figure 7 – Example Component PN Figure 8 – Component Dependencies

If component n fails, the token currently in the “compt n up” place is passed to
“compt n down”, which then feeds into a PPN. The model is designed to consider
repair only after all missions in a particular sequential set (this can be considered to
be a Maintenance Free Operating Period or MFOP) have been completed. When this
period of repair, called a Maintenance Recovery Period or MRP, is entered, a token is
placed in the “repairing” place at the top of Figure 7. Each component which has
failed will find that its immediate transitions are now enabled, and these switch,
placing a token back in the “compt n up” place and the repairing place. Once all
components have been repaired, the immediate end-of-repair transition switches.

4.2.1. Dependency Modelling

It is conceivable that dependencies can exist in the system and failures do not occur
independently. In this circumstance a component failure probability may change
depending upon the functionality or failure of a different component or system. A
simple example of this is the processor and fan in a computer – if the fan fails, the
processor overheats and fails at a higher rate. This behaviour is dealt with in the
model by allowing a component to have more than one failure transition. Only one of
these can be enabled at any one time, depending on the components or systems which
cause the acceleration of failure, as shown in Figure 8. In the figure, the dependent
component has four failure transitions, due to the dependency between itself and
components A and B. Figure 8 shows the dependent and independent components to

227

be operational. This state means that transitions A.B, .BA and BA. are inhibited, while

transition B.A is operational. If, however, A fails but B remains operational, then
transition BA would be enabled, while all the others, including A.B, would be
inhibited. If a component fails, and causes the failure rate of the operational
component to increase, it can be regarded that the operational component is now more
‘stressed’. The nature of this stress may vary: it may be due to heat, pressure,
humidity, vibration. Whatever the cause, the new time to failure can now be sampled
from an alternative distribution.

4.3. Master Petri Net

The net which controls the operation of the simulations and governs the performance
of phases and missions is called the Master Petri Net. This is a complex net and as
such is considered in three interdependent sections, as shown in Figure 9:

• Control of the sequence of phases, and failure or success of each mission
(solid line border)

• Ending each mission or MFOP and performing repairs (dotted line border)
• Abandoning the mission due to specific component or system failures (dashed

line border).

The section surrounded by a solid line controls the changing of the phases. Each
phase has a place which, if marked, indicates that that phase is currently in operation.
These output to timed transitions whose switching times are the lengths of the phases.
Whilst these are often considered to be deterministic, it is possible to have randomly
sampled phase lengths.

Figure 6 – Master Petri Net

228

If a particular phase top event occurs, then a token will be present in its “Phase n
failure” place. Only when a phase has failed and the mission is currently in that phase
can the system and mission be considered a failure. This means that if a phase has
completed before the top event occurs, then the mission will still complete, whereas if
a phase failure occurs before that phase has started, the mission will fail upon phase
commencement, and a token will be placed in the “System Failed” place. This style of
modelling phases was adapted from [19].

If the mission manages to complete successfully, it is possible either that another
mission will take place straight away, before any maintenance, or that the system will
enter a period of maintenance. If the former is true, the system will replace the phases
token back in the phase 1 place and restart the mission. If not, the token enters the
“repair” section of the Master PN. This is the dotted part of Figure 9. The phases
token will enter the “MFOP Finished” place to begin system repair, as mentioned in
the previous section. Once repair has finished, a new set of maintenance-free missions
can begin. Only after all of these have completed and a token is placed in the
“Simulation success” place, or a mission failure occurs, is the simulation considered
to be over.

The final section has a dashed border in the figure and allows for a mission to be
abandoned. This abandonment occurs when a particular basic or intermediate event
occurs, which will lead to a safety related feature or the system being unable to
provide the necessary functions for a particular mission objective, such as loss of
weapons capability preventing attack. In such cases, the platform is returned to base
to undergo repairs. This means that the overall set of missions will cease and an MRP
will begin.

For the modelling of abandonment, once the “Phase 1” place is marked, it also marks
a “Mission Active” place. If a particular component or sub-system fails, the relevant
place representing its failure will be marked, causing an immediate transition to
become enabled. This will place a token in the “Mission Abandoned” place. Each
phase place has a corresponding immediate transition which, if the mission is active
and that particular phase is operational, becomes enabled and places the phase token
in the “MFOP Finished” place, to begin the MRP.

5. Conclusions

Petri nets provide an effective, easily understood and powerful way of predicting the
reliability of a system or platform. The Petri net technique extends to the area of
Phased Missions, where complexities of modelling such as component failure rate
dependencies, varying distributions and repairable systems are included. The
technique can also be used to model a basic Maintenance Free Operating Period,
without extensive modelling of many of the expected future technologies which will
allow high values of this metric.

The model outlined in this paper can account for various reliability considerations
such as component, system, phase, mission and MFOP failure, mission abandonment,
the MRP and component failures affecting the failure rate of another component.

229

6. Acknowledgement

The research reported in this paper has been carried out with financial support from
BAE Systems and EPSRC.

7. References

[1] Esary, J.D., and Ziehms, H., "Reliability Analysis of Phased Missions,"
Reliability and Fault-Tree Analysis, 1975, pp. 213-236.

[2] Burdick, G.R., Fussell, J.B., and Rasmuson, D.M., "Phased mission analysis: a
review of new developments and an application," IEEE Transactions on Reliability,
Vol. R-26, 1977, pp. 43-49.

[3] La Band, R.A., and Andrews, J.D., "Phased mission modelling using fault tree
analysis," Proc. of the 15th Advances in Reliability Technology Symposium (ARTS),
Mech. Eng. Publications for IMechE, 2003, pp. 81-97.

[4] Clarotti, C.A., Contini, S., and Somma, R., "Repairable Multiphase Systems -
Markov and Fault-Tree Approaches for Reliability Evaluation," edited by G.
Apostolakis S. Garribba and G. Volta, Plenum Press, New York, 1980, pp. 45-58.

[5] Smotherman, M., and Zemoudeh, K., "A non-homogeneous Markov model for
phased-mission reliability analysis," IEEE Transactions on Reliability, Vol. 33, No.
5, 1989, pp. 585-590.

[6] Smotherman, M.K., and Geist, R.M., "Phased mission effectiveness using a
nonhomogeneous Markov reward model," Reliability Engineering and System Safety,
Vol. 27, 1990, pp. 241-255.

[7] Altschul, R.E., and Nagel, P.M., "The Efficient Simulation of Phased Fault
Trees," Proceedings of the Annual Reliability and Maintainability Symposium, 1987,
pp. 292-296.

[8] Appleton, D.P., "Future Offensive Aircraft - maintenance free operating periods,"
Proceedings of the R, M & T for Future Projects Seminar, 1996.

[9] Hockley, C.J., "Design for success," Proceedings - Institution of Mechanical
Engineers, Vol. 212, No. G, 1998, pp. 371-378.

[10] Relf, M.N., "Maintenance-Free Operating Periods - The Designer's Challenge,"
Quality and Reliability Engineering International, Vol. 15, 1999, pp. 111-116.

[11] Jones, J.A., Warrington, L., and Davis, N., "Integrated modelling of system
functional, maintenance and environmental factors," Beyond 2001 - The reliability
and maintainability odyssey continues; 48th Annual International Symposium on
Product and Integrity - The Reliability and Maintainability Symposium (RAMS);
IEEE, Piscataway, NJ, 2002, pp. 399-403.

[12] Warrington, L., Jones, J.A., and Davis, N., "Modelling of maintenance, within
discrete event simulation," Beyond 2001 - The reliability and maintainability odyssey
continues; 48th Annual International Symposium on Product and Integrity - The

230

Reliability and Maintainability Symposium (RAMS); IEEE, Piscataway, NJ, 2002, pp.
260-265.

[13] Petri, C.A., "Kommunikation mit automaten," PhD Thesis, 1962,

[14] Malhotra, M., and Trivedi, K.S., "Dependability modeling using Petri-nets,"
IEEE Transactions on Reliability, Vol. 44, No. 3, 1995, pp. 428-440.

[15] Ramchandani, C., "Analysis of asynchronous concurrent systems by timed Petri
nets," PhD Thesis, 1974.

[16] Beyaert, B., Florin, G., and Lonc, P., "Evaluation of computer systems
dependability using stochastic Petri nets," Digest 11th Annual Symposium on Fault-
Tolerant Computing, IEEE Computer Society, 1981, pp. 79-81.

[17] Molloy, M., "Performance analysis using stochastic Petri nets," IEEE
Transactions on Computers, Vol. 31, No. 9, 1982, pp. 913-917.

[18] Ajmone-Marsan, M., Conte, G., and Balbo, G., "A class of generalized
stochastic Petri nets for the performance evaluation of multiprocessor systems," ACM
Transactions on Computer Systems, Vol. 2, No. 2, 1984, pp. 93-122.

[19] Volovoi, V., "Modeling of system reliability Petri nets with aging tokens,"
Reliability Engineering and System Safety, Vol. 84, No. 2, 2004, pp. 149-161.

[20] Mura, I., and Bondavalli, A., "Markov Regenerative Stochastic Petri Nets to
Model and Evaluate Phased Mission Systems Dependability," IEEE Transactions on
Computers., Vol. 50, No. 12, 2001, pp. 1337-1351.

