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Here we consider the design of a general subsystem model which is required to operate in series with the 
known dynamics of a plant or actuator, to achieve a desired overall system response.  The example model 
is used in series with a motion platform to emulate vehicle handling dynamics.  The method works in 
stages, first isolating the required linear response by fitting a frequency response function, then modelling 
this with a fixed order linear system in modal canonical form.  A nonlinear saturation is then optimised 
for each modal state.  The results are demonstrated for simulated and vehicle test data, and these achieve 
the principal objectives, of low state and parameter order.  Some limitations to the method emerge – 
principally that there remain challenges to extension of the model to multi-input / output operation. 
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Principal Notation 

 
ay   lateral acceleration (m/s2) 
r    yaw acceleration (rad/s2) 
   steer angle input (rad) 
 
,    Identified vehicle model subsystem, fully 

nonlinear and linearised models 
respectively. 

,    Target vehicle system, fully nonlinear and 
linearised approximation respectively 

g(j)   Linear approximation to rig / actuator 
system  

 
n    order of identified model 
fi    nonlinear function applied to ith state in  
pi, i   parameters defining nonlinear function fi 

 
i (i+ji) eigenvalues, input and output coefficients 
bi, ci, di  of canonical state space model  
 
L    subscript denoting a system response to low 

magnitude inputs, suited to simulation by a 
linear model 

NL    subscript denoting a system response to 
higher magnitude inputs, suited to 
simulation by a nonlinear model 

 
1. INTRODUCTION  
  
Recent acquisition of a six strut moving platform 

vehicle simulator at Loughborough University has 
prompted consideration of the most suitable vehicle 
model to emulate correct vehicle accelerations, within 

the motion constraints of the platform.  Motion 
platforms typically employ washout filters to control the 
limits of excursion, but these also apply dynamic 
distortion and lag.  The best model would thus 
interface directly between steering wheel / pedals and 
motion, providing platform accelerations (a) such that 
the combined dynamics of model and actuation provide 
the required response.  The input / output relationship 
is illustrated in Fig. 1; the object is to determine which 
dynamic system  will achieve the best match in 
responses a for a known platform plant g. 

 
 Nonlinear 

Vehicle sub-system 
Actuator / Low level 

Control 


 
Comparator 
Test Vehicle 
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 â  
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Fig. 1 System composition compared with vehicle 
 
The solution for  might be achieved by combining 

a vehicle model of suitable complexity with an 
approximated inverse of the simulator plant.  However 
that approach has disadvantages in identifying the plant 
inverse, but also in what constitutes ‘suitable’ for the 
model, given real-time processing constraints, and also 
the problem of identifying (eg tyre properties for) the 
vehicle model.  A solution is sought, which 
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combines  : 
i. identification of model parameters 

ii. determination of the required model order 
iii. provision of a nonlinear solution 
iv. no separate inversion of the motion control 

plant 
v. training to a given input / output combination, 

but with the ability to safely, and ideally 
accurately, react to other inputs 

 will clearly not, in isolation, represent vehicle 
dynamics, so a physics-based model is not warranted.  
The obvious approach is to employ a neural network, 
but this does not address points (ii) and (v) above; in 
particular, such a solution presents the issue of 
potentially extreme, unsafe, and certainly dynamically 
unpredictable responses, when presented with inputs 
which are different from the design scenario.  Instead, 
the approach examined here considers a novel staged 
approach, to first determine the modes required in a 
linearisation of , and then augment this system, in 
modal canonical form with one nonlinear function for 
each state.  The aim is to introduce the required 
nonlinearity with a minimum of additional parameters; 
these can then be optimised to maximise accuracy in the 
combined system output set a for a preselected set of 
test inputs . 

The proposed structure deliberately separates linear 
and nonlinear components, with the final stage 
nonlinear optimisation shaping simple saturation 
functions.  This should result in a suitably general 
model / plant combination.  The identification process 
can also be carried out rapidly, without use of the 
simulator rig, so various model order choices can be 
tested to establish a suitable trade-off between 
complexity and accuracy. 

 
2. IDENTIFICATION ALGORITHM  
  
The structure of the model subsystem is 

illustrated for a single input, three state and two output 
example, in figure 2. 

The boxed linear system is quartered to show the 
overall continuous state-space structure,  
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within which the linearisation of which we will 

term , is shown in canonical form.  With this structure, 
each nonlinear element multiplies a separate state, and 
because these are modally independent there is no 
anticipated need for further parameters to distribute the 
nonlinearity back to the state derivatives.   
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Fig. 2 Subsystem () structure, based around modal 
canonical linear state space model 

 
Each nonlinear element is modelled here by  

 1sin( tan )f p
z

p




 
 
 

 (1) 

a reduced form of Pacejka’s magic formula, chosen to 
allow variation in peak through the setting of p, and 
shape variation through , yet constraining f such that 

1
f

z





; thus for low magnitude variations in z, the 

system equates to the prescribed linear form. 
 

2.1 Linear Model Identification in the Frequency 
Domain 

The identification is focused on a key single input / 
output relationship, in this example the lateral 
acceleration response, ay, to steer input .  The 
simulator plant dynamics are first identified by 
recording the acceleration response to an acceleration 
demand applied to the motion cueing system.  A 
gaussian white noise input 

  2

dem 0,ya N  ,   = 1m/s2 (2) 

is used, and the response is recorded using an 
accelerometer mounted on the motion platform.  300 
seconds of this signal were recorded at a sampling rate 
of 1kHz, and Welch’s averaged periodogram method [1] 
was used, with a Hanning window length T = 30 
seconds to find the frequency response function g(j) 
(see Matlab function tfe).  This is illustrated in Fig. 3. 
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Fig. 3 Identified frequency response function g(j) 

 
We can see by inspection that this response closely 

approximates a constant time delay (grey line), 

   jg j e   , where  = 0.04s (3) 

As the windowing method corrupts the lower 
frequencies in the response, and equation (3) allows 
easier adjustment of measured responses a for 
comparison of results, this simplification is adopted for 
the remainder of this study.  (Though note that any 
form of simplification is not a requirement of the 
method.) 

Now, if a similar process of linear model 
identification is conducted on the test vehicle, the 
response function (j) can be derived between  and 
ay.  In practice, this involves testing on a wide straight 
section of proving ground, with the vehicle at constant 
speed and the driver applying random steer input with 
as high a bandwidth as can reasonably be achieved – 
typically max 4-6Hz.  Welch’s method then yields a 
response j) which can be combined with g(j) to 
provide an estimate of the required linear behaviour in 
: 

 
( )

( )
( )

j
j

g j

 
 


  (4) 

Fig. 4 shows how this has been done for the 
simulated test vehicle  described in Section 3, with 
both (j) and (j) illustrated by the thicker, grey 
lines.  
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Fig. 4 Simulated identification of frequency response 

functions (j) and (j) 

 
 2.2 State space formulation 

For a given model order n, the coefficients b  and 

a  for a linear time-invariant transfer function 

 1 0

1 0

( )
n

n
n n

n

s
b s b s b

a s a s a
 

   
   




 (5) 

can be approximated.  With s=j, the cost function 

 
2

( ) ( )n j j     (6) 

is applied, and the coefficients are identified by an 
iterative search using a damped Gauss-Newton method 
[2] (see Matlab function invfreqs).  The accuracy of 
fit for n(s) is clear by examining n(j) – eg for n = 4 
the result is excellent for the simulated example in Fig. 
4. 

The system is converted to state-space form, and 
then to modal canonical form by transforming the states 
using the eigenvector matrix (see Matlab function 
canon) to provide the required form 
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Finally to complete the linear model, any further 
outputs can be fitted by ordinary least squares 
regression to establish further elements ci, di.  This is 
done by simulation of the modal states z on the test 
inputs  which were used to determine (j), and for 
which records of the further outputs are also available.  
Denoting those inputs and states , z respectively, the 
secondary outputs (eg yaw acceleration r ) can be 
modelled as  

 

   1
Tr T

r

U
c

U U r t
d

 
 

 





  (8) 

where    TU z t t      

Of course within this process, any secondary output 
must encounter similar filtering by the rig actuation / 
low level control; this is the case for all six degrees of 
freedom of the rig in question however, since all motion 
is governed through a combination of strut motions in a 
Stewart platform. 
 

2.3 Nonlinear Component Identification 
The linear model is now in a form to occupy 

elements , b, c and d in Fig. 2, and to complete the 
subsystem , an optimisation is required to identify the 
remaining nonlinearity coefficients p and .  The cost 
function to achieve this is based on output errors 

ˆ( )a a  but will also need to establish a trade-off 

between retaining performance in the linear (L) region 
and achieving performance in the nonlinear (NL) region.  
Therefore an aggregated scalar cost is evaluated over 
two responses; 

         2 22 ˆ ˆNL NL L LP trace W a t a t a t a t   

 (9) 

(j)  4(j) 
(j) (j) 
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Where aL is a section of the random-steer test 
vehicle response used in Section 2.1 and aNL is the 
vehicle response from a more aggressive manoeuvre;  
aNL might be a specific test such as a J-turn or 
lane-change manoeuvre, for which the simulator is 
required to respond as accurately as possible.  W then 
provides a diagonal weighting matrix to regulate the 
relative magnitude / importance of the outputs.  The 
relative lengths of the two responses L and NL can also 
be adjusted to weight the influence of the fi. 

The cost is minimised using a constrained 
sequential quadratic programming algorithm [3] which 
operates on numerical estimates of the Hessian of the 
Lagrangian (see Matlab function fmincon). 

 
3. SIMULATION EXPERIMENT 
  
The algorithm is tested in simulation by employing 

a bicycle model for , viz 
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 (10) 

where the tyre forces Fy are determined from the simple 
four parameter Pacejka magic formula [4] as a function 
of load dependent cornering stiffness and peak force, 
and with the loads accounting for lateral transfers.  
Critically, the model also includes appropriate tyre 
relaxation delays – here modeled by first order lag terms 
each with time constant 15ms; without these, n(s) 
would be non-causal, given its requirement to 
compensate rig acceleration delays.  The forward 
speed is set to 15m/s, and the tyre model structure is 
more fully described in [5]. 

Accepting g(j) as in equation (3), and that this 
applies to all relevant output accelerations (Section 2.2), 
the function n(s) can be optimised to either of the two 
outputs ay, r  which we will consider here – the 
proviso is that a simple enough fundamental modal 
relationship exists which is common to both – this is 
certainly the case for the bicycle model. 

The result of optimising 2(s) and  4(s) for  to r , 
and then using equation (8) to fit an output relationship 
between z and ay is shown in Fig. 5.  (This is 
essentially the opposite order of process to that 
described in Section 2, but was found to yield better 
results.)  

Naturally, the fit to r  is better than to ay, though 
note how accurately the time hisotries match, with the 
case n = 4 compensating the rig delay almost perfectly, 
in both outputs. 
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Fig. 5 Performance of 2(s) and 4(s) on a representative 

section of linear test aL. 
 

The identified eigenvalues are 
 

 for n = 2,   7.8 1.5 j     

 for n = 4,  
22.9 33.5

5.1 2.4

j

j


 


 
 
 
 

 (11) 

Fig. 6 shows the nonlinear test, a series of step steer 
events,  = 3° to the right, followed by 2° left and 
finally 1° right.  The linear system response is 
compared with that of the completed system , in this 
case carrying forward the n = 4 result; the nonlinear 
functions f1 – f4 which achieve this are illustrated in Fig. 
7. 
 
 

0 2 4 6 8 10 12 14
-10

-5

0

5

10

15

 

0 2 4 6 8 10 12 14
-6

-4

-2

0

2

4

 
 

Fig.6 Performance of 4(s) on nonlinear test aNL 
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Fig. 7 Optimised saturation functions fi 

 
These results are typical of a number of variations 

of the method which were examined, and there are 
essentially two conclusions which can be drawn.  
Firstly, Fig. 6 shows that the saturation function in  
can be successfully optimised to model the progressive 
saturation effect of the tyres; note that all three steps in 
ay are accurately tracked.  The cost here used W = I, to 
bias the optimisation towards accuracy in ay (since r  
deviations are far lower in magnitude), and the cost was 
reduced from P = 3.56 for  to P = 0.25 for  by the 
final stage optimisation of p, .  The result is achieved 
by paired nonlinearity, such that the state corresponding 
to one eigenvalue is saturated, whereas that 
corresponding to its conjugate is not (eqn. (11) and Fig. 
7). 

However, there is apparently not sufficient freedom 
in the model structure to allow both outputs to saturate 
correctly.  Fig. 6 shows steady state errors in r  
which can be altered by alternative choices of W, but 
only to the detriment of performance in ay.  Thus one 
must conclude that either 

(i) the constrained optimisation in Section 2.3 is 
capable of finding only local minima, and hence an 
alternative approach to optimisation is required, 

or (ii) that separate nonlinearity functions (and 
hence a separate instance of the simulation model  is 
required for each output. 

Given that a range of possible start conditions were 
examined for p and , it seems unlikely that an 
alternative optimisation method would present a 
solution to this problem. 

 
4. TEST VEHICLE EXPERIMENT 
  
Although the simulation experiment reveals 

limitations to the method, it is still valuable to see the 
extent to which it can function to compensate the rig 
delay when approximating a test vehicle’s response.  
Within this section we will restrict attention to the 
single input / output relationship  to ay.  Accordingly 
Fig. 8 shows the first stage, identification of n(s), to 
data acquired from a Jaguar XJ test vehicle. 
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Fig. 8 Identified frequency response functions for 
vehicle data, orders n = 2, 4, 6 

 
Note first that the fit must be constrained to the 

range 0-5Hz, since this is the range of valid data from 
the experiment, given the driver’s capability to 
randomly excite the steering input. 

Three choices, n = 2, 4 and 6 are shown, and these 
illustrate one significant benefit of the staged approach 
adopted in this paper.  We can see by inspection that 
the 2 state choice is not sufficient to model the 
combination of vehicle response and delay.  Also the 6 
state variant is unsuitable; clearly it is under-determined, 
acting as it does to match a noise corrupted outlier in the 
data – note the phase fit around 4.8Hz.  Conversely, n 
= 4 provides an excellent compromise. 

The linear and nonlinear variants of the vehicle 
subsystem model are again shown in Fig. 9 – here 
illustrating also the concatenation of aNL in the first 15 
second of data with aL in the final 5 seconds. (This is the 
full time history for evaluation of P, eqn (9)).   
 

0 5 10 15 20

-6

-4

-2

0

2

4

6

 
 

Fig. 9 Combined linear and nonlinear test inputs and 
identified model performance for vehicle data 

 
We can see that, as with the simulated case, the 

random steer response between 15 – 20 s is very well 
matched by the model (here again with n = 4).  The 
performance on this section of the time history is 
degraded slightly by the fully nonlinear system , but 
the improvement over the nonlinear section of test data 
compensates this, with P reducing from 0.723 to 0.366. 

Fig. 10 shows an independent section of vehicle test 
data, with  and  compared, and this validates the 
nonlinear behaviour seen in the optimised section of Fig. 
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9.  Note the staging in the response however, which is 
clear in both figures, with underestimation of the 
response between 2 and 7 seconds in Fig. 9.  The 
continuous nonlinear behaviour seen in the simulation 
study is not fully replicated here. 
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Fig. 10  Identified model performance for vehicle 

validation data 
 
 
5. CONCLUSION  
  
The algorithm achieves the principal objective of 

plant compensation, and successfully optimised 
subsystem models have been demonstrated for both 
simulated and test vehicle cases.  The method also 
achieves the five objectives listed in the introduction.  
By separating linear from nonlinear operation, the 
relative performance under low and high amplitude 
conditions are also separated, and the structure enables a 
degree of confidence that the model will work over a 
range of inputs. Also, the method allows the required 
model order to be determined easily by inspection.   

The apparent limitation to single input / output 
systems does present a signficant shortcoming however, 
and although this can be overcome by running multiple 
instances of the linear structure with separately 
optimised nonlinearities, that solution is far from 
elegant. It must also be conceded that the magnitude of 
the lag to be compensated, and the level of error 
induced by tyre nonlinearity are not large for the 
examples considered; it is recognised that such errors 
would almost certinaly not be perceived by users of the 
simulator. 

Nevertheless, the method works in principal, and 
may also find applications elsewhere, since the elements 
of the algorithm are not specific to the simulator 
application.  Further work on the choice of 
nonlinearity and the optimisation of its parameters may 
also yield more widely applicable results. 
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