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Abstract: Risk Management has always been of fundamental importance to finan-
cial markets. The aim of all good trading strategies is based around minimising pos-
sible risk and at the same time achieving most profit. A balance between these two 
factors must be struck for different risk – profit profiles. In this paper we describe an 
innovative way for visually quantifying risk, and we show how our method can be 
used as a tool for developing trading strategies to help manage risk. We run our 
algorithm on selected historical FTSE-100 stocks and pick some companies for a 
more detailed study of trading strategies. The method shows considerable promise 
for future research work. 

9.1 Introduction 

For many years now the most widely used method for measuring risk in financial 
assets has been standard deviation of univariate time-series data [1, 2]. This method 
and its derivatives are used by traders, brokers and professional fund managers all 
around the world because of its simplicity and well-known statistical properties. 
Standard deviation measures the spread of distribution about its mean, and as such 
does not take into account any of the investors’ ability to predict asset price moves. 
Standard deviation is a very rough measure in the financial context and can be mis-
leading, and there is still disagreement on what constitutes risk and how best to quan-
tify it [2].  
 
We propose a method to quantify risk in a more meaningful way for those investing 
in stock markets. The core characteristic of our approach is based on the postulation 
that risk is a function of our ability to forecast an asset, time-horizon over which risk 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

is measured and stock data complexity, Risk = f (α, β, γ), where α is Predictor, β is 
Time-Horizon and γ is Complexity. To illustrate this let us assume that an invest-
ment agent is able to anticipate future moves with good accuracy. Hence the agent 
would most likely feel confident making an investment. On the other hand if an 
agent has little idea of whether a market will move up or down it is probably best to 
stay out of the market. The basic idea that risk is directly related to our prediction 
ability is intrinsic to many trading decisions. However we are not aware of any 
meaningful or novel attempts at quantifying risk in this manner.  
 
The rest of this paper is structured as follows; in the next section we discuss our risk 
quantification method, in section 9.3 we show how we can use the method to select 
trading strategies, section 9.4 presents results to illustrate the potential benefit of the 
method and in section 9.5 we present key conclusions of our work. 

9.2 Risk Quantification 

We propose a risk quantification strategy based on Prediction Engineering and Risk 
Limitation (PEARL) model. The key elements of our approach involve modeling and 
visualization of risk based on our ability to predict several time steps ahead because 
we can develop trading strategies that are based on finding the right time in the fu-
ture to sell or buy. Our strategy builds a RQG (Risk Quantification Graph) which a 
trader can visualize or an automated trading software can use directly to invest in the 
stock markets. A sample RQG is shown in Figure 1. The x-axis of the graph meas-
ures the amount of risk involved in trading t  time steps ahead, and the y-axis meas-
ures the profits or benefits involved with that, provided we use n  predictors (e.g. 
non-linear regressor such as neural network) for a maximum of n  time step ahead 
forecasts. It is important to note that in this approach for a j  step ahead prediction, 
where nj ≤ , predicted values obtained from all predictors predicting 1 to 1−j  
steps ahead are used as input for the forecast. The maximum time horizon n also 
determines the duration within which RQG has any value, i.e. the trader should trade 
within this period to make use of the graph. Our risk quantification method is based 
on several processing steps which are described in the following sections.  
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Fig. 1. (Wolseley 8/11/2006 – 5/12/2006) Risk Quantification Graph. 1 – 20 day Ahead pre-

dictions and associated uncertainty are plotted above. 

9.2.1 Developing Forecast Models 

We first divide the data into three parts: training, validation and test set. The first 
step is to develop a total of n predictors for a given stock. The aim is to use the train-
ing data to teach our j th predictor how to perform j  time steps ahead forecast, 
where )1( nj ≤≤ ,use the validation set optimize the parameters of the predictor 
(e.g. in Brown’s Double Exponential Smoothing predictor we need to optimize for 
α ), as well as determine uncertainty associated with each of the predictors (this is 
explained in detail in section 9.2.5), and finally use the test set with our trading strat-
egy as explained in section 9.3 to judge how well we can both predict as well as 
effectively trade to make profits and minimize risk. 
 
The overall process of developing predictors involves the following steps: 
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9.2.2 Choose a predictor 

A number of predictors are available that work on univariate time-series data. In this 
paper such prediction is our immediate concern and the interested reader for multi-
variate forecasting is referred to [3]. Any predictor has an input and an output. The 
input data is often the lagged time series values. For example, consider your time 
series to be )....,....,( 21 Ni xxxx  with N data points. To predict data point ix , we 
can use the last m time steps, i.e. input data is )....( 11 −−− imi xx  and the output is ix . 
Since both the input data and output are numeric values, any linear or non-linear 
regression model can be used. We will call the above approach as Real Value Predic-
tion (RVP). However, recently it has been recognized that for developing and using 
effective trading strategies it is not necessary to have an accurate forecast of the true 
stock value. In the very basic form, predicting whether a stock price will go up or 
not, or the extent to which prices will vary (let us say using fuzzy linguistic variables 
very high, high, low, very low) would be sufficient for making trading decisions. 
Lindsay et al. [4] have suggested that therefore regression problem can be treated as 
a classification problem by banding the output values in a total of B bands, and then 
using the input data of the form )....( 11 −−− imi xx  to predict which of the bands 

),...,( 1 LBB  the data point ix  will lie in. The value of L  can be optimized on the 
validation set or can be user specified to maximize the benefits with the selected 
trading strategy. We call this approach Band Value Prediction (BVP). 
 
In this paper we have selected one example with RVP, using Brown’s Double Expo-
nential Model, and another example with BVP using a k-nearest neighbour classifier. 
Browns Double Exponential Smoothing model [5, 6] model is essentially averaging 
last m points based on a parameter, α and it also caters for the trend in a series. The 
method is not able to predict turning points in the series because it only models sim-
ple linear relationships, but the method works reasonably well in predicting stable 
trends [5]. For a more complete description of the model please consult the two 
sources, referenced above. Due to the stock markets’ non-linear nature [7], predictors 
that model non-linear relationships would likely perform better. The second predictor 
we have used is a kNN or k nearest neighbor classification algorithm [8]. kNN how-
ever needs considerably more data than Brown Double Exponential model.  
 
Since our trading strategy, as well as Risk Quantification Graph is designed to use 
the predicted value in banded regions (i.e. rather than specifying ix  we specify its 
corresponding band), we use a banding approach (which is different to BVP) on the 
output of RVP. Our output banding approaches are explained next. 
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9.2.3 Data preparation for Real Value Prediction 

A given time series )....,....,( 21 Ni xxxx  can be predicted either on its actual values or 
after making it stationary. Difference and log operators are often used to stationarise 
time series. We recommend that all time series data should be made stationary, espe-
cially with respect to the mean before predictions are performed. When we chose to 
use Brown’s Double Exponential Model we found that better results were obtained 
without making the data stationary, and hence we have decided to use the data as 
given. The output ix  is now banded as follows. We take the data )....( 1201 −−− ii xx , 

and find its minimum )(a  and maximum )(b . A total of 11 bands of size ⎟
⎠
⎞

⎜
⎝
⎛ −

11
ab  

are centred around 1−ix . The prediction success of the model is based on whether 
the actual and predicted output value bands are the same or not, or can be based on 
mean absolute percentage error of predicted returns. 

9.2.4 Data preparation for Band Value Prediction 

We have used a k-nearest neighbour classifier for band-value prediction. In this 
specific case we find that differencing the time-series twice and predicting this is 
better than predicting original value. A first differenced time series is of the form 

)....,....,( 112312 −− −−−− NNii xxxxxxxx .  Let us denote the final differenced 
time series to be predicted as )....,....,( 221 −Nj yyyy . The difference between the 

minimum and maximum of the training data is given by minimum )'(a  and maxi-
mum )'(b .   We experiment with 6,4,2=L  bands and these are centred on the 1−ix  

with a width of ⎟
⎠
⎞

⎜
⎝
⎛ −

L
ab '' . The predictive ability is now measured based on whether 

the actual and predicted output value bands are the same or not. 

9.2.5 Measuring Uncertainty of Forecast Models 

The RQG is generated with the basic assumption that forecast ability determines risk. 
If you have a perfect predictor for the future, there is no risk. Otherwise the level of 
risk is dependent on the quality of predictor, data complexity, and how far we wish 
to predict. In fact all of these three factors are correlated. The x-axis of RQG quanti-
fies the risk involved by predicting above 1, 2, … n  steps ahead. Hence uncertainty 
associated with predicting m  steps ahead can be measured as the accuracy on vali-
dation set that is achievable with a predictor model trained to predict m  steps ahead.  
To illustrate this, let’s say for a j step ahead forecast, on a total of m validation data 

points, the error will be measured m  times as ⎟
⎠
⎞⎜

⎝
⎛ eee j

m
jj )()(

2
)(

1 ,...,,  . The average 
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error estimate will be ∑
=

=
m

p

j
peje

1
)(ˆ . This is our measure of uncertainty on j step 

ahead forecast. 

9.3 Trading Strategies 

After generating the RQG described in previous section we can now attempt to visu-
ally interpret it and discuss its role in trading strategies. Figure 1 shows an example 
graph where the most optimal investment situation is the far top left corner corre-
sponding to the most benefit and least uncertainty. This is an ideal high profit – low 
risk situation. It is generally believed that financial-agents are risk-averse investors 
[2],which means that investors prefer more wealth to less but to accept more risk 
they also require higher expectations of returns. Hence it is of interest to find situa-
tions with an appropriate risk – return balance.  
 
In order to rank trading time-horizons on most optimal risk – return we can compute 
Euclidean distances (Eq. 2) from a given point (xi, yi) on the scatter-plot to the most 
optimal point (left – top corner, coordinate (0, 5)). Before we compute the distances 
we use standard min-max normalisation to transform uncertainty and benefit into 
0…1 ranges. With the Euclidean distances known we can now rank our trading time-
horizons based on the minimum distance. Table 1 and Figure 2 illustrates this (do not 
worry at this point in time how the figure was derived). 
 

                      22 )5()0( −+−= ii yxd               (2) 

Some investors are more risk averse than others this can be because of age, 
family/cash flow situation and other motivations. To cater for this we can also 
compute weighted Euclidean distances instead (Eq. 3), where a weight in range of 
0…1 is given to uncertainty (w1) and a weight in range of 0…1 is given to the benefit 
(w2). This causes the rankings of time horizons to change to new most optimal 
rankings. For example when a weight of 0.3 is assigned to benefit and weight of 0.7 
to uncertainty, this indicates that it is important for us not to take on much risk, and a 
weight of 0.3 on profit means that our goal are not high returns but returns do carry 
some importance 

 

   2
2

2
1 )5()0( −+−= ii ywxwd              (3) 

Table 2 shows rankings of different weights for Fig. 2, where two sets of weights 
were used. In the first set of weights, (uncertainty) w1 = 0.7 and (benefit) w2 = 0.3, in 
the second set of weights w1 = 0.3 and w2 = 0.7. The row ranking, represents the 
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order of best to worse trading horizons as based on Euclidean distances, where rank-
ing 1 stands for the smallest Euclidean distance. In the first set of weights, the rank-
ing of trading horizons is biased towards minimising uncertainty, and hence position 
of the points on y-axis plays less of a role.  The second set of weights favors profit 
over uncertainty, hence for example point 3 is ranked before 1, or point 19 before 12. 
 
RQG can be used in various interesting ways to implement real trading strategies. 
When time-horizons are above the no-profit/loss line, see Fig. 2, then, this indicates 
that predictions for those investment-horizons are in positive returns. Hence a possi-
ble trading strategy would be to buy a stock for all time-horizons above the no-
profit/loss line. So essentially we would buy at time t and sell at time t+h, where h is 
a time-horizon above no-profit/loss line, this means we would buy and sell as many 
times as there are time-horizons above the line y=0.  
 
This strategy can very much be reversed, where we sell stocks for all time-horizons 
below no-profit/loss line and buy them back at their relevant time-horizons. This 
process is known as short selling and is a commonly used trading method [9]. Fur-
ther we could fine-tune the strategy by only trading time-horizons with low uncer-
tainty, where given some readiness to risk we only consider trades with uncertainty 
lower then an appropriate threshold. In Fig. 2 we see a vertical line at x=4, based on 
which we filter out all other trades but everything that is to the left of the line. 
 

Time Horizons 
Ranking 1 2 3 4 5 6 7 8 9 10 11 … 
 2 3 1 4 5 12 19 18 7 15 8 … 
continued… 12 13 14 15 16 17 18 19 20 
 20 6 16 17 10 11 9 13 14 

 

Table 1. Time-horizon ranking based on Euclidean distances 

Weights Time Horizons 
Ranking 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 
U=0.7 
B=0.3 

2 1 3 4 5 12 7 8 6 10 11 9 19 18 15 … 

U=0.3 
B=0.7 

2 3 1 4 5 19 18 20 12 15 16 17 7 8 6 … 

Table 2. Time-horizon ranking (top 15) based on Euclidean distances 
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Fig. 2. (AstraZeneca 6/12/2006 – 5/1/2007) RQG, Desirability of trading 1 – 4 steps ahead can 

be based on Euclidean distance between their position and ideal (0, 2) position shown above  

One obvious strategy that can be personalized to an agent’s investments needs and 
requirements follows directly from assigning different weights on uncertainty and 
risk. Suppose an investment agent has motivation for high profits, then such weights 
would be set that w2 = r and w1 = 1-r and w2 > w1, where w2 is the weight for bene-
fit. Then the top m time-horizons from the resulting ranking based on least weighted 
Euclidean distances would be selected as the suitable time-horizons to trade, where 
m is some arbitrary integer. It is worth mentioning that when we run this strategy on 
a few stocks, the actual percentage returns had tendency to be less volatile when 
more weight was put on uncertainty. Further we need to only trade time-horizons 
above y=0 line, or for short selling, below the line. 
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9.4 Experimental Details 

In the following sections we first detail the purpose of the experiment(s), data used 
and any additional design details. Section 9.5 will show results on the basis of the 
following. 

9.4.1 Experimental Objectives 

The main objective of our experiment is to show that there is some pragmatic benefit 
in using RQG method. We use a naïve trading strategy to demonstrate the utility of 
our proposal. 

9.4.2 Data  

The data used in our experiments were the daily split adjusted, close prices from 
Wolseley, a FTSE-100 company. Data was separated into training set, validation set 
and test set, as indicated on Figure 4. 
 

 
Fig. 4. 10 years of Wolseley time-series data (training/validation/test sets, respectively) 

9.4.3 Experimental Set-up and Methodology 

We implemented a simple naïve trading strategy based on RQGs for both prediction 
models (Browns and kNN) described in section 9.2. Figure 5 illustrates the trading 
strategy; for a particular day ji an RQG is generated showing predicted output and 
uncertainty over the next two days. We buy the stock at ji and either sell on ji+1 or 
ji+2, based on the shortest Euclidean distance as described in section 9.3. We do this 
for 19 consecutive trading days, at each day we must buy and sell on either of the 
next two days. In section 9.5 we present returns in percentages for this. 
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Fig 5. Naïve 2 day strategy, predicting on Monday, Tuesday, Wednesday, Thursday… 

9.5 Results 

Percentage returns for our naïve trading strategy are presented for Wolseley, for the 
period 8th Jan 07 – 2nd Feb 07. 
 
Buy Date Sell Date Profit (%)  Buy Date Sell Date Profit (%) 
05/01/2007 08/01/2007 -0.78  05/01/2007 08/01/2007 -0.78 
08/01/2007 10/01/2007 0.24  08/01/2007 10/01/2007 0.24 
09/01/2007 10/01/2007 -1.55  09/01/2007 11/01/2007 0.54 
10/01/2007 12/01/2007 2.59  10/01/2007 12/01/2007 2.59 
11/01/2007 15/01/2007 1.85  11/01/2007 12/01/2007 0.46 
12/01/2007 16/01/2007 -0.08  12/01/2007 16/01/2007 -0.08 
15/01/2007 17/01/2007 -1.81  15/01/2007 17/01/2007 -1.81 
16/01/2007 18/01/2007 1.38  16/01/2007 17/01/2007 -0.38 
17/01/2007 19/01/2007 3.77  17/01/2007 19/01/2007 3.77 
18/01/2007 22/01/2007 1.96  18/01/2007 19/01/2007 1.96 
19/01/2007 22/01/2007 0  19/01/2007 23/01/2007 0.74 
22/01/2007 23/01/2007 0.74  22/01/2007 23/01/2007 0.74 
23/01/2007 25/01/2007 -2.06  23/01/2007 25/01/2007 -2.06 
24/01/2007 26/01/2007 -2.37  24/01/2007 26/01/2007 -2.37 
25/01/2007 26/01/2007 -0.97  25/01/2007 26/01/2007 -0.97 
26/01/2007 30/01/2007 0.37  26/01/2007 30/01/2007 0.37 
29/01/2007 30/01/2007 0.15  29/01/2007 31/01/2007 -0.23 
30/01/2007 31/01/2007 -0.38  30/01/2007 31/01/2007 -0.38 
31/01/2007 02/02/2007 2.12  31/01/2007 02/02/2007 2.12 

Total:  5.18  Total:  4.49 

Table 3. Profits (in %), for kNN on the left Browns on the right 

time axis Mon Tue Wed Thu ... … 

Tue 

Wed Wed 
Thu 

Thu 

Fri Fri 

Mon 

Uncertainty 
(a) (b) (c) (d) 

Prediction / Benefit 
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As expected kNN, performs slightly better than Browns model. A simple buy-and-
hold strategy for the same period would provide 5.15%, our kNN does slightly bet-
ter. The RQG method has potential, as there seems to be some benefit in using RQG 
with even a very simple naïve trading strategy. 

9.5 Conclusion 

This paper proposes an innovative way of looking at risk. Several trading strategies 
were proposed based on the risk-quantification plots. The forecast system used is 
central to the accuracy of RQG and the success of any related trading strategies. The 
better the forecast system the more accurate will our proposed risk quantification be. 
We believe the method discussed is showing potential for further study within future 
work on visual risk quantification methods of stock markets and related financial 
assets. 
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