

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Towards a Successful Software Metrics Programme

Ray Dawson

Loughborough University, UK

R.J.Dawson@lboro.ac.uk

Andrew J. Nolan

Rolls-Royce, Derby, UK

Andy.Nolan@rolls-royce.com

Abstract

Based on the authors’ 43 years of combined

experience in industry, this paper describes a number of

ways to ensure a metrics programme is considered
successful. Experiences of a number of industries provide

lessons on the planning of a metrics programme, the

motivation of employees collecting the metrics,

embedding metrics collection into everyday processes,

presenting the metrics in financial terms and using

metrics that already exist. It is acknowledged that metrics
collected in industry can prove very little, but they are

useful if used with other data or as a pointer for further

investigations.

The lessons learned from these experiences form

guidelines which, if followed, should give valuable
assistance in achieving a successful software metrics

programme.

1. Introduction

This position paper was presented at the 2003

conference on Software Technology and Engineering

Practice, at the workshop entitled “Where is the

Evidence? - The role of empirical practices in Software

Engineering.” It is based on the combined experiences of

the two authors (eg. [1,2,3,4]). Andrew Nolan has worked

in software engineering in a number of departments and

businesses within the Roll-Royce company. Ray Dawson

previously worked as a software engineer for Plessey

Office Systems before moving to Loughborough

University where he has since worked with a number of

companies researching software engineering methods.

Between them they have over 43 years’ experience of

software methods as practiced in UK industry.

The paper is anecdotal in nature, covering the social,

managerial and organisational reasons why metrics

programmes in software engineering have been successful

or otherwise. While this paper offers little more than

“story telling” as evidence, it does cover many practical

experiences and draws lessons from them. The authors

believe the lessons from this paper will be valuable to any

practitioner attempting to use metrics for software process

improvement, decision making, validating previous action

or simply seeking to gain a better understanding of their

processes. The paper does not attempt to cover the

technical aspects of statistical analysis. While it is

important to recognise the need for statistical validity for

the analysis and presentation of metrics results, this topic

is covered elsewhere [5].

2. Metrics and Motivation

Many metrics programmes in industry fail. Often it is

because the metrics programme has been put in place for

the wrong reasons. The authors have been asked on a

number of occasions “How can I implement a metrics

programme”. This question, itself, can be a strong

indication that the proposed programme will fail. A

metrics programme is often desired simply because it is

considered to be good to have one. The higher levels of

the Capability Maturity Model [6], for example, require

proper measurement of processes to be able to fully

manage and optimise them. However, metrics themselves

are not helpful unless they are the right measures to tell

you what you need to know.

An example of this was given by an engineering

company who had developed machine test software. The

tests are carried out many times over on similar machines.

In the interests of “good management” a metrics

programme had been implemented, and eventually, after

collecting metrics over many tests it was decided to use

the metrics collected to see if changes made to the

software produced a significant improvement. So, for the

first time, the metrics were analysed.

The analysis very quickly showed:

1. The metrics were incomplete

2. The metrics were not accurate

3. The wrong metrics had been taken

4. It was impossible to produce the information

required

Investigation into the reasons behind these problems

showed that employees had to take some extra action over

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 22, 2009 at 09:40 from IEEE Xplore. Restrictions apply.

and above their core task of testing the machines to record

the metrics. Although this action took little time (less than

a minute) the employees could see no reason why they

should bother. Consequently, many employees did not

record the data consistently. Furthermore, when pressed

by their managers to do so they usually had to fill in a

backlog of missing data, which was then done from

memory or even by guesswork, which was far from

accurate.

This analysis had been made difficult because the data

itself was not necessarily in the right form. Timings were

required for various tests but the recorded metrics often

grouped several tests together making it necessary to use

average values, which further reduced the accuracy.

Finally, the whole exercise proved to be fruitless as the

majority of improvements made to the software had, for

the convenience of the users, been introduced between a

series of tests on one machine type and a series of tests on

another type. The before and after data, therefore, were

not comparable.

Had it been known what the metrics were to be used

for from the outset, the data could be collected in the right

form, the process improvement implementation could

have been timed to give the necessary data and the

employees may have been better motivated to collect data

in a reliable and accurate way. This last point is

particularly significant. Even if the right data and timings

had been achieved it is still important for employees to

feel there are benefits to be obtained from the extra work

put in. Whether the employees would have been properly

motivated by this exercise is questionable as the

information sought has no obvious benefit to the company

or to the employees. It is important, therefore, that a

metrics programme is motivated by some clear business

benefit if there is to be any prospect of motivating the

employees.

There are a number of lessons to be drawn from this

example. Asking how a metrics programme is to be

implemented is focusing too much on the mechanics of

metrics collection. It is also necessary to consider, what

do you want to know, what are you going to do with the

results and what will be the business benefit, otherwise

there may be no benefit at all.

3. Embedded Metrics Collection

Engineers are generally busy people, they are often

working to tight deadlines on high priority tasks. The

example in the previous section shows they will resist any

add-on process for metrics gathering as they will see it as

diverting them from their more important tasks. In

general, unless employees can collect metrics without

trying, or it is easier to cooperate with metrics collection

than it is to avoid it, the collection of metrics will

haphazard even if the engineers are well motivated. To

make metrics collection as painless as possible it must be

embedded into everyday processes.

An example of embedded metrics collection comes

from Rolls-Royce who implemented an electronic

timesheet recording system. By putting the recording of

time spent on tasks online, it became easy for the

employees to access the timesheet than it was for the

previous paper version. The introduction of pull-down

menus made the timesheet quicker to fill in and the

automatic calculation of totals required less input and

made the input easier to check than before. All employees

knew that they had to fill in a time recording system

anyway so, because the new system saved time and effort,

it was welcomed by all users. It could be said that the new

system gave the company no new data that they had not

been recording before, but the new system, being

electronic made all the data available for analysis. The

greater accuracy and consistency of the new system was

an added bonus.

4. Metrics for Decision Making

One reason for collecting metrics is for managers to be

able to make better, more informed decisions. However,

managers in industry are normally driven by financial

considerations. When given a choice of alternatives their

bottom line is which will give the best value for money. If

considering an investment, the bottom line is whether it

will be worth the financial outlay. Given this financial

orientation, it is perhaps surprising that metrics are, in the

authors’ experience, rarely expressed in monetary terms.

Metrics may be gathered in terms of numbers of errors,

volume of throughput, size of code or execution times and

the engineers will try their best to explain what these

imply for productivity, quality or systems support but

there remains a huge communications gap. If metrics

analysts were to go one step further to translate their

metrics into financial costs and benefits the metrics would

achieve far greater significance for the decision makers.

An example of the advantage of expressing metrics in

terms of money comes from a training centre at a large

electronics company. The company had two software

lecturers who were struggling to keep up with the demand

for their courses. The courses were for the companies own

employees so there was no direct income resulting from

the courses. Three times the senior lecturer put forward a

case for a third lecturer. The first occasion was based on

the workload of the existing members of staff. The

management made sympathetic noises but no action was

taken. On the second occasion metrics were used to make

a case based on the number of extra people that could be

trained and the backlog of engineers waiting for training.

Again there was interest from the management but no

action resulted. On the third occasion, metrics were turned

into costs with the cost of man hours wasted through lack

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 22, 2009 at 09:40 from IEEE Xplore. Restrictions apply.

of training and the cost of external training being

compared with the costs of providing training. It was

shown that the two existing lecturers each saved the

company £180,000 every year and a third lecturer would

bring similar savings. On this occasion the decision to

recruit the extra employee was made immediately. The

lesson from this is simple, present your metrics in

monetary terms if you want management to take any

notice of what you are trying to say. Fail to do so and

your metrics are likely to become irrelevant!

When expressing metrics in costs it is important to

consider all costs. If only a few costs or benefits are taken

into account, these costs tend to take on an importance

greater than they really deserve, giving a distorted view.

This is illustrated by an example from a manufacturing

company in the maintenance of their desktop computers.

The company policy had been to replace each computer

after four years of use. However, when the service

agreement costs were considered, the fourth year was

considered too expensive so the service contracts were

only arranged for the first three years of each computer’s

life. Based on the simple costs of computers and service

contracts this policy seemed sensible. However, a later

analysis of the full costs involved took into account the

cost of wasted manpower dealing with computer repairs

in the fourth year, the costs of the computer unavailability

during breakdowns and even the costs of users waiting for

a response from older, slower computers. It was found

that keeping the computers for four years with a three

year service contract was one of the least cost effective

options, it being better to keep each computer for less

than three years and have a service contract effective

throughout its company life.

This is relatively straight forward for tangible costs

such as licences, hardware or manpower but it can be

difficult to evaluate intangible costs such as customer

dissatisfaction or loss of opportunity. However, a

manager will inevitably need to make a judgement on the

value of all these costs, no matter how intangible, in some

form of “is it worth it?” decision. This means that

however difficult and vague it may be, a fully analysed

estimation of costs is bound to be better than a less

informed judgement. Techniques used by the authors have

included analogy with past experiences, finding substitute

metrics that are measurable (eg. customer reorders as a

measure of satisfaction) or working with upper or lower

bounds to try and put a value to intangible costs, but no

matter how vague these estimates are they have still

proved to be better than no estimate at all.

5. Finding and Using Sources of Evidence

One possible means of eliminating the overhead of

metrics gathering is to use the metrics the company

already has. Many companies have mountains of data that

have never been fully analysed. Error logs, change

requests, time sheets, project spending records, project

schedules and actual timings are all metrics that

companies normally record. As stated earlier, there is the

problem that for a particular purpose these metrics may

not be in the right format or be adequate. However, before

embarking on any new metrics gathering programme it is

worth checking to see if the available data would be

useable. For example, a manager in a retail services

company did a statistical analysis of task estimates

compared with actual timings to spot any anomalies[2]. In

doing so he was able to identify areas that needed closer

investigation and this, in turn, identified problems early

enough in a project life to take remedial action. These

simple metrics are available in most companies, yet this

manager was able to use them for troubleshooting and, as

a result, regularly finished his software projects on time

and within budget.

The lesson here is that the problem may not be the lack

of metrics for decision making and process improvement

but a lack of analysis of the data that already exists. If no

attempt has been made to analyse and learn from the data

that is available is there any purpose in collecting yet

more?

6. Expectations for Software Metrics

Software engineering metrics from industry pose a

problem for the academic community - can they prove

anything? For example, multiple tests on the same project

are not practical as industry will rarely consider

employing two teams to perform the same task. Test on

different projects are never identical and nothing is ever

repeatable under identical conditions. Staff turnover

means that the same team cannot normally be used again

with exactly the same personnel, and even if the same

team members are available the learning from one test

would affect subsequent tests. If a new development

methodology is being tried, for example, all the metrics

can prove is that it can work well, but there are too many

unique factors about any industrial trail to be able to use

statistics to show that it worked better than any other

methodology, or that it would also work well elsewhere.

If a large number of multiple trials are carried out it

may be possible to apply statistical analysis to prove the

merits of a new methodology, but practical considerations

will still make it difficult to eliminate other factors that

could distort the analysis. Furthermore, when a sufficient

number of trials have been carried out, in the fast moving

software industry the methodology in question is unlikely

to be considered new any more, and in reality it will

probably have evolved and changed as experience in the

methodology grew.

One method that university academics have used to

produce software engineering metrics is to use tests on

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 22, 2009 at 09:40 from IEEE Xplore. Restrictions apply.

students. A student body can produce a large number of

tests that can be undertaken in parallel under identical,

consistent and stable conditions. Unfortunately it is this

very consistency and stability that means the tests are

significantly different to the real industrial world where

change is inevitable.

So, if the metrics obtained from industrial case studies

can prove very little, does this mean the metrics

programme used is unsuccessful? Whether it is successful

or not depends on the expectations. Clearly, if the

objective of a metrics programme was to obtain some

form of proof that was unobtainable, then it was

unsuccessful, but this does not mean that the metrics

programme is not useful. Every piece of information can

be a useful influence in decision making even if there is

acknowledged uncertainty. A manager commiting to a

contractual deadline would use his or her past experience

of a similar project to decide whether to take on the

commitment, even though statistically a single metric can

guarantee nothing. In practice the manager will use all

their experience and take into account a wide variety of

considerations in making such a decision. The lesson here

is that while metrics may not be able to provide any

certainty, they can still provide useful evidence with or

without any other information to enable a more informed

decision than would otherwise have been possible.

Another illustration of the usefulness of metrics is

shown by the retail services manager described in the last

section. This manager did not use the metrics to prove

there was a problem in any particular process. Instead, he

used the metrics to give pointers as to where there could

be problems. Further investigation was then needed to see

if a problem existed or not. The manager used the metrics

to give the starting point of the problem analysis, not the

end result. In the experience of the authors, metrics

analysis, if used as a focus for further investigation, can

be an valuable tool for the software engineering manager.

7. Conclusion

There is a continual demand in industry for metrics to

provide evidence of productivity, quality or costs, yet the

implementation of many metrics programmes means that

they fail to produce the data required. This paper has

described a number of ways that can help a metrics

programme to be considered successful.

1. Firstly, determine what the metrics are for and what

will be done with them. This allows for better

planning of the metrics programme giving a better

chance of success.

2. Motivate employees with a metrics programme that

has clear business value so that they will collect

accurate and complete metrics.

3. Wherever possible, embed the metrics into everyday

processes, making the data collection automatic or no

extra effort, to enable complete and accurate metrics

collection.

4. If the metrics are to be used by managers then express

the results in financial terms. This means the results

are more likely to be acted on.

5. Make sure all costs are considered, intangible as well

as tangible costs, to avoid misleading results.

6. Check to see if metrics already exist that could serve

the purpose required. It could be the lack of analysis,

not the lack of metrics that is the problem.

7. Be realistic in your expectations on what you will gain

from the metrics programme. The metrics on their

own may not be able to show anything with any

certainty. Be prepared to use the metrics with other

data or as a pointer for further investigation to achieve

your objectives.

The above guidelines have been based on the authors’

many years of experience and, if followed, should greatly

increase the chances of achieving a successful metrics

programme.

8. References

[1] Nolan, A.J. (1999), Learning From Success, IEEE Software

16(1), 97-105

[2] Dawson, R.J. and O’Neill, W.P. (2003), Simple Metrics for

Improving Software Performance and Capability: A Case

Study, Softw. Quality J., 11,(3), 243-258

[3] Bradley, M. and Dawson, R.J., (1999), 'Whole Life Cost:

The Future Trend in Software Development', Software

Quality Journal , 8(2) ,121-131

[4] Jackson, T.W., Dawson, R.J. and Wilson, D., (2001), ''The

Cost of Email Interruption'' , The Journal of Systems and

Information Technology , 5(1), 81-92

[5] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones,

P.W., Hoaglin, D.C., El Emam, K. and Rosenburg, J.

(2002), Preliminary guidelines for Empirical research in

software Engineering, IEEE Trans. Softw. Eng., 28(8), 721-

734

[6] ‘Capability Maturity Model for Software’, Technical report

CMW/SEI-91-TR-24, Carnegie-Mellon University, 1991.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 22, 2009 at 09:40 from IEEE Xplore. Restrictions apply.

