

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288385269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Shape adaptive integer transform for coding arbitrarily shaped
objects in H.264/AVC

Xiongwen Li, Eran Edirisinghe, Helmut Bez

Dept. of Computer Science, Loughborough University, Loughborough, UK LE11 3TU

ABSTRACT

The use of shape-adaptive transforms is a popular approach for coding arbitrarily shaped objects in image/video coding
due to their adaptability at object edges and low complexity. In this respect shape adaptive DCT (SA-DCT) and shape
adaptive DWT (SA-DWT) have been proposed in previous literature. The Integer Transform (IT), a derivative of the
4x4 DCT, has been adopted in the latest H.264/AVC standard for coding image blocks in residual data (texture). The
associated integer arithmetic guarantees fast and accurate coding/decoding. In this paper, we propose a novel Shape
Adaptive Integer Transform (SA-IT) which can be effectively used in future for enabling arbitrary shaped object coding
in H.264. Though Integer Transforms are a derivative of 4x4 DCTs, in H.264, to maintain integer arithmetic capability,
the post-and pre-scaling factors of transform process are integrated into the forward and inverse quantiser stages
respectively for reducing the total number of multiplications and avoiding the loss of accuracy. Thus SA-IT considerably
differs from SA-DCT and calls for novel design and implementation considerations based on combining those merits of
both SA-DCT and IT. We provide theoretical proofs and support them with experimental justifications.

Keywords: H.264, video coding, shape adaptive, integer transform, shape adaptive integer transform, SA-IT, SA-DCT,
Arbitrarily shaped object, DCT

1. INTRODUCTION

H.264/AVC is the latest video coding standard that was developed jointly by the Moving Picture Experts Group
(MPEG) and the Video Coding Experts Group (VCEG). It has published both as Part 10 of MPEG-4 and ITU-T
Recommendation, H.2641, 2, 3. Its original aim was to provide similar functionality to earlier standards such as H.263+
and MPEG-4 Visual (Simple Profile) but with significantly better compression performance and improved support for
reliable transmission. One noteworthy functionality absence in H.264 is the capability of coding arbitrary shaped
objects. Provided, means exists for coding and transmitting shape information (e.g., the use of the auxiliary stream), one
would additionally require SA-IT to fully enable the above functionality.

Unlike the traditional 8x8 DCT6 used in previous standards, the 4x4 IT in H.264.AVC is carried out using integer
arithmetic. Thus not only it avoids mismatches in the inverse transform, but also significantly minimizes computational
complexity due to the exclusive use of simple addition and shift operations within 16-bit arithmetic. However, the
present form of IT used within H.264/AVC has a limitation in encoding arbitrarily shaped objects as pixels outside the
object would also be considered within the transformations. This would result in a waste of compute power and
processing time.

In 1995, Sikora and Makai proposed a shape-adaptive DCT algorithm (SA-DCT)4 to replace the popular 8x8 block
based DCT coding, in arbitrary shaped object coding associated with MPEG-4 Visual Texture Coding standard. The SA-
DCT is based on pre-defined sets of one-dimensional DCT basis functions. It allows an arbitrary region of a block to be
efficiently transformed and compressed3. Two most important benefits of SA-DCT are its capability to adapt to the
arbitrary shapes at video object boundaries and its low complexity. In7, the authors solved some outstanding issues
related to conventional SA-DCT proposed in4 by orthonormalizing the basis functions of the SA-DCT. Nevertheless, all
such previous work adopted a floating point arithmetic design and implementation, which is not suitable to be used in
conjunction with IT used in H.264/AVC.

As regards to the limitation of coding arbitrarily shaped objects in H.264/AVC, it would be a significant advantage if
specific regions of a frame, rather than the complete frame can be represented and coded at high quality as compared to

Visual Communications and Image Processing 2006, edited by John G. Apostolopoulos, Amir Said,
Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6077, 60770C, © 2005 SPIE-IS&T · 0277-786X/05/$15

SPIE-IS&T/ Vol. 6077 60770C-1

Downloaded from SPIE Digital Library on 24 May 2010 to 158.125.80.73. Terms of Use: http://spiedl.org/terms

regions of non-interest. To resolve the above mentioned restriction, it is the objective of this paper to propose a new
method for coding arbitrarily shaped objects in H.264/AVC. This new approach will be referred to as SA-IT within the
context of this paper. In our present design, we separate the core part of the integer transform and incorporate post-and
pre-scaling factors into the forward and inverse quantiser stages respectively. For clarity of presentation, in section 2 we
first provide a brief review on the SA-DCT algorithm proposed in4, 7. Section-3 details the IT used within H.264/AVC
while section 4 describes the proposed SA-IT scheme. Section 5 presents some experiments that were designed to test
the capability of the proposed ideas. Finally section 6 concludes with an insight into future directions of research.

2. SHAPE-ADAPTIVE DCT

The basic idea of the SA-DCT4 is to transform an arbitrarily shaped image object by cascading column and row
transforms of a given 8x8 block. Fig. 1 gives an example of the application of SA-DCT algorithm on an 8x8 image
block that fully encloses an arbitrarily shaped object. Fig. 1(a) illustrates the division of the pixels within the said block
into two groups, namely; foreground (shaded grey) and background (white). The foreground pixels are to be encoded
with SA-DCT by first applying a 1-D DCT vertically and then applying a 1D transform horizontally on the resulting
vertically transformed foreground object. This is done as follows: firstly, the length N(j) (1 £ N(j) £ 8) of every column j
(1 £ j £ 8) of the foreground pixels are calculated. Then, each column is shifted up and finally aligned with the upper
border of the block (see Fig. 1(b)). For a column of foreground pixels of length N(j), the associated DCT transform
matrix AN(j) is given by:

() () ()
() ()0

2 1
, cos , 0,1,..., 1 (1)

2N j

k p
A p k c p k N j

N j
π⎡ ⎤+ ⋅ ⋅

= ⋅ = −⎢ ⎥
⎢ ⎥⎣ ⎦

Here c0 = 1/ 2 if p = 0, and c0 = 1 otherwise.

Figure 1: Example of forward SA-DCT processing in an arbitrarily shape image block

Yj,, the vertical DCT-coefficients of column j resulting from the foreground pixels, Xj , can thus be obtained by using the
following formula7:

() () ()2 , 1 8, 1 8 (2)j jN jY A X j N j
N j

= ⋅ ⋅ ≤ ≤ ≤ ≤

After vertical 1-D DCT transformation, the DC coefficients (denoted by ■ mark in fig.1(c)) for each column are found
along the upper edge of the 8x8 block. Next, the rows are shifted to align at the left border of the 8x8 block (see fig.1(d))
and a horizontal (i.e. on individual rows) 1-D DCT transform is performed for each row of coefficients Yi using the
equations, (1) and (2). Finally, the result of DCT coefficients within the 8x8 boundary block is shown in Fig. 1(e). Note

j

i

(a) Original block

Xj

(b) Vertical ordering of pels (c) After vertical SA-DCT

Yj

(d) Horizontal ordering of pels

Yi Zi

(e) SA-DCT coefficients

SPIE-IS&T/ Vol. 6077 60770C-2

Downloaded from SPIE Digital Library on 24 May 2010 to 158.125.80.73. Terms of Use: http://spiedl.org/terms

that the final DC coefficient (denoted by ■) for the whole boundary block is located in the upper left border of the block.
The remaining coefficients are concentrated around the DC coefficient depending on the actual shape of the arbitrarily
shaped object. The Inverse Shape-Adaptive DCT can be obtained with the use of the following equation:

()
* *2 (3)T
j jN jX N A Y= ⋅ ⋅

in both horizontal and vertical directions. Here *

jY denotes transformed coefficients, *
jX denotes the inverse-transformed

data and j refers to the length of the data set.

3. INTEGER TRANSFORM IN H.264

Similar to previous video coding standards, H.264/AVC employs transform coding of the prediction residual.
Nevertheless, the transformation in H.264/AVC is applied to 4x4 blocks, and instead of the popular DCT, a separable
integer transform (IT) with similar properties as a 4x4 DCT is used2, 5. There are several key features associated with the
application of IT in H.264. Firstly, all operations can be carried out using integer arithmetic implemented as simple
addition and shift operations. This results in a speed up of operation and accuracy in decoding. In addition to the above,
the non integer calculations that are an inherent part of the transform operation are factored out and integrated into the
quantization stage. This can be explained below.

The 2D DCT transform of a 4x4 matrix X can be written as:

TY AXA= , where
a a a a
b c c bA a a a a
c b b c

⎡ ⎤
⎢ ⎥− −=⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

, where A is the 4x4 2D-DCT transformation matrix, 1
2

a= , 1 cos
2 8

b π⎛ ⎞= ⎜ ⎟
⎝ ⎠

 and

1 3cos
2 8

c π⎛ ⎞= ⎜ ⎟
⎝ ⎠

.

Further factorizing and assuming 0.5c
b

= and 2 5b = (In order to remain the orthogonal transform), we can rearrange the

above equation as:

()
2 2

2 2
2 2

2 2

2 21 1 1 1 1 2 1 1
2 1 -1 -2 1 1 -1 -2 2 4 2 4
1 -1 -1 1 1 -1 -1 2 2 21 -2 2 -1 1 -2 1 -1

2 4 2 4

T
f f f

a ab a ab
X ab b ab bY C XC E

a ab a ab
ab b ab b

⎡ ⎤⎛ ⎞⎡ ⎤⎡ ⎤⎡ ⎤ ⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= ⊗ = ⊗⎜ ⎟⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦⎝ ⎠ ⎣ ⎦

 (4)

where: 1 2 2 5a , b= = .

In equation 4, CfXCf

T is a ‘core’ 2D transform where Cf and Cf
T are the integer transform matrix and its transpose

separately. X is the 4x4 pixel block data, Ef is a matrix of scaling factors (i.e. a post-scaling matrix) that resulted from
the factorization discussed above and the symbol ⊗ indicates that each element of CfXCf

T is multiplied by the scaling
factor in the corresponding position in the matrix Ef. The post-scaling matrix Ef can be incorporated into the forward
quantiser, thus guaranteeing that all calculations related the ‘core’ transform are integer. This integer transform is an
approximation to the conventional 4x4 DCT but because of the change to factors b and c/b, the result of the IT will not
be identical to the 4x4 DCT. Similarly, the inverse transform is given by the following equation:

()

2 2
2 2

2 2
2 2

1 1 1 1 2 1 1 1 1
1 1 2 -1 -1 1 1 2 -1 2 -1
1 -1 2 -1 1 1 -1 -1 1
1 -1 1 -1 2 1 2 -1 1 -1 2

T
i i i

a ab a ab
Y ab b ab bX C Y E C

a ab a ab
ab b ab b

⎛ ⎞⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥= ⊗ = ⋅ ⊗ ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟⎣ ⎦⎝ ⎠

 (5)

In the above formula, the Y (the forward transformed coefficients) is pre-scaled by multiplying each coefficient by the
appropriate weight factor from matrix Ei. The factors 1 2± in the matrices Ci and Ci

T can be implemented by a simple
right-shift operation without a significant loss of accuracy since the coefficients Y are pre-scaled. The forward and

SPIE-IS&T/ Vol. 6077 60770C-3

Downloaded from SPIE Digital Library on 24 May 2010 to 158.125.80.73. Terms of Use: http://spiedl.org/terms

inverse transforms are orthogonal, i.e. ()()1T T X X− = . Both Ef and Ei are integrated into the forward and inverse
quantisers separately in H.264. More details on the specific aspects of the transform and quatisation in H.264 can be
found in5.

4. SHAPE-ADAPTIVE INTEGER TRANSFORM (SA-IT)

In this section, we provide the theoretical concepts and mathematical proofs associated with the proposed SA-IT
algorithm. The approach used is similar to that described for SA-DCT in section 2. However due to the requirement of
having to maintain all calculations within the core transform (see section 3) as integer arithmetic, some important
additional design considerations and matrix factorizations are utilized within the current context.

4.1 Forward transform
Vertical:

In equation (2), if () () ()2N j N jB N j A= ⋅ , ⇒ () (6)j jN jY B X= ⋅

Note that BN(j) is a N(j)xN(j) matrix and Xj , Yj respectively represent vectors representing the column ‘j’ of the original
4x4 pixel block and the corresponding column’s transform. Depending on the arbitrary shape of the object, the length of
the above two vectors, N(j), can range from 1-4. Thus depending on the length of N(j), BN(j) can be factorised to

() ()N j N jC E⊗ where CN(j) consists of integers and EN(j) consists of fractional elements :

When,

()

()

()

()

1 1 1

2 2 2

3 3 3

2 2 2 2

4 4 4 2 2 2 2

1, 1 1

1 1
2,

1 1

1 1 1
3, 1 0 1

1 2 1

1 1 1 1
2 1 1 2

4,
1 1 1 1
1 2 2 1

N j B C E

a a
N j B C E

a a

b b b
N j B C E a a a

c c c

a a a a
d d d d

N j B C E
a a a a
d d d d

= ⇒ = ⊗ = ⊗⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= ⇒ = ⊗ = ⊗⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⇒ = ⊗ = − ⊗⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥− −⎢ ⎥= ⇒ = ⊗ = ⊗
⎢ ⎥− −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

where, 1 1 1 1, , ,
2 3 6 10

a b c d= = = = .

The constants in matrix B4 have been approximated and modified following a strategy similar to that used in IT3 (see
section 3). Thus equation 6 can be re-written as:

() ()() ()() ()() ()()

()
()

1
 1 4, 1 4 (7)

N j

j jN j N j N j k j k N j k
k

Y C E X C X E j N j
=

= ⊗ ⋅ = ⋅ ⊗ ≤ ≤ ≤ ≤∑

Note that ()N jC is the integer part of the N(j)xN(j) integer transform matrix of column j of Xj and ()()N j kC is the kth column
of ()N jC . Similarly, ()N jE and ()()N j kE can be defined similarly but represent scaling factors, that arise when the integer
transform matrix is factorised. Note that Xj(k) represents the kth internal pixel of Xj. The symbol ⊗ represents scalar
multiplication as described in section 3.

SPIE-IS&T/ Vol. 6077 60770C-4

Downloaded from SPIE Digital Library on 24 May 2010 to 158.125.80.73. Terms of Use: http://spiedl.org/terms

Horizontal:

After carrying out the 1D-IT along columns as described in section 4.1 above, the transformed coefficient columns are
left aligned as described in section 2. Subsequently following a strategy similar to that used in obtaining equation (7),
the following equation could be obtained for 1D-IT along coefficient rows:

()() ()() ()()

()
()

1
' 1 4, 1 4 (8)

M i

i M i k i k M i k
k

Z C Y E M i i
=

= ⋅ ⊗ ≤ ≤ ≤ ≤∑

In the above equation, M(i) refers to the length of row i (i.e. the number of coefficients of row i). CM(i)(k), Yi(k)
and ()()'M i kE are defined accordingly as the equation (7) in section 4.1. Note that ()N jE consists of a total of 6 factors in
equation (7), while ()'M iE is made up of 18 factors (Table 1) in equation (8).

4.2 Inverse transform
In terms of the equations (8) and (7) separately, the inverse transforms in both horizontal and vertical directions and
their factorizations can be summarized by the following equations:

Horizontal:

()() () ()()()()
()T

1
' 1 4, 1 4 (9)

M i
T

i M i k i k M i k
k

Y C Z E M i i
=

= ⋅ ⊗ ≤ ≤ ≤ ≤∑

Vertical:

()() ()

()
()

1
 1 4, 1 4 (10)

N j
T

j N j k j k
k

X C Y N j j
=

= ⋅ ≤ ≤ ≤ ≤∑

Here, ()i kZ and ()j kY are respectively the kth forward horizontal transform coefficient of row i of the SA-IT transformed
block and the kth inverse horizontal transform vector of column j. ()()

T
M i kC , ()()

T
N j kC and ()()'TM i kE represent the transposes of

()()M i kC , ()()N j kC and ()()'M i kE respectively.

4.3 Quantisation
Forward Quantisation:

In equation (8), the output of forward transform consists of two parts, an integer part,

()() ()() ()M i k M i k i kW C Y= ⋅ , and a non-
integer part (i.e. it consists of the post-scaling factors) ()()'M i kE . To maintain integer arithmetic within the core forward
transform, in H.264/AVC, the above post scaling factors ()()'M i kE are incorporated into the forward quantization process
as follows. Thus, the integers, transformed coefficients, ()()M i kW are quantized and scaled by a single operation as follows:

 ()() ()()

()

1

' (11)
M i

i M i k M i k
k

Q round W E Qstep
=

⎛ ⎞
= ⊗⎜ ⎟⎜ ⎟

⎝ ⎠
∑

where Qstep is a quantizer step size and there are a total of 52 values of Qstep are supported by the H.264/AVC standard,
indexed by a Quantisztion Parameter, QP Table1, 3. Qstep doubles in size for every increment of 6 in QP. The rounding
operation here rounds towards smaller integers.

SPIE-IS&T/ Vol. 6077 60770C-5

Downloaded from SPIE Digital Library on 24 May 2010 to 158.125.80.73. Terms of Use: http://spiedl.org/terms

Following the approach used within H.264/AVC reference model software8, we apply the factor E’
M(i)(k)/Qstep in

equation 11, as a multiplication by a factor MF and a right-shift, thus avoiding any division operations. i.e., the equation
11 can be re-written as follows:

()()
()()

()

1 2

M i
M i k

i M i k qbits
k

MF
Q round W

=

⎛ ⎞
= ⊗⎜ ⎟⎜ ⎟

⎝ ⎠
∑

where
()() ()()'

2
M i k M i k
qbits

MF E

Qstep
=

and
 15 (/ 6) (12)qbits floor QP= +

In integer arithmetic, equation (12) can be implemented as follows:

()() ()() ()()
()

()()

()

() ()()

()
1 1

1

 (13)

M i M i

i M i k M i k M i M i k
k k

M i

i M i k
k

Q W MF F f qbits R

sign Q sign W

?
= =

=

= ⊗ + =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

∑ ∑

∑

where the symbol >> indicates a binary shift right. FM(i) is a column matrix of size M(i) x 1 , in which all elements are 1.
The so-called dead-zone control parameter f is set at 2qbits/2, in which qbits is derived by a quantization parameter (see
equation), QP, an integer selected by the user. It determines the value of Qstep via a predefined lookup table1, 3. Further,
to optimize the operational speed, the integer multiplication factors, MFM(i)(k) are obtained via Table 1 look-up. Note that
in equation (13), RM(i)(k) is the sub-quantisation coefficient(s) of each WM(i)(k). Qi represents the quantized coefficients of
row i. For further details of the above quantization procedure we refer readers to3, 5.

Table 1: Multiplication factor MF

The first six values of MF (for each coefficient position) used by the proposed SA-IT are given in Table 1. The factors
MF remain unchanged but the divisor 2qbits increases by a factor of two for each increment of six in QP when QP > 5.

Inverse Quantisation:

QP Factors 0 1 2 3 4 5
a 37449 33825 29127 26886 23301 20971
b 30393 27962 23301 21845 19418 17050
c 21845 20560 16644 15887 13443 12052
d 17476 16131 13107 12336 10485 9532
a2 26214 23831 20164 18724 16384 14563
ac 15887 14563 11650 10922 9709 8738
ad 13107 11650 9532 8738 7489 6553
a3 18724 17476 14563 13797 11915 10485
bc 12945 11650 9709 8962 7767 7281
bd 9986 8738 7767 6990 6355 5377
cd 6990 6990 5825 4993 4369 3883
a2c 10922 10922 8738 7943 6721 6241
a2d 8738 8738 6553 6553 5242 4766
1 52428 47662 40329 37449 32768 29127
b2 17924 16644 13706 12945 11096 9709
c2 9709 8322 7281 6472 5825 4854
d2 5242 5242 4194 4194 3495 2995
a4 13107 11915 10082 9362 8192 7281

SPIE-IS&T/ Vol. 6077 60770C-6

Downloaded from SPIE Digital Library on 24 May 2010 to 158.125.80.73. Terms of Use: http://spiedl.org/terms

In inverse quantization (equation 14), the pre-scaling factor ()()'TM i kE (see equation (9)) is multiplied by a constant scaling
factor of 64 to avoid rounding errors3:

()() ()()()
()

()/ 6'

1
 2

M i
floor QP

i M i k M i k
k

W R V
=

= ⊗ ⋅∑

where

()() ()()()' 64 (14)T
M i k M i kV round E Qstep= ⋅ ⋅

The integer scaling factor, ()()M i kV are defined in our proposal for 0 5QP£ £ are shown in Table 2. 'iW are the de-
quantized coefficients of row i, which is are subsequently transformed to the pixel domain by the core inverse transform
in equations (9) and (10). The values at the output of the inverse transform are divided by 64 to remove the scaling
introduced in equation (14). This is achieved using only an addition and a right-shift.

Table 2: Scaling factor V

5. EXPERIMENTAL RESULTS

An experiment was designed to evaluate the effectiveness of the proposed SA-IT algorithm in coding arbitrary shaped
objects. The first frame of the video sequence Foreman (QCIF, grayscale Fig. 3) was used for experiments, with the
assumption that the shape of the foreground object (i.e. of the Foreman) was known as an alpha-plane.

Firstly, the frame is segmented into two slice groups, namely, foreground (object, i.e. the man) and background, using
the alpha-plane information. Subsequently the extracted arbitrary shaped foreground object is enclosed within a tightest
fitting rectangle, which is later extended to enable the accommodation of full 4x4 blocks. Finally the enclosed 4x4
blocks are divided into boundary (a part of pixels belongs to the object), foreground (all pixels are inside of the object)
and background (all pixels are outside of the object) blocks, and the proposed SA-IT is applied to all boundary blocks.
Note that the normal IT can be applied to all foreground object blocks while coding background object blocks are
ignored as they do not belong to the object being coded.

In Fig. 2, we illustrate the detailed (including intermediate stages) coding results for a selected arbitrary shaped
boundary block. The reconstruction results of both foreground and background are given in Fig. 4(a) and Fig. 4(b)
respectively.

QP Factors 0 1 2 3 4 5
a 28 31 36 39 45 50
b 23 25 30 32 36 41
c 16 17 21 22 26 29
d 12 13 16 17 20 22
a2 20 22 26 28 32 36
ac 11 12 15 16 18 20
ad 8 9 11 12 14 16
a3 14 15 18 19 22 25
bc 9 10 12 13 15 16
bd 7 8 9 10 11 13
cd 5 5 6 7 8 9
a2c 8 8 10 11 13 14
a2d 6 6 8 8 10 11
1 40 44 52 56 64 72
b2 13 14 17 18 21 24
c2 6 7 8 9 10 12
d2 4 4 5 5 6 7
a4 10 11 13 14 16 18

SPIE-IS&T/ Vol. 6077 60770C-7

Downloaded from SPIE Digital Library on 24 May 2010 to 158.125.80.73. Terms of Use: http://spiedl.org/terms

10

4 12

4

IS I
10

10 4 10

IS 12

4

7

10 19 33

-II 14

I

-'3

I & &

& d

&

d

I Ob+I 9b+33b• I th_33• I G:-3&&+33&

-II•+I4 -II•-I4d

&

-13d

12 -2 -I

-I -5

0

-2

604 96 -34

-136 -248

0

-J

6E 2 618

loss 74

2G2

33J

9

4 II

3

16 5

10

Figure 2: An example of SA-IT of a arbitrary shaped block

Fig. 4(a) and 4(b) illustrate the separation of the original Forman image of Fig. 3, into foreground and background
objects. Fig. 4(c) and 4(d) illustrate the reconstructed images using the proposed SA-IT scheme and the standard IT
scheme. Identical quantizer parameter (QP = 28) have been used to code all blocks in Fig. 4(c). No difference is visual
quality is observed between the two images. A comparison of PSNR values of the reconstructed images when using
different QP values is shown in Table 3. The results justify that the PSNR values are comparable.

Fig. 3 Original image

Fig. 4 A comparison of proposed SA-IT and traditional IT

(a) Reconstructed foreground (b) Reconstructed background (c) Reconstructed by SA-IT (d) Reconstructed by IT

j = 1 2 3 4

i = 1

 2

 3

4

(a) Input block X (b) Shifting of pels. (c) Output of vertical transform: Y (left) and E (right)

(d) Output of horizontal transform: 'Z W E= Ä (e) Quantized values: Q

(f) Inverse quantized: 'W (g) Output of inverse transform: 'X (h) Reconstructed block

SPIE-IS&T/ Vol. 6077 60770C-8

Downloaded from SPIE Digital Library on 24 May 2010 to 158.125.80.73. Terms of Use: http://spiedl.org/terms

QP PSNR(SA-IT) PSNR(IT)
4 50.88dB 50.88dB

10 48.78dB 48.91dB
15 45.46dB 45.68dB
28 35.79dB 36.17dB

Table 3: Comparison of PSNR values

As mentioned earlier, a functionality of significant practical importance of the proposed SA-IT scheme is its ability to
code foreground and background areas at different bit rate / quality. For example, less important background regions
within a frame may be encoded with lower quality and more important foreground regions/objects can be coded at
higher quality. We demonstrate this enhance functionality in our second experiment described below.

Fig. 5 illustrates the comparison of visual image quality between two images compressed at the same rate (i.e.
compression ratio). For the image compressed with the traditional IT scheme we have used a QP of 37 to achieve the
fixed bit rate. In contrast when using the SA-IT scheme, for the foreground we have used a QP of 10 and for the
background a QP of 48. Note the clear improvement of the foreground object quality in (b) as compared to that of (a)
and the clear degradation of quality in the background region of (b) as compared to that of (a). A similar coding strategy
has many applications in practice.

Fig. 5 Comparison of image quality based on 64% of compression ratio. (a) Image in Fig. 3 compressed using the Int-DCT scheme
with a QP = 37. (b) Image in Fig. 3 compressed foreground and background using the SAI-DCT with QP = 10 and QP=48 separately.

IT Proposed SA-IT Com.
Rate QP PSNR QP(BG) QP(FG) PSNR PSNR(FG)
53% 28 36.17 33 4 33.64 55.51
64% 37 29.76 48 10 22.35 53.54

Table 4: PSNR comparisons and QP considerations at different compression rates

Further results related to the above experiment are tabulated in Table 4. BG and FG refer respectively to the background
and foreground. Results illustrate the additional coding flexibility offered by the proposed scheme.

6. CONCLUSIONS

In this paper, we have proposed a Shape-Adaptive Integer Transform algorithm for coding arbitrary shaped objects in
H.264/AVC. The standard stages of IT based CODEC used in H.264/AVC have been modified and extended to enable
arbitrary shaped object coding. The SA-IT approach adopted here is similar to the previous work of SA-DCT and SA-
DWT, yet resolves additional mathematical challenges due to the requirement that integer arithmetic should be
maintained at all stages. Experimental results have been provided to justify the accuracy and functionality of the
proposed method. We have shown that the proposed scheme is useful in region-of-interest based coding applications that
may require important foreground objects to be coded at a comparatively higher quality as compared to the background
regions. Though the implementations carried out within our present research context is a proof of concept, we are
currently in the process of incorporating the proposed methodology within a standard H.264/AVC implementation.

SPIE-IS&T/ Vol. 6077 60770C-9

Downloaded from SPIE Digital Library on 24 May 2010 to 158.125.80.73. Terms of Use: http://spiedl.org/terms

Further research challenges exists in designing data-structures and algorithms for maintaining arbitrary shaped slice
groups, adaptive setting of quantization parameters and shape coding within auxiliary information streams.

REFERENCES

1. Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, “Draft ITU-T recommendation and final draft

international standard of joint video specification ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC”, JVTG050, 2003.
2. T. Wiegand, G. Sullivan, G. Bjontegaard and A. Luthra, “Overview of the H.264 /AVC Video Coding Standard”,

IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, pp. 560- 576, 2003.
3. Iain E. G. Richardson, H.264 and MPEG-4 Video Compression Video Coding for Next-generation Multimedia,

John Wiley & Sons Ltd, England, 2003.
4. T. Sikora and B. Makai, “Shape-Adaptive DCT for Coding of Arbitrarily Shaped Image Segments”, Signal

Processing: Image Comm., Vol. 7, pp. 381-395, 1995.
5. H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-Complexity Transform and Quantization in

H.264/AVC”, IEEE Transactions on Circuits and Systems for Video Technology, Vol 13, pp. 598-603, 2003.
6. K. R. Rao and P. Yip, “Discrete Cosine Transform”, Academic Press, 1990.
7. A. Kaup and S. Panis, “On the Performance of the Shape Adaptive DCT in Object-Based Coding of Motion

Compensated Difference Images”, Picture Coding Symposium, ITG-Fachbericht 143, pp. 653-657, Sep. 1997.
8. H.264 Reference Software Version JM9.2 http://bs.hhi.de/~suehring/tml/, March 2005.

SPIE-IS&T/ Vol. 6077 60770C-10

Downloaded from SPIE Digital Library on 24 May 2010 to 158.125.80.73. Terms of Use: http://spiedl.org/terms

