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Abstract 

The variation of skeletal maturity about chronological age is a sensitive indicator of population health. 

Age appropriate or advanced skeletal maturity is a reflection of adequate environmental and social 

conditions, whereas delayed maturation suggests inadequate conditions for optimal development. 

There remains a paucity of data, however, to indicate which specific biological and environmental 

factors are associated with advancement or delay in skeletal maturity. The present study utilises 

longitudinal data from the South African Birth to Twenty (Bt20) study to indentify predictors of 

relative skeletal maturity (RSM) in early adolescence. 

 

A total of 244 black South African children (n=131 male) were included in this analysis. Skeletal 

maturity at age 9/10 years was assessed using the Tanner and Whitehouse III RUS technique. 

Longitudinal data on growth, socio-economic position and pubertal development were entered into 

sex-specific multivariable general linear regression models with relative skeletal maturity (skeletal 

age-chronological age) as the outcome.  

 

At 9/10 years of age males showed an average of 0.66 years delay in skeletal maturation relative to 

chronological age. Females showed an average of 1.00 year delay relative to chronological age. In 

males, being taller at 2 years (p<0.01) and heavier at 2 years (p<0.01) predicted less delay in RSM at 

age 9/10 years, independent of current size and body composition. In females, both height at 2 years 

and conditional weight at 2 years predicted less delay in RSM at 9/10 years (p<0.05) but this effect 

was mediated by current body composition. Having greater lean mass at 9/10 years was associated 

with less delayed RSM in females (p<0.01) as was pubertal status at the time of skeletal maturity 

assessment (p<0.01). 

 

This study identifies several predictors of skeletal maturation at 9/10 years, indicating a role for early 

life exposures in determining the rate of skeletal maturation during childhood independently of 

current stature.  
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Introduction 

One of the core requirements in evaluating the growth, development, health, and wellbeing of children 

is the ability to sensitively control for their maturational status. Skeletal maturity or ‘bone age’ may be 

used alongside measures of dental and sexual development as a key indicator of biological maturity. 

The assessment of skeletal maturity is based upon the predictable, ordered appearance of primary and 

secondary centres of ossification and upon the process of fusion of the epiphyses of long bones. 

Normal variation in maturation means that chronological age and bone age may differ by ± two years: 

for instance a 12 year-old may have a bone age between 10 and 14 years. In a well nourished setting 

with little constraint on development, being advanced or delayed by more than two years in skeletal 

maturity relative to reference values is often as a result of underlying endocrine pathology. In a 

constrained environment the margins of normal variation may be wider. Accordingly, the variation of 

skeletal maturity about chronological age, within the normal limits, is a sensitive indicator of 

population health. Age appropriate or advanced skeletal maturity is a reflection of adequate 

environmental and social conditions, whereas delayed maturation suggests inadequate conditions for 

optimal development. Comparisons of skeletal maturity between samples of populations can therefore 

reveal degrees of environmental disadvantage [1-4] while longitudinal observations of maturational 

markers within a population demonstrate the plasticity of humans in response to environmental 

change [5]. However, the exposure of healthy children to radiographic assessment has been 

approached with caution in recent years resulting in few contemporary studies of skeletal maturation 

and there remains a paucity of data to indicate which biological and environmental factors predict 

advancement or delay in skeletal maturity and at what stage of development they exert their influence 

on maturation.  

 

The present study utilises longitudinal data from the South African Birth to Twenty (Bt20) study to 

investigate which growth and environmental factors are associated with skeletal age deviation in early 

adolescence.  

 

Material and Methods 

The process of recruitment into the cohort, which occurred in 1990, and the characteristics of the 

children and their parents from the urban conurbation of Johannesburg-Soweto have been described in 

detail by Richter et al. [6,7]. Data relating to growth, nutrition, pubertal development, socio-economic 

status, risk behaviours and cognitive development were collected yearly until age 20. At nine years of 

age, a sub-sample of the original Bt20 cohort was enrolled into a bone health study to investigate 

factors affecting the acquisition of peak bone mass. In addition to the standard measurements, whole 

body duel X-ray absorptiometry (DXA) scans and hand-wrist radiographs were obtained at yearly 

intervals on the 683 children in this sub-study from age 9 years onwards. 
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The present analysis was undertaken using 244 (n=131 male) 9/10 year olds from the Bone Health 

sub-study. Children were included on the basis of having complete anthropometric and questionnaire 

data at birth, two, four and 9/10 years; time points selected to represent early and mid-childhood and 

early adolescence. White children were under-represented in the original Bone Health sample [6] 

therefore this analysis includes only black children. There were no significant differences (p<0.05) in 

either growth or socioeconomic characteristics between the children selected for this analysis and the 

remaining black children in the Bone Health study [8].  

 

Measures 

Hand-wrist radiographs for the assessment of skeletal maturity at age 9/10 years were taken and 

developed by trained radiographers in the Paediatric X-ray department of the Johannesburg Academic 

Hospital. The left hand was positioned with the X ray beam focussed on the distal end of the third 

metacarpal. The exposure factor used was 42kV and 12.5 mAs with the distance standardised at 76cm 

in accordance with the optimal radiograph conditions described by Tanner et al. [9]. Skeletal maturity 

was assessed using the Tanner and Whitehouse III (TW3) RUS technique which includes the radius, 

ulna, and the metacarpals of the first, third and fifth phalanx [9]. Radiographs were assessed by a 

single trained observer (NLH). The standard error of measurement calculated to assess intra-observer 

reliability was 0.107 and within the acceptable limits of error. Skeletal maturity was not assessed at 

any time point prior to 9/10 years of age.  

 

Standing height was measured at 2, 4 and 9/10 years of age using a Holtain Stadiometer (Holtain Ltd., 

UK), length at birth was not recorded in this cohort. Weight at 2, 4 and 9/10 years was measured in 

light clothing with the participant barefoot, using a digital electric scale (Dismed, USA). A fan-beam 

densitometer (model QDR 4500A; Hologic Inc, Bedford, MA) was used by a trained technician to 

obtain DXA scans for the assessment of body composition. Fat mass (kg) and lean tissue mass (kg) 

were calculated with software version 8.21 (Hologic Inc.) using standardised positioning of the 

subject and consistent procedures for scan analysis. Bone free lean mass was calculated by subtracting 

total body bone mineral content from total body lean mass. Indices for fat (FMI) and lean mass (LMI) 

were created to adjust these measures for concurrent stature using the method proposed by Wells and 

Cole [10].  Both fat and lean mass were divided by height
2
, a power considered appropriate following 

investigation of the relationships between fat and lean mass and height in this population [10]. To 

accurately identify those children who are growing more quickly or more slowly within their own 

environment age- and sex-specific internal Z scores were calculated for measures of height, weight, 

BMI, fat and lean mass indices. Pubertal status was assessed by a physician at nine and ten years of 

age using the Tanner staging technique for pubertal assessment [11, 12]. For the purpose of this 

analysis children were classified as being either pre-pubertal or having entered puberty. The onset of 
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puberty was defined by entry into Tanner stage 2 of either breast/genitalia development or pubic hair 

development.  

 

Household socio-economic status (SES) was assessed by questionnaires administered to the mother or 

the primary caregiver. Principal component analysis was used to construct indices for SES at the time 

of birth and at the end of childhood (year 9/10). Two explanatory variables were created:  consumer 

durables, which included ownership of various household items (car, TV, fridge, washing machine, 

and telephone) (Eigen value = 1.62-2.50), and sanitation which was a measure of running water and 

toilet facilities (Eigen value = 1.53 – 1.74).  Socioeconomic position was dynamic in this population 

between the two time points observed, therefore indices at each age could be entered into the same 

regression analysis (SES variables were all correlated at r < 0.3). 

 

All subjects and their parents provided informed consent for inclusion in the Bt20 study. Ethical 

approval for the study was obtained from the University of the Witwatersrand Committee for 

Research on Human Subjects. 

 

Statistical Analysis 

All statistical analyses were undertaken using the Statistical Package for the Social Sciences (SPSS) 

version 15.0 (SPSS Inc., Chicago, IL, USA). The outcome of interest for this analysis was relative 

skeletal maturity (RSM) (RUS skeletal age – chronological age). This measure describes the degree to 

which a child is advanced or delayed in their skeletal maturation relative to their chronological age, 

and therefore negates the need to control for chronological age in any model.  

 

A number of anthropometric and socio-economic predictors (shown in Table 2) were identified a 

priori according to published literature and previous associations with skeletal maturity or body 

composition in the Bone Health cohort. Each explanatory variable was regressed on RSM (table 3). 

Those variables that were significantly associated with the outcome (p<0.05) were retained in the 

multivariable analysis. Birthweight and current height were also included in the analysis, although 

non-significant when regressed on RSM, as they have been previously identified to be associated with 

skeletal maturity in this cohort [13]. 

 

Sex-specific multivariable general linear regression models were built to examine the influences of 

height, weight and BMI on RSM at 9/10 years of age. Males and females were modelled separately, 

but with the same group of predictors, in order to identify commonalities or differences between the 

sexes. Separate models were built for each dimension of growth in order to ascertain the independent 

effects of weight and height on RSM, and also the effect of weight adjusted for height (BMI). To 

avoid the statistical issues associated with collinearity between measures at multiple time points 
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within the same individual, conditional weight, height, and BMI variables at 2, 4 and 9/10 years were 

created to represent each individual’s size given their previous size(s) [14]. Conditional measures 

represent the residuals from sex-specific regressions of weight Z-score (or length/BMI) on weight Z-

scores (or length/BMI) at all previous ages. The residuals were standardised to allow comparison of 

the size of the coefficients at different ages. By design, these conditional variables have no correlation 

with the variables they are conditional on and can therefore be included in the same regression model 

without causing issues of collinearity. FMI and LMI were added in a second stage to each model to 

examine whether potential effects of weight, length or BMI were mediated by differences in body 

composition. 

 

Results 

Mean RSM was -0.66 years (SD=0.57) in males and -1.00 years (SD=0.96) in females, indicating that 

on average skeletal age was delayed by almost 8 months relative to chronological age in males and by 

a year relative to chronological age in females. The range of variation in relative skeletal maturity in 

this sample was greater in females than in males (Table 1).  

 

Table 1 Here 

 

Table 2 gives descriptive statistics associated with the variables identified a priori for analysis, 

comparing those individuals who were delayed in skeletal maturity by more than one year with those 

who were delayed by less than one year relative to chronological age (mean RSM for the whole 

sample was -0.99 years) . Those individuals whose skeletal maturity at 9/10 years was less delayed 

(RSM >-1.0 years) were consistently heavier and taller, with greater BMI, fat mass and lean mass 

(females only). In females only, those with less delayed skeletal maturation were more likely to have 

entered puberty (55.4% of those with RSM >-1.0 years vs. 12.3% of those with RSM < -1.0 years, χ
2
 

= 23.5, p<0.001). 

Table 2 Here, Table 3 Here 

 

Tables 4 and 5 present the results of the sex-specific multivariable linear regression models for 

weight, height, and BMI. In males, conditional weight at 2 years and height at 2 years were significant 

independent predictors of RSM at 9/10 years of age (p< 0.01) in the weight and height models 

respectively (Table 4). In both models these associations with RSM were not mediated by the 

inclusion of body composition variables at 9/10 years. When weight adjusted for height (BMI) was 

modelled, no significant predictors of RSM at 9/10 years were identified; furthermore the BMI 

models were not significant. The model that explained the most variance in RSM at age 9/10 years in 

males incorporated measures of weight throughout childhood and body composition at age 9/10 years. 

This model explained 19.7% of the variance in RSM. 
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     Table 4 Here 

 

In females, conditional weight at 2 years and height at 2 years were significant independent predictors 

of RSM at 9/10 years in the weight and height models respectively (p< 0.05) (Table 5). These 

associations were, however, mediated in the second stage of the models (models 1B and 2B) by the 

introduction of body composition measures at 9/10 years becoming non-significant after the inclusion 

of FMI and LMI at age 9/10 years. When body composition at 9/10 years was accounted for, 

conditional weight at 9/10 years (p< 0.01), height at 9/10 years (p< 0.05) and lean mass index 

(p<0.01) were all positively and significantly associated with RSM. Pubertal status in females was 

consistently a significant predictor of RSM at 9/10 years (p< 0.01). When weight was adjusted for 

height in the BMI models pubertal status and lean mass at 9/10 years remained significant predictors 

of RSM (p< 0.01). The model that explained the most variance in RSM at age 9/10 years in females 

incorporated height throughout childhood as well as body composition at age 9/10 years, explaining 

46.6% of the variation in RSM.  

 

     Table 5 Here 

 

Discussion 

This analysis used multivariable general linear regression modelling to determine which growth and 

socio-economic characteristics, measured at birth and during childhood, were associated with RSM of 

black children aged 9/10 years in a South African cohort. We have previously reported that all 

children in the Bt20 cohort, both black and white, had delayed skeletal maturation compared with 

international references [15]. The children in the present analysis showed similar skeletal delay.  

Average RSM in males was -0.66 years (SD 0.57 years) and in females was -1.00 year (SD 0.96 

years) indicating a substantial delay in skeletal maturation relative to chronological age.  

 

In developed country settings African children have been shown consistently to be more advanced in 

skeletal development than children of European origin as measured by the appearance of ossification 

centres in the early years of life [16-18]. Comparisons between black children in Africa [19] and black 

children in the USA [20], however, show US African American children to be more advanced in 

terms of their skeletal maturity than Africans living in Africa, suggesting that this observation may be 

as a result of health and nutritional factors rather than ethnicity itself. While there seems to be a 

genetically determined potential for advanced skeletal maturation in the African population, it can 

only be exploited under optimal environmental conditions and the post-apartheid conditions 



 8 

experienced by this cohort likely explain the delay in skeletal maturation relative to chronological age 

reported here.  

 

The fact that growth in early life appears to influence the rate of skeletal maturation in this cohort, 

with greater attained height and weight at 2 predicting more advanced skeletal maturity, adds further 

support to an established body of literature reporting the influence of growth in infancy (birth to 2 

years) on the timing of maturation. Several studies report, in particular, the relationship between rapid 

weight gain in infancy and age at menarche in females [21-23]. The results of this analysis suggest 

that an association between early life growth and the timing of maturation (as measured here by 

indicators of skeletal maturity) is also evident in males.  This study replicates previous findings shown 

in a combined analysis of children from both the Bt20 Bone Health cohort and the Fels Longidudinal 

Study (USA) [13]. Rapid weight gain in infancy (an increase in weight-for-age of greater than 0.67 Z 

scores between birth and 2 years [24]) was associated with greater skeletal maturity at age 9 years in 

both cohorts, despite their differing environments, with skeletal maturity advanced by the same 

magnitude in both settings; approximately 2.4 months per standard deviation score increase in weight 

from 0-2 years [13]. The conditional weight measure used here at 2 years, while not necessarily 

representing ‘clinically significant’ rapid infant weight gain, does represent the extent to which a 

child’s rate of growth deviates from the rate predicted based on the individuals birthweight [14]. The 

finding that greater conditional weight at 2 years is positively associated with RSM at 9/10 years 

indicates that it is the tempo of growth in the first two years, rather than absolute weight at 2 years, 

which influences the rate of skeletal maturation. In the absence of skeletal maturity indicators at birth 

or during infancy, however, we are unable to say whether advanced skeletal maturation predated the 

greater stature at age 2 in this cohort.  Pryor [25] suggested that most variations in the sequence and 

timing of skeletal maturation are genetically determined, and therefore may be set before birth, 

something that we are unable to consider in this analysis.   

 

The amount of bone-free lean mass present at 9/10 years was a significant predictor of RSM in 

females. This finding is consistent with a previous study by Powell et al. [26] where bone-free lean 

mass had the strongest association with RSM in their cross-sectional study of Australian children. It is 

unlikely that the association between increased lean mass and advanced skeletal maturation is a causal 

pathway as the endocrine control of both processes is likely to confound this association. Growth 

hormone and insulin-like growth factor (IGF-1) are known to increase linear bone growth and 

maturation and to stimulate increases in lean body mass during childhood, particularly during puberty. 

Sex steroids, estradiol and testosterone are other potential hormone mediators of the relationship 

between lean mass and skeletal maturation [27-30]. 
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The fact that the amount of lean mass present at 9/10 years was only significantly associated with 

skeletal maturation in females is likely to be related to the pubertal status of the females, another 

significant predictor of RSM in this cohort. Many of the females included in this analysis had entered 

puberty at the time of skeletal maturity assessment, and those who had entered puberty were less 

delayed in their skeletal maturation compared to their pre-pubertal peers (mean pre-pubertal RSM = -

1.34 years, mean pubertal RSM = -0.31 years, t=-6.25, p<0.01). In contrast, few males were pubertal 

at the time of skeletal maturity assessment (20.6%) and those that were pubertal were in early puberty 

(Tanner stage 2).  

  

Having previously identified the tempo of skeletal maturation to be  responsive to environmental 

change over time in this setting [15] it was reasonable to predict that measures of socio-economic 

position, either at birth or at the time of skeletal maturity assessment, might be associated with RSM 

at the end of childhood. Indeed, several indicators of SES were significantly associated with RSM in 

univariable general linear regression analyses, resulting in their inclusion in the multivariable models. 

When included in the multivariable models with measures of stature and body composition, however, 

none of the socio-economic predictors retained a significant association with the outcome. Many 

studies have considered the effect of SES on skeletal maturity with inconsistent findings. Those that 

study relatively homogenous groups find little association [31-33]  between SES and skeletal maturity 

while those that observe the extremes of SES find consistently that experiencing deprivation 

(nutritional, economic) delays skeletal maturation [2,3]. This sample was a relatively homogenous 

group of black South African children, living within a defined geographical region, so the finding that 

no socio-economic predictor was independently associated with RSM may be explained by the lack of 

variation in socio-economic position within the sample. When children grow in a constrained 

environment, such as the immediately post-apartheid environment experienced by this cohort, small 

individual constraints may not be detected sufficiently by the type of analysis used here. It is also 

possible that the SES acts on skeletal maturation through its influence on childhood growth, 

something unaccounted for in previous studies of SES and skeletal maturation, but addressed in this 

analysis. The effect of SES may have been mediated by growth during infancy which was shown to 

be positively associated with RSM. The fact that a large amount of variation in RSM was unexplained 

by the models presented here indicates there may also be other dimensions of SES, such as nutritional 

status, which were not captured by the SES indicators available for this cohort, acting on skeletal 

maturation.  

 

The strength of this study lies in the use of a longitudinal sample, assessed at several time points 

during childhood, to identify determinants of RSM. The immediate clinical significance of RSM in 

late childhood / early adolescence has been reported by Jones and Ma [34], who showed RSM to be 
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positively associated with measures of bone strength and to be negatively associated with upper limb 

fracture risk.  The wider significance of RSM at this age for later health or adult stature remains to be 

explored and necessitates the follow up of these individuals to the completion of skeletal 

development, something that is possible in this longitudinal cohort and will be addressed in future 

analyses.  
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Table 1: Characteristics of study sample 

 Male (N=131) Female (N=113) 

 Mean (SD) Mean (SD) 

Age (years) 9.67 (0.45) 9.67 (0.45) 

Skeletal Age (years) 9.01 (0.63) 8.67 (1.15) 

Relative Skeletal Maturity (years) -0.66 (0.57) -1.00 (0.96) 

Relative Skeletal Maturity (range in 

years) 

-2.30 to 1.19  -2.84 to 2.47  

 

Table 2: Growth and Socioeconomic characteristics of the sample according to relative 

skeletal maturity (RSM) 

 Male Female 

 RSM >-1.0 

N=98  

RSM < -1.0  

N=33 

RSM > -1.0 

N=56  

RSM < -1.0  

N=57 

Birthweight (kg) (Mean [SD]) 3.2 (0.5) 3.2 (0.5) 3.1 (0.5) 3.0 (0.4) 

Gestational Age (weeks) (Mean [SD]) 37.9 (1.7) 38.1 (1.4) 37.9 (1.9) 38.1 (1.3) 

Maternal Age at Birth (years) (Mean [SD]) 25.2 (5.5)* 27.7 (6.6)* 25.5 (5.9) 27.0 (6.7) 

Maternal Marital Status at Birth     

Single
 a
 (%) 69.4 78.8 83.9 82.5 

Married / Cohabiting (%) 30.6 21.2 16.1 17.5 

Maternal Education at Birth
b 

     

< High school (%) 59.2 51.5 50.0 59.6 

> High school (%) 40.8 48.5 50.0 40.4 

     

Height at 2 years (cm) (Mean [SD]) 84.0 (3.7)** 81.2 (4.4)** 83.8 (3.6)** 81.5 (3.3)** 

Weight at 2 years (kg) (Mean [SD]) 11.9 (1.8)** 10.8 (1.4)** 12.0 (1.6)** 11.0 (1.3)** 

BMI at 2 years (kg/m
2
) (Mean [SD]) 16.8 (2.1) 16.5 (2.6) 17.1 (2.1) 16.6 (1.8) 

     

Height at 4 years (cm) (Mean [SD]) 99.7 (4.2)** 97.4 (3.7)** 99.9 (3.8)** 97.4 (3.6)** 

Weight at 4 years (kg) (Mean [SD]) 15.8 (2.0)** 14.6 (1.6)** 15.8 (2.2)** 14.6 (1.3)** 

BMI at 4 years (kg/m
2
) (Mean [SD]) 15.9 (1.3) 15.4 (1.3) 15.8 (1.6) 15.4 (1.1) 

     

Height at 9/10 years (cm) (Mean [SD]) 134.4 (6.3)* 131.6 (4.9)* 135.6 (6.8)* 132.8 (4.8)* 

Weight at 9/10 years (kg) (Mean [SD]) 30.6 (6.3)* 27.7 (3.7)* 30.9 (6.3) 28.9 (4.9) 

BMI at 9/10 years (kg/m2) (Mean [SD]) 16.8 (2.4) 15.9 (1.8) 17.1 (2.0) 16.7 (1.8) 

Fat mass at 9/10 years (kg) (Mean [SD]) 6.5 (4.1) 6.3 (2.9) 10.1 (5.2)** 7.1 (3.2)** 

Lean mass at 9/10 years (kg) (Mean [SD]) 19.4 (3.1)** 17.5 (2.1)** 19.0 (3.1)** 16.6 (2.1)** 

Pubertal Status at 9/10 years     

Pre-pubertal (%) 77.6 81.8 44.6** 87.7** 

Pubertal (%) 22.4 18.2 55.4** 12.3** 

Primary Caregivers Marital Status at 9/10 

years 

    

Single
 a
 (%) 50.0 45.5 55.6 70.9 

Married / Cohabiting (%) 50.0 54.5 44.4 29.1 

Primary Caregivers Education at 9/10 years
 b

     

< High school (%) 67.7 62.5 37.0 43.6 

> High school (%) 32.3 37.5 63.0 56.4 

a Single includes separated, divorced and widowed 

Independent t test (continuous variables) or Chi
2
 test (categorical variables)*P < 0.05, ** P < 

0.01 
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Table 3: Predictors of Relative Skeletal Maturity at age 9/10 years: Significant 

predictors identified by univariable linear regression  

 

 
 

 

 

 

 

 

 

 

 Male Female 

 B (SE) B (SE)  

Birthweight  0.06 (0.05)    0.15 (0.09)* 

Maternal Age at Birth  -0.09 (0.01)* -0.00 (0.01) 

Sanitation at Birth    -0.17 (0.05)** -0.11 (0.07) 

Durables at Birth  0.10 (0.05)* -0.06 (0.06) 

   

Pubertal Status 0.04 (0.12)      1.03 (0.17)** 

   

Sanitation at 9/10 years  -0.09 (0.03)* -0.01 (0.13) 

Durables at 9/10 years     0.15 (0.05)** 0.02 (0.06) 

   

Conditional weight at 2 years     0.21 (0.05)**     0.27 (0.09)** 

Conditional weight at 4 years   0.09 (0.04)*   0.17 (0.08)* 

Conditional weight at 9/10 years 0.04 (0.05)   0.17 (0.09)* 

   

Height at 2 years     0.19 (0.05)**     0.09 (0.02)** 

Conditional height at 4 years   0.09 (0.04)* 0.15 (0.09) 

   

Fat mass index at 9/10 years 0.03 (0.05)     0.38 (0.08)** 

Lean mass index at 9/10 years     0.15 (0.05)**     0.51 (0.08)** 
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Table 4: Predictors of Relative Skeletal Maturity at age 9/10 years in females: multivariable regression models for weight, height and BMI 

*P <0.05, **P <0.01 

(Weight, height, BMI, Fat and Lean mass indices expressed as internal z-scores) 

 

 Model 1 (Weight) Model 2 (Height) Model 3 (BMI) 

 A B A B A B 

 B (SE) B (SE) B (SE) B (SE) B (SE) B (SE) 

Maternal Age at Birth -0.01 (0.01) -0.00 (0.01)  -0.02 (0.01) -0.01 (0.01) -0.01 (0.01) 0.00 (0.01) 

Sanitation at Birth 0.03 (0.07) -0.03 (0.07)   0.01 (0.07) -0.04 (0.07) 0.04 (0.08) -0.02 (0.07) 

Durables at Birth -0.10 (0.07) -0.05 (0.06) -0.10 (0.07) -0.06 (0.06) -0.11 (0.07) -0.05 (0.06) 

       

Pubertal Status      0.78 (0.19)**       0.52 (0.19)**     0.77 (0.19)**    0.43 (0.19)**     0.90 (0.19)**      0.59 (0.18)** 

       

Sanitation at 9/10 years -0.10 (0.14) -0.06 (0.13) -0.07 (0.14) -0.03 (0.12) -0.12 (0.14) -0.08 (0.13) 

Durables at 9/10 years -0.07 (0.06) -0.04 (0.05) -0.07 (0.06) -0.05 (0.05) -0.07 (0.06) -0.04 (0.06) 

       

Birth Weight  0.06 (0.09)  0.07 (0.09)     

Conditional weight at 2 years   0.17 (0.08)*  0.01 (0.09)     

Conditional weight at 4 years 0.10 (0.09) -0.02 (0.09)     

Conditional weight at 9/10 years 0.10 (0.08)     0.18 (0.08)*     

       

Height at 2 years     0.22 (0.09)* 0.12 (0.09)   

Conditional height at 4 years   0.08 (0.08)    -0.04 (0.08)   

Conditional height at 9/10 years       0.09(0.09)     0.23 (0.08)**   

       

BMI at 2 years     0.04 (0.09) -0.07 (0.09) 

Conditional BMI at 4 years     0.10 (0.09) -0.03 (0.08) 

Conditional BMI at 9/10 years     0.08 (0.08) 0.10 (0.08) 

       

Fat mass index at 9/10 years  0.09 (0.10)  0.08 (0.09)  0.11 (0.10) 

Lean mass index at 9/10 years      0.41 (0.10)**      0.42 (0.10)**      0.37 (0.09)** 

Adjusted R
2
 0.332** 0.446** 0.325** 0.466** 0.292** 0.426** 
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Table 4: Predictors of Relative Skeletal Maturity at age 9/10 years in males: multivariable regression models for weight, height and BMI 

*P <0.05, **P <0.01 

(Weight, height, BMI, Fat and Lean mass indices expressed as internal z-scores) 

 

 Model 1 (Weight) Model 2 (Height) Model 3 (BMI) 

 A B A B A B 

 B (SE) B (SE) B (SE) B (SE) B (SE) B (SE) 

Maternal Age at Birth  0.00 (0.01)   0.00 (0.01)    0.00 (0.01)  0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 

Sanitation at Birth  0.02 (0.05)   0.03 (0.05)   0.04 (0.05)  0.04 (0.05) 0.03 (0.05) 0.04 (0.05) 

Durables at Birth -0.01 (0.05) -0.03 (0.05) -0.02 (0.05) -0.03 (0.05) -0.01 (0.05) -0.02 (0.05) 

       

Pubertal Status  0.01 (013) -0.03 (0.13)   0.01 (0.13) -0.02 (0.13) -0.03 (0.13) -0.05 (0.13) 

       

Sanitation at 9/10 years   0.03 (0.04)   0.02 (0.04)   0.05 (0.04)   0.05 (0.04) 0.01 (0.05) 0.00 (0.05) 

Durables at 9/10 years   0.05 (0.05)   0.04 (0.05)   0.05 (0.05)   0.04 (0.05) 0.06 (0.05) 0.05 (0.05) 

       

Birth Weight    0.07 (0.05)  0.10(0.06)     

Conditional weight at 2 years       0.19 (0.05)**       0.24 (0.06)**     

Conditional weight at 4 years   0.07 (0.05)   0.09 (0.06)     

Conditional weight at 9/10 years   0.01 (0.06)   0.15 (0.11)     

       

Height at 2 years       0.18 (0.05)**     0.18 (0.05)**   

Conditional height at 4 years   0.09 (0.05)     0.08 (0.05)   

Conditional height at 9/10 years       0.03 (0.06) 0.03 (0.06)   

       

BMI at 2 years     0.10 (0.05) 0.11 (0.08) 

Conditional BMI at 4 years     0.05 (0.06) 0.05 (0.08) 

Conditional BMI at 9/10 years     0.02 (0.06) 0.07 (0.17) 

       

Fat mass index at 9/10 years   -0.18 (0.10)  -0.02 (0.06)  -0.04 (0.08) 

Lean mass index at 9/10 years   -0.01 (0.07)    0.09 (0.06)  0.05 (0.10) 

Adjusted R
2
 0.170* 0.197* 0.156* 0.178* 0.075 0.092 


