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Technical Note

Relativity: 300 years from a principle to reality

H Rahnejat

Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough,

Leicestershire LE11 3TU, UK

Abstract: This technical note provides a brief background to the historical developments that led to
the generalization of Galileo’s principle of relativity, leading to Einstein’s general theory of relativity.
Therefore, its primary purpose is to mark the contributions made in physics of motion on this
occasion—the marking of the new Millennium. To keep with the tradition set in this journal, this note
contains a new analysis in respect of reported super-luminal observations in gain-assisted light
propagation, in particular vis-a-vis their concordance with the general theory of relativity. The
incompleteness principle, as an axiom of observation, is introduced here to resolve this issue.

Keywords: principle of relativity, physics of motion, incompleteness principle

1 INTRODUCTION

Three major principles gave rise to the theories of special
relativity and general relativity: instantaneity, simulta-
neity and equivalence. The former stemmed from the
purported, and historically questioned, free falling
masses experiment by Galileo from the Leaning Tower
of Pisa in 1593. Galileo noted that, in accelerated
motions, the instantaneous velocity should be described
by the average velocity in a diminutive period of time,
referred to ever since as ‘infinitesimal’. The definition
and measurement of such small quantities was of course
resolved in 1821 by Cauchy, with the use of differential
limits, taken for granted in the analysis of dynamic
systems today (e.g. for Galileo’s experiment: v =
lim; o Ah/At = dh/dt). The profound value of this con-
tribution and the significance of tangential properties of
differential calculus were immediately realized. In a way
the problems posed for 228 years (1593-1821) were
resolved, together with a good description of the concept
of instantaneity. One problem, however, remained in this
regard, the apparent instantaneous action of the ‘force of
gravity’ in Newton’s law of universal gravitation [1]. In
fact, the use of limits in the differential calculus gave the
opportunity of assigning curvature properties to surfaces.
This was later exploited by Gauss in the nineteenth
century in his Theorema Egregium, briefly discussed
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below, which revolutionized the understanding of
geometry and in time provided one of the key elements
in understanding the mechanism of gravitational action
through the general theory of relativity [2]. However,
before this could be achieved a physical understanding of
the relative motion of bodies in a fundamental manner
was required.

It was long appreciated that the Newtonian laws of
motion hold true for, as Einstein put it, ‘privileged’
inertial frames of reference and when an ‘absolute’ fixed
frame of reference can be assumed somewhere in space.
Since such a static position cannot be assumed, par-
ticularly at speeds encountered in celestial events, the
principle of relativity must be adhered to.

As early as the seventeenth century Galileo appre-
ciated that no observer could distinguish between the
states of absolute motion and absolute rest. It had become
clear to him that a concept such as ‘absolute’ cannot exist
and that observers in relative uniform motion should
describe the laws of nature in precisely the same manner.
This astute and yet natural deduction was reaffirmed
three centuries later by Einstein, who declared the
Galileo’s principle of relativity as a law of physics,
which he termed ‘the principle of covariance’, as
described later on. What had troubled the physicists in
the late nineteenth century was the fundamental basis for
the understanding of the Michelson—Morley experiment
[3] (readers should refer to any text on modern physics)
and Maxwell’s equations for electromagnetic wave prop-
agation. A fundamental explanation for these necessi-
tated the assumption that the speed of light would remain
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constant, irrespective of the state of motion of the
observer. However, the Galilean transformation from one
frame of reference of observation to another does not
preserve the light cone. To resolve this conundrum,
Einstein reasoned that a new transformation that
preserves the light cone should be used and that the
constancy of the speed of light in vacuo be maintained in
all inertial frames of reference as a law of physics; this is
referred to as the principle of causality. Such a trans-
formation, fortunately, was already at hand, thanks to
Fitzgerald’s explanation in respect of the Michelson—
Morley experiment—that the measured distances con-
tract in the direction of motion by a significant amount at
very high speeds. This explanation had paved the way for
the derivation of transformation laws that preserve the
light cone, known as the Lorentzian transformation [4].
Einstein used the uniform motion in inertial frames of
reference in order to simplify somewhat the physical
studies of motion, without regard to applied forces and
inertial properties. This particular branch of dynamics is,
of course, known as the kinematic analysis of motion. He
noted that unlike the Galilean transformation, which has a
simple geometric interpretation within the Euclidean
geometry with rigid rotations, translations and reflec-
tions, all of which preserve images that are congruent to
the original, it appeared that this could not be held to be
true for the Lorentzian transformation. Therefore, the
Lorentzian transformation had to be put on a similar
footing that would be affine to the concept of congruent
transformation. The developments in the use of hyper-
bolic geometry had paved the way for this. In particular
Minkowski showed in 1907 that the Lorentz transforma-
tion preserved each of the hyperbolas in the H-plane by
the notional orthogonal properties of the Minkowski
norm: ||E||, where ¢’ — x> — y* — z> = 0 [5]. Therefore,
the Minkowski norm (having the dimensions of time) and
the interval between two events are absolute quantities,
meaning that all uniformly moving observers assign to
them the same values. This firmly established the concept
of space—time and confirmed the validity of Galileo’s
principle of relativity. Einstein was then able to resolve
the contentious issue of simultaneity of two events at
approximately the same place, by observing that since
Galilean observers need not agree that any two events had
occurred at the same time, the notion of simultaneity lost
its physical meaning. This was replaced in effect with
‘the time of a stationary system’, which determined the
constancy of the velocity of light in empty space [6].
Thus far, it has been noted how two of the triad of
aforementioned principles, instantaneity and simultane-
ity, led to the establishment of the special theory of
relativity. To see the significance of the third principle,
equivalence, one should return to the alleged experiment
performed by Galileo and note that at the time the effect
of gravity was not fully understood. Galileo merely con-
cluded that the rate of fall remained independent of the
mass of the object. A century later Newton formulated his
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law of universal gravitation, arrived at empirically
through observation. In Newton’s view gravity was a
non-discriminatory force that applied to everything in-
stantaneously at a distance without a prescribed contact.
Although his empirical deduction remains remarkably
accurate, it suffered from two major shortcomings. It was
and remains devoid of a physical description and
embodied the then vague concept of instantaneity. The
preceding paragraph has already dealt with the latter
problem. The former observation was unsatisfactory to
Newton, when he noted: ‘It is inconceivable, that
inanimate brute matter, should, without the mediation
of something else, which is not material, operate upon
and affect other matter without mutual contact. ... I
believe no man who has in philosophical matters a
competent faculty of thinking can ever fall into it (i.e. this
conclusion).’

The problem for Newton partly arose in the duality of
his description of mass. In his law of universal gravita-
tion, he referred to the mass of an object as the gravi-
tational mass, whereas in his second law of motion the
mass of an object was described as the inertial mass. This
anomaly was to become clear to Einstein as unnatural. He
described the indistinguishable nature of motion in a
gravitational field with respect to a fixed frame of
reference K, from that in a uniformly accelerated frame
of reference K’ in a region of space—time devoid of
gravitational action. This led Einstein to the realization
that a local gravitational field can be studied using a
coordinate frame such as K’ with respect to an inertial
frame such as K. This he termed the equivalence
principle, which resolved the duality in the definition of
mass put forward by Newton. Einstein argued that inertial
frames should not hold the privileged position endowed
to them in Newtonian physics and that all laws of physics
should be covariant (principle of covariance). He noted:
“The laws of physics must be of such a nature that they
apply to systems of reference in any motion’ [2].
Therefore, they should also hold true for any arbitrarily
chosen non-inertial (accelerated) frames of reference.
Gravity is the most important law of nature. In effect
Einstein introduced a generalization of Galileo’s princi-
ple of relativity—the principle of general relativity.

The equivalence principle, noted by Einstein as his
‘happiest thought’, opened the way for a physical
description of gravity: ... in pursuing the general theory
of relativity we shall be led to a theory of gravitation,
since we will be able to “produce” a gravitational field
merely by changing the system of coordinates’. He noted
that a massive body (e.g. the Sun) causes the fabric of
space to warp, rather like the effect of a bowling ball
placed on a rubber sheet. The difference from the
description of gravity by Newton (where the field is
described by a force) is that Einstein has described the
mechanism by which gravity is transmitted, this being the
warping of space [7, 8]. Accelerated motions therefore
undertake curvilinear paths in space—time. Now, for the
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first time since the experiment of Galileo in 1593, a
theory existed in 1911 that linked firmly with the facts of
astronomical observations.

Because gravity could now be explained in terms of the
curved space—time, its formulation needed a parametric
definition of surfaces which included their intrinsic
properties. These properties would ideally describe the
curved surfaces in a unique manner, and can therefore be
regarded as metric properties. Therefore, in developing
his theory of gravitation, leading to the general theory of
relativity, Einstein had to return to the intrinsic properties
of differential geometry [9]. The metric tensor g; =
W;-W,, defined as the first fundamental form by Gauss, is
one of the intrinsic features of a curved surface, which
can be used to calculate the local curvature, the length of
the curve, the area of a local region of the space, etc.
Gauss has shown in Theorema Egregium that curvature
can be expressed entirely in terms of the derivatives of
the metric tensor. Note that, for example, W; = dW/dg'
and W; = dw/dq’ descrlbe the tangent plane at any point

where map W:R>— R>:(¢".¢") = (x,y,z). Other funda-
mental forms can be obtained by the use of the multi-
indexed tensorial quantities in Theorema Egregium.
Therefore, Wy=1T 'W + ajN;, where N can be ex-
pressed as N;= a 'W;. Thus, ajx = g,k, which is
referred to as the second fundamental form

The Christoffel symbol, defined by I" jk, was used by
Einstein, who argued that the tensorial quantities are
generally covariant for the development of relativity on
surfaces. The principle of covariance also determines that
the freely falling objects in a gravitation field follow a
geodesic path. Therefore, in general,

ﬁ = _ r?d_fid_fj
dr? Y dr dt

is the geodesic relativistic equation of motion for a free
falling object.

It is now possible to return to the topical subject of
super-luminal light propagation, claimed to have been
observed in anomalous dispersion when a gain-assisted
pulse of light has travelled through an atomic vapour cell
[10-12]. In particular, there is a need to ascertain the
validity of such observations in relation to the general
theory of relativity.

2 SUPER-LUMINAL EVENTS AND
RELATIVITY

Detection of a light pulse at the exit of an atomic vapour
cell has been claimed, before its instance of entry, the
implication being that a gain-assisted light pulse can
exceed the speed of light in vacuo [12]. The investigators
have observed that their finding ‘is not at odds with
causality’. This claim, while not in line with the special
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theory of relativity, is quite justified in the case of
accelerated motions, as in the aforementioned experi-
ment. Einstein himself noted that: ‘the law of constancy
of the velocity of light in vacuo, which constitutes one of
the two fundamental assumptions in the special theory of
relativity ... cannot claim any unlimited validity’ [13].
However, it should be noted that the accelerated motion
of a pulse of light constitutes its variable propagation
with position, which may be interpreted as an anomalous
dispersion. In keeping with the theory of general
relativity, such a pulse of light would have to undertake
a curvilinear path, analogous to accelerated motion in a
gravitational field. By virtue of the principle of equality
of inertial-induced and gravitational fields within the
postulate of relativity (i.e. the equivalence principle), it
can be inferred that the gain-assisted pulse of light takes a
uniformly accelerated motion in such a curvilinear path
and that the deflection of light by such a gravitational
field would be infinitesimal, given the finite length of the
light path and the strength of the field. Therefore, given
an inappreciable angle of deflection from a straight-line
path and a short path length, the observed super-luminal
behaviour of the light pulse appears to be plausible and in
line with the general theory of relativity.

There are, however, some critical observations that
make the aforementioned hypotheses not as safe as they
appear at first glance. To promulgate on these observa-
tions, a simple theoretical experiment can be used, in
which a particle in uniform motion at the speed of light is
observed by a ‘stationary’ observer. As the field of view
of the observer is narrowed to a vanishing point, the
world-line of the motion of the particle can become
indistinct as viewed by this observer, who views the event
at the limit of observations (i.e. the speed of light). An
infinitesimal particle with a momentary local existence
without an appreciable duration (but nevertheless of finite
value—note the resolution of the concept of instantane-
ity) can be described by a large number of coordinate
values in a unidimensional continuum, which deploys a
very narrowed field of observation. Therefore, the world-
line of the particle can be one of a manifold of parallel
lines that cross the field of view of the stationary observer
in this unidimensional continuum. This argument can be
rephrased by quoting Einstein himself: ‘If this point (a
material point) had a momentary existence without
duration, then it would be described in space—time by a
single system of values. Thus, its permanent existence
must be characterised by an infinitely large number of
such systems of values, ..., thus we have a (uni-
dimensional) line in the four dimensional continuum’
[14]. A fast-moving particle of infinitesimal dimension
can be viewed, in a narrow frame of observation, to be
infinitely far or equally well as infinitesimally close,
given an inappreciable duration of observation. There lies
the doubt about the validity of the foregone hypotheses
and the safety of interpretation of super-luminal observa-
tions, noting that the points raised herein are pertinent to
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such experiments, while they are in line with general
relativity. The qualifications for these reservations are
that the field of view of the detector must necessarily be
narrow and directed, the duration of the event is
momentary (but finite) and the speed of detection/
observation cannot exceed the speed of light itself.

It is possible to proceed further with basic mathema-
tical justification for the reservations as to the validity of
the conclusions attributed to the experiments, indicating
observation of super-luminal events. Reference should be
made back to the aforementioned ‘simple theoretical
experiment’ in the preceding section where the parallel
world-lines in Minkowski’s hyperbolic geometry are
considered. The motion of the light pulse would be on a
geodesic path. In the H-plane such paths are described by
vertical lines and semi-circles, which would have their
centres on the spatial axis in a narrow field-of-view
experiment. The spatial axis is denoted by ¢'. Therefore,
g~ = t represents the temporal domain. Referring to Fig.
1, the point of observation/detection can be denoted as P
on a vertical line given as ql(t) =k, qz(t) =t,t> 0 (or
g=k, ¢>=¢" in terms of the arc length). This can be
considered as the directed line of detection in a narrow-
field observation. Such a line in the H-plane represents a
geodesic line, with the speed of observation being that of
the speed of light. The gain-assisted pulse can be
represented by any geodesic line that must necessarily
intersect this vertical line for an observation/detection to
be made. There is clearly such a family of semi-circles, as
shown in Fig. 1. Furthermore, all these world-lines may
be parallel, indicating particle motion at different speeds
and in fact with motion taking place in either sense. The
family of semi-circular lines can be represented by geo-
desic parameterization: g' =k + rtanh s, g>=r sech s,
—o0 < s < o0. Note that, for a short duration ¢ and at
speeds v > c, the position P along the vertical line q' =k,
¢> =1t cannot be expected with certainty. The postulate
outlined here for the narrow field of view observation of
an event, purported to be at or above the speed of light, is
in line with the fundamentals of quantum mechanics,

/\ #ql

k

Fig. 1 Observation model of geodesic propagation events
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while remaining firmly within the fold of a special case of
induced gravity in the general theory of relativity.

3 THE PRINCIPLE OF INCOMPLETENESS

The reservations expressed with regard to the reported
super-luminal observations are, therefore, mainly con-
fined to the multiplicity of likely outcomes, rather than
the validity of the actual experiments. In a sense the
certainty of a distinct outcome, from an observational
rather than the actual event, cannot be assured. In this
sense, narrow-field observation of high-speed events
represents a problem in both quantum mechanics and
general relativity, and paradoxically unites them in this
respect. A significance of such reported experiments as
that of Wang er al [12] has been to bring this
observational problem to the fore. At such limits of
observation a unidimensional and ‘continuous’ event
becomes indistinct from its possible alternatives. In a
sense the event is too ‘complete’ to be discerned, mean-
ing that its incomplete feature (i.e. its changing nature) is
beyond discrimination. This means that the events are
discerned by their incomplete or discontinuous nature. In
this way, uncertainty at the core of quantum mechanics is
not in conflict with the general theory of relativity, but in
concordance with it according to the thus established
principle of incompleteness.

Now it should also be noted that the curvilinear motion
of a pulse of light in the Euclidean geometry of obser-
vation can only take place as the result of an accelerated
motion. A ray of light can undertake such a motion in a
gravitational field. The deflection of the ray, as shown by
Einstein, is necessarily very small, even in the presence
of significant gravitational fields [7]. If the ‘observed’
super-luminal behaviour of the light pulse is accepted and
at the same time there is a commitment to the postulate of
relativity (as there should be), the following scenario
must be accepted. A gain-assisted pulse of light assumes
a curvilinear motion in a field induced by a centrifugal
effect, and the induced field deflects the path of travel by
an inappreciable amount as viewed by an observer.
Furthermore, a real and discrete change of physical
description with uniquely defined unidimensional space—
time, constituting an event of inappreciable but never-
theless finite duration, has been observed. It is this last
condition that casts a shadow of doubt upon the
observational findings of such reported experiments,
which is in contravention of general relativity. It would
mean that such events (observations at or exceeding the
limit of observation) in a unidimensional continuous
frame can be uniquely described in space—time.

Consider a small particle undertaking a curvilinear
path, shown in Fig. 2, with a velocity » with respect to a
frame of reference K'. It has already been established that
motion of such a particle will be on a curvilinear path
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(]

Fig. 2 Description of an event in the Minkowskian hyperbolic
geometry

when the particle is subject to a field or if the frame of
reference undergoes accelerated motion. The motion of
the particle can be described in Minkowski’s geometry,
with a space-like acceleration of v’/p, with p being the
local path curvature with respect to the hyperbolic frame.
It can be noted that as p — oo, the particle acceleration
diminishes, and the steady motion becomes rectilinear
from the point of view of the observer. This corresponds
to the vertical geodesic line, previously described in Fig.
1. When v — ¢, the event will be viewed as light-like.
With ¢ — oo, the light-like behaviour takes place along
¢*in Fig. 1. At the other extreme, photons of light expand
in a waveform in space. The space—time representation of
this is a light cone, with p = 0 everywhere on its surface,
rendering also a light-like behaviour. If v — ¢ — oo, the
same solution is obtained as in the previous case.
Significantly, the semi-circles in Fig. 1, representing the
geodesic lines for the motion of the light pulse, have
tended to a limiting solution for ¢ = oo. Now note that
for an observation to be made, the geodesic lines (one for
the propagated light pulse and the other for the line of
view of the observer) must necessarily intersect. How-
ever, it has already been shown, by almost elementary
deduction, that as ¢—> oo and for 0 < p < o0, the
aforementioned geodesics either have no solution (i.e.
they are parallel) or are coincident (i.e. a manifold of
solutions in a unidimensional temporal continuum). The
event, thus described, is ‘continuous’ in time and can be
detected at a given location, but also at any time.
Therefore, a unique and distinct system of coordinates
cannot be assumed in the detection of this event. In other
words, a unique solution may not be found, as such a
‘material point’, in the words of Einstein, can be
described by a manifold of space—time coordinates.

The observations made thus far are in complete accord
with general relativity. The phenomenon described
should be assumed to be attributed to the incompleteness
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of observations, when ¢ — oo, and particularly with a
narrow field of view of an infinitesimal region of the
space—time. A special class of events that defy distinct
observation points by their nature has thus been
established. It can be concluded that observable events
possess a discontinuous or incomplete nature within the
frame of observation, leading to the aforementioned
fundamental principle of incompleteness.

4 SYMMETRIC COMPLETENESS

The same arguments can be extended even further by
noting that particle motions on the geodesic semi-circular
paths in Fig. 1 can indeed take place in either sense,
resulting in the same observational conundrum. The
aforementioned arguments apply equally well to the case
where ¢ > —o0, —00 < p < 0, at least in a mathematical
sense. This incidentally shows that symmetric events
with an observation period less than or equal to the
frequency of observation at the speed of light would also
manifest the same problem. It can therefore be estab-
lished that the principle of incompleteness may be
extended to those events that may be regarded as
symmetrically complete.

This extension of the principle can help to deal with the
uncertainty at the core of quantum physics in a tangible
manner. It can be seen that the theoretical experiment
described earlier on can in fact easily be regarded as the
narrow directed observation of an electron, undertaking
its geodesic curvilinear motion with respect to the
stationary observer. It should be remembered that the
described theoretical experiment led to the establishment
of the principle of incompleteness as an axiom of
observation and the extension of the same to all
symmetrically complete events in the vanishing regions
of space-time. The axiom, thus described, is in
concordance with the uncertainty in quantum mechanics.
In this case it should be noted that the curvilinear wave
motion of the electron may be viewed at any given
position, but with an indeterminate momentum (i.e.
indistinct in a temporal sense). This fact is in line with the
aforementioned principle of incompleteness, which has
been shown to be in turn in accord with general relativity.
Therefore, for unidimensional observations the principle
of incompleteness and its extension, symmetrical
completeness, apply and the motion of material points
irrespective of their particulate or waveform nature
concur with both general relativity and quantum
mechanics in a unified manner. At a first glance, it
appears that the principle of incompleteness is merely the
re-statement of the ‘point of absurdity’ at the fringes of
both theories of relativity and quantum mechanics.
However, a moment of contemplation would reveal this
not to be true, as the said principle was arrived at in
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describing a ‘real’ physical phenomenon, investigated on
numerous occasions in experimental physics.

REFERENCES

Newton, I. Philosophie Naturalis Principia Mathematica,
1687 (Royal Society, London).

Einstein, A. Die Grundlage der allgemeinen Relativitats-
theorie. Annln der Physik, 1916, 49.

Lorentz, H. A. Versuch einer Theorie der Elektrischen und
optischen Erscheinungen in bewegten Korpern, 1895
(Leiden).

Einstein, A. Relativity: The Special and the General
Theory, 1961, Ch. 11 and Appendix 2 (Wings Books, New
York).

Minkowski, H. Space and time. An address to the 80th
Assembly of German Natural Scientists and Physicians,
K&ln, Germany; Translation in The Principle of Relativity
(Lorentz, Einstein, Weyl and Minkowski), 1952 (Dover
Publications).

Proc Instn Mech Engrs Vol 215 Part K

6

7

8

9

10

11

12

13

14

Einstein, A. Zur elektrodynamik bewegter Korper. Annin
der Physik, 1905, 17.

Einstein, A. Uber den Einfluss der Schwerkraft auf die
Ausbreitung des Lichtes. Annln der Physik, 1911, 35.
Weyl, H. Gravitation und Elektriticitat, 1918 (Sitzungs-
berichte der Preussischen Akad. D. Wissenschaften).
Einstein, A. On the generalized theory of gravitation.
Scient. Am., 1950, 182(4).

Bolda, E., Garrison, J. C. and Chiao, R. Y. Optical pulse
propagation at negative group velocities due to a nearby
gain line. Phys. Rev., 1994, A49.

AKulshin, A. M., Barreiro, S. and Lezama, A. Steep
anomalous dispersion in coherently prepared Rb vapor.
Phys. Rev. Lett., 1999, 83.

Wang, L. J., Kuzmich, A. and Dogariu, A. Gain-assisted
superluminal light propagation. Nature Lett., 2000, 406.
Einstein, A. Relativity: The Special and the General
Theory, 1961, Ch. 22 (Wings Books, New York).
Einstein, A. Relativity: The Special and the General
Theory, 1961, Ch. 27 (Wings Books, New York).

K01600 © IMechE 2001



