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Analysis of multistate models for electromigration failure
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�Received 16 November 2008; accepted 19 October 2009; published online 2 February 2010�

The application of a multistate Markov chain is considered as a model of electromigration
interconnect degradation and eventual failure. Such a model has already been used �Tan et al., J.
Appl. Phys. 102, 103703 �2007��, maintaining that, in general, it leads to a failure distribution
described by a gamma mixture, and that as a result, this type of distribution �rather than a
lognormal� should be used as a prior in any Bayesian mode fitting and subsequent reliability
budgeting. Although it appears that the model is able to produce reasonably realistic resistance
curves R�t�, we are unable to find any evidence that the failure distribution is a simple gamma
mixture except under contrived conditions. The distributions generated are largely sums of
exponentials �phase-type distributions�, convolutions of gamma distributions with different scales,
or roughly normal. We note also some inconsistencies in the derivation of the gamma mixture in the
work cited above and conclude that, as it stands, the Markov chain model is probably unsuitable for
electromigration modeling and a change from lognormal to gamma mixture distribution generally
cannot be justified in this way. A hidden Markov model, which describes the interconnect behavior
at time t rather than its resistance, in terms of generally observed physical processes such as void
nucleating, slitlike growth �where the growth is slow and steady�, transverse growth, current
shunting �where the resistance jumps in value�, etc., seems a more likely prospect, but treating
failure in such a manner would still require significant justification. © 2010 American Institute of
Physics. �doi:10.1063/1.3262497�

I. INTRODUCTION

Electromigration �EM�, the electric current-induced
atom transport in very large scale integrated interconnect
metallization, remains one of the most serious reliability con-
cerns for modern integrated circuits. The standard failure
model �e.g., Ref. 1� assumes that momentum transfer from
the applied electron current j drives atoms toward the anode,
increasing the tensile stress at the cathode. When this stress
reaches a critical value, a void is nucleated. Further matter
transport causes the void to grow, and when a critical void
volume Vcr is reached, the line fails. It is clear however that
the critical volume does depend on the location of the void,
for example, in general, the value of Vcr required for a void
growing beneath a via �via-above� is significantly smaller
than that for a void above it �via-below�; consequently the
standard model must distinguish a variety of different EM
failure modes.2

The overall atomic diffusion coefficient �DA� plays a key
role in any metal migration and its value at a point may be
written in terms of a sum of local contributions as3

DA = Db +
��D�GB

d50
+

��D�Cu:N

h
+ ��D�Cu:b� 2

w
+

1

h
� , �1�

where Db is the diffusion coefficient in the bulk material,
while ��D�GB, ��D�Cu:N, and ��D�Cu:b are the path-width
�diffusion coefficient products, respectively, for grain
boundary, copper/caplayer-interface and copper/barrier-

interface diffusion. w and h are the linewidth and height, and
d50 is the mean metal grain diameter. In copper interconnect,
diffusion along the interface between the copper and the ni-
tride caplayer generally dominates DA �Refs. 4–6� so that
voids tend to nucleate and grow along this interface. As the
values of the diffusivity terms in Eq. �1� vary with local grain
orientation, and hence microstructure, the failure times ob-
served for a group of lines made using the same manufactur-
ing process will be described according to some probability
distribution. Lognormal statistics are almost universally as-
sumed to apply for this failure mechanism as discussed in
Ref. 7.

Empirical EM failure studies on the other hand, partially
out of convenience, generally define the failure event to be a
fixed �relative� increase in the line resistance R�t�.8 Typically,
a figure of 10%–20% is chosen and this has been justified as
being sufficient to cause enough interconnect delay in global
wiring for timing errors to occur.9 In some cases the resis-
tance trace changes so rapidly at failure that the choice of
10% or 20% is not important. However, in other cases,
R�t� /R0 meanders somewhat and the times corresponding to
10% and 20% increases can be very different. Unfortunately,
the link between these two pictures of failure �void volume
and relative resistance change� remains somewhat unclear
�see Doan et al.10 for something of a review of this area for
aluminum interconnect�, and clearly there are some obvious
differences. For example, all of the voids in a line contribute
toward the increase in R�t�, whereas only the largest deter-
mines critical volume failure. Generally one argues a link in
the following manner.11,12 If one ignores shunt layers, if the
resistivity of the line is constant, and if the line can be treated
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as a simple set of series and parallel resistors, then the over-
all fractional resistance change �FRC� for the line is roughly

�R�t�
R0

=
1

L
�

0

L Avoid�x,t�
Ametal�x,t�

dx

�
1

AlineL
�

0

L

Avoid�x,t�dx =
Vvoid�t�

Vline
, �2�

where L and Aline are the length and cross-section of the line,
Vvoid�t� is the total volume of all voids along the line, �R�t�
is the resistance change, R0 is the initial line resistance, and
Avoid�x, t� and Ametal�x, t�=Aline−Avoid�x, t� are the cross-
sectional area given over to voids and metal at point x� �0,
L� at time t. The approximation made in Eq. �2� is valid
provided Avoid�x, t� /Aline is small. Thus for a single slitlike
void �or for multiple such voids� with a small cross-section
relative to the line, the fractional increase in line resistance
will be a reasonable measure of the total void volume. As it
is inconceivable that a slitlike void, nucleated at a random
point along the line, will grow to a void volume of 0.1 Vline,
such slitlike voids will not themselves lead to failure. For
larger values of Avoid�x, t� /Aline, the situation can be differ-
ent. Suppose that a small prismatic void is situated between x
and x+X along the line with an arbitrary cross-section
Avoid�t�, independent of x. The factional resistance change is

�R�t�
R0

=
1

L
�

x

x+X Avoid�t�dx

Aline − Avoid�t�

=
Vvoid�t�

Vline
�1 −

Avoid�t�
Aline

�−1

, �3�

which includes a correction factor, relative to Eq. �2�, depen-
dent on the void shape. A short transverse void �small X,
large Avoid� will produce a larger �R�t� /R0 than a long slit-
like void �large X, small Avoid� of the same volume. Like-
wise, for the same volume growth rate, �R�t� /R0 will in-
crease more rapidly for transverse than for slitlike growth.
This case naturally includes the case of a slitlike void grow-
ing beneath a via, as this is transverse to the current flow.

Jump changes in resistance can occur if the current is
diverted through shunt layers typically Ti/TiN �aluminum� or
Ta/TaN �copper�.13,14 Including a shunt through a liner, Eq.
�3� �for a void in the form of a prism� becomes

�R�t�
R0

=
Vvoid�t�

Vline

1 −
�Cu

�liner

Aliner

A

1 −
Avoid�t�

A
+

�Cu

�liner

Aliner

A

→
Avoid→A

�linerA

�CuAliner

X�t�
L

=
Rliner�t�

R0
. �4�

Since, in the case of a Ta, the electrical resistivity of the liner
is around 20–70 times larger11,15 than that of Cu, and the
cross-section of the liner is around 10%–40% �Ref. 11� of
the line cross-section, �CuAliner /�linerA will be small �around
0.25 /50=0.005 say�, and will only contribute to Eq. �4�
when Avoid�t�	A, i.e., when the void extends across the line.
At this point the line resistance rises suddenly to �R�t� /R0

�Rliner�t� /R0 �equal to around 200X�t�/L� and will result in
immediate EM failure, taken as �R�t� /R0=0.1, if X�t�
�L /2000. For a 100 �m line, this corresponds to Xshunt�t�
�50 nm, while for 3000 �m this is Xshunt�t��1.5 �m;
while smaller voids will cause shunting over a shorter dis-
tance and so cause smaller jumps in �R�t� /R0. In many ways
this is the difference between the pictures, tying the defini-
tion of failure to a fixed relative increase in R�t� corresponds
to a critical void volume Vcr that scales with line length,
alternatively using a fixed critical void volume corresponds
�to within the shape factor in Eq. �3�� to more of a fixed
absolute increase in R�t�.

This analysis is, of course, far too simplistic ignoring the
differences for an interconnect tree between via-above fail-
ures and via-below failures; the differences between failures
caused by cathode edge displacement and those due to cath-
ode end thinning; the effects on �R�t� /R0 of multiple via
contacts or multiple links; the feedback effects of current
crowding around a void; and the possibility of resistance
increase due to the formation of pancakelike voids in any
solder joint. It also ignores void nucleation, which often
plays a dominant role in solder and via-above failure and an
important role in many of the other modes. In an M1/M2 test
structure, if the void forms in the M1 layer below a via
�via-above�, a much smaller metal depletion is required to
produce a slitlike void capable of creating an open circuit in
the copper than if the void forms on the M2 topside �via-
below�. Clearly for a �via-below� void forming at the cath-
ode, edge displacement and cathode thinning cause similar
effects, reducing the line cross-section above the via in the
M2 layer. Depending on geometry, microstructure, and
whether or not there is a reservoir overlap, edge displace-
ment may shunt the current through the liner sooner or later
than by cathode end thinning. In multivia contacts, several
jumps have been observed as the vias gradually become open
circuit one by one and, progressively, more and more of the
current is forced through the remaining contacts. Similarly,
during the growth of the void, current crowding occurs as the
current is forced through a smaller area of metal. This is
likely to accelerate the failure process by increasing the EM
force. This same process is at work at solder bumps where
the geometry of the contact between the under bump metal-
lization and the solder ball causes crowding, increased cur-
rent densities and accelerated failure.16–18

A complete discussion of possible void behavior, and its
influence on the measured resistance, is beyond the scope of
this work; however some of the key features of the process
of the nucleation and the growth may be demonstrated using
a simple toy model similar to that used for classical
condensation.19 If the surface energy of a void �taken to be a
constant here� is �S, then forming a small spherical void of
radius r increases the free energy by 4	r2�S. The atoms re-
moved to form that void must be relocated and, if 
 is the
local hydrostatic tensile stress, an amount of work �equal to
the integral of the elastic strain energy density� of −4	r3
 /3
is done by remote stresses. The resultant net increase in the
free energy is F=4	r2��S−r
 /3�. Consequently growing the
void by increasing its radius from r to �r+�r� alters the free
energy by �F=4	r�2�S−r
��r, which will be negative if r
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� rcr=2�S /
. As a result, it is energetically favorable for any
void of radius greater than rcr to grow provided that it is
supplied with sufficient vacancies through the EM drift-
diffusion mechanism. On the other hand all voids smaller
than rcr are unstable and would be expected eventually to
evaporate. Growth of embryos smaller than the critical radius
is possible provided that the random processes by which va-
cancies are captured and emitted provide sufficient net cap-
ture to overcome the tendency toward evaporation. The situ-
ation described is of course unrealistic in a number of ways,
not least of which are the assumptions that the metal is in a
hydrostatic state throughout the process and that the incorpo-
ration of the void into the bulk metal will not change the
stress 
. Nevertheless, many of the conclusions are essen-
tially valid, for example, it is intuitively correct that the criti-
cal radius for void growth should vary inversely with the
hydrostatic stress rcr	
−1. This implies that during the an-
nealing phases in the manufacturing process, the large ther-
mal stresses which arise from elastic and thermal expansion
mismatches between the metal and the passivation will re-
duce rcr, possibly to below the size of manufacturing flaws
along the interface, allowing them to grow. Such flaws are
likely to be randomly distributed along these interfaces.

In recent years, a number of authors have performed
much more detailed calculations of void growth which com-
bine the competing factors of the EM force, the capillary
force �which drives the surface diffusion�, and the forces
which arise from gradients in elastic strain energy density, to
model the atomic velocity along the copper topside and at
the void surface.20–31 Each of these factors depends on the
local microstructure, leading to anisotropies which may af-
fect the void growth direction and consequently its shape
factor in Eq. �3�.27–29 These calculations are able to demon-
strate complex morphological changes similar to those of
real voids in encapsulated metal lines,24,25,27–29 including a
void splitting mechanism in which, in the presence of a
strong anisotropy, a cylindrical void can develop side fea-
tures which may then detach from the mother void,27–29 and
a description of the migration of voids toward the cathode
and a model of void pinning at grain boundaries.22,31 To un-
derstand failure statistics, it is necessary to limit such prob-
lems, such as by starting with a single mode, such as via-
below failure in M2 lines, and considering such growth
complexities at a later stage.

Nucleation of voids, on the other hand, may occur under
the high thermal stresses experienced as a result of the manu-
facturing process or as a result of the random processes of
vacancy capture and emission driven by the net EM process.
The latter situation can be described by a probability density
function �pdf� f�r,t�, which determines the number of em-
bryos with radius r at time t.16 As with many such random
processes, this will evolve roughly as the solution to some
form of Fokker–Planck equation, in which the fluctuation
term describes the random vacancy capture and emission
processes.16,32–34 Some of these embryos may gather enough
vacancies to reach rcr and grow subsequently. During the EM
process, the tensile stress toward the cathode end increases
compared to other parts of the line, reducing the critical ra-
dius for void growth close to that end; consequently, voids

are expected to nucleate preferentially there. The use of the
Fokker–Planck equation effectively models each �subcritical�
embryo with a Markov chain �MC�, whose state label is the
number of vacancies in the embryonic volume.32–34 Vacancy
emission and capture rates are incorporated as transition rates
between the states. This MC model can be expected to work
quite well if inhomogeneities in the line may be ignored, and
if the embryos are small. It should not be expected to work if
the embryos are large enough to experience the microstruc-
ture of the line, as is the case a growing void.

However they are defined, lifetimes for EM-induced fail-
ures of aluminum interconnects generally show very reason-
able fits to lognormal statistics,35–38 although the test struc-
tures used have a considerable effect on the details. As a
general rule, bamboo and near bamboo Al structures with
shunt layers tend to show growth dominated failure while,
without the shunt layer, the nucleation time dominates the
failure time.1 In aluminum bamboo structures, voids tend to
nucleate close to the cathode and via failure is the dominant
cause of line failure. For a number of reasons things are not
so simple in the case of copper. The consensus on EM failure
in the current generation of copper interconnect is that the
interface between the copper metallization and the nitride
caplayer remains the fast diffusion path as well as the likely
nucleation site,4–6 but new treatments/liner materials are re-
ducing the significance of this path. Voids, usually forming
near the via, can grow to failure or sometimes can de-pin and
drift toward the cathode where they can combine with an
existing void.39 This more dynamic picture of void behavior
has generated renewed interest in developing a theoretical
basis for the distribution of failure times in damascene cop-
per. In the case of short copper pad-stud lines, we have
suggested7 recently that void growth at the via is dominated
by a steady-state vacancy current. This steady current of va-
cancies into a void causes its volume to grow at a steady rate,
so that a lognormal distribution arises from a lognormal dis-
tribution of steady-state currents, which in turn is determined
by the line microstructure due to its effect on local interface
diffusivity values. Seen from the point of view of the resis-
tance R�t�, this vacancy current may affect the line in a seem-
ingly more stochastic manner depending on the manner in
which each vacancy is absorbed into the void. The purpose
of the present paper is to consider MC methods to describe
this more stochastic variation in resistance values.

A recent article by Tan et al.40 uses such a model for the
degradation of the line resistance and finds the failure time
distribution to be a gamma mixture, with each element in the
mixture corresponding to a different failure mode. It is
claimed that the gamma distribution is more general than the
lognormal, which they maintain is a special case. This latter
statement is somewhat imprecise. It has some validity in the
sense that both distributions, along with the Weibull and in-
verse gamma �Pearson V�, are special cases of the general-
ized gamma distribution, which contains the Weibull factor
exp�−�t��.41,42 However, the generalized gamma does not
arise from the Markov model of Ref. 40. As the standard
gamma and lognormal are both two-parameter distributions,
it cannot be true that the lognormal is a special case of the
gamma distribution unless the two are identical �strictly, this
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assumes that any mapping of parameters �� ,
�� �n,� from
lognormal LN�� ,
� to gamma ��n,� has an inverse, but it
would be hard to imagine anything else�; neither can the
lognormal be any less general as a result. In Ref. 40, the
lognormal distribution is discounted as it does not describe
the Kolmogorov wear failure mechanism when some of the
wearing is not gradual; however, the gamma distribution
would have to be discounted by exactly the same argument.
As indicated in Ref. 7, even gradual wear does not lead to a
lognormal distribution of the failure time, but rather of �some
notion of� the damage. Perhaps an appropriate conclusion is
that Kolmogorov wear is not a suitable model for describing
EM failure times.

The parameters in the Gamma mixture in Ref. 40 are
obtained through Bayesian inference techniques and the
maximum likelihood principle. This is performed using the
Akaike information content �AIC� measure43 to assess the
number of adjustable parameters and the expectation-
maximization algorithm �EMA� to determine their value.44

To be both powerful and robust, statistical inference tech-
niques such as these require accurate priors �the probabilistic
models of the processes generating the data�. Virtually all the
statistical analysis of EM data assumes these models to be
described by a lognormal distribution for each failure mode
rather than a gamma distribution. A change from lognormal
�or a lognormal mixture� to a gamma mixture is significant
because it alters the reliability estimates obtained following
deceleration and extrapolation of EM life-test results back to
use conditions. Such a change is not out of the question
though as, being fairly close siblings, gamma distributions
can resemble lognormal distributions and the gamma cumu-
lative distribution function �CDF� can appear reasonably
straight when plotted on lognormal probability paper. As a
result both have been used to describe grain size distribu-
tions, e.g., Ref. 45.

The purpose of the current work is threefold. First we
consider the closeness of gamma distributions to lognormal
data in a manner which allows the large quantity of lognor-
mal plots to be represented as gamma distributions in a
simple way. Second we review the article of Tan et al.,40 as
there are a number of inconsistencies in their theoretical de-
velopment �for example, the gamma mixture result corre-
sponding to Eqs. �15� and �16� in Ref. 40 does not follow
from their Eqs. �9�–�12��, which relate to the difference be-
tween a random variable X being represented by a weighted
sum of other random variables Xi �weights arbitrary� and a
mixture distribution in which the pdf fX�x� is a weighted sum
of pdfs fXi�x� �weights�0 which sum to unity�. Mainly
though, we seek to develop a critical analysis of the general
application of Markov models to the EM problem. This ap-
plication seems fairly reasonable at first, particularly in view
of the fact that the nucleation process has been described by
a Fokker–Planck equation,32–34 which treats the embryos
�subcritical voids� as a state-based model, with state index
�n� equal to the number of vacancies in the embryo. How-
ever, it does appear that given the value of the resistance at
time t �R�t�=r say�, the probability distribution of resistance
values at time t+dt is likely to depend as much on the type of
void growing �slitlike or transverse, edge displacement or

thinning, via-above, via-below, etc.�, and whether Avoid is
sufficiently close to the line cross-section that some of the
current will be shunted through the liner, as it does on the
value of r. In other words there does appear to be sufficient
memory of the previous history of the line resistance to be
concerned that the model of the interconnect as a system of
states labeled only by R�t� may not possess the Markov prop-
erty. Perhaps a hidden Markov model would work better, in
which the state-space describes possible types of void
growth behavior within the interconnect �slitlike, transverse,
jumps associated with shunting, etc.� and switches between
them according to some stochastic process.

II. GAMMA VERSUS LOGNORMAL

The lognormal distribution or a lognormal mixture has
been used to describe EM times for around 40 yr. If tf is
distributed lognormally then log�tf� is normally distributed
and may be described by parameters �, the mean of log�tf�,
and 
TTF its standard deviation. Almost all EM failure data is
plotted on lognormal paper and consequently tends to come
quoted with it a median value t50 equal to exp��� and a value
of 
TTF. The pdf for a lognormally distributed tf is given by
�LN�� ,
TTF��

fLN�tf� =
1


TTFtf

2	

exp�−
�log�tf� − ��2

2
TTF
2 � . �5�

By contrast the gamma distribution ��n,� is defined as

fGAM�tf� =
1

��n�
� tf


�n−1

exp�−
tf


� , �6�

where n is known as the shape parameter �as it determines
the profile of the distribution� and  is the scale parameter �as
it essentially scales the tf axis�.43,44 ��n� is the gamma func-
tion �such that, for integer n, ��n�= �n−1�!�. For a Gamma
distributed tf, the mean tf is n and the variance is n2

= �tf�2 /n, whereas for lognormally distributed tf, the mean
value tf is exp��+
TTF

2 /2� and the variance is �exp�
TTF
2�

−1��tf�2. Consequently, a gamma distribution and a lognor-
mal distribution with the same mean will also have the same
standard deviation if exp�
TTF

2�−1=n−1 or 
TTF
2n	1 if


TTF is small.
The gamma distribution has been used as an alternative

to the lognormal on a number of occasions; particularly, as
far as EM is concerned, in relation to the distribution of grain
�and generally particle� sizes.45–47 One means of comparing
the two distributions would be to plot the CDF of the gamma
distribution FGAM�t� on a lognormal plot �i.e., a plot of
erf−1�2FGAM�t�−1� against log�t�� and look for the best
straight line. Perhaps a less biased comparison, performed by
Fátima Vas and Fortes,48 uses the fact that both distributions
have two parameters; for the gamma these are the mean tf

and the shape parameter n, while for the lognormal these are
the mean tf �as the gamma median has no closed form� and
the lognormal deviation 
TTF. Assuming that the means tf of
the two distributions are equal it is possible to obtain a rela-
tionship between 
TTF and n, which minimizes the least-
squares best fit of the two pdfs, defined by the minimum of
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� = tf�
0

�

�fLN�t� − fGAM�t��2dt. �7�

For all vales of 
TTF, it is found48 that the best fit �the best
choice of n for a given value of 
TTF� corresponds to


TTF
2n 	 1, �8�

as might also be expected from the discussion above. Thus if
data on a lognormal plot are found to yield a lognormal
deviation of 
TTF	0.6 �not untypical of aluminum failure
times49� its best fit with a gamma distribution will corre-
spond to n	3, while data yielding 
TTF	0.2 �not untypical
of a large number of copper samples50–53� is best fitted by a
gamma with n	25. Values of min are less than 0.02 for n
�2 �on a scale where the integrals of f�t� are unity as usual�.
The product 
TTF

2n=1.09 for n=2 improving toward 1 from
above as n increases. Figure 1�a� compares the pdfs of
LN�4.15, 0.59� �solid� and ��n=3, =30� �dashed�, both of
which have a mean of 90. It is clear in Fig. 1�b� that the CDF
of ��n=3, =30� plotted on lognormal paper shows up as a
reasonably good straight line.

One observation in this regard is that, if x	��n,�, then
its generating function E�exp�sx�� is given by g�s�= �1
−s /�−n. As a result the generating function for a fixed gen-
eral gamma mixture is a sum of such terms. By a careful
choice of the number of terms in the general mixture and the
associated weights �some of which may need to be negative�

and gamma parameters, the resulting Padé-type structure can
become arbitrarily close to any distribution defined on t�0
�gamma mixtures are weakly dense on t�0� �Refs. 54–56�.
This does not necessarily make it the best prior for the EMA
algorithm. One would also have to be careful when asserting
that each of these gamma elements corresponds to a different
failure mode.40

It is likely that, in many samples, the data will be insuf-
ficiently good to resolve the gamma versus lognormal ques-
tion either way. A particular difficulty arises in the case of
copper, for which it is commonly found that 
TTF

	0.1–0.2, �e.g., 50–53� when the skewness of the lognormal
distribution is quite small and it closely resembles a normal
distribution57 except in the all-important tail region needed
for extrapolation. Likewise, in the limit of large n �corre-
sponding to small 
TTF�, the gamma distribution �� ,n� also
resembles a normal distribution.58 Consequently all three
take on the appearance of a rough straight line on a lognor-
mal plot. As a result, a careful consideration of the physical
processes is required in an attempt to settle the issue. A can-
didate description of the failure process, suggested by Tan et
al.,40 treats the line as a multistate system whose dynamics is
modeled by a MC.

III. MC MODEL

We consider the MC model as suggested in Ref. 40, an
example of which is shown in Fig. 2. The system is specified
in terms of a set of states k with resistance Rk. The state k
=0 corresponds to a resistance of R0 and represents, for ex-
ample, the line just at the point of void nucleation, or perhaps
the initial line resistance. The final state k=N corresponds to
a failed state RN=Rcr, typically chosen as a 10% increase,
RN=1·1R0. In this system, transitions are only allowed in
the forward direction �the resistance is assumed to be nonde-
creasing�, with small resistance increases between the neigh-
boring states allowed as well as larger jump transitions. De-
note by �ij the transition rate between state k=i and state k
=j� i and let pk�t� be the probability that, at time t, the line
resistance is Rk. Although the system has O�N2 /2� param-
eters there is a large amount of redundancy and only 2N–1
parameters are needed to specify the CDF. Markov methods
though are very general, capable of producing an approxima-
tion arbitrarily close to any failure time distribution.54

Contrary to Tan et al.,40 we find that gamma distribu-
tions and true gamma mixtures �without any negative
weights in the mixture� are very rare. When they do arise the
choice of the Rk values, and thus of N, is crucial, as N is
often simply related to the gamma shape parameter n. The
analysis of the previous section shows that a significant num-
ber of experiments require the value of n for copper �
TTF
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FIG. 1. �a� A comparison of a lognormal plot with 
=0.59 with a gamma
distribution ��3,30�, where both means are equal to 90. �b� shows the CDF
of ��3,30� on lognormal paper.
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FIG. 2. A schematic of a MC model, with N states allowing nearest neigh-
bor �m=1� and next nearest neighbor �m=2� jumps.
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	0.2,n	25� to be significantly larger than that for alumi-
num �
TTF	0.6,n	3�, and thus NCu�NAl. Why there
might be many more states for copper than for aluminum is
an important question for MMs.

MCs are more familiar in, for example, queuing theory,
where the statistical distributions of queue length arise from
random processes occurring to a single queue of known
structure. By contrast here, in a certain sense, we are looking
at a single known process �EM� occurring to a random dis-
tribution of �unknown� line microstructures, i.e., the variabil-
ity is as much between the lines as in the arrivals, so one
expects different statistical priors for each line. Conse-
quently, it is clear that there is no simple mapping of the EM
condition onto the states Rk. These issues, of course, matter
less if, as claimed in Ref. 40, the MC always produces the
same type of failure distribution.

Naturally the chain parameters �ij depend crucially on
the choice of states Rk. The nature of these states is not
discussed in Ref. 40 where a gamma mixture distribution is
claimed, whatever the choice. Without any detailed knowl-
edge of the line microstructure, only some fairly simple as-
sumptions may be made, and for lack of any guiding prin-
ciple on this, we choose the states Rk to be evenly spaced
between R0 and RN=1·1R0 �the failure state�, thus Rk /R0

=1+k /10N. For now we leave N as a parameter taking typi-
cal values to be: N small; N=10; N=100; and the large N
limit; as these cover the aluminum and copper values N
	n	3 and N	n	25 reasonably well.

It may be expected that gradual resistance increases shall
always be allowed, so that we assume �k,k+1�0, and in gen-
eral we shall also allow some larger jumps from state k to
state k+m at lower rates �k,k+m. These jumps may be due to
a dynamic change in growth direction, which may cause cur-
rent crowding and an increased resistance. The resulting

change in shape may also increase the capture efficiency of
the void and hence the appropriate transition rates may in-
crease when the void volume or R�t� reaches a certain size.
Alternatively the jumps may be due to current shunting
through the liner or to additional microvoids arriving at the
cathode, generating a step increase in the void volume and
hence in R�t�. Figure 2 shows a chain of length N, with
gradual changes between neighboring states �a jump of 1�,
together with an allowed jump of 2 states �m=2�.

From a generalized version of Fig. 2, for which �in prin-
ciple� any forward transition is allowed, the balance equation
for state k=0 is

p0�t + dt� = p0�t� − �01dtp0�t� − �02dtp0�t� − ¯

− �0Ndtp0�t� , �9�

so that, as dt→0, we obtain the rate equation

dp0�t�
dt

= − �
k=1

N

�0k�p0�t� . �10�

Likewise for the other states,

dpj�t�
dt

= − � 
k=j+1

N

�jk�pj�t� + 
k=0

j−1

�kjpk�t� , �11�

For 1� j�N−1; and

dpN�t�
dt

= 
k=0

N−1

�kNpk�t� �12�

for state j=N. Conservation of probability is assured,
k=0

N pk�t�=1, through the addition of Eqs. �10�–�12�. For the
reduced set 0� j�N−1, Eqs. �10� and �11� may be written
as the matrix equation �d /dt�p� =Qp� or

d

dt�
p0�t�
p1�t�
p2�t�
]

pN−2�t�
pN−1�t�

� =�
− 

k=1

N

�0k 0 0 ¯ 0 0

�01 − 
k=2

N

�1k 0 ¯ 0 0

�02 �12 − 
k=3

N

�2k ¯ 0 0

] ] ] ] 0 0

�0N−2 �1N−2 �2,N−2 ¯ − 
k=N−1

N

�N−2k 0

�0N−1 �1N−1 �2,N−1 ¯ �N−2,N−1 − �N−1,N

��
p0�t�
p1�t�
p2�t�
]

pN−2�t�
pN−1�t�

� . �13�

Hence p� �t�=exp�Qt�p� �t=0�. Let −wT denote the vector of
column sums of the �N�N� matrix Q, i.e., wT

= ��0N,�1N,. . .,�N−1,N�=−1TQ, where 1T= �1,1 ,1 , . . . ,1�. The
diagonal elements relate to the transitions out of a given

state, while the off-diagonal elements relate to the transitions
into other states. Q is lower triangular due to the occurrence
of transitions only in the direction of increasing R�t�.

We consider the following problems raised by Ref. 40:
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Problem �i�. Transitions only occur between a state k and its
immediate neighbor k+1. The transition rate is �1 up to
some state k=K, and then changes to �2 �where �2 is signifi-
cantly different from �1�. This aims to model a system with
an initial gradual degradation, which changes to a more cata-
strophic rate when the resistance reaches RK, as suggested by
Fig. 1 of Ref. 10. We show that the failure distribution in this
case is the convolution of two Erlang distributions �which
are integer gamma distributions� with different scale param-
eters. The result may be extended to any number of rate
changes by convolving more Erlang distributions. The final
distribution is complicated by the difference in scales of the
two Erlang distributions. The convolution of M Erlang vari-
ates may be expressed exactly as a sum of gamma variates,
although the sum involves O�N� terms and is a generalized
mixture in the sense that some of the weights are
negative.54–56 In this case for N=100, with a transition be-
tween neighboring states of �1 for k�50 increasing to 4�1 at
that point, typical resistance plots are shown in Fig. 3.

Problem �ii�. The overall transition rate �k=j=k
N �kj out

of a given state k is different from the others and thus the
diagonal elements of Q are all different. In this case it is easy
to show that the failure distribution may be written as a sum
of exponential functions �a phase-type distribution�. Note
that the failure distribution is a sum of exponential functions
rather than, as assumed in Ref. 40, the failure time being a
sum of exponentially distributed variates. This latter case
does occur under some conditions, but is not a general result
as, with jumps across states, the system need not necessarily
proceed through each state in turn.

Problem �iii�. The overall probability of a transition out
of a state, in a given time, is the same for all states, so that
�=�k=j=k

N �kj is the same for all k. This constraint aside,
the �jk, are arbitrary. Within this problem we consider the
special case of a gradual transition between states k and k
+1 occurring simultaneously with a small probability jump
from state k to state k+m. This jump is assumed to be the
failed state, if the jump would take the system resistance
beyond RN=1·1R0. This class of problem has a fairly simple
solution in all cases. In the example case, if the jump through

m states occurs with a low probability ����� and there are
N states in the chain, then the lifetime is distributed as a
mixture of gamma terms of the form ��N−km, ��+��−1�,
k=0,1 ,2 , . . . , �N /m�. However this is somewhat contrived,
once again bringing in to sharp focus the need for some
justification of the choice of states, the value of N and the
associated transition rates �ij. With N=100, together with a
jump transition of 25 states �allowed from any state� at a rate
�=� /N, typical resistance plots are shown in Fig. 4.

We have chosen these problems as problem �ii� relates to
the analysis in Ref. 40, while problem �i� relates more to the
discussion there. Problem �iii� was chosen as it is the only
case for which a gamma mixture in the sense of Ref. 40
could be obtained.

IV. FAILURE DISTRIBUTIONS

Whatever the problem, it is necessary to simplify the
calculation of exp�Qt� as its evaluation may be required at
many t values; Q may be large; or many trial systems Q may
be investigated as possible fits to experimental data. We note
that, as the matrix Q is lower triangular, its eigenvalues are
simply the values along the main diagonal. If these values
are different, as in problem �ii�, �which occurs if the total
transition rate out of each state is different� then Q can be
diagonalized according to D=S−1QS, where S is the matrix
of eigenvectors of Q and D is the matrix of diagonal ele-
ments of Q. The failure distribution is then �Appendix�

f�t� = 
k=0

N−1

�w� S�k�S−1e�0�k0exp�− �kt� , �14�

which is a phase-type distribution.54–56 The EMA algorithm,
used by Tan et al.,40 is one of the best algorithms to approxi-
mate data sets by continuous distributions and in a particular
case the phase-type may be best approximated by a gamma
distribution or a gamma mixture. Of course, it may be best
approximated by a lognormal. A note of caution needs to be
injected though as it is known that the EMA does not always
capture the details of the distribution tail correctly,60 which is
vital for correct EM extrapolation.
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FIG. 3. Fractional resistance increase �R�t� /R0 curves for ten simulated
interconnects described by a chain of length N=100, which switched from a
nearest neighbor transition rate of �1 �with �1dt=2.5�10−4� at k=50 to
�2=4�1. In the simulation we take the time step between random events to
be dt=1 /3000.
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FIG. 4. Fractional resistance increase �R�t� /R0 curves for three simulated
interconnects described by a chain of length N=100, which switched from a
nearest neighbor transition rate of �dt=2.5�10−4 with simultaneously the
possibility of a jump of 25 states at a rate � /N.
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Essentially this analysis is identical to that of Tan et
al.,40 as the failure time distribution is now a simple sum of
exponential functions. It is not, however, a sum of variables
each of which is exponentially distributed and thus convolu-
tion, as in Ref. 40, is inappropriate. The result in Eq. �16� of
Ref. 40 that

fS�t� = 
k=0

N−1 ���
j=1

N−1

Aj
�k���k

j tj−1 exp�− �kt�
�j − 1�! � , �15�

where Aj
�k� is the weight of the exponential term exp�−�kt�

in state pj�t�, also suffers from the problem that if Aj
�k� is

zero for any j, then exp�−�kt� will be missing from the sum.
Note from Eq. �7� that p0�t�=exp�−j=1

N �0jt�=exp�−�0t�, so
that A0

�i�=0 for all i�0, which would prevent all �k �k
�0� from appearing in Eq. �15�. Clearly this cannot be cor-
rect.

A. Problem „i…

Difficulties arise with the development above whenever
two or more �� say� of the diagonal elements of Q are equal
�to � say� as the eigenvalues are degenerate, the matrix is
defective and it is then not possible to diagonalize Q. The
result is that the pk�t� are not simple sums of exponentials
�for k�N� and instead contain the higher order terms
tv exp�−�t� /�!. Such a situation arises if we allow gradual
erosion only ��k,k+1=� and all other �jk=0�. Then

d

dt�
p0�t�
p1�t�
p2�t�
]

pN−2�t�
pN−1�t�

� =�
− � 0 0 ¯ 0 0

� − � 0 ¯ 0 0

0 � − � ¯ 0 0

] ] ] ] 0 0

0 0 0 ¯ − � 0

0 0 0 ¯ � − �

�
��

p0�t�
p1�t�
p2�t�
]

pN−2�t�
pN−1�t�

� . �16�

Eq. �16� may be simply integrated iteratively as, from Eq.
�10�, p0�t�=exp�−�t� and setting fk�t�=exp��t�pk�t�, so
f0�t�=1, we have from Eq. �11�

fk�t� = �
0

t

�fk−1�u�du. �17�

Consequently fk�t�= ��t�k /k! and pk�t�= ��t�kexp�−�t� /k!.
The reliability is then

r�t� = exp�− �t�
k=0

N−1
��t�k

k!
; �18�

the failure distribution is then gamma �or more precisely
Erlang�

fS�t� =
�NtN−1

�N − 1�!
exp�− �t� 	 ��N,�−1� �19�

with MTTF=N /�. One immediate difficulty from Eq. �19� is
that for a large number of copper interconnects, 
 is small
�	0.2�, corresponding to N	25, while for aluminum inter-
connect 
	0.6 say, corresponding to N	3. Why there
should be 25 resistance stages for copper and three for alu-
minum presents a difficulty for the MC method in the present
form.

Note that although the gamma distribution arises only in
this specific case, in which the transition rates are equal and
does not arise in the general case of arbitrary rates. Its origin
is in a convolution, as in this simple case the system must
pass through each state in turn, consequently we may write tf

as the sum of the times from state k=0 to k=1, plus that
from k=1 to k=2, etc., i.e., tf= t0,1+ t1,2+ . . .+tN−1,N. Each of
the times is exponential and �importantly� iid, as the transi-
tion rates are equal, so that the distribution of tf is gamma as
above. If the rates are all different then the convolution only
produces a sum of exponentials in place of Eq. �18�. If V
different rates �k occur �k=1, . . . ,V�, each with multiplicity
�k, so that k=1

V �k=N, then the failure time may be reordered
in sets. The sum of the �k times corresponding to rate �k will
give rise to ���k ,�k

−1� and tf will be a V-fold convolution of
such gamma distributions, all with different scale factors. A
particular case �V=2� of this is problem �i� when a period of
significant degradation follows an initial period of gradual
degradation, as in Ref. 40. The failure time distribution is
then the convolution ��K,�1

−1� � ��N−K,�2
−1�. As the scale

parameters �k are assumed to be significantly different, this
is not itself a gamma distribution, nor indeed a true mixture.
A more general problem which can give rise to some gamma
mixture solutions follows.

B. A gamma mixture

Now consider the case of a more general transition ma-
trix. As in the previous section we assume that the total tran-
sition rate out of each state is the same. However, the states
into which the transitions are made are arbitrary subject to
this constraint, i.e., we assume that the sum �=�k=j=k

N �kj

is the same for all k, although subject to satisfying this sum
rule, the �jk are arbitrary. It may well be possible to choose
the states Rk so that this is true. In this case we may write

Q = − �I + L, �20�

where L is strictly lower triangular and consequently nilpo-
tent with LN=0. Essentially this latter condition is true as L
represents forward transitions so that, since the chain is uni-
directional, after N forward transitions all systems will end
up at k=N irrespective of their start configuration, and con-
sequently will have left the set �k �0�k�N−1� covered by
the matrix Q. As the matrices on the right hand side of Eq.
�20� commute we may write

033709-8 V. M. Dwyer J. Appl. Phys. 107, 033709 �2010�

Downloaded 19 Mar 2012 to 158.125.80.71. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



exp�Qt� = exp�− �t�exp�Lt� = exp�− �t�
k=0

N−1
Lktk

k!
�21�

using the nilpotency of L. The reliability function r�t� is then
simply

r�t� = exp�− �t�
k=0

N−1
tk

k!
1�N

TLke�0 �22�

of which Eq. �18� is just a simple case. The failure distribu-
tion is

f�t� = −
dr�t�

dt
=

1�N
TLN−1e�0

�N−1 ��N,�−1� + 
k=0

N−2
w� Lke�0

�k+1 ��k

+ 1,�−1� , �23�

which clearly is a general, rather than a true, mixture as some
mixture coefficients may be negative.

As a simple example we consider the case that transi-
tions between states k and k+1 take place at a rate � and
jump transitions to state k+m take place at a rate �. All
states are assumed equivalent in this regard. The lower trian-
gular matrix Q then has −�= – ��+�� along the main diag-
onal, � along the first subdiagonal and � along the mth sub-
diagonal. Equation �12� ensures that a jump past the failed
state k=N is simply counted as a jump into k=N. In this case
the values of the coefficients ck=w� Lke�0 /�k+1 follow a fairly
simple pattern. For N−jm�k�N− �j−1�m, ck	�j except at
changeover points k=N−j�m−1�, where ck has local peaks.
The failure distribution keeping only those peaks is roughly

f�t� �
�N−1

�N−1��N,�−1� + 
k=1

�N/m�

pk�1

− p�N−km�N − k�m − 1�
k

���N − k�m − 1�,�−1� ,

�24�

�where p=� /�� as could be expected. This is a true gamma
mixture.

Here we have taken k=0 as the initial state with resis-
tance R0; state k as representing a line with resistance Rk

=R0�1+k /1000� and k=N=100 as the failed state with re-
sistance R100=1·1R0, and jumps of m=25 states. If the
jumps were excluded, taking time units such that �dt
=0.025 and �=� /100 the MTTF would be expected to be
N /�=4�103 units. Individual results for three lines with
jumps included are shown in Fig. 4 while the complete fail-
ure time distribution, Eq. �17�, is shown as the solid curve in
Fig. 5. Note that again if N, N–m, N–2m, etc., are large, then
the gamma distributions are roughly normal. The normal
curves would be expected to be centered roughly on
100 /� ,75 /� ,50 /� , . . . with variance 100 /�2 ,75 /�2 ,50 /
�2,. . .. Fig. 5 also shows the distribution fitted to a normal
mixture �dashed curve� given by f�t�	0.67N�98.5 /� ,98.5 /
�2�+0.3N�50 /� ,50 /�2�+0.03N�25 /� ,25 /�2�.

For aluminum with 
	0.6, and thus N	3, the only
means of justifying the gamma mixture approach used in
Ref. 40 is to remove the gradual degradation from the chain

so that N is kept much smaller than for copper, however
artificial this may appear. In this way we assume that a �more
or less fixed� time t0 is required to create a void of sufficient
size to cause failure. This time may be reduced by a small
number of severe events which are modeled by the multistate
chain. All the results above apply with small N. In the gen-
eral case in which the transition rates are different between
states, the failure distribution will be a sum of exponential
functions. Where there are a smaller number of discrete tran-
sition rates �k with multiplicity �k the result will be a con-
volution of gamma distributions. The assumptions required
to generate a gamma mixture are �i� the gradual degradation
is described by the chain which only describes severe events;
�ii� the transition rates between neighboring states in the
chain �k,k+1 are degenerate; and �iii� these transitions occur
simultaneously with larger jump transitions to non-
neighboring states occurring with small probability. These
assumptions are too specific to justify the use of a gamma
mixture without a careful factoring of the physical processes
into the identification of the states Rk, their number N, and
the relevant matrix of transition rates Q. Nonetheless the case
of N=8, m=5 fits reasonably well to a single gamma distri-
bution of n=3, Fig. 6 also shown is the nearest lognormal
plot.

In the general case of arbitrary triangular �N�N� matrix
Q, a certain amount can be said regarding any phase-type
distribution, e.g., Refs. 54, 55, and 58. The best that one can
say in relation to the accuracy the gamma mixture Ref. 40, is
that the CDF of a phase-type distribution can be written as a
true mixture of the CDFs of the basic paths in the chain.54

Each path is a convolution of exponential or Erlang distribu-
tions �Erlang if some transition rates are repeated on the
path� and each of these may be written as general mixtures of
Erlang distributions of order N, although again the number
of terms is large and some of mixture coefficients are
negative.59 By increasing further the number of Erlang dis-
tributions through dummy poles in the Laplace transform of
the overall CDF, it is likely the mixture coefficients will
eventually become positive.54,55 This is largely a restatement
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FIG. 5. The failure time distribution for N=100, a nearest neighbor transi-
tion rate of �dt=1, and a jump of 25 states with transition rate �dt=5
�10−3. The dashed curve represents a fit using a mixture of normal distri-
bution with means and variances of 98 �rather than 100�, 75, and 50, with
weights, respectively, of 0.67, 0.3, and 0.03. The dotted-dashed curves show
the individual normal distributions.
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of the fact that Erlang distributions are weakly dense in the
space of pdfs, and is not really in the spirit of what is in-
tended in Ref. 40.

C. A hidden Markov model „HMM…

There have been a number of attempts to link the va-
cancy build-up and void behavior to resistance plots, such as
that by Doan et al.10 on Al lines. In aluminum interconnect,
void nucleation often plays a key role �particularly in the
absence of a shunt layer� and can occupy a large portion of
the failure time. Summarizing the results presented in Ref.
10 for Al lines, during the initial period vacancies gather
until a void nucleates. The fractional change in resistance
�FCR� increases relatively slowly �indeed it sometimes de-
creases but Doan et al.10 conclude that this is not an EM
effect�. On nucleation the FCR increases gently as first slit-
like void growth occurs along the line and then more
strongly as transverse growth occurs. Following this phase a
large jump is seen in the resistance plot as the current is
forced into shunt layers �usually Ti/TiN or Ta/TaN�. This
suggests that the behaviors of an aluminum line are �i� void
nucleating, �ii� slitlike void growth, �iii� transverse void
growth, and �iv� a jump change. A HMM �Ref. 61� describ-
ing the system with a chain whose states are these behaviors
would at least have its roots more firmly in the physical EM
process. As a consequence we discuss briefly how such a
model might be made to work.

It has been shown that, in the case of a pad-stud short
copper interconnect, with one end blocked Jatom�L�=0 and
stress relaxation at the other, 
�x=0, t�=0, the void growth
occurs at a fairly steady rate which depends on the line mi-
crostructure and which appears to lead to a failure time dis-
tribution, which is close to lognormal. In the case of copper,
the failure time was found to be given by7

tf =
�Vcr

JSS�
− � + tnucl, �25�

where JSS is the steady-state EM flux, � is a correction factor
which accounts for the fact that much of the vacancy

build-up before nucleation is quickly incorporated into the
void volume, and tnucl is the time for void nucleation. In the
system considered � and tnucl are individually small com-
pared to tf as is common in many copper-based interconnect
systems. They are also of similar magnitude so that cancel-
lation occurs with tnucl−�� tf.

7 It was also found that if the
diffusion activation energies are normally distributed then,
by the permanence property of the lognormal when summed,
JSS is lognormal and consequently so is tf. In this case no
resistance jumps were allowed.

In a HMM the value of JSS may be chosen from a log-
normal distribution for each interconnect in the test batch.
Likewise a nucleation current may be chosen for aluminum
systems perhaps from a similar distribution. Jump changes in
resistance could be allowed by changing the behavior-state.
However the transition rates between states and the resis-
tance jump mechanism and probabilities would require fur-
ther study. The failure time CDF for a simple HMM is shown
in Fig. 7 It is interesting in that the fit to lognormal data is
good and similar to that seen in many EM experiments. We
consider a very simple version of a HMM for a copper in-
terconnect after void nucleation. In state k=1 �slitlike void
growth�, the resistance is assumed to increase at a constant
rate �dR /dt�dt=0.000 05, so that in the absence of any other
behavior the failure time would be fixed with no variance. In
state k=2 a small jump in resistance �R=0.175% occurs to
model the faster, transverse growth behavior, while in state
k=3 a near fatal 40�R=7% jump occurs representing current
shunting. Here the 3�3 Q matrix of transition
probabilities between states is taken �without any justifica-
tion� to be Q= �0.85 0.15 0.00;0.3 0.6999 0.0001;
0.41 0.583 0.007�. The variation in failure time leading to
this lognormal behavior here is produced entirely by the
probabilistic mechanism for resistance jumps. Failure times
are determined here by how soon transverse growth occurs
following nucleation and how soon after that current shunt-
ing occurs. The simulation works by starting the line in state
k=1 in which the resistance is growing at a constant rate
�although in an HMM this could be made stochastic also�, it
remains in that state for the time interval dt with probability
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FIG. 6. The failure time distribution �full curve� for a chain with N=8, a
nearest neighbor transition rate of �dt=0.01 and a jump of five states with
transition rate �dt=0.002. The dotted-dashed curve is a lognormal with 

=0.59 and t50=90, while the dashed curve is a gamma distribution ��3,90�.
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FIG. 7. A HMM with a gradual void growth in state 1, which increases the
FRC at a constant rate of �dt=5�10−5, with small jumps in FRC of
0.0175% in state 2 and near fatal increases of 7% in state 3. The transition
matrix is taken arbitrarily as Q= �0.85 0.15 0.00;0.3 0.6999 0.0001;
0.41 0.583 0.007�.
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Q1,1=0.85 and makes a transition to state k=2 with probabil-
ity Q1,2=0.15. Once in state k=2 the resistance jumps by �R,
it makes a transition to state k=1 and a constant growth rate
with probability Q2,1=0.3, remains in state k=2 with prob-
ability Q2,2=0.6999, in which further small jumps occur and
makes a transition to state k=3, where it makes a possibly
fatal jump of 40�R with probability Q2,3=0.0001. The be-
havior in state k=3 is similar. 1000 lines were simulated in
this manner, using the built in random number generator of
MATLAB. The resulting CDF is plotted as a solid curve on
lognormal paper in Fig. 7.

The HMM is perhaps more in the spirit of Ref. 62 as it
allows for the integration of void growth at the cathode with
arrival of microvoids. Their arrival amounts to something
resembling a queuing system, and it may be that failure can
be defined by a critical queue length, but again such a model
requires careful consideration.

V. SUMMARY

When using Bayesian inference techniques, such as that
the AIC information content and maximum likelihood esti-
mation �MLE�, it is important to have correct priors for the
system being modeled. Historically the failure time distribu-
tion for a given EM failure mode has been assumed to be
lognormal, and hence multimodal failure is assumed to be
described by a lognormal mixture. Recently Tan et al.40 re-
ported that if the degradation process can be described by a
multistate MC, the failure distribution will always be a
gamma mixture and that such distributions should act as a
prior for MLE methods. The current paper has considered
such a system in more detail and concludes that, despite
being able to generate resistance curves R�t�, which are simi-
lar to typical curves seen in practice �in particular Refs. 10
and 36� overall we find that there is no evidence that the
model generates a failure time distribution in the form of a
true gamma mixture as suggested in Ref. 40. In general the
model produces distributions which are mostly sums of ex-
ponentials �phase-type�, convolutions of gamma distributions
�which are general rather than true mixtures, with many
terms�, or close to normal. It is possible to choose the state
number N �the length of the chain�, states and transition rates
to lead to an approximate gamma mixture, but that the choice
merely reflects the inherent flexibility of MCs and appears
somewhat arbitrary here. In particular the number of states is
closely related to the lognormal standard deviation which
can be very different for different copper technologies. As a
result, we conclude that MC models are unable to justify the
widespread use of a gamma mixture as a prior in failure
distribution fitting and that, in the form suggested by Tan et
al.,40 the MC model is probably inappropriate to EM failure.

A HMM in which the states describe the current behav-
ior of the line �e.g., slitlike void growth, sudden shape
change, etc.�, rather than the current resistance R�t�, may be
a more appropriate application of such models. However the
nature of such states needs much greater investigation before
such a model could be workable.

APPENDIX: FAILURE DISTRIBUTION FOR PROBLEM
„ii…

If all the transition rates out of the states k are different
then Q may be diagonalized. Then the solution to Eq. �13� is
simply

p� �t� = exp�Qt�p� �0� = S exp�Dt�S−1p� �0� . �A1�

The reliability r�t� of the system is

r�t� = 1 − pN�t� = 
k=0

N−1

pk�t� = 1�N
Tp� �t� , �A2�

where 1�N is the vector of length N whose entries are all
unity. Assuming that the system starts in state k=0, the initial
vector p�0�=e�0, where e�0 is the unit vector �1,0 ,0 , . . .�T.
Thus

r�t� = 1�N
TS exp�Dt�S−1e�0. �A3�

The failure distribution is

f�t� = − 1�N
TSD exp�Dt�S−1e�0 = w� TS exp�Dt�S−1e�0 �A4�

as SD=QS and 1�TQ=−w� T. This may be written as

f�t� = 
k=0

N−1

�w� S�k�S−1e�0�k0exp�− 
j=k+1

N−1

�kjt� . �A5�

The mean time to failure is, as usual,

�
0

�

r�t�dt = 1�N
TSD−1S−1e�0 = 1�N

TQ−1e�0. �A6�

Here Q �or D� may be inverted as none of its eigenvalues are
zero. There remains only to find the matrix S whose columns
are the eigenvectors u� �k�= �u0

�k� ,u1
�k� , ¯ ,uN−1

�k� �T correspond-
ing to eigenvalues �k of Q. For the kth eigenvalue, the ma-
trix Q may be block partitioned thus

Q = �Q1,k 0 0

q�1,k �k 0

Q2,k q�2,k Q3,k
� . �A7�

Q1,k is the �k−1�� �k−1� lower triangular matrix at the top
left of Q, q1,k is the 1� �k−1� vector at the far left of row k
of Q, and q2,k is the �N−k��1 vector at the bottom of col-
umn k of Q. Q3,k is the �N−k�� �N−k� lower triangular
matrix in the bottom right of Q and Q2,k is the �N−k�� �k
−1� matrix at the bottom left of Q. Assuming that all the �k

are different, �k will not be an eigenvalue of Q3,k and hence
��kI−Q3,k� is invertible. Noting the result that

Q3k��kI − Q3k�−1q�2k = �k��kI − Q3k�−1q�2k − q�2k �A8�

it is clear that the eigenvector corresponding to �k is
�0, . . . ,0 ,1 ,vk�T, where 1 appears in the kth position and vk

is an �N−k��1 vector which satisfies

��kI − Q3,k�v�k = q�2k. �A9�

The solution to Eq. �A9� is straightforward by forward sub-
stitution and consequently the matrix of eigenvectors S may
be obtained easily. It is clear that S will also be lower trian-
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gular. This may be inverted to give S−1 by recursively using,
in an obvious notation,

S−1 = SN
−1 =�

1 0 0 0

v0,1 1 0 0

] v1,1 � ]

v0N−1 . . . vN−1,1 1
�

−1

= � 1 0

v�0 SN−1
�−1

= � 1 0

− SN−1
−1 v�0 − SN−1

−1 � . �A10�

The normalization of the eigenvectors presents no problem
here.
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