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Convex Combination of Adaptive Filters
for a Variable Tap-Length LMS Algorithm

Yonggang Zhang and Jonathon A. Chambers, Senior Member, IEEE

Abstract—A convex combination of adaptive filters is uti-
lized to improve the performance of a variable tap-length
least-mean-square (LMS) algorithm in a low signal-to-noise
environment (SNR < 0 dB). As shown by our simulations,
the adaptation of the tap-length in the variable tap-length LMS
algorithm is highly affected by the parameter choice and the noise
level. Combination approaches can improve such adaptation by
exploiting advantages of parallel adaptive filters with different
parameters. Simulation results support the good properties of the
proposed method.

Index Terms—Adaptive filters, convex combination filters, vari-
able tap-length least-mean-square (LMS) algorithm.

1. INTRODUCTION

HE least-mean-square (LMS) algorithm has been exten-
T sively used in many applications as a consequence of its
simplicity and robustness [1], [2]. When applying the LMS al-
gorithm, the tap-length of the adaptive filter is generally fixed.
However, in certain applications, the tap-length of the optimal
filter is unknown or even variable. When the tap-length is under-
modeled, the mean-square output error is likely to increase, as
shown in the analysis in [3] and [4]; thus, a variable tap-length
algorithm is needed in such environments.

Methods have been proposed during recent years to search for
the optimal filter tap-length [5]-[8], and a summary of the work
is given in [9]. The fractional tap-length (FT) method is more
robust and has lower computational complexity compared with
other methods [9], but its performance can depend on the pa-
rameter choice, particularly when the noise level is high. Such
sensitivity to parameter selection motivates a search for new ap-
proaches to variable tap-length adaptive filtering. As described
in [10] and [11], the convex combination of adaptive filters can
improve the performance of adaptive schemes. In this letter, this
combination will be used for the first time together with the FT
method to solve the optimal filter tap-length search problem in
a high noise environment, where SNR < 0 dB. Simulations will
be performed to support the advantages of this new approach.

The remainder of this letter is organized as follows: In
Section II, we will formulate the FT variable tap-length algo-
rithm. Convex combination of adaptive filters will be introduced
in Section III. The convex combination for the FT method will
be formulated in Section IV. Simulations will be given in
Section V to support the advantages of this new approach.
Section VI concludes this letter.
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II. FT VARIABLE TAP-LENGTH LMS ALGORITHM

The FT variable tap-length LMS algorithm is designed to find
the optimal filter tap-length. In common with most approaches
to derive algorithms for adaptive filters, this problem is trans-
ferred to the optimization of some criteria related to the tap-
length. For formulation convenience, we denote the steady-state
tap-length of the FT algorithm as L; wy, and x,(n) are the cor-
responding steady-state filter vector and input vector, respec-
tively, and n denotes the discrete time index. Also, we define
the segmented steady-state error as [9]

eS (n) = d(n) — w7 1 aXp 1 (n) )
where d(n) is the desired signal, 1 < M < L, wy, 1.p, and
xr,1:m(n) are vectors consisting of the first M coefficients of
the filter vector wy, and the input vector xr,(n), respectively.
The mean square of this segmented steady-state error is de-
fined as fgf) = E{(e%?(n))Q} The underlying basis of the
FT method is to find the minimum value of L that satisfies [9]

Ba-tr) <e @)

where A is a positive integer less than L, and ¢ is a small positive
value determined by the system requirements. The minimum L
that satisfies (2) is then chosen as the optimum tap-length. A de-
tailed description of this criterion and another similar criterion
can be found in [9].

Gradient-based methods can be used to solve for L on the
basis of (2). However, the tap-length that will be used in the
adaptive filter structure must be an integer, and this constrains
the adaptation of the tap-length. Different approaches have been
applied to solve this problem [5]-[9]. In [9], the conception
of “pseudo fractional tap-length” denoted by I;(n) is utilized
to make instantaneous tap-length adaptation possible. As ex-
plained in [9], If(n) is no longer constrained to be an integer,
and the true tap-length remains unchanged until the “change”
of the fractional tap-length accumulates to some extent. Based
on this approach, the FT algorithm can then be formulated as
follows:

2 2
l(n41) = (Ig(n) — a)—y [(e(LLo(:;))) B (e(LL(S;)‘)A) ] ¥

where 7 is the step size for the tap-length adaptation, and « is
the leakage parameter and should be much less than « [9]. The
tap-length L(n + 1) that will be used in the adaptation of the
filter weights in the next iteration is decided from the previous
fractional tap-length [ (n)

L(?’L + 1) _ { Llf(n)J ) if |L(n) — lf(n)| >4

otherwise
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where |.] is the floor operator that rounds down the embraced
value to the nearest integer.

Although this FT method performs well under low-noise con-
dition, its performance depends on the choice of the parameters.
In a high-noise environment, SNR < 0 dB, fixed parameters
that achieve both fast convergence rate and small steady-state
mean-square error (MSE) will be difficult to obtain. Next, we
will introduce a convex combination of adaptive filters that can
improve the performance of the FT method in such high-noise
environments.

III. CoNVEX COMBINATION OF ADAPTIVE FILTERS

In previous research into a convex combination structure, two
filters are adapted separately [10]. The output signals and the
output errors of both filters are combined in such a manner that
the advantages of both component filters are retained: the rapid
convergence from the fast filter and the reduced steady-state
error from the slow filter. Here, we assume that the first filter
has a fast convergence rate throughout this letter. The output of
the overall filter is

y(n) = AMn)yi(n) + (1 = A(n)) y2(n) )
where y;(n) = w! (n)x;(n),i = 1,2, w;(n) and x;(n) are the
adaptive filter weight vector and input vector of the :th filter, and
A(n) € [0,1] is a mixing scalar parameter. The output error of
the overall filter is

e(n) = A(n)er(n) + (1 = A(n)) e2(n) ©)

where e1(n) and es(n) are the output errors of the two compo-
nent filters

ei(n) =d(n) — wl(n)x;(n), i=1,2. @)
The key point of the convex combination of adaptive filters is to
control the overall filter by the mixing parameter A\(n) according
to the performance of the two component filters.

In the convex combination of adaptive filters, the mixing pa-
rameter A(n) is adapted to minimize the quadratic error of the
overall filter [10]. Rather than adapting A(n) directly, a vari-
able parameter a(n) that defines A(n) via a sigmoidal function
is adopted. The sigmoidal function is

An) = sgm (a(n)) = (1+¢7) " ®)

and the update equation for a(n) is given by

a(n+1) = a(n) + pae(n) [y1(n) = y2(n)] AMn) [1 - /\(HZ]Q)
where (1, is the step size of the adaptation of a(n) and should
be chosen appropriately to obtain a fast and stable convergence
of the combination. The parameter a(n) is also restricted to the
interval [—a™, a*], which limits the permissible range of \(n)
to [1 — A+, A+], where A+ = sgm(a™) is a constant close to
unity [10]. A good choice for a™ is 4, which constrains A\(n) to
[0.018,0.982]. This value has been used in [10] and also will be
used in our simulations.
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As shown in [10], the steady-state performance of the convex
of combination adaptive filters is better than or as close as de-
sired to its best component filter. If we denote the noise con-
tained in the desired signal d(n) as t(n) and define the excess
mean-square error (EMSE) of the overall filter as J..(n) =
E{(e(n) — t(n))?}, the advantage of the convex combination
structure can be shown as [10]

Jez(00) < min [Jez 1(00), Jez,2(00)] (10)
where J.;(00), Jez 1(00), and Je; 2(00) denote the steady-state
EMSE of the overall filter, the first component filter, and the
second component filter, respectively. Note that no assumption
is made about the specific nature of the adaptive filter, and thus,
(10) is suitable for any adaptive algorithm [10].

Two modifications have been proposed to improve the perfor-
mance of the original convex combination algorithm [11], and
both are used in our simulations. One of the modifications is to
take advantage of the fast filter to speed up the convergence of
the slow one. It is achieved by modifying the adaptation of the
slow component filter at an early stage of the adaptation to ap-
proach that of the fast component filter.

Another modification is to improve the convergence of the
parameter a(n). It is clear that when both outputs of the two
filters are similar, the factor y;(n) — y2(n) in (9) will be very
small, and the convergence of a(n) will be slow. A momentum
term for adapting parameter a(n) is then added to alleviate this
problem [11]

a(n+1) = a(n) + pae(n) [y1(n) — y2(n)] A(n) [1 — AM(n)]
+p(a(n) —a(n—1)) (11)

where p is a positive constant. In general, 0.5 is a good choice
of the parameter p, as shown in [11]. Compared with the basic
convex combination of adaptive filters, these modifications have
improved the convergence rate of the overall filter. Next, we will
consider for the first time applying this convex combination of
filters in the FT variable tap-length algorithm.

IV. CoONVEX COMBINATION FILTERS FOR THE FT ALGORITHM

In the structure of convex combination for the FT algorithm,
two component adaptive filters are utilized to implement the FT
method separately, but the philosophy for selecting parameters
v, a, and A in (3) of each component filter is different. The
parameters in the first filter are set to provide quick convergence
rate of the tap length, whereas parameters for the second filter
are set to provide a smooth curve of the evolution of the tap-
length, which results in a small steady-state EMSE.

Although an exact theoretical analysis for the performance of
the resulting convex combination FT algorithm is very difficult
due to the nonlinearity between the output error and the tap-
length, some general guides for the choice of the parameters
can be obtained from the examination of (3). In particular, we
will consider the following two aspects of the parameter choice
problem.

1) Convergence rate. There are two ways to increase the con-
vergence rate: 2increasing the 2step size vy or increasing the
term (es:j“(g;))) — (e(LL(S;)_) A) » which can be obtained by
increasing the parameter A. However, a large v will result

in large fluctuation of the evolution of the tap-length and
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potentially cause the algorithm to stall, because when the
tap-length approaches to some value that is smaller than
the optimal filter length, extra output error will be produced
[31, [4]. Also, A is limited by the optimal tap-length, and a
too-large A will result in an overestimation of the optimal
filter tap-length due to the criterion described in Section II.

2) Small steady-state EMSE. This needs an accurate estimate
of the tap-length, which can only be obtained with small
parameters v and A. However, a slow convergence will
also ensue.

Since the bias brought by the leakage parameter « is not sig-
nificant and the choice of this parameter is not critical due to the
formulation in [9], we will assume that this parameter has been
chosen appropriately, as in all simulations in the next section.
According to the discussions above, in the first filter, we should
use a large step size -y and a large parameter A. In the second
filter small parameters, v and A should be used. Examples of
the parameters v and A will be given in the next section.

Both modifications of the basic convex combination structure
that have been introduced in the previous section are adopted in
our simulations. In the first modification, a simple criterion is set
up to decide how and when we should modify the adaptation of
the fractional tap-length of the slow component filter

Lpa(n +1) = Blya(n) + (1= @)lpa(n), i A(m) >+ (12)
where [ f; denotes the fractional tap-length of the ith filter, ¢ is a
threshold between 0.5 and 1, and ¢ is a weight parameter close
to but less than unity. This criterion is easy to understand: when
A(n) is larger than t, the first filter performs better than the
second filter, and the fractional tap-length of the second filter
should be modified to approach to that of the first filter, to speed
up the convergence rate of the second filter. In general, a value
between 0.6 and 0.8 is a good choice for ¢, and the value 0.99
is a good choice for ¢, which gives both fast and stable con-
vergence for the fractional tap-length of the second filter. The
second modification is described by (11).

If we denote the initial tap lengths of both component filters
as L;,;, the step size for the adaptation of the weights vector of
both component filters as p, the implementation of this convex
combination method can then be summarized as follows.

Initialization: oy, as, y1, Y2, A1, Ao, ly g, 8, P, ty ¢ Ling,
a™. All these values should be set according to the system re-
quirement, and an example of the set of these parameters can be
seen in the simulations in Section V.

Update at each iteration:

1) Update the filter coefficients of both component filters by
using the LMS or related algorithm with the current tap-
lengths.

2) Adapt the fractional tap-lengths of both component filters,
respectively, according to (3).

3) Calculate parameters a(n) and A(n) according to (8) and
11).

4) Modify the fractional tap-length of the slow component
filter according to (12).

5) Update the current tap-lengths of both filters according to
4).

As will be confirmed in the later simulations, the first compo-
nent filter provides a good tracking ability of the tap-length for
the overall filter. On the other hand, a smooth curve of tap-length
and small EMSE is obtained from the second component filter.
Through appropriate update of the mixing parameter A, both

IEEE SIGNAL PROCESSING LETTERS, VOL. 13, NO. 10, OCTOBER 2006

advantages of these two filters are extracted, and a better per-
formance can thereby be obtained. Similarly to (10), the overall
EMSE performance of the convex combination of filters is better
than or as close as desired to the best component filter.

V. SIMULATION RESULTS

Now, we will give a simulation to support the advantages of
the proposed convex combination approach. The setup of this
simulation is similar to that in [9]. In the simulations in [9], a
low-noise environment where SNR is 20 dB is used. Since the
performance of the proposed approach is comparable with the
FT method in a low-noise level, a high-noise level environment
where the SNR is 0 dB is used in our simulation, to highlight
the advantages of the proposed approach. The normalized LMS
(NLMS) algorithm [1], [2] is also used in this simulation.

The input signal z(n) is obtained by passing white Gaussian
noise through a spectral shaping filter with a z-domain transfer
function of H(z) = 0.35 + 2z~ + 0.3522. Similar to that in
[9], the following two unknown systems are tested:

80 30
h; = Zakz_k, h, = Zbkz_k (13)
k=1 k=1

where aj, and by, are chosen from a white Gaussian random se-
quence with zero mean and unit variance. The desired signal is
obtained by filtering the input signal with h; or hy in different
time intervals

d(n) = w'(n)x(n) (14)
where w(n) = hy for n < 10,000 or n > 20,000 and w(n) =
h, for 10,000 < n < 20, 000.

Independent, zero-mean Gaussian noise is then added to
the unknown system output to provide an SNR of 0 dB. The
common parameters are set the same for all of the following
experiments: p = 0.1, o = 1,6 = 2, p = 0.5, ¢t = 0.8,
¢ =0.99, L;p; = 20, and a™ = 4. Also, the tap-lengths during
the adaptation are constrained to be no less than L;,;. Two sets
of parameters are tested with the FT method and the convex
combination approach:

A) a=0.08,v=14,A =15

B) a=0.01,y=0.5 A =4;

C) convex combination of A and B.

Note that the parameters of simulation A are set to obtain the
best performance for the FT method, and the parameters of both
simulations A and B are set to obtain the best performance for
the overall filter in simulation C.

Fig. 1 shows the learning curves of the tap-lengths of simula-
tions A, B, and C. Note that the learning curve of the tap-length
of the first component filter in simulation C is the same as that
in simulation A. It is clear to see in Fig. 1 that the set of parame-
ters in simulation A is good for tracking the variability of the tap-
length. However, the fluctuation of the tap-lengths is large due to
the high level interference signal. The parameter set of simula-
tion B is good for the interval where the optimal tap-length is 30.
However, it is too small to estimate the channel length during in-
tervals with optimal tap-length of 80. Both component filters in
simulation C have good tracking abilities, and the second com-
ponent filter has a very smooth tap-length curve. Furthermore,
nearly all the estimations of the optimal filter tap-lengths in both
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Fig. 1. Learning curves of tap-lengths of simulations A, B, and C. (a) Learning
curves of tap-lengths of simulation A and B. (b) Learning curve of tap-lengths
of the second filter of simulation C. (Color version available online at http://
ieeexplore.ieee.org.)

component filters of simulation C are larger than the real op-
timal filter tap-lengths, but the estimations of the second filter
with smaller parameter A are closer to the real optimal filter
tap-lengths.

To make the comparison clear, the learning curves of EMSE
rather than MSE are shown in Fig. 2(a). All EMSE curves are
obtained by averaging the results over 100 Monte Carlo trials of
the same experiment. Note that in Fig. 1, the results are obtained
by one realization for the experiment, to show the fluctuation of
the tap-lengths in the filter with large parameters. It is clear to
see in Fig. 2(a) that the EMSE of simulation B is large at the
intervals where the optimal filter length is 80, because the set
of its parameters cannot estimate the associated tap-length. The
EMSE of simulation A is also large over the interval where the
optimal filter length is 30 because of the large fluctuations in
the tap-length estimate. Simulation C performs better than both
simulations A and B due to the combination approach, and it is
robust to system variation.

The evolution of the mixing parameter A(n) in simulation
C is shown in Fig. 2(b). This curve is also obtained over 100
Monte Carlo trials of the same experiment. From this figure, we
can see that the parameter A(n) increases toward unity initially,
to provide a good tracking performance for the overall filter,
and then converges to a small value to obtain a small steady-
state EMSE from the second component filter. This behavior is
repeated in the different regions of the figure. The evolution of
this parameter clearly matches the requirements of the convex
combination.

VI. CONCLUSION

In this letter, a convex combination structure is utilized to im-
prove the performance of the FT variable tap-length algorithm.
Simulation results show that this new approach performs better
as compared with the original single-filter-based method. It pro-
vides a robust method for a variable tap-length algorithm in a
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Fig. 2. Learning curves of EMSE of all simulations and the mixing parameter
in simulation C. (a) Learning curves of EMSE of simulations A, B, and C. (b)
Learning curve of the mixing parameter in simulation C. (Color version avail-
able online at http://ieeexplore.ieee.org.)

high-noise environment and can be potentially used in many
adaptive filter applications.
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