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ABSTRACT 

A phased mission system represents a system whose performance is divided into consecutive 

non-overlapping phases. The operation of a phased mission system can be improved by either 

introducing better performing components or by increasing the number of redundant 

components. At the same time, such design alterations can influence how available resources 

are utilised. The focus of this paper is to develop an optimisation method to construct an 

optimal design case for a phased mission system, with the aim of maximising its availability 

and ensuring optimal usage of available resources throughout all phases. The developed 

method is based on an approach where an individual phase is treated as a standard single 

phase system. Thus, to solve the whole phased mission optimisation problem each phase 

design is analysed individually, whilst dependencies between different phases are also 

included in the analysis in order to find the failure probability value of each phase. The 

implemented optimisation method employs Fault Tree Analysis (FTA) to represent system 

performance and Binary Decision Diagrams (BDDs) to quantify each phase failure 

probability. A Single Objective Genetic Algorithm (SOGA) has been chosen as the 

optimisation technique. A simple Unmanned Aerial Vehicle (UAV) mission has been selected 

to demonstrate the methods application. Results of the analysis are discussed. 

 

1 INTRODUCTION 

A phased mission system represents a system where performance is analysed as a sequence of 

non-overlapping phases. To complete a mission the system is required to accomplish a 

specific task without failure in each phase. A classical example of a phased mission system is 

for an aircraft which undergoes three phases: take-off, cruise and landing. The aircraft 

completes its mission if all three tasks have been completed successfully. 
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Generally, methods used for phased mission system analysis can be grouped in two catego-

ries: Markov analysis based approaches and combinatorial methods. Combinatorial methods 

include fault tree and binary decision diagram (BDD) approaches. The earliest applications of 

fault tree analysis in the analysis of non-repairable phased missions were made by Esary J.D. 

& Ziehms, H. (1975).  

If a phased mission system is repairable or there are dependencies between component 

failures or phases, it is generally difficult to find the exact system reliability. In this case 

Markov reliability models are employed, as discussed by Kim & Park (1994). 

Both combinatorial and Markov methods have some drawbacks. For example, in Markov 

models for systems with n components, up to 2
n 

 equations are needed to represent each phase.  

In the combinatorial approach, however, the problem size expands with increasing number of 

phases. Therefore, employing a combination of both approaches for the same problem can 

help to overcome these individual drawbacks and enable the analysis of more complicated 

problems. As such, Ou Y. et al. (2002) and Wang D. & Trivedi K.S. (2007) introduced new 

approaches to analyse phased mission systems adopting this approach. 

A large number of systems which can employ mechanical, chemical, electronic and nuclear 

technologies can be analysed as phased mission systems. Similarly, as such, transportation 

networks and indeed military missions can be analysed as phased mission systems.  Thus sys-

tem optimisation in terms of reliability, cost, etc is extremely relevant.  In spite of its impor-

tance, however, there is limited demonstrated evidence in the literature for research that fo-

cusses on phased mission optimisation; Susova G.M. & Petrov A.N. (1997) introduced a 

model based on Markov homogeneous process which can be used to minimize operation cost 

and optimise flight safety.  

The purpose of this paper is to introduce an algorithm that aims to determine the optimal 

system design of a phased mission system. The algorithm solves for minimum overall mission 

failure probability within the context of pre-defined design constraints and resources.  

The fault tree analysis approach introduced by La Band R.A. & Andrews J.D. (2004) to-

gether with the BDD approach presented by Remenyte-Prescott R. (2007), which were ap-

plied for phased mission reliability analysis, have been employed.  The fault tree approach 

enables the failure causes in each phase and the whole mission to be described, while the 

BDD approach is more efficient for mathematical analysis (probability evaluation). To find an 

optimal system design a single objective Genetic Algorithm (GA) was chosen as the optimisa-

tion technique. 
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2 PHASED MISSION DESIGN OPTIMISATION ALGORITHM 

2.1 Optimisation problem introduction 

 
A phased mission system design optimisation problem is represented as a general single ob-

jective minimisation problem. The problem is stated as a minimisation of failure probability 

for a system: 

 missionQ Xmin , (1) 

where X (n–dimensional vector of independent variables) is the result of the union of vectors 

of system component failure probability values, i.e.: 


m

i

i

1

 XX . (2) 

Here, m is the number of phases in the mission and each Xi vector represents system compo-

nents that appear in any minimal cut set of a fault tree of phase i (i = 1, 2, …, m). In other 

words, X is a vector of system components that appear in any failure event. 

For a general optimisation problem, values of vector components need to be defined. In the 

introduced problem (1) a particular set of system components which correspond to the mini-

mal system unavailability value are searched for. Therefore, the contents of the employed 

component sets and the number of components in the sets vary through the analysis. The di-

mension n of vector X (number of system components) is not fixed and may not remain the 

same during the whole optimisation process. 

In the algorithm it is considered that the system failure probability is subject to a number of 

constraints. The constraints can be grouped in two categories. The first constraint group repre-

sents the limits of the available resources, such as cost (Costmission), maintenance down time 

(MDTmission), weight (Weightmission) and volume (Volumemission). To use resources efficiently it 

may be useful to have minimum constraints. If limits are set just to maximum values then 

minimum constraint values easily become equal to zero.  
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where cost and maintenance down time are calculated for an analysed time period. 
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In this research, the limitations on available resources are applied to the whole mission and 

are not analysed for each phase individually. 

The second group of constraints represents the system failure probability during each phase 

(4). Implementing these constraints allows component combinations to be identified that 

minimise the failure probability of the whole mission without exceeding limits set for system 

failure probability values during each phase. 

   

   

   
max

max2222

max1111

.................................

mmmm QQ
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



, (4) 

where, Qi(Xi) identifies the ith phase failure probability, Qi(Xi)max is the maximum allowed 

system failure probability value at phase i and m defines the number of phases in the analysed 

mission. 

To solve the introduced single objective optimisation problem, a Genetic Algorithm (GA) 

was chosen as the optimisation technique. The choice of this technique can be attributed to 

one major factor. The objective function (1) does not have an explicit form, which makes the 

choice of optimisation technique limited. 

2.2 Design variables 

System components are the independent variables of the objective function (1). In a general 

optimisation case, values of the independent variables need to be determined in order to find 

an optimal solution. In the proposed case values of independent variables (component failure 

probabilities) are determined a priori and therefore a set of components needs to be found 

which would give the optimal objective function value. 

Usually, in trying to improve system performance, a certain number of components are 

chosen to be replaced. A different number of redundant components and / or components of 

different types, i.e. components that have different characteristics, can replace existing com-

ponents. Therefore the notation “design variables” is used to identify the numbers of redun-

dant components, redundancy types and types of new components used in the analysis. Each 

replaceable component can be associated with more than one design variable. 

Different design variable values will change the component set X. Thus the optimal system 

design can be defined just by the optimal values of design variables. It suggests that just de-
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sign variables need to be coded in the chromosomes of the GA and their values need to be 

analysed. 

To include all possible design variables requires specific forms for the fault trees of the 

system phases to be used. These fault trees include groups of associated house events. The 

house events are employed to activate certain fault tree branches according to the values of 

the design variables. When fault tree branches with house events set to 0 (inactive house 

events) are eliminated, fault trees for phases are constructed. The obtained fault trees repre-

sent a particular system design. The methodology of introducing house events associated with 

design variables into fault trees was discussed by Pattison R.L. (1999). 

The maximum possible values of the chosen design variables are used to construct a chro-

mosome structure used in the genetic algorithm for optimization purposes. In a chromosome a 

certain number of binary digits, which represent a certain length gene, are allocated to store a 

value of every variable in a binary format. Thereafter, each generated value of a gene is used 

as a value of an associated design variable. 

Figure 1 illustrates how design variables and fault tree house events are linked with GA 

chromosomes. 

 

2.3 Objective function evaluation 

In general, the result of an objective function when using any vector X (1) is the failure 

probability value of a mission. A methodology introduced by La Band R.A. & Andrews J.D. 

(2004) was employed in order to determine the failure probability of a system. The method 

provides failure probabilities for each phase (Qi) together with the whole mission failure 

probability (Qmission) where 





m

i

imission QQ
1

 (5) 

For equation 5 to be valid, fault trees for each phase need to be modified according to certain 

rules. 
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Figure 1. Links between different data groups. 

 

When altering an ith phase fault tree any event of a component failure needs to be repre-

sented as an “OR” gate with a number of input events. Each input event represents a compo-

nent failure event in a certain phase j, where j = 1, 2, …i-1 and one event is a component fail-

ure in phase i. This shows that if a component fails in phase i, it could have failed during any 

phase j up to and including phase i, since the component is non-repairable. As an example, the 

failure of component A in phase 3 is presented in Figure 2. Here, A1 is the failure of compo-

nent A in phase 1, A2 is the failure of the component in phase 2 and A3 represents the failure of 

component A in phase 3.  

 

Figure 2. Representation of event A as an “OR” gate. 

 

If a system fails in phase i, it means it could not have failed during any previous phase j (j 

= 1, 2, …, i-1). Therefore, system failure in phase i is represented by an “AND” gate that in-

corporates the success of previous phases j (using NOT logic) and the failure for the phase i. 

Figure 3 represents the failure of a system in phase 3. Phase 3 failure is shown as a combina-

tion of successes in phases 1 and 2 and failure in phase 3. In phase 3 components A, B and C 

are replaced using “OR” gates to indicate that components could have failed during phase 1, 2 

or 3, as shown previously in Figure 2. The overall mission failure probability is then equal to 

the sum of failure probabilities for all phases (5). 
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Figure 3. An example of system failure in phase 3. 

 

Hereafter, phased mission analysis using fault trees can become too complicated when the 

fault trees are large. Thus to evaluate mission failure probability, fault trees for each phase are 

converted to BDDs. A methodology detailed by Remenyte-Prescott R. (2007) was corre-

spondingly employed. At first, each phase fault tree is converted to a BDD. Next, the created 

BDDs are altered using the earlier described methodology introduced by La Band R.A. & 

Andrews J.D. (2004). The obtained BDDs are employed to evaluate particular design system 

failure probabilities for phases and the sum of their values determines the failure probability 

value for the whole mission. 

2.4 Genetic algorithm 

As mentioned earlier, a single objective GA was employed as the optimisation technique in 

the proposed algorithm for the phased mission design optimisation problem. Additionally, 

fault tree and BDD analysis were employed to find objective function values.  The core part 

of the genetic algorithm remains simple using reproduction, crossover and mutation operators. 

The reproduction operator was implemented employing a biased roulette wheel. Each slot 

in the wheel is weighted in proportion to a fitness value of each population chromosome. 

When chromosomes in a population are coupled (the same chromosome can appear in several 

couples) they are crossed over employing one-point crossover operator. During the crossover 

process, a bit-by-bit mutation was also carried out. Reproduction was implemented employing 

an algorithm described by Chambers L. (ed.) (2001). The idea of this algorithm is to replace a 

parent population with an offspring population. If the best parent chromosome is fitter than 

the best offspring chromosome than it replaces the worst offspring chromosome. 
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The optimisation algorithm is summarised by the flowchart in Figure 4. It also includes scal-

ing and penalty procedures discussed in the following section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Optimisation algorithm flowchart. 

2.5 Scaling and Constraints 

A penalty application was chosen as an approach to deal with possible problem constraints. 

The main idea of this methodology is to apply some type of penalty to solutions which violate 

any constraint. A penalty function proposed by Coit D.W. et. al. (1996) was employed in the 

algorithm: 
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Here, Fall is the best unpenalised value of the objective function yet found, Ffeas is the best 

feasible value of the objective function yet found, NFTi denotes the near-feasibility threshold 

that corresponds to a given constraint i, di(x,B) is the magnitude of the violation of a given 
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constraint i for solution x, κi denotes a user-specified severity parameter and nc is the total 

number of constraints set for the problem.  

In the implemented algorithm the near-feasibility threshold was defined employing a for-

mula which allows the penalty value to be adjusted according to the search history: 

g

NFT
NFT oi

i



1.01

. (7) 

Here NFToi represents the actual value of a constraint i and g denotes the generation number. 

Parameter κi was set to 2 in order to implement Euclidian distances between any infeasible so-

lutions to the feasible region over all constraints. 

In order to improve the performance of the algorithm, fitness scaling was introduced. Fit-

ness scaling is especially valuable when small population genetic algorithms are employed. 

A linear scaling procedure proposed by Goldberg D.E. (1989) was introduced in the algo-

rithm. Parameters used in the linear scaling procedure are problem-independent. They depend 

on a population life and are found for a population in each generation.  

The linear scaling method defines a linear relationship between an initial fitness value and 

the fitness value after the scaling: 

baff initialscaled  . (8) 

Here, finitial is an actual chromosomes’ fitness, fscaled is the chromosomes’ fitness after scaling 

and parameters a and b are linear function coefficients. In the implemented method these co-

efficients are selected so that the average fitness before scaling and the average scaled fitness 

are equal. 

3 APPLICATION EXAMPLE AND RESULTS 

The proposed optimisation algorithm was applied to analyse a simplified unmanned aerial 

vehicle (UAV) mission. The aim of the optimisation was to find the optimal UAV design that 

would improve availability (minimise unavailability) for the whole mission and at the same 

time achieve vehicle failure probabilities for each phase that do not exceed pre-defined limits. 

The UAV mission comprises of six phases carried out in the following order: take-off, 

climb, en-route in controlled airspace, en-route in uncontrolled airspace, descent and land. 

There are 28 different basic events used in mission fault trees which can be grouped into two 

categories. Basic events that represent failures of UAV components are called internal basic 
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events. Basic events which are associated with external factors causing mission failure belong 

to a group of external basic events. These events are such as bird strike, air traffic control fail-

ure, communication error and storm. 

To perform the optimisation analysis five UAV components were chosen to be replaced. 

The list of design variables selected to characterise improvements in UAV performance is 

provided in Table 1. 

Table 1. List of design variables. 

Changeable 

component 

Description of modifications Possible values of design 

variables 

Landing gear Type of a landing gear type1, type 2 

Antiskid valve
 

Number of feed antiskid valves 2, 1 

Cross feed 

valve
 

Number of cross feed valves 3, 2, 1 

Type of a cross feed valve type1, type 2 

Pump
 

 

Number of pumps 2, 1 

Type of a pump type1, type 2 

Minimal number of pump failures causing system failure 2, 1 

Navigation sys-

tem
 

Number of sub navigation systems 2, 1 

Minimal number of navigation system failures causing 

system failure 

2, 1 

 

In Section 2.2 it was mentioned that the implementation of design variables requires a spe-

cial form of phase fault trees. These fault trees include groups of house events associated with 

design variables chosen for system improvement. An example of the first phase fault tree 

(take-off) is presented in Figure 5. It shows how the phase fault tree is modified due to the 

implementation of the choice of a type of a landing gear. 

Before any design changes have been implemented, performance of the original, i.e. initial 

design UAV, was analysed in order to set limits for system failure probabilities at each phase. 

The failure probability of the first phase for the initial design UAV was 0.0306. The second 

phase failure probability was 0.0174, the third phase failure probability was equal to 0.0077, 

the fourth phase failure probability value was 0.0058, the fifth phase failure probability in-

creased up to 0.0301 and after the sixth increased to 0.0435. The probability that the initial 

design UAV would fail to complete the mission was 0.1359. Phase failure constraint data was 

chosen according to these phase failure probability values to ensure that the unreliability of 

each phase of a new design UAV would not increase. The first phase failure probability limit 
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was set to 0.04, the second limit was set to 0.02 and correspondingly the remaining limits 

were set to 0.008, 0.006, 0.04 and 0.05.  

 

Figure 5. Fault tree for phase take-off. 

 

When applying a genetic algorithm its parameter values influence the performance of the 

algorithm. Thus several tests were carried out to find such parameter combination which 

could be used when carrying out UAV design optimisations. Different combinations of popu-

lation size, crossover rate and mutation rate values were chosen. Three population sizes were 

analysed: 50, 30 and 10 chromosomes. Population size had the biggest influence on optimisa-

tion duration. Mutation rates were chosen equal to 0.001, 0.005 and 0.01 and crossover rate 

values were equal to 0.75, 0.8 and 0.95. 

The number of phases defines the scale of an analysed system and therefore the time re-

quired to find failure probability values for each phase, but it does not influence the perform-

ance of the optimisation algorithm in terms of the results convergence. As such, the right 

combination of GA parameters were progressively determined using two phases in the mis-

sion in order to avoid the much greater time consumption required for a six-phase mission. 

The best result, i.e. the smallest average number of generations required to find the minimal 

failure probability values was obtained when using a 30 chromosome population, a crossover 

rate equal to 0.75 and a probability of mutation equal to 0.001. These parameter values were 

used to perform the optimisation of the actual six-phase UAV mission. The optimisation 
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simulation was carried out five times in order to show consistency in the convergence of re-

sults. Each time the process was terminated after 100 generations. 

Results presented in Figure 6 are the average mission failure probability values for each 

generation. They show that the objective function values converge to  average minimal failure 

probability value. The optimal failure probability values for each generation shown in Figure 

7 confirm convergence of results on the global minimum for the problem. 
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Figure 6. Average mission failure probability values of each generation for five runs. 
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Figure 7. Minimal mission failure probability values for each generation. 

 

The minimal mission failure probability obtained from the model was equal to 

0.117380741, representing the failure probability for the optimal UAV design, while the mis-

sion failure probability of the initial design UAV was 0.1358712415.  The optimally designed 

vehicle now includes new components that have replaced the some of the original compo-

nents. The list of the new components is presented in Table 2. 
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Table 2. Values of design variables for the optimal system design. (q=0.117380741) 

Changeable 

component 

Design variable description Design variable value 

Landing gear Type of a landing gear type1 

Antiskid valve
 

Number of feed antiskid valves 2 

Cross feed 

valve
 

Number of cross feed valves 3 

Type of cross feed valves type 2 

Pump
 

 

Number of pumps 2 

Type of a pump type 2 

Minimal number of pump failures causing system 

failure 

2 

Navigation sys-

tem
 

Number of sub navigation systems 2 

Minimal number of navigation system failures 

causing system failure 

2 

4 CONCLUSIONS 

The introduced algorithm is employed to minimise phased mission system failure. The 

failure is minimised by defining a set of system components that constitutes an optimal sys-

tem design and contributes to the improvement of system performance.  

In the presented algorithm fault tree analysis was used to represent system failure modes 

during the whole mission for each system design. Fault tree and BDD approaches were also 

employed to evaluate the failure probabilities for each phase and the whole mission for differ-

ent system designs. A single objective GA was chosen as an optimisation technique. 

The developed algorithm has been successfully applied to find an optimal UAV phased 

mission design which minimises the whole mission failure probability. Obtained optimisation 

results that represent mission failure probability values converged to the global minimum. A 

set of UAV components characterising the optimal vehicle design was identified. As a result, 

the optimal design UAV mission failure probability represented the global minimum of the 

optimisation process. 

Given the applicability of the method to the example mission, the next step would be 

analysis of more complicated phased mission system.  It is envisaged that this will introduce 

additional computational intensity which may incur a processing time issue. Therefore future 
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work should focus on improvement of the algorithm performance and its application for larger 

systems.  
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