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Abstract 

 

Artificial neural networks (ANNs) have been applied within the field of hydrological 

modelling for over a decade but relatively little attention has been paid to the use of these 

tools for flood estimation in ungauged catchments.  This paper uses data from the Centre 

for Ecology and Hydrology's Flood Estimation Handbook (FEH) to predict T-year flood 

events and the index flood (the median of the annual maximum series) for 850 

catchments across the UK.  When compared with multiple regression models, ANNs 

provide improved flood estimates that can be used by engineers and hydrologists.  

Comparisons are also made with the empirical model presented in the FEH and a 

preliminary study is made of the spatial distribution of ANN residuals, highlighting the 

influence that geographical factors have on model performance.  
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1. Introduction 

The UK Flood Estimation Handbook (FEH) notes that “many flood estimation problems 

arise at ungauged sites for which there are no flood peak data” (Reed and Robson, 

1999:12).  In such cases, the hydrologist is faced with the difficult task of estimating 

flood event magnitudes from catchment properties and/or regional climatology. The FEH 

recommends that, wherever possible, such estimates should be based on the transfer of 

analogous data from sites that are hydrologically similar in terms of catchment area, 

rainfall and soil type i.e. 'donor sites'. However, it is not always possible to establish an 

appropriate set of donor sites, and classification of sites into similar groupings can be 

problematic.  Even though attempts have been made to classify catchments (for example, 

with artificial neural networks; Thandaveswara and Sajikumar, 2000) the FEH notes that 

there may be fundamental differences between sites that would result in [a] the transfer of 

inappropriate information and [b] the production of inaccurate flood estimates. 

Regionalisation techniques enable the extrapolation of properties of flow regimes 

across homogeneous regions and the estimation of flow statistics at ungauged sites 

(Institute of Hydrology, 1980). To date, one of the most extensive studies to regionalise 

flows in Western Europe was conducted within the framework of the FRIEND (Flow 

Regimes from International Experimental and Network Data) project (Gustard, 1993). 

This project, and subsequent studies, highlighted the value of catchment characteristics 

(such as hydrogeology and soil properties) as descriptors of flows at ungauged sites 

(Gustard and Irving, 1994). The three most widely applied regionalisation techniques 

involve: [1] fitting a probability distribution to a flow series, or parameters to a flow 

duration curve, and then relating the model parameters to physical catchment 

characteristics (e.g., Smakhtin et al., 1997; Tucci et al., 1995; van der Wateren–de Hoog, 

1995); [2] relating index flows with specific return periods (e.g., the mean or median 

annual flood) to physical catchment characteristics (e.g., NERC, 1975; Schreiber and 

Demuth, 1997; Vogel and Kroll, 1992); or [3] deriving the parameters of an intermediate 

conceptual rainfall–runoff model from physical catchment characteristics and then 

simulating the required discharge sequences (e.g., Ibrahim and Cordery, 1995; Pirt, 1983; 

Post and Jakeman, 1996; Sefton and Howarth, 1998). 
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The FEH involves the use of an index flood procedure to derive the flood 

frequency curve at ungauged sites. The index flood is a middle-sized flood for which the 

mean or median of the flood data series is typically used (Grover et al., 2002). This 

procedure is based on the assumption that donor sites have the same flood frequency 

distribution but differ in terms of the index flood. The flood frequency distribution at the 

ungauged site is obtained from multiplying the pooled growth curve (dimensionless 

frequency derived from the data of the donor sites) with the index flood of the ungauged 

site. In this context the index flood can be viewed as a scaling factor for the growth curve. 

The FEH uses the median flood to represent the index flood. 

It is possible, with standard statistical regression techniques, to produce index 

flood estimations based on catchment descriptors – for example, derived from catchment 

area, wetness and base flow index.  The FEH also provides algorithms for calculating the 

index flood for a given site and offers different algorithms for rural and urban 

catchments.  However, Reed and Robson (1999) state that flood estimates ‘made from 

catchment descriptors are, in general, grossly inferior, to those made from flood peak 

data’.  

The aims of the present investigation are thus threefold: (1) to explore the 

potential application of artificial neural network (ANN) solutions to the problem of flood 

estimation in ungauged catchments; (2) to compare ANN model prediction skill with that 

of the two conventional statistical approaches referred to earlier; and (3) to evaluate 

possible spatial biases in ANN model output error. 

ANNs have been used to perform hydrological modelling operations for over a 

decade.  Since the advent of effective training algorithms for neural networks in the mid 

1980s (Rumelhart and McClelland, 1986), neural solutions have been applied to a wide 

range of hydrological problems, such as rainfall-runoff modelling and river discharge (or 

stage) forecasting (for a review of forecasting applications see Abrahart et al., 2004; 

Dawson and Wilby, 2001; Govindaraju, 2000).  There have, however, been relatively few 

studies involving the application of ANNs to flood estimation at ungauged sites.  For 

example, at the regional scale, Liong et al. (1994) investigated flood quantile prediction 

for ungauged catchments in Quebec and Ontario; Muttiah et al. (1997) investigated two-

year peak storm discharge predictions for river basins in the United States; Hall and 

Minns (1998) related the scale and location parameters of the Extreme Value Type 1 

(EV1 or Gumbel) distribution for annual floods to six catchment characteristics in two 
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flood regions of the UK. In subsequent experiments, Hall et al. (2000) used between four 

and twelve input catchment characteristics to predict the same two EV1 parameter 

outputs using data from sites in Sumatra and Java; whereas Dastorani and Wright (2001) 

found that seven catchment inputs were sufficient to predict the index flood for selected 

catchments in the UK.  This paper discusses the application of ANNs to predict the index 

flood for a much larger sample of selected catchments in the UK. It also considers the 

estimation of 10-, 20- and 30-year flood event magnitudes at such sites.  Given the range 

of record lengths available, the 20-year flood event was chosen for further discussion as it 

is a convenient metric that is often used for the purposes of comparison in other studies 

(for example, see Reynard et al., 2004). 

The remainder of this paper is arranged as follows. Section 2 provides a brief 

introduction to ANNs with particular reference to the Multi-Layer Perceptron (MLP). 

Section 3 describes the data sets and Section 4 the methods that have been applied for 

flood estimation at ungauged sites.  Section 5 considers the error measures that were used 

to evaluate model performance and Section 6 the results, including a discussion of the 

geographical distribution of model residuals.  Finally, Section 7 provides conclusions and 

recommendations for further work.  

 

2. Artificial neural networks 

Artificial neural networks were first introduced in the 1940s (McCulloch and Pitts, 1943).  

Interest grew in these tools until the 1960s when Minsky and Papert (1969) showed that 

networks of any practical size could not be trained effectively.  It was not until the mid-

1980s that ANNs once again became popular with the research community when 

Rumelhart and McClelland (1986) rediscovered a calibration algorithm that could be used 

to train networks of sufficient sizes and complexities to be of practical benefit.  Since that 

time research into ANNs has expanded and a number of different network types, training 

algorithms and tools have evolved.   

Given sufficient data and complexity, ANNs can be trained to model any 

relationship between a series of independent and dependent variables (inputs and outputs 

to the network respectively).  For this reason ANNs are considered to be a set of  

universal approximators and have been usefully applied to a wide variety of problems 

that are difficult to understand, define, and quantify – for example, in finance, medicine, 

engineering, etc.   In the context of this paper, ANNs are trained to represent the 
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relationship between a range of catchment descriptors and associated flood event 

magnitudes. There is no need for the modeller in this case to fully define the intermediate 

relationships (physical processes) between catchment descriptors and flood event 

magnitudes – the ANN identifies these during the "learning process".  However, future 

work may involve ‘drilling’ into network models to extract and interrogate such 

relationships (e.g., Wilby et al. (2003), Jain et al. (2004) and Sudheer and Jain (2004)) – 

something that is beyond the scope of the current paper. 

Although there are now a significant number of network types and training 

algorithms, this paper will focus on the Multi-Layer Perceptron (MLP).  Figure 1 

provides an overview of the structure of this network.  In this case the ANN has three 

layers of neurons (nodes) – an input layer, a hidden layer and an output layer.  Each 

neuron has a number of inputs (from outside the network or the previous layer) and a 

number of outputs (leading to the subsequent layer or out of the network).  A neuron 

computes its output response based on the weighted sum of all its inputs according to an 

activation function (in this case the logistic sigmoid).  Data flows in one direction through 

this kind of network – starting from external inputs into the first layer (the predictors), 

that are transmitted through the hidden layer, and then passed to the output layer from 

which the external outputs (predictands) are obtained.  The network is trained by 

adjusting the weights that connect the neurons using a procedure called error 

backpropagation.  In this procedure the network is presented with a series of training 

examples (predictors and their associated predictands) and the internal weights are 

adjusted in an attempt to model the predictor/predictand relationship.  This procedure 

must be repeated many times before the network begins to model the relationship. 

Interested readers are directed to neural network texts such as Bishop (1995) for more 

detailed coverage of such topics. 

 

3. Catchments data set 

3.1 Introduction 

The data used in this investigation were obtained from the FEH CD-ROM (Reed and 

Robson, 1999).  The FEH CD-ROM contains data for 1000 sites on drainage paths in 

mainland Britain, Northern Ireland, the Isle of Wight and Anglesey, which have 

catchment areas of at least 0.5 km2.  These data are provided in the form of three separate 

files for each site. File #1 contains the annual maximum series (AMS), File #2 the peaks-
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over-threshold series (sometimes covering a different period to the AMS), and File #3 a 

set of catchment descriptors for each site. The AMS covers a range of years, some files 

containing well over 100 years of data from the mid 1800s to the 1990s, while others 

contain only five or six years of data – usually from the 1970s and 1980s.  These data 

were processed in two stages.  First, catchment descriptors were extracted for each site.  

Second, the AMS was used to estimate [a] the index flood and [b] selected T-year flood 

events for each catchment. 

 

3.2 Catchment descriptors 

The FEH CD-ROM contains a number of site descriptors for each catchment, although 

closer inspection revealed that not all descriptors were available for each catchment.  The 

sixteen descriptors shown in Table 1 were chosen as predictors for this study as they were 

available for all catchments and provided quantitative representations of catchment 

characteristics (for information this table also provides the mean value for each descriptor 

for all 850 catchments used in this study). 

 
3.3 Estimation of at-site flood magnitudes 
 

The AMS for each site was extracted from the data and T-year flood events were 

estimated based on the method of Shaw (1994) assuming a Gumbel Type 1 distribution.  

It is noted that other distributions could be used but from experience most distributions 

yield comparable results. As the purpose of this study was to evaluate the effectiveness of 

ANNs in modelling T-year flood events it did not matter which of the comparable 

distributions was selected as the ANNs would in all cases be modelling a pseudo T-year 

flood event. 

The annual maximum for a return period of T-years is thus calculated as: 
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In which Q  is the mean of the annual maximums, SQ is the standard deviation of these 

maximums, K(T) is a frequency factor and T(X) is the return period in years. 
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To increase confidence in the modelling of the T-year flood event the analysis 

was restricted to a consideration of catchments that had ten or more years of annual 

maximum data.  Several catchments that had significant amounts of missing descriptive 

data were also removed from the database reducing the number of catchments available 

in the final modelling operation from 1000 to 850.  

The index flood was also calculated for each catchment as the median of the 

AMS. In cases with an even number of values the index flood was taken as the average of 

the two middle values.  The index flood is a moderate flood event that occurs on average 

once every two years but is, in contrast, derived directly from the actual data set.  It does 

not need to be estimated from a theoretical frequency distribution which, therefore, 

removes one potential source of error.  

Table 1 shows the correlation between the catchment descriptors and the 

estimated 20-year flood event and the index flood at each site.  As one would expect, 

characteristics such as catchment drainage area, longest drainage path, and mean 

distance between each node and catchment outlet are strongly correlated with both the 

20-year flood event and the index flood. The similarity of the results also implies a very 

strong correlation between the 20-year and index floods. 

 

4. Tools and methods 

Four different types of tool are compared in this study. Two data-driven model building 

strategies were used to develop working neural network flood event predictors based on 

the use of split-validation and cross-sample methodologies. Two sets of statistical 

solutions were also developed using step-wise multiple linear regression and the FEH 

model. These were intended to act as 'benchmark standards'. The first set of neural 

network solutions developed on the full data set are compared with the step-wise multiple 

linear regression outputs. The second set of neural network solutions developed on urban 

and rural partitions of the full data set are compared with the FEH model outputs. 

 

4.1 Neural network split-validation  

The split-validation method (sometimes referred to as cross-validation in the ANN 

literature) provides a rigorous test of ANN skill (Dawson and Wilby, 2001). It involves 

dividing available data into three sets: a training set, a validation set, and a test set.  The 

training set is used to fit ANN model weights (for a number of different network 
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configurations and training cycles), the validation set is used to select the model variant 

that provides the best level of generalisation, and the test set is used to evaluate the 

chosen model against unseen data.  In this case the 850 data patterns that were available 

for analysis were split randomly as follows; 424 (50%) catchments for training, 213 

(25%) for validation, and 213 (25%) for final testing.  The process of random selection 

produced a reasonable sample of different catchment types and sizes in each sub-set.  

Table 2 reports the minimum, mean and maximum values of selected catchment 

properties for the three sub-sets compared with the full data set. Table 2 also indicates 

that random splitting might not provide the most severe test of model skill since the test 

data might not contain the most extreme flood events for both the index flood and the 20-

year flood event.   

Separate networks were trained to predict the 10-, 20-, and 30-year flood events 

and the index flood.  From previous experience network configurations consisting of 3, 5, 

10, 15, 20, and 30 hidden neurons were trained using between 100 and 5000 epochs (in 

steps of 100 epochs) in each case (e.g., Dawson and Wilby, 2001). The training algorithm 

was 'backpropagation of error', with a low learning rate of 0.1, and a high momentum 

value of 0.9 (the maximum setting for each parameter is 1.0).  Following previous 

studies, each predictor and predictand was standardised to [0.1, 0.9], such that extreme 

flood events which exceeded the range of the training data set could be modelled between 

the boundaries [0, 1] during validation and testing.  

 

4.2 Neural network cross-sampling  

To correct for deficiencies in the random division of the sample data sets and to address 

potential biases arising from urban and rural sub-sets a cross-sampling technique was also 

employed (sometimes referred to as cross-training).  In this case, the whole data set is 

split into S segments on a random basis such that each segment contains the same number 

of data points.  Each ANN is trained on S-1 of these segments and tested against the 

remaining, unseen segment.  This procedure is repeated S times so that each data point in 

the data set is modelled as an unseen test case once and no points are ignored.  Following 

Schalkoff (1997), ten segments were used.  The final solution is in each case evaluated on 

a full set of segments which means that output statistics can not be directly compared 

with the split-validation training method.  
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4.3 The benchmark models 

Two further approaches were used to provide a standard measure of performance based 

on conventional and established methods.  First, a step-wise multiple linear regression 

(SWMLR) model was developed on the split-validation data sets using a mixture of 

forward and backward elimination procedures. This model was designed to predict the 

10-, 20, 30-year flood events and index flood.  It was developed on the training data set 

and evaluated on the test data set.  The validation data set was not used.  The results of 

these experiments are presented in Section 6.1.  

Second, the index flood was derived from catchment descriptors using algorithms 

provided in the FEH.  Models were developed for both urban catchments (those with an 

urban extent >0.025%) and rural catchments. The skill of these models is compared to the 

results for the cross-sampled ANN applied to urban and rural partitions in Section 6.2.   

 

5. Error measures 

Because flood event magnitudes vary significantly between catchments, the following 

dimensionless error measures were employed in the evaluation of the models: the Mean 

Squared Relative Error (MSRE), Mean Percent Relative Error (MPRE), the Relative Bias 

(RB), and the Coefficient of Efficiency (CE). The Standard Error of the Estimate (SE) 

was also used as this provides an indication of the spread of errors produced by a model 

(measured in cumecs). The six error measures are calculated according to the following 

equations:   

 
 

∑ ⎟
⎠
⎞

⎜
⎝
⎛

=

−n

i i

i

Q
QQ

1

2
ˆ

n
1 = MSRE  (3) 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
= ∑

= i

i
n

i Q
QQ ˆ

abs
n

100 MPRE
1

 (4) 

 

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

n

i i

i

Q
QQ

1

ˆ

n
1  RB  (5) 

 



Page 10 / 39 

∑

∑

=

=

−

−
= n

i
i

ii

QQ

QQ

1

2

n

1  i

2

)(

)ˆ(
 - 1  CE  (6) 

 

( )
n

E-E
 = SE

n

1=i

2∑
 (7) 

 

Where Q is the observed flood event, ˆ Q  is the modelled flood event, Q  is the 

mean of the observed flood events, E is the error (i.e. Q – ˆ Q ), E  is the mean of the errors, 

and n is the number of flood events that have been modelled. 

The MSRE and MPRE provide an indication of the relative absolute accuracy of 

the models while RB provides an idea of whether a model is over- or under-predicting the 

flood event magnitudes.  CE provides an indication of how good a model is at predicting 

values away from the mean.  In this context CE provides some indication of how well the 

models perform in catchments that posses either particularly low or particularly high 

flood event magnitudes.  The MSRE ranges from 0 for a perfect model to ∞, and values 

between 0 and 0.5 would be considered acceptable.  MPRE also ranges from 0 for a 

perfect model to ∞.  RB ranges from –∞ to +∞ (negative values indicate a general over-

estimation while positive values indicate a general under-estimation of the model) and 

CE ranges from –∞ in the worst case to +1 for a perfect model.  Shamseldin (1997) 

suggests a CE value of 0.9 or above to be ‘very satisfactory’, whereas above 0.8 is ‘fairly 

good’ and below 0.8 is ‘unsatisfactory’.  

  

 

6. Results and Discussion 

 

6.1  Model development based on all data 

6.1.1 Neural network split-validation method 

The results for the split-validation method are provided in Tables 3 and 4. Having tested a 

number of ANNs on the training set, those configurations shown in Table 3 (Most 

accurate models) were found to be most accurate when evaluated against the independent 
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validation set using the MSRE and CE statistics.  Figure 2 shows the comparative 

accuracy of the network configurations for both the validation and test data sets using the 

CE statistic for the 20-year flood event model.  While the 20 hidden-node ANN (trained 

for 2800 epochs) provides the most accurate model for the validation data, a 10 hidden-

node ANN (also trained for 2800 epochs) proves to be most accurate at modelling the test 

data (shown by the two maximum indicators in Figure 2).  This lends weight to the 

argument that it is prudent to select parsimonious models that are more likely to be able 

to generalise than over-parameterised models that may become tuned to noise within the 

training data.  However, although Figure 2 shows that a 10 hidden-node model is more 

accurate for the test data, in this case it would be wrong to choose this model at this stage 

as it is in conflict with the split-validation approach (i.e. selection based solely on the 

validation data).  This argument can also be extended to the number of epochs for which 

a network is trained.  Training a network for too long may mean the network has become 

highly tuned to the training data leading to an inability to generalise. 

The general rule-of-thumb is to ensure that there are ‘many more’ training data 

points than connection weights.  This implies that networks should be chosen with as few 

hidden nodes as possible, and trained for a limited period.  Applying this rule to the 

validation data leads to the selection of the alternative network configurations shown in 

Table 3 (Most accurate parsimonious models).  These networks were then evaluated 

using the independent test set and the results are presented in Table 4. The ANN T-year 

flood event models are ‘fairly good’ according to Shamseldin’s (1997) criteria with 

respect to the CE statistic, and the index flood model is ‘very satisfactory’.   

Although the training data contains 20-year flood events ranging from 0.61 

cumecs to 1288.80 cumecs, the 90th percentile of these data is 373.14 cumecs.  That is, 

the majority of the training data contains relatively low magnitude flood events.  Given 

the nature of the data, one would expect this kind of distribution as the data set will be 

dominated by smaller catchments.  Thus, during training the models become ‘fine tuned’ 

to lower level flood events while higher flood events are rarer.  This problem is 

encountered in any data set containing extremes, for example, river flow forecasting 

where data are dominated by the lower flow flood events while the extremes (those flood 

events that one is perhaps more interested in modelling) are less common.  Techniques to 

overcome this problem include resampling from higher-level flood events or restructuring 

the data set, by eliminating a proportion of the lower flood event data, so that a more even 
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spread of flood events are included.  An alternative is to develop a number of models 

based on different characteristics in the data set (such as catchment size, flood event size 

etc.).  This approach is investigated later by partitioning into urban and rural catchments.  

Sivakumar (2005) refers to these kinds of partitions as ‘thresholds’.  An alternative is to 

use a network that pre-classifies data into different sets using a clustering technique such 

as self-organizing maps (Hsu et al., 2002).   

Figure 3 shows the accuracy of the 20-year flood event model for the test data. 

There is one obvious outlier identified as the River Severn at Haw.  This is one of the 

largest catchments in the data set with an area of 9884 km2.  It is unusual for a catchment 

of this size to be classed as urban (urban extent is 0.0263%) so one would expect much 

greater flood events to occur than are actually recorded.  However, there were only 17 

years of data in the AMS available for the years 1976 to 1992.  This period includes some 

notable droughts; 1976, 1984 and 1988-1992; and, as a consequence, yields a relatively 

low estimated 20-year flood event.  In addition, the flow regime is modified by an 

impounding reservoir, by abstractions for public, industrial and agricultural supply, and 

by effluent return (Institute of Hydrology, 1993).  All these factors lead to unexpected 

variations in river flow compared with unregulated, natural catchments with otherwise 

similar geological characteristics. 

The problem in this case seems to be related to the unique behaviour of an 

individual large catchment for which there is only limited data within the training set.  

The model has generalised in the case of limited high-magnitude flood events but has 

been unable to reconcile this extreme case. 

 

6.1.2 SWMLR method 

The SWMLR models developed for the different return periods consistently selected the 

following predictors; drainage area (DTM AREA), standard percentage runoff 

(SPRHOST), soil moisture deficit (SMDBAR), longest drainage path (LDP) and 

invariability of slope directions (ASPVAR).  In addition, for the index flood the model 

also selected base flow index (BFIHOST) and proportion of time when SMD < 6mm 

(PROPWET).  Firm conclusions can not be drawn from these selections as the nature of 

the SWMLR model means that other (quite valid) predictors may be excluded because 

they are strongly correlated with those selected. 
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 The poor results of this model are presented in Table 5. These findings are 

particularly disappointing, especially when compared to the high accuracies of the neural 

solutions. In an attempt to improve the performance of this method in predicting the 20-

year flood event the data were logged to reduce the affect of extreme flood events.  

However, this led to extremely poor results, including some grossly inaccurate 

predictions. The SWMLR model is also somewhat naïve in assuming linear relationships 

between variables and potentially useful variables may have been discarded.   

 

6.2  Model development based on urban and rural partitions of the data set 

To explore the potential power of data stratification and to make more effective use of 

limited hydrological records, ANN models were developed for the 20-year flood event 

and index flood using urban and rural splits using a cross-sampling method.  ANN model 

results for the index flood are compared with those of the FEH model. 

 

6.2.1 Neural network cross-sampling method (20-year flood) 

Having identified, with the split-validation approach, the most ‘appropriate’ network 

model (i.e. a network with 5 hidden neurons trained for 1800 epochs for the 20-year flood 

event model), this structure was then used in a 10-fold cross-sampling experiment.  In 

this case the data were further split into rural (those with an urban extent of less than 

0.025%) and urban catchments to see if any improvement could be made by tuning 

models to particular catchment types.  Table 6 presents catchment statistics for the rural 

and urban data used in the cross-sampling approach. The results of the cross-sampled 20-

year flood event models are presented in Table 7 while Figure 4 shows scatter diagrams 

of ANN model performance.  In Table 7 and Figure 4 Urban denotes the ANN model 

trained and evaluated on urban catchment data only; Rural denotes the model trained and 

evaluated on rural data only; and All denotes the model developed and evaluated on all 

the data (urban and rural catchments combined).  In all cases Table 7 shows that the 20-

year flood event models are ’fairly good’ according to the CE statistic for all catchment 

types.   

 Figure 4a shows the performance of the urban model during testing, and highlights 

four notable outliers: two at relatively high values – the River Severn at Haw and the 

River Ribble at Jumbles Rock; and two at relatively low values – the River Cynon at 

Abercynon and the River Colne at Denham.   
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 The 20-year flood event for the River Severn was over-estimated in the same way 

as described in the split-validation approach above.  Conversely, the River Ribble is the 

one notable outlier that has been underestimated by the model.  In this case the estimated 

20-year flood event was 954 cumecs while the ANN modelled 20-year flood event was 

574 cumecs.  This catchment has an area of 1049 km2, an urban extent of 0.0259%, and 

so just falls within the urban category.  24 years of AMS data were available for this 

catchment from 1970 to 1993, so one can assume that the estimated 20-year flood event 

is a reasonable approximation to the observed flood event.  However, examination of the 

Hydrometric Register (Institute of Hydrology, 1993) indicates that this catchment is a 

regulated river with an impounding reservoir and is used for public water supplies.  When 

one compares the estimated 20-year flood event for this catchment with a similar 

catchment it is perhaps not surprising that the model has underestimated this flood event.  

For example, one such similar catchment is the River Wear at Chester le Street.  This 

catchment has an area of 1005 km2 and an urban extent of 0.0247%. It is not used for 

storage or public water supplies but the derived 20-year flood event is 363 cumecs – 

which is much lower than that of the River Ribble. 

At lower levels the 20-year flood events for the River Cynon at Abercynon and 

the River Colne at Denham have been notably over-estimated by the urban ANN model.  

The River Cynon is a small catchment (103 km2) with a relatively high average annual 

rainfall of 1766 mm (base flow index: 0.422; longest drainage path: 28.69 km; mean 

slope: 145.76 m/km; urban extent: 0.0388%; mean altitude above sea level: 270 m) and is 

described as having 17% forest and with open-cast coal extraction in headwaters.  Thirty-

two years of AMS data were available for this catchment.  A similar urban catchment to 

this is the River Irwell at Bury Bridge which has a drainage area of 156 km2.  In this case 

the estimated 20-year flood event is 302 cumecs which is more in line with prediction 

made by the model.   

The River Colne is a medium sized catchment (733 km2) with considerable 

suburban development in the middle and lower reaches (base flow index: 0.623; average 

annual rainfall: 703 mm; longest drainage path: 68.5 km; mean slope: 43.67 m/km; urban 

extent: 0.0754%).  It does appear to have a particularly low derived 20-year flood event 

of 16.26 cumecs (based on 41 years of AMS data from 1953 to 1993).  For comparison, 

the River Aire at Armley is of a similar size (686 km2) and urban extent (0.0743%), yet 

has a derived 20-year flood event of 194 cumecs – more in line with the 264 cumecs 
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predicted by the model.  There are clearly some other influences at work here that require 

further investigation. 

For rural catchment models there are two notable outliers that have been 

underestimated – the River Findhorn at Forres and the River Lochy at Camisky (Figure 

4b).  The River Findhorn is a medium sized catchment (781 km2) with an urban extent of 

0.0001% (base flow index: 0.434; average annual rainfall: 1065 mm; longest drainage 

path: 100.13 km; mean slope: 119.83 m/km; and has extensive blanket peat cover that 

drains the Monadhliath Mountains).  Thirty-two years of AMS data were available for 

this catchment and it is classified as natural (Institute of Hydrology, 1993).  In these 

circumstances one would expect the observed data to be sufficient to provide a reasonable 

estimation of the 20-year flood event.  A similar catchment to this – the River Dee at 

Polhollick - with an area of 697 km2 and urban extent of 0.0001% (base flow index: 

0.458; average annual rainfall: 1231 mm; longest drainage path: 62.68 km; mean slope: 

224.44 m/km; and described as being a mountain, moorland and pastoral catchment) has 

a 20-year flood event of 501 cumecs compared with 1171 cumecs for the River Findhorn.  

This is also described by the Hydrometric Register as natural and thus provides a good 

comparison of the flood magnitude that might be expected. 

The River Lochy also appears to have an estimated 20-year flood event that is 

higher than expected.  This catchment has an area of 1256 km2 and an urban extent of 

0.0003% (base flow index: 0.386; average annual rainfall: 2188 mm; longest drainage 

path: 83.14 km; mean slope: 249.63 m/km; and is described as comprising mainly rough 

grazing and moorland with some afforestation).  There were only 13 years of AMS data 

for this site covering the period 1981 to 1993 and there were four annual maxima over 

1000 cumecs in this limited period (the estimated 20-year flood event is thus open to 

some uncertainty).  For example, there was a recorded flood event in January 1992 of 

1540 cumecs – significantly higher than the smallest annual maximum recorded here of 

449 cumecs in 1988.  The catchment is also subject to the artificial influences of a 

reservoir.  Compared with catchments of a similar size (ranging from 1100 km2 to 1400 

km2), the next highest recorded 20-year flood event is for the Wye at Erwood (980 

cumecs) while the average 20-year flood event for all catchments between 1100km2 and 

1400km2 is 493 cumecs. These outliers perhaps show the dangers of a) using donor 

catchments to predict flood events at unseen sites, b) estimating T-year flood events from 
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a limited number of data points, c) highly localised extreme events that are not captured 

by the annual rainfall statistics listed in Table 1.   

 The remaining row in Table 7 (All) enables comparisons to be made with the split-

validation approach in the previous section.  In this case the model has been trained on all 

catchment types and evaluated against all catchment types.  Figure 4c shows the results of 

this model when compared with the estimated 20-year flood event.  Note that the same 

outlier rural catchments are again under-estimated by the ANN model. 

 Comparing the results of this model with the 20-year flood event split-validation 

method in Table 4 there is some worsening of model performance across all statistics.  

This is due to the fact that the cross-sampled model is being tested against the entire data 

set.  This is a far more stringent test of model performance than the smaller test subset 

used in the split-validation approach, which did not include such extreme values (see 

Table 2).  

 The results show that there are still occasional anomalies in model performance 

leading to some significant over- or under-estimates.  This may be attributed to the 

limited data for estimating the 20-year flood event.  Conversely, it highlights the dangers 

of using donor catchments that may provide significantly different estimates of flood 

events than observed, particularly if artificial influences are not considered in the 

comparisons. 

  

6.2.2 Neural network cross-sampling method (index flood) 

The FEH approach provides a method for estimating the index flood from catchment 

descriptors.  The index flood is first calculated for rural catchments as a function of area, 

base flow index, standard percentage runoff, flood attenuation index attributable to 

reservoirs and lakes, and average annual rainfall.  This can then be adjusted for urban 

catchments by further calculations involving standard percentage runoff and urban extent.  

Table 8 compares the performance of the urban and rural algorithms with the index flood 

estimated directly from the AMS.  The results show the urban model (Urban-FEH) 

provides ‘very satisfactory’ results while the rural model (Rural-FEH) is ‘fairly good’ 

according to the CE statistic.  

Table 8 also presents the results of the ANN index flood models produced using 

the cross-sampling approach (Rural-ANN, All-Rural-ANN, Urban-ANN, All-Urban-ANN).  

The Rural-ANN model was trained and evaluated using rural catchment data only and the 
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Urban-ANN model was trained and evaluated using urban catchment data only.  In order 

to see if training networks using the entire data set could make improvements, two further 

models were developed. The All-Rural-ANN model was trained on all available 

catchment data but evaluated on rural catchments only; the All-Urban-ANN model was 

trained on all available catchment data and evaluated on urban catchments only.  The All-

Rural-ANN model involved training 10 models using all the urban data and 90% of the 

rural data before testing on the unseen 10% of the rural data.  This was repeated 10 times 

so that all the rural data were eventually tested as unseen.  The same procedure was 

adopted for the All-Urban-ANN model. 

In the case of the rural models the ANN has outperformed the FEH model 

according to both the CE and SE statistics.  This implies that the ANN model is 

performing well across the range of index flood magnitudes but less so for smaller flood 

events as evidenced by the MSRE.   

Figure 5a highlights a problem with the FEH approach. While the FEH model 

performs reasonably well for low magnitude flood events, flood events above 100 cumecs 

are consistently under-estimated, and generally appear to worsen as the magnitude 

increases. This conflicts with the findings of Ashfaq and Webster (2002) who modelled 

88 representative catchments and reported that in general the FEH method over-estimated 

flood quantiles. This problem was also found to be more pronounced for higher return 

periods and most pronounced in catchments that experienced less then 800 mm average 

annual rainfall i.e. in the south east.  However, the RB statistic of the Rural-FEH model 

is negative (-0.0424), which implies that lower level flood events are in general terms 

being over-estimated in compensation (closer inspection of these results highlighted some 

particularly large individual relative over-estimates at lower levels leading to this 

negative RB statistic) .  This may reflect the non-linear nature of the function that is 

better captured with the non-linear ANN.  There is some improvement in skill for 

intermediate and large floods by the Rural-ANN and All-Rural-ANN models (Figures 5b 

and 5c), but this is at the expense of the relative accuracy of the model according to the 

MSRE statistic. 

There is one notable outlier from the two ANN models for the rural data set: the 

River Ouse at Skelton.  This is a large rural catchment of 3302 km2 with mixed geology 

(base flow index: 0.439; average annual rainfall: 899 mm; longest drainage path: 149.96 

km; mean slope: 70.17 m/km; urban extent 0.0103%).  The River Tweed at Sprouston is 
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of similar size (3352 km2) and smaller urban extent (0.0028%) yet has a much higher 

computed index flood than the River Ouse (739 cumecs compared with 357 cumecs for 

the River Ouse).  The anomaly for the River Ouse could be explained in terms of gauging 

errors for peak flows or an observed record containing relatively few major floods. 

The Urban-FEH model performs relatively well and is classed as a ‘very 

satisfactory’ model according to the CE (Table 8).  Although the Urban-ANN model has a 

smaller RB than the FEH model (Table 8), according to other diagnostics it appears to be 

performing less well.  This is probably due to the limited amount of data that were 

available for training the ANN model: with 190 urban catchments available and a 10-

stage cross-sampling approach, only 171 data points were available for training.  To 

overcome the problem of small sample sizes another ANN model was trained, this time 

using all the available data (All-Urban-ANN).  This meant that from 850 data points, the 

network was trained using 831 points (i.e. all the rural data plus 90% of the urban data). 

This led to a marked improvement in ANN performance according to the CE statistic 

(now in the ‘very satisfactory’ category at 90.59%) and SE statistic, but a reduction in 

relative performance according to the MSRE and MPRE.  This is explained by the 

different nature of the urban and rural catchment data sets as shown in Table 6.  The 

mean index flood for urban catchments is 594.94 cumecs, compared with 951.06 cumecs 

for rural catchments.  The inclusion of rural data in training the urban model reduces the 

influence of smaller flood events by including a greater number of large flood events.  

Thus, the All-Urban-ANN has become less sensitive to smaller flood events (the MSRE 

has increased) while its overall performance has improved (CE has increased). Figure 6c 

shows that there has been some deterioration in the estimate for the River Severn at Haw 

- an urban catchment with a relatively large index flood.  Because the All-Urban-ANN 

model has been trained on a much larger data set consisting of (now) mainly rural data, 

there is a decline in performance for this urban catchment. 

Figure 6 (a–c) also shows that all models appear to under-estimate the index flood 

for the River Ribble at Jumbles Rock.  The 20-year flood event for this catchment was 

also under-predicted by the ANN models.  The characteristics of this catchment are such 

that the index flood is somewhat higher than one would expect.  It is not surprising, 

therefore, that all three models have under-estimated the index flood as they are basing 

their estimates on these characteristics. 
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6.3 Geographical analysis of index flood predictions 

The index flood predictions for the 850 catchments were used to construct Thiessen 

polygon maps of the model residuals. Error maps were developed on the IHDTM 

geographical coordinate pairings related to each catchment centroid – as provided in the 

FEH. Two initial problems were experienced. Following visualization and testing 

operations IHDTM coordinates were used instead of NGR coordinates due to the 

requirement for a unique set of catchment input points.  Northern Ireland catchment 

centroids were also found to be problematic and had to be re-projected in a GIS: 39 of the 

850 catchment coordinates were registered to the Irish National Grid – as opposed to the 

GB National Grid.   

Figure 7(a-c) shows index flood error maps developed on the FEH model 

predictions; the neural network split-validation model predictions; and a combined map 

of both urban and rural neural network cross-sampled model predictions. The maps are 

standardised to a common scale and the spatial pattern on the different maps appears to 

be in broad agreement. Low errors occur throughout baseflow dominated catchment 

regimes of the South East.  Relatively large errors occur in North and South Wales and in 

Northern England and the Scottish Highlands.  This distinction equates to the wetter and 

higher altitude regions of the UK.  The size and spread of individual catchments across 

the map also reveals a disproportionate distribution of input records with relatively few 

polygons in the most challenging regions with highest rainfall.  Thus, the nature and 

extent of the residuals can be explained in terms of broad scale geological and 

climatological gradients suggesting that additional descriptors are needed to complement 

those in Table 1.  

 

7. Conclusions 

The results of this study show that ANNs can be used to estimate flood statistics for 

ungauged catchments. The ANNs reproduce the index flood with comparable accuracy to 

that obtained by the FEH models.  It should be noted that while ANNs have been trained 

in this study to model T-year flood magnitudes derived from the Gumbel distribution, 

they could just as easily be trained to model floods derived from any other distribution.  

Although it is possible to use conventional statistical approaches to build models 

for predicting T-year flood events (such as SWMLR), the ANN proved to be superior in 

this study.  However, there are a few caveats to be noted.  First, the ANN is heavily data 
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dependent.  This was highlighted by improvements in skill achieved by training ANNs on 

the full available data set instead of a limited (urban) data set.  Second, the ANNs cannot 

explicitly account for physical processes, reducing confidence in model predictions.  

Finally, despite limiting the analysis to those sites that had at least ten years of record, the 

limited data at certain sites meant that some T-year flood events and index floods could 

be grossly under- or over-estimated.  This is exacerbated when the data include periods of 

long-term drought or above average long-term rainfall.  In these cases, the ANN may be 

predicting the T-year flood event accurately, but, with only limited observed data, 

evaluation of skill can be problematic.  

While this study demonstrates the feasibility of using ANNs to model flood 

events in ungauged catchments, there are still a number of areas of further work.  First, it 

would be useful to investigate different ways of partitioning the data into categories other 

than rural and urban (see Sivakumar, 2005); for example, based on geology, size or 

climatic region (as highlighted by the geographical analyses).  This would lead to a series 

of models tuned to the idiosyncrasies of particular catchment types.  Second, in 

catchments where the models appear to be significantly over- or under-predicting 

estimated flood events, it would be worth exploring anomalies in relation to a wider set of 

catchment characteristics.  Third, other ANN model configurations could be evaluated 

alongside the backpropagation feedforward network used herein (e.g., radial basis 

function networks and support vector machines).  Finally, an investigation of ANN 

parameters could yield further insights into the relationships between catchment 

properties and flood estimation in ungauged catchments. 
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Abbreviation Parameter Mean for all 

catchments 
Correlation with 
20-year flood 

event 

Correlation 
with index 

flood 
DTM AREA Catchment drainage area (km2) 410.77 0.61 0.62 
BFIHOST Base flow index 0.50 -0.23 -0.23 
SPRHOST Standard percentage runoff 36.86 0.27 0.27 
FARL Index of flood attenuation attributable to reservoirs and 

lakes 
0.97 -0.11 -0.10 

SAAR Standard period (1961-1990) average annual rainfall  
(mm) 

1084.76 0.25 0.27 

RMED-1D Median annual maximum one-day rainfall  (mm) 39.11 0.18 0.19 
RMED-2D Median annual maximum two-day rainfall  (mm) 51.85 0.21 0.22 
RMED-1H Median annual maximum one-hour rainfall  (mm) 10.73 -0.15 -0.14 
SMDBAR Mean Soil Moisture Deficit for 1941 – 1970 (mm) 25.21 -0.43 -0.43 
PROPWET Proportion of time when Soil Moisture Deficit<6mm during 

1961 - 1990 
0.46 0.39 0.39 

LDP Longest drainage path (km) 39.95 0.67 0.68 
DPLBAR Mean distance between each node (on a regular 50m 

grid) and catchment outlet (km) 
21.48 0.67 0.67 

ALTBAR Mean altitude of catchment above sea level  (m) 207.47 0.36 0.35 
DPSBAR Mean of all inter-nodal slopes in catchment (m/km) 97.71 0.30 0.30 
ASPVAR Invariability of slope directions 0.18 -0.38 -0.38 
URBEXT1990 Extent of urban and suburban land cover in 1990 (%) 0.03 -0.13 -0.13 

 

 

Table 1  FEH catchment descriptors 



Page 26 / 39 

  

 

 

 

 

 Catchment Attributes 

 Area Base Average Longest  Urban Index 20-Year  
 (km2) Flow Annual Drainage  Extent Flood Flood Event 
  Index Rainfall Path   (1990) (cumecs) (cumecs) 

(1961-1990) (km) (%) 
   (mm) 

Minimum 
Full data set 1.07 0.17 547 2.41  0.000 0.32 0.61 
Training set 1.07 0.18 547 2.69  0.000 0.32 0.61 
Validation set 3.10 0.17 557 3.83  0.000 0.37 0.61 
Test set 2.30 0.18 555 2.41  0.000 0.43 1.36 
Mean 
Full data set 409.00 0.50 1082 39.88  0.027 87.86 149.70 
Training set 409.58 0.50 1088 40.13  0.023 82.18 138.56 
Validation set 411.81 0.49 1080 39.44  0.026 103.19 177.08 
Test set 405.16 0.49 1074 39.84  0.026 82.80 142.02 
Maximum 
Full data set 9951 0.97 3473 280.96  0.432 951.06 1533.94 
Training set 9951 0.97 3473 273.09  0.432 751.11 1288.80 
Validation set 7490 0.97 2808 157.86  0.424 951.06 1533.94 
Test set 9895 0.96 2576 280.96  0.424 572.23 1075.34 
 
 

Table 2  Statistics for selected catchment descriptors in split-validation data sets 
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 Model Hidden Neurons Epochs 

 
 Most accurate models 

 10-year flood 20 3200 

 20-year flood 20 2800 

 30-year flood 20 2600 

 Index flood 10 2400 

 

 Most accurate parsimonious models 

 10-year flood 5 1800 

 20-year flood 5 1800 

 30-year flood 5 1800 

 Index flood 5 2200 

 

Table 3  Optimal ANN configurations for each flood event evaluated on 
validation data set for split-validation approach 
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 T-Year MSRE CE SE MPRE RB 
    (cumecs)    

 10-Year 2.26 87.09 57.26 77.75 -0.1084 

 20-Year 2.50 85.60 68.11 80.51 -0.0945 

 30-Year 2.66 84.77 74.84 81.91 -0.0842 

 Index flood 1.98 90.48 34.14 70.76 0.0480  

  

Table 4  ANN performance for flood events evaluated on split-validation test data set 
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 T-Year MSRE CE SE MPRE RB  
    (cumecs)  

 10 Year 91.38 66.39 93.08 249.26 1.2606 

 20 Year 86.64 65.23 106.50 244.48 1.2119 

 30 Year 84.99 63.86 115.97 242.78 1.1732 

 Index flood 90.33 71.19 59.42 260.02 1.1442 

 

 

Table 5  SWLMR model performance for flood events evaluated on split-validation test 

data set 
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Catchment Attributes 

 Area BFIHost SAAR LDP URBExt Index 20-Year  
 (km2)  (mm) (km) (1990) Flood Flood Event 
      (cumecs) (cumecs) 

Rural Catchments (660 data points) 
Minimum 1.07 0.23 547 2.41 0.000 0.32 0.61 
Mean 374.30 0.50 1139 39.76 0.007 95.94 162.54 
Maximum 6853.22 0.97 3473 265.52 0.025 951.06 1533.94 
 
 
Urban Catchments (190 data points) 
Minimum 9.93 0.17 555 5.40 0.025 0.43 0.66 
Mean 527.32 0.49 883 39.70 0.096 58.84 103.26 
Maximum 9951.00 0.87 2183 280.96 0.432 594.94 953.65 
 
 

 

Table 6  Statistics for selected catchment descriptors in cross-sampling data sets 
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 Catchments MSRE CE SE MPRE RB   
    (cumecs) 

 Urban 5.21 83.94 63.25 92.25 -0.3347  

 Rural 18.27 83.37 92.51 129.50 -0.7394 

 All 15.39 83.03 87.24 145.02 -0.8505 

   

Table 7  Comparison of cross-sampled ANN models for 20-year flood events with 
derived values computed on annual maximum series  
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 Catchments MSRE CE SE MPRE RB 
    (cumecs) 

  

 Rural-FEH 0.9755 80.66 57.23 38.92 -0.0424 

 Rural-ANN 19.6984 88.47 45.14 137.97 -0.9828 

 All-Rural-ANN 12.7302 87.82 46.30 130.20 -0.9491 

  

 Urban-FEH 1.5264 91.81 26.64 55.13 -0.3548 

 Urban-ANN 2.7217 84.54 36.87 73.45 -0.0366 

 All-Urban-ANN 6.6685 90.59 28.60 114.61 0.0462  

 

 

Table 8  Skill of FEH and ANN models at estimating the index flood in rural and urban 

catchments  
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Figure 1 Multi-layer perceptron 
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Figure 2  Comparative performance of different networks during validation and testing 

of estimated 20-year flood event 
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Figure 3  ANN model of 20-year flood events compared with test data set 

 

 

 

 

 

 

 

 

 

 

 



Page 36 / 39 

0

200

400

600

800

1000

0 100 200 300 400 500 600 700 800 900 1000

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

Estimated 20-year event (cumecs)

AN
N

 2
0-

ye
ar

 e
ve

nt
 ( c

um
ec

s)

Urban

a

Estimated 20-year event (cumecs)

AN
N

 2
0-

ye
ar

 e
ve

nt
 ( c

um
ec

s)

Rural

b

Estimated 20-year event (cumecs)

AN
N

 2
0-

ye
ar

 e
ve

nt
 ( c

um
ec

s)

All

c

Severn at Haw

Ribble at
Jumbles Rock

Cynon at Abercynon

Colne at
Denham

Lochy at
Camisky

Findhorn at
Forres

Lochy at
Camisky

Findhorn at
Forres

 
Figure 4  ANN 20-year flood events modelled 
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Figure 5  Index flood event models for rural catchments 
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Figure 6  Index flood event models for urban catchments 


