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Abstract- This paper presents a robust nonlinear generalized 
predictive control (RNGPC) strategy applied to a permanent 
magnet synchronous motor (PMSM) for speed trajectory 
tracking and disturbance rejection. The nonlinear predictive 
control law is derived by using a newly defined design cost 
function. The Taylor series expansion is used to carry out the 
prediction in a finite horizon.  No information about the 
external perturbation and parameters uncertainties are needed 
to ensure the robustness of the proposed RNGPC.  Moreover, 
to maintain the phase current within the limits using saturation 
blocks, a cascaded structure is adopted and an anti-windup 
compensator is proposed.  The validity of the proposed control 
strategy is implemented on a dSPACE DS1104 board driving in 
real-time a 0.25 kW PMSM.  Experimental results have 
demonstrated the stability, robustness and the effectiveness of 
the proposed control strategy regarding trajectory tracking 
and disturbance rejection. 
 
Index Terms — Permanent magnet synchronous motor 

(PMSM), nonlinear generalized predictive control (NGPC), 
disturbance observer, anti-windup compensator, stability, 
robustness. 
 

I. INTRODUCTION 

HE PMSM has been gradually replacing DC and 
induction motors in a wide range of drive applications 

such as: robotic actuators, computer disk drives, domestic 
applications, automotive and renewable energy conversion 
systems.  Despite its advantages, such as high efficiency, 
high power density and high torque to current ratio, the 
PMSM remains complicated and difficult to control when 
good transient performance under all operating conditions is 
desired. This is due to the fact that the PMSM is a nonlinear, 
multivariable, time varying system subjected to unknown 
disturbances and variable parameters.   

Over the past decades, various robust control techniques 
have been developed in order to improve the performances 
of the PMSM in the presence external disturbances. 
However, the widely used approach consists in using linear 
control theory with the disturbance estimate [1]-[2]. In [3], 
the robustness is ensured by using H∞ control theory.  
Disturbance observers which relay on time delay control 
approach have been reported in [4]. In [5], an observer is 
designed based on a Lyapunov function, to deduce the 
voltage disturbance caused by uncertainties. To take into 
account nonlinearities of the PMSM, different approaches 
have been adopted such as nonlinear control [6] and sliding 
mode control [7]. 

The main objective in the control of a PMSM is to design 
a robust controller for rotor speed trajectory tracking while 

regulating the d-axis current, in the presence of varying 
parameters and unknown load torque. Discrete time model 
predictive control (DTMPC) for nonlinear dynamic 
processes can improve some desirable features, such as 
robustness which can be handled using the internal model 
control (IMC) [8]-[9]. More detailed literature review on the 
robustness features of DTMPC for nonlinear systems can be 
found in [10]. However, it is still quite hard to adopt this 
strategy for nonlinear systems having fast dynamics such as 
electrical machines; as it requires heavy online computation.  

In order to apply MPC to fast nonlinear systems, many 
approaches have been proposed [11]-[15]. In [11] and [12], 
an optimal predictive control for a continuous time system is 
developed. Chen et al. [13] has proposed a NGPC based on 
Taylor series expansion to a certain order for Mutli-Input 
Multi-Output (MIMO) systems. The control order is taken to 
be different from zero to analyze the stability of the closed 
loop system when the input relative degree is higher than 
four. Robust nonlinear predictive control for a SISO system 
is introduced in [14], where the external disturbance is 
estimated and compensated in the control law. In [15] the 
robust NGPC is extended to MIMO systems.  

Nowadays, the MPC has been successfully applied for 
control of power electronics converters and electric drives.  
Hedjar et al [16]-[17] have designed a cascaded NGPC 
based on Taylor series expansion for an induction motor 
(IM).  It is to be noted that NGPC based on Taylor series 
expansion can’t remove completely the steady state error 
under unknown disturbances. In [18]-[19], the robustness of 
the classical NGPC is improved by modifying its cost 
function. This strategy has proved to be effective when 
applied to the speed control of the PMSM [20].  However, 
the d-axis current regulation is not guaranteed when the 
electrical parameters vary. 

The MPC of a PMSM with unknown load torque based on 
linear plant models has been investigated in [21], where the 
decoupling method of current and voltage is used to obtain a 
linear model.  In [22], the General predictive control (GPC) 
has been employed to generate the required torque to 
implement the DTC technique.  Constrained MPC of PMSM 
is studied in [23]. 

In this paper, the NGPC based on the Taylor series 
expansion is revised to enhance the robustness in controlling 
a PMSM, which is a nonlinear system with fast dynamics. A 
novel performance index is proposed and the controller is 
developed under the assumption that there is no disturbance 
and no mismatched parameters. A cascade structure for the 
controller is adopted.  This structure allows directly limiting 
the magnitude of the armature phase current by using 
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saturation blocks. However, when the control saturates, the 
closed loop performances deteriorate significantly; resulting 
in a high overshoot and a long settling time. This is due to 
the fact that the RNGPC contains an integral action. The 
windup phenomenon occurs, especially, when large set-point 
changes are made. To suppress this undesired effect, known 
as integrator windup, an anti-windup compensator based on 
the well known conditional integral [24] method is used. 

The rest of the paper is organized as follows. In Section 
II, the PMSM model is defined by a bilinear state space 
model. In Section III, the RNGPC for MIMO nonlinear 
system is presented.  The proposed controller is applied to 
PMSM in Section IV.  Experimental results are given in 
Section VI. 

 

II. MATHEMATICAL MODEL OF THE PMSM 

The mathematical model of the PMSM in the (d-q) rotor 
reference is given by: 
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id and iq, are respectively d-axis and q-axis components of 
the armature current; ud and uq are d-axis and q-axis 
components of the supply voltage; ωr is the rotor speed and 
TL is the load torque, considered an unknown disturbance 
and ignored in the synthesis of the controller. R, Ld and Lq, 
are respectively the per-phase armature resistance and the d-
axis and q-axis inductances.  φv is the permanent magnet 
flux; p is the number of pole pairs; J is the moment of inertia 
and B is the coefficient of friction. 

The variables to be controlled are the rotor speed ωr and 
the d-axis component of the armature current id. 

 

III. ROBUST NONLINEAR GENERALIZED PREDICTIVE 
CONTROL 

In this section, the GNPC developed in [13]-[15] is 
revised in order to enhance the robustness of the closed loop 
system without using a disturbance observer.  

Consider a multivariable nonlinear system with the same 
input relative degree ρ for the output y: 
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x, u and y are the vectors of, respectively, the state (d-q 
components of the armature current and rotor speed), the 
input (d-q components of the armature voltage) and the 
output (d component of the armature current and the rotor 
speed).  f(x) and h(x) are assumed to be continuously 
differentiable.  

 
A. Design of the controller   

The objective of the RNGPC is to find the best input such 
that the future plant output y(t+T) can track a future 
reference trajectory yr(t+T) in presence of perturbation.  This 
can be reduced to solving the minimization of the cost 
function defined by:  

 ( ) ( )( ) ( ) ( )( )1
2

ℑ = + − + + − +
T

r ry t T y t T y t T y t T  (3) 

where T > 0 is the prediction horizon. 
The addition of an integral action in the controller design 

allows the achievement of a zero steady state error under the 
mismatched parameters and external perturbation. This can 
be accomplished by choosing the following cost function. 
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To solve the nonlinear optimization problem (4), the 
predicted term I(t+T) is expanded into a (ρ+1)th order Taylor 
series expansion using the Lie derivative h(x) along a field 
of vectors f(x).  The Taylor series expansion yields: 
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The ( )m m× matrices T and Id are given by: 

 { } { }, ,   ;   1, ,1= =L LdT diag T T I diag  (6) 

From the fact that ρ represents the relative degree for the 
output y, it follows that:  
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Invoking (4), (5) and (6) with (7) yields: 
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The derivative of the performance index of (8) with 
respect to command u(t) gives: 
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The necessary condition for the optimal control over the 
prediction horizon is given by: 
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From (9) and (10), it follows that the optimal control can 
be derived as follows: 
 ( ) ( ) ( ) ( )1−= Ψu t G x K T x  (11) 

The matrix K is given by: 
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The nonlinear predictive controller (11) contains an 
integral action. Hence, if the closed loop system is stable, 
the proposed controller eliminates completely the steady 
state error regardless the presence of unknown perturbations 
and mismatched parameters.  

 
B. Stability analysis  
 The stability of the closed-loop system can be illustrated 
by proving the convergence of the output tracking error to 
the origin. 

Combining (7) with the controller (11) yields: 
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From (13), it follows that the characteristic polynomial 
matrix equation of the closed loop system is as follows: 
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The condition of the stability can be established by 
calculating the roots of the above polynomial matrix for 
each input relative degree ρ.  For ρ=1 to 4, theses roots are 
given respectively by (15) to (18) hereafter.  
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Since the predictive time is positive, the real parts of the 
roots are negatives only for 4ρ < . Therefore, the closed loop 
system is stable if the relative degree 3ρ ≤ . Moreover, it can 
be shown that a smaller predictive time will result in a fast 
response at the expense on the control effort due to the high 
controller gain.  Reducing the controller gain by increasing 
the predictive time may cause high oscillations to appear or, 
even worse, render the system unstable.  

 
C. Limitation of the control effort 

When the dynamic trajectory is changing very fast, the 
control input may saturate immediately, and the integral part 
in the controller may cause high oscillations to appear. To 
avoid this drawback, an anti-windup compensator is 
introduced in the controller (11).  

For the RNGPC, if saturation should occur, an integral 
component ū(t) is added to the control in order to 
compensate the saturation’s effect by reducing the effect of 
the integral action I(t) [24]. This leads to the following 
controller: 
 ( ) ( ) ( ) ( ) ( )( )1−= Ψ +u t G x K T x u t  (19) 
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block.  Its expression is given by: 
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IV. CASCADED RNGPC FOR A PMSM  

Fig. 1 depicts a cascaded RNGPC for a PMSM.  This 
structure allows to directly limiting the armature phase 
currents using saturation blocks.  The initial system (1) is 
decomposed into two sub-systems in a cascaded form. The 
inner loop is used to regulate the currents by acting on the 
armature voltage, whereas the outer loop is employed to 
track the speed reference by considering the q-axis current 
as the input control.  

 

 
 
Fig. 1.  Cascaded structure of the RNGPC 
 

A. RNGPC for the inner loop 
The predictive control is applied to the electrical equations 

in order to provide the components of the armature voltage 
which minimizes the difference between the current 
component and the current reference. From (1), it follows 
that the electrical equations can be expressed as:  
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The state vector x is composed of the d-axis and q-axis 
components of the armature current (id, iq).The input vector 
u is made of the d-axis and q-axis components of the 
armature voltage (ud, uq).  The output vector y consists of the 
d-axis and q-axis components of the armature current (id, iq), 
while f and g are defined as 
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The input relative degree of the outputs is 1ρ = , since the 
control appears in the first derivative.  Therefore, the inner 
loop under the RNGPC is asymptotically stable. 
Consequently, the controller given by (19) can be applied 
easily to track the desired trajectory of the components of 
current under the constraints on the armature voltage. 

 
B. RNGPC for the outer loop 

The predictive control is applied to the equation of motion 
in order to provide the optimal q-axis current reference 
under the constraints on the armature phase currents. The 
mechanical equation is given by: 
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x and u are respectively the rotor speed rω and the q-axis 
component of the armature current iq; the output y is rotor 
speed rω , while f and g are defined as  
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It can be shown that the input relative degree of the outer 
loop is 1ρ = . Hence, the controller (19) can be applied easily 
to track the desired speed reference despite the saturation. 

 

V. LABORATORY TEST SETUP 

A laboratory prototype is developed to experimentally test 
the validity of the proposed RNGPC scheme for a PMSM 
drive.  This scheme is shown in Fig. 2.  Fig. 3 depicts the 
experimental setup, which consists of a 10-pole, 0.25 kW, 
7A and 42V PMSM coupled to a permanent magnet DC 
generator, a speed sensor, an IGBT inverter and a dSPACE 
DS1104 board. 
               

 
 
Fig. 2. Block diagram of the proposed RNGPC scheme for a PMSM. 

 

 
 
Fig. 3. Laboratory test setup. 

 
The DS1104 board is a powerful and popular tool for 

rapid control prototyping and for Hardware-in-the-Loop 
(HIL) applications.  It is equipped with two processors: 
Motorola MPC8240 processor (master) with PPC 603e core 
and on-chip peripherals, 250 MHz and a Texas Instruments 
TMS320F240 DSP (slave), 20 MHz.  

The proposed RNGPC algorithm has been implemented 
on the main processor.  The control sampling frequency is 
set equal to 10 kHz.  The slave unit has been dedicated to the 
PWM signals generation unit, whose modulation frequency 
is set to 50 kHz, and to the management of the digital I/O 
signals.   

 

VI. EXPERIMENTAL RESULTS 

The load torque TL is an unknown disturbance, and the 
slope of the speed reference is chosen bigger than the 
maximum acceleration of the drive such that the current 
reference exceeds the maximum value in the transient. In 
this case, the saturation blocks are switched on in order to 
limit the current. The predictive time for the inner loop is 
taken as T1=5Ts=0.5ms, whereas the predictive time for the 
outer loop is chosen as T2 =50*Ts =5 ms. The ( )m m×  matrix 

µ is chosen as follows: 

 ( ) ( )
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0 10

 
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A. Performance evaluation of the anti-windup compensator 

Fig. 4 and 5 give the speed response respectively without 
(controller given by (11)) and with (controller given by (19)) 
the use of an anti-windup compensator.  As shown in Fig. 4, 
the controller eliminates the steady state error, but results in 
a large overshoot due to the saturation’s effects. Fig. 5 
shows that the overshoot observed in the previous test is 
eliminated and the settling time is improved. 

 

 
 
Fig. 4. Speed response without an anti-windup scheme 

 

 
 
Fig. 5. Speed response with an anti-windup scheme 
 

B. Tracking performance under unknown load torque   
This test is concerned with bidirectional speed control 

under variable load torque. According to the field oriented 
control, the d-axis current is forced by the control action to 
zero value. Fig. 6 gives the speed response. The response is 
characterized by strong dynamics, and the steady state error 
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is well removed. Moreover, no overshoot appears in the 
transient time despite limitation of current. 

Fig. 7 gives the dq-axis components of the armature 
current waveforms.  As shown, the field oriented control is 
satisfactorily guaranteed by maintaining the d-axis current 
null. The transient state of q-axis component is well 
controlled. Fig. 8 gives the waveform of the instantaneous 
armature phase current.  As shown, the peak-value of the 
armature current is smaller than the imposed limit during 
transients. 

 

 
 
Fig. 6. Rotor speed trajectory tracking. 

 

 
 
Fig. 7. dq-axis components of the armature current 
 

 
 
Fig. 8. Armature phase current waveform 
 

C. Uncertainty in the electrical parameters 
To verify the robustness of the drive using the proposed 

RNGPC, three electrical parameters are varied in the control 
law at t = 0.5s. The values of the rotor flux linkage, the 
armature resistance and the q-axis inductance were rapidly 
increased respectively by 50%, 80% and 50%.  The d-axis 
current is forced by the control to a non-null value. This 
permits to test the sensitivity of the d-axis current regulation 
against the variation of the electrical resistance. Indeed, the 
d-axis current reference is chosen equal to -1. In addition, 
the motor was started under unknown load torque. 

Fig. 9 shows that the steady state error disappears quickly 
despite changes in the electrical parameters and magnetic 
flux linkage. As shown in Fig. 10, the d-axis current 
regulation is insensitive to the variation of the parameters. 

 

 
 
Fig. 9. Speed response under uncertainty in the electrical parameters 

 

 
 
Fig. 10 dq-axis components of the armature current response under 
uncertainty in the electrical parameters 

 
D. Uncertainty in the mechanical parameters 

To verify the robustness of the proposed controller against 
the variation of the mechanical parameters, the values of the 
coefficient of friction and the moment of inertia were 
decreased rapidly by 80% at t = 0.5s. Fig.11 shows that the 
steady state error is eliminated and precise speed tracking is 
achieved.  

 

 
 
Fig. 11 Speed response under uncertainty in the mechanical parameters 
 

E. Performance evaluation under quick load torque change  
To verify the robustness of the proposed controller against 

the variation of the load torque, the value of load was rapidly 
increased by 100% at t = 0.5 s.  Fig. 12 and 13 give 
respectively the rotor speed trajectory tracking and the dq-
axis components of the armature current.  As shown, the 
steady state error is quickly removed under a sudden change 
of the load torque. 

minI

maxI

qi

di

qi

di
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Fig. 12. Rotor speed response under load torque variation 

 

 
 
Fig. 13. dq-axis components of the armature current response under load 
torque variation. 

 

VII. CONCLUSION 

A robust nonlinear generalized predictive controller 
(RNGPC) for a permanent magnet synchronous motor 
(PMSM) has been presented.   The objective of the proposed 
controller is to track the rotor speed trajectory while 
regulating the d -axis current in the presence of load torque 
and mismatched parameters. To this end, the existing NGPC 
is revised and a nonlinear predictive law is developed by 
using a newly defined design cost function. The proposed 
RNGPC contains an integral action, which guarantees zero 
steady state error as long as the closed loop system is stable.  
Furthermore, when the control effort is limited due to 
saturation, an anti-windup scheme is suggested to suppress 
the undesired side effect caused by the integral action. 

A laboratory prototype was developed to experimentally 
test the validity of the proposed controller.  Experimental 
results have shown its effectiveness regarding speed 
trajectory tracking and robustness.   
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