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Abstract 
This paper will report on the application of the Case-Based 

Reasoning (CBR) approach [1] to develop a defect prediction 
system to support the development of new printed circuit 
assembly (PCA) products. Using a CBR system, past PCA 
design specifications and manufacturing experiences including 
defect and yield results can be effectively stored and re-
applied for future problem solving. For example, the CBR can 
then be used at design stage to amend designs or define 
process options to optimise the product yield and service 
reliability. A case study using a case-base provided by a PCA 
manufacturer is presented. 

 

1. Background  
The Printed Circuit Assembly (PCA) manufacturing 

process in low volume, high added value electronics still 
require a level of manual intervention during product 
manufacture that can lead to poor first time yield and 
increased production costs. The reasons are not fully 
understood but explained by failures at the component-level 
and most importantly and less studied, failures that stem from 
non-component causes (i.e. system-level) such as defects in 
design and manufacturing. Historically, these factors have not 
been incorporated in prediction models, mainly due to the fact 
that system-failure causes are not driven by well-characterised 
deterministic processes and also there are not enough 
structural data for any confidence in statistical process control 
(SPC) driven models. Instead skilled engineers attempt to 
predict and generate a mapping between the possible defects 
and product reliability. This approach requires strong 
engineering experience and it is time consuming. 

In this paper, the application of the CBR methodology to 
support the problems arising in the design of low volume 
highly complex electronics is studied. Specifically the CBR 
methodology circumvents the lack of understanding and 
quantitative models for predicting defect at both the 
component and system level through the representation of 
expert’s PCA specifications, defect and historical reliability 
data into a CBR framework for problem solving. Given a user 
query, which is a problem description, the CBR system 
retrieves similar experiences with the ultimate objective of 
predicting what designs, if any, will allow the resulting 
product to meet the desired performance criteria. 
Implementation of the CBR system in an industrial setting 
allows (i) to study how time and hence the cost of the PCA 
product development process is reduced and (ii) most 
importantly, enables simulation studies at the production line 
to optimise yield and reliability. 

Several researchers in both academia and industry have 
made use of the CBR methodology to solve problems present 
in the development of aluminium alloys [2, 3], steel products 
[4], pharmaceuticals [5, 6], steel product quality design [7], 
rubber [8] plastics manufacturing [9] and more recently in 
electronics design [10-12]. In general, the drivers for 
developing these knowledge-based systems (KBS) were 
concerned mainly with:  

• The practice of the discipline was chiefly regarded 
more as an art rather than as a science and therefore the 
domain was poorly understood; 

• There does not exist comprehensive mathematical 
models to support product design and manufacture; 

• Experience of the manufacturing personnel plays a 
crucial role for successful processes and troubleshooting, 
however, there is a need to formalise such experiential 
knowledge for satisfactory future problem solving; 

• There is a need for collecting, structuring, and 
representing manufacturing knowledge from experts using a 
computational system that enables the sharing and deployment 
of solutions in a consistent and referable way when 
appropriate for future problem solving. 

These needs have some resemblance to the needs 
experienced in the PCA domain. The advantages of CBR in 
problem solving that have been claimed by several researchers 
(see for example [13 p.48-50], [14], [15 ch.1 p2-4], [16 p234]) 
include:  

Case-based reasoning allows: 
1. Avoiding repeating mistakes made in the past. By 

definition CBR systems must learn. By recording both 
successful and unsuccessful experiences a CBR can be used to 
predict potential failures in the future.  

2. Learning over time. If the solution cases proposed by 
CBR systems are tested in the real world, knowledge about the 
correctness of the proposed solution is obtained. Therefore, 
new cases can be added to the case-base and used in future 
problem solving while also anticipating and preventing errors. 

3. Reasoning in a domain with a small body of 
knowledge. For domain problems in which a few cases are 
available (i.e. low volume high complex electronics), a CBR 
system can build its knowledge incrementally as the cases are 
added and hence increase its efficiency over time. 

4. Reasoning with imprecise data. Soft computing tools 
are being used to support CBR tasks to cope with uncertain 
and imprecise data [2, 3]. Although CBR retrieves cases that 
might not be identical to the current problem the technique 
offers an alternative solution with various degrees of 
correctness (depending on the similarity measure used).  
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5. Providing a means for explanation. A CBR user 
finds it easier to explain how a solution was arrived at by 
using the similarities between the cases and the reasoning 
involved in adaptation.  

2. General Architecture of the CBR System  
A CBR system consists essentially of two main 

components that are activated to perform specific tasks of the 
case-based problem solving process i.e. a Case-Based (CB) 
module, which is explained in this paper, and an Adaptation 
module. The CB module allows the user to describe new and 
past cases (case description) and it is also responsible for the 
retrieval process (case retrieval).  

As the user decides to solve a problem using the assistance 
of a CBR system, a query problem is presented. The retrieval 
process then is used to select from the system’s case-base only 
those cases for which the current problem has been previously 
modelled (e.g. through the use of an indexing system). For 
each of these past cases, the retrieval mechanism then 
computes similarity ratings between particular attributes (e.g. 
by using a similarity measure). The user is then presented with 
a list of past cases graded with respect to the design 
description as well as the problem definition. This preliminary 
list of retrieved cases can be further manipulated by an 
Adaptation module (e.g. human expertise) which is 
responsible for (i) the final selection of the best retrieved case 
and (ii) its adaptation to meet required constraints.  

2.1. Case-based module  
The description of what constitutes a case and how cases 

are retrieved is presented in this section.  
A “case” in CBR represents a previous experience or 

problem [1] and it is composed of a problem description, a 
problem solution, and an outcome, which is a measure of 
success of the applied solution in real conditions. A PCA case 
can be represented as a set of attributes that correspond to (i) 
PCA design and specification features (e.g. materials, 
processing methods) (ii) the reliability of the product and (iii) 
its associated defects (see Figure 1).  

 

PCA Case 

Specifications
Design, 

Technology 

 
Reliability 

Component, Field 
reliability 

 
Defects 

Manufacturing, 
Design, Not known 

cause  

 

 

Case-Base (CB) 

 
Figure 1. A  Printed Circuit Assembly Case  
A Printed Circuit Assembly Case (PCA) case 
is composed of a problem description which 
specifies the type of board design, its expected 
reliability and the solution description which 
specifies the defects and problems experienced 
during its manufacturing.  

Choosing the appropriate cases for a CB library is crucial 
for the use of CBR systems. This is mainly due to the (i) the 
vast amount of attributes that can be included when 
representing a case which influence search time and (ii) how 
well distributed the solution space is. In addition, in a CB, 
cases might share common attributes, so there may be overlap 
between them (Figure 2). In particular for the manufacturing 
of PCA the attributes that can be included to represent a case 
are endless.  

 

A. Bad problem and solution spaceA. Bad problem and solution space

Problem case Solution caseA Case

C. Good solution space, Bad solution spaceC. Good solution space, Bad solution spaceB. Good problem and solution spaceB. Good problem and solution space

 
Figure 2. Selection of a case-base.  When selecting a 
case-base, the problem space should be composed of 
cases that map continually the domain of cluster they 
belong to. Ideally, it is preferred a selection of cases or 
set that belong to a specific group while maintaining a 
degree of mixing, such as in B or less ideally C. Set A 
(top) is not a good representation of a problem or 
solution space because cases are too disperse. 

2.2. Case representation  
The problem description part of a case for the PCA 

domain consisted of a set of design specification features. A 
simple design specification set consisted of those attributes 
that are taken into account when a new sale order is produced. 
For example, these attributes may include the types of 
component to be placed in the board, soldering methods, non-
standard processes (e.g. lead-free components, over-sized 
connectors, manual fitting of special components), and 
reliability factors associated with the board.  

The solution description part of a case is the set of the 
defects observed and recorded with the solution elements 
which can also include the cost associated in repairing such 
defect. Defects during manufacturing may include (e.g. dry 
joint, excess solder, insufficient solder, poor wetting, 
disturbed joint, misplaced, tombstone, orientation, unsoldered, 
missing, lifted leg, shorts, solder balls, spikes, cracked joint, 
insulation in joints, etc. 

Most of the attributes that describe the problem and 
solution part of a PCA case are quantitative and can be 
represented as in a spreadsheet format [17-20] i.e. cases 
represented as records, (or rows), and each attribute variable is 
represented in an associated column. This format is also 
referred to as the attribute-value representation or feature-
valued vector. In most cases, attribute names are omitted as 
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the context unambiguously determines which entry 
corresponds to which attribute (see Figure 3 and Table I).  

Case Feature vector 
(c) 1 2 k … p- attributes 
1      
2      

i 
ic1  ic2  i

kc  … i
pc  

…      

N 
Nc1  Nc2  N

kc  … N
pc  

Figure 3. Feature vector representation of cases. 
A case is composed of p-attributes where each k-attribute 
corresponds to either a problem or solution attribute. N is the 
total number of cases in the case-base. 

 
For a particular case i the feature case vector c  is: 

( ) { } 21 k
iiii ,...c,cc=c  (1) 

The set of all ( )ic ’s constitutes the case-base (CB): 

( ) ( ){ }NiCB cc ,...=  (2) 

Where a case c is composed of p-attributes where each k-
attribute corresponds to either a problem or solution attribute. 
N is the total number of cases in the case-base. 

 
Table I. A simplified PCA case 

Input Specification 
Design Attributes 
(numerical only) 

Output Defects    
Case
s 

Case Problem Case Solution 
Ci Cp 

 1  
Cp 
 2 

Cp  
3 

Cp  
k 

Cs 
1 

Cs 
 2 

Cs 
3 

Cs 
 k 

C1 19 11 35 7.45 A1 A2 A3 A4 
C2 19 12 35 7.2 A5 A6 A7 A8 
C3 27 16 27 0.75 A9 A2 A1

0 
A8 

C4 27 10 27 0.5 A11 A6 A1
2 

A9 

…         
C24 27 15 35 0.5 A11 A2 A3 A9 

Where 
Cp: Case problem kth  attribute 
Cs: Case solution kth attribute  

A1 Missing 
component  

A3 Shorts 

A2 Lifted Leg A4 Incorrect 
A7 Copper Tops A9 Lead Lengths 
A8 Preforming A10 Insulation in 

Joints 
A5 Damage 
A6 Flow Through 
A11 Blow Holes 
A12 Adhesive 

 

2.3. Retrieval Component  
In a CBR system, case retrieval is the process of obtaining 

from the case-base library those stored cases that are most 
similar to a query case [1]. This process is illustrated in Figure 
4. It can be observed from this figure that several subtasks 
have to be fulfilled for retrieval. First, an efficient search in 
the case library has to be performed to find the appropriate 
case(s). Second, the problem of matching or similarity-
assessment is the recognition that a case(s) is applicable to a 
new situation. Third, ranking heuristics are used to choose 
those cases partly matching a query that can best address the 
reasoner’s purpose. 

 

Figure 4. The process of retrieving cases from the case-base 
 
Similarity assessment is performed by using a similarity 

measure. Similarity measures were developed in the area of 
cluster analysis where clustering is usually viewed as a 
process of partitioning data into groups of “similar” objects. In 
considering retrieval of PCA cases, it is important, at the 
outset, to recognise that similarity assessment depends greatly 
on three features: (i) the point of view (or context) the user 
chooses to compare two cases, (ii) the retrieval algorithm 
used, which in turn depends upon (iii) the representation 
format of the cases. 

Only a fraction of the distance measures available in the 
literature are presented in Table II. For the purposes of this 
paper, only distance functions that handle numerical attributes 
are described. This is because the features that normally 
describe a PCA case available for this study are numerical. 
Some comparison studies exist among similarity measures that 
use heterogeneous (qualitative and quantitative) attributes [18, 
19, 21]. Results obtained in these studies suggest that the 
performance of a similarity measure depends upon the type of 
attribute constituting the case and on the relative importance 
of each attribute (i.e. attribute weight). 

3.  Results 
PCA cases come from a subcontractor company that 

makes avionic equipment for aerospace contractors. The 
company produce products in lots (or batches) in an 
intermittent and complex way. The process is very difficult to 
control and is characterised by high levels of work-in-progress 
inventory. Their equipment is laid out in a functional and 
flexible way (i.e. is arranged by process of function 
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performed) which is advantageous for them meeting the needs 
of batch production of many different boards. This layout 
tends to be “process-focused” since it is not optimised for the 
products; hence the process is more flexible but less efficient 
in comparison to “product-focused” layouts such as in the 
production of high volume electronics.  

 
Table II. Selected quantitative distance measures.  
Adapted from [22], [23].  
xik denotes the value that the kth quantitative variable takes 
for the ith object (i=1,…,n; k=1,…,p) and wk (k=1,…p) are 
non-negative weights associated with the variables. rk 
denotes the range of values for the variable k. 

Function 
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Using each case as a query, the nearest neighbour rule was 

implemented using the Euclidean distance eq. (3). The 
pseudo-code for the local-based similarity algorithm is 
presented in Figure 5. 

Distance functions were calculated using two sets of 
feature weights. One set in which all features are equally 
important (i.e.  k {wk=1}), and the second set using feature 
weights recommended by a PCA design expert. In some 
circumstances, knowledge about the relevance of the attributes 
describing the cases in a given context is necessary for 
retrieval. This might be for instance, the case when the user 

wants to give relevance to a certain feature(s) over others in 
retrieval. 

 
 
 

 for each feature k of the query 
Find the corresponding feature in the stored case 
 
Compare the two values to each other and compute  
the    degree of match using different distance functions  
 
for k = 1 to attribute p (k = 1 … p) 
     ‘Square Euclidean distance’ = distance +     [Ck - Qk]2  
end 
 
Retrieve most similar case to query (i.e. calculate 

minimum distance case-query)  
for j = 1 to all cases 
    min =  minimum(distance) 

    end 
end 

Figure 5. Retrieval algorithm using standard distance 
functions.  

 
A user-query was first presented to the CBR system, and 

this retrieves the closest PCA designs to it according to some 
measure of similarity e.g. Euclidean distance (eq. 3). 
Preliminary studies indicated that the Euclidean, City-Block, 
Canberra, Taxonomic and Divergence distance measures have 
the same tendency i.e. they retrieve similar cases. Therefore, 
for the 24 cases available for this study, only the Euclidean 
distance is presented (see Table III). 

 
Table III. PCA Retrieved cases using the Euclidean 

distance  
Sample Euclidean distance 
 case distance 

24 0.447 11 
27 0.513 
13 0.142 12 
20 0.189 
18 0.184 22 
17 0.195 
17 0.119 25 
15 0.162 

 

4. Conclusions 
Case-based reasoning is a methodology of problem solving 

that has shown the potential of providing a very effective 
framework in assisting designers in selecting, applying and 
adapting PCA designs using historical data and the lesson they 
have learned through time. The framework is currently being 
implemented in a contractor’s manufacturing company but is 
aimed at any electronics manufacturing company seeks to at 
reduce defects opportunity by using past knowledge that 
highlights potential problem in processing and design that 
have an impact on the reliability of the product.  



                                                                                                  5               2006 Electronics Packaging Technology Conference 

Given a problem description or user query, the system 
retrieves similar experiences with the ultimate objective of 
predicting (i) what defects can happen based on that similar 
designs lead to similar defects and (ii) what manufacturing 
conditions increase yield. The implementation of the CBR 
system in an industrial setting has the potential of reducing the 
time and hence the cost of the product development process 
while at the same time enables carrying out simulation studies. 
It also serves as an “institutional memory” that supports 
problem solving.  

At its present state of development the described CBR 
system relies on a relatively limited number of cases. 
However, it can be readily extended to include new cases as 
they become available and it is expected that such extension 
will enhance the usefulness of the presented CBR system. 
Additionally, the amount of information used to describe a 
case can be increased and other similarity measures can be 
used accordingly.  

5. Future work  
Case-based reasoning integrates many different AI 

techniques and paradigms at various stages in the cycle such 
as retrieval and adaptation. By reflecting the way a modelling 
expert revises his knowledge when dealing with new 
circumstances, different types of AI techniques may be 
combined within the CBR framework to match the 
characteristics of the problem domain and comply with the 
principles and assumptions of PCA design (e.g. rule-based 
adaptation, fuzzy retrieval). Currently, the authors are carrying 
out research into the application of several of these AI 
techniques. One of them is the use of rules capable of linking 
the defect opportunity with manufacturing and design 
attributes. The incorporation of a rule-based system (RBS) 
into the adaptation process will improve drastically the 
performance of the design process by enabling it to conclude 
what rules at both manufacturing and design level are 
triggered when a defect occurs. 

For many real-world applications the variables describing 
a set of objects are of different types. For instance, in most of 
the PCA design graphical data is represented by CAD data. 
This type of representation requires a different retrieval 
approach (i.e. the assessment of similarity between cases 
containing graphical data) compared to when numerical 
attributes are used. Heterogeneous distance functions that can 
handle mixed variables are also being evaluated as well as 
algorithms that can compare graphical information.  
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