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EXPERIMENTAL ASSESSMENT OF THE EFFECTS OF 

CROSS-TRAFFIC ON WI-FI VIDEO STREAMING

Abstract—Wi-Fi networks are  the first and sometimes only choice  for the video streaming in homes, airports, 

malls, public areas and museums. However, Wi-Fi  networks are vulnerable  to interference, noise  and have 

bandwidth  limitations. Due to the  intrinsic vulnerability of the communication channel, and the large number 

of variables involved, simulation alone is not enough in the evaluation of the performance of wireless networks.

Actually, there  is a tendency to give experimental tests a central role in  the assessment of Wi-Fi  networks 

performance.

The paper presents an experimental analysis  of the  effects of cross traffic on the performance  of video 

streaming over Wi-Fi, based on cross-layer measurements. Experiments are  carried out in a semi-anechoic 

chamber, to prevent the  results from being influenced by external factors. The experimental results permit to 

analyze  the influence  of cross traffic characteristics on cross layer measures and objective video quality metrics 

evaluated through a standardized approach.

Keywords: Wireless networks test and measurement, measurements for networking, Wi-Fi, video streaming, 

crosslayer measurements.



I. INTRODUCTION

Multimedia sharing, thanks to the progress of the video streaming technology underlying it, is rapidly spreading as 

an everyday practice. Nowadays, people want to access remotely stored videos from every part  of their homes, on 

their own laptop or pocket PC. Access to multimedia contents via a PDA, a laptop or a pocket PC in airports, malls, 

public areas and museums is becoming more and more widespread, for entertainment  purposes, public utility 

information, and ubiquitous commercial communication. 

While being the first  choice in home connectivity, thanks to their flexibility, low cost and quickness of installation, 

Wi-Fi networks, that are wireless local area networks (WLANs) based on IEEE 802.11 specifications, are the most 

practical technology solution for video streaming in public areas. 

Despite such a huge development, the performance of Wi-Fi networks is sometimes hard to predict and to 

guarantee. This is mainly due to the poor stability and reliability of the radio link. In fact, while on wired channels 

signal integrity is assured by mechanical, electrical and protocol characteristics of the physical and data link layers 

[27], on wireless channels unpredictable and uncontrollable interference can severely affect  data transmission, and 

ultimately degrade or even compromise the desired performance of the network [1]. The Wi-Fi standard exploits a 

scarce, shared, and noisy spectrum, i.e. the unlicensed 2.4 GHz Industrial Scientific Medical (ISM) band, on which 

other devices may operate simultaneously [2-6].

Performance evaluation based on simulations can be of help, but is not  sufficient, due to the great  number of 

variables involved. In such a direction, useful information can be achieved through ad-hoc laboratory and on-field 

measurements, exploiting proper test  beds [7,8]. In the recent  past, cross-layer measurements have come out to be a 

powerful option to assess and predict the performance of wireless and hybrid networks, as well as to troubleshoot 

them [9-16]. In the literature, a number of papers investigate on the feasibility of video streaming over Wi-Fi 

networks. In many cases, efficient  solutions are proposed for improving the quality of video streaming. Nevertheless, 

only few of such contributions face the problem from an experimental point  of view [15, 16]. Experimental 

performance assessment  is, indeed, very important  under critical conditions, e.g. when noise, in-channel interference 

and/or cross traffic are present. In such cases, in fact, the complexity of the protocol make it  difficult  to obtain reliable 

analytical and simulative results.



Extensive standardisation related work has been undertaken on experimental measurement approaches for activities 

conducted at different layers of the network abstraction, however, these tend to be concentrated on a few layers only. 

For example, work has been undertaken to assess the quality of a video sequence at replay ( e.g. Mean Opinion Score 

[29]; VQM [26]), this is essentially an Application Layer issue.  Separate standards relate to network performance 

measurement  at  the middle layers  [30]; yet  other independent  approaches consider RF measurement  at the Physical 

Layer [31]. However, to the best of the author’s knowledge, little work has considered the simultaneous measurement 

of multiple performance metrics at  different layers of the network. Hence this paper presents an approach to the 

measurement  of the effects of interference at different layers on a Wireless network supporting video transfer for 

which no single coherent measurement standard applies.

Regarding Wi-Fi video streaming quality, a related work was presented in [21], where the video performance over 

WLAN is experimentally assessed with a cross-layer approach. The paper is interesting and investigates the impact of 

distance, possible obstacles and motion on the video quality, considering different  metrics, including the peak signal-

to-noise ratio (PSNR), which is used as a quality indicator. It has to be noticed, however, that  the choice of 

transmitting the cross traffic from the same source and to the same destination as with the video stream can raise some 

methodological concerns. In fact, more commonly bandwidth limitations are due to other hosts on the same wireless 

network rather than the same host, and the artificial cross traffic for the experiments should compete for the same 

wireless link, but should not  at  the same time represent an overhead for the host receiving the video, otherwise it 

could slow it down, and alter the results.

The authors have recently investigated the effects of Gaussian noise on the streaming time of the TCP 

(Transmission Control Protocol) connection [19]. However, UDP (User Datagram Protocol) is by far more adapt and 

widespread for wireless video streaming, due to its connectionless features. Thus, in this paper the attention is focused 

on the experimental analysis of Wi-Fi video streaming quality over UDP, with regard to both a normal UDP 

connection (hereinafter, referred to as normal mode)  and a quality-of-service-oriented one (QoS mode). In particular, 

the goal is to evaluate their performance in the presence of cross traffic. In fact, while the performance of Wi-Fi video 

streaming over UDP has already been studied with regard to noise and interference [17, 18], an experimental study 

based on cross-layer measurements, including VQM (Video Quality Metric) [26], in presence of cross traffic, is not 

reported in the literature.



The paper is organized as follows: an overview of the IEEE 802.11x standards is given in Section II; the 

measurement  test-bed, tools and procedure are respectively presented in Sections III; IV and V; experimental results 

are shown and discussed in Section VI; finally, conclusions are given in Section VII.

II. IEEE 802.11X STANDARDS

The family of IEEE 802.11 standards concerns wireless connectivity for fixed, portable, and moving stations within 

a local area. It applies at  the lowest  two layers of the Open System Interconnection (OSI) protocol stack, namely the 

physical layer and data link layer.

The physical layer (PHY) essentially provides three functions. First, it  interfaces the upper MAC sub-layer for 

transmission and reception of data. Second, it provides signal modulation through direct  sequence spread spectrum 

(DSSS) techniques or orthogonal frequency division multiplexing (OFDM) schemes. Third, it  sends a carrier sense 

indication back to the upper MAC sub-layer, to verify activity in the wireless channel. The data link layer includes the 

MAC sub-layer, which allows the reliable transmission of data from the upper layers over the PHY media. To this aim, 

it  provides for a general controlled access to the shared wireless media, called carrier-sense multiple access with 

collision avoidance (CSMA/CA). It  also protects the data being delivered through proper security policies. The IEEE 

802.11 family currently includes multiple extensions to the original standard, which are based on the same basic 

protocol and are essentially different in terms of modulation techniques. The most  popular extensions are those defined 

by the IEEE 802.11a/b/g amendments (also referred to as standards), on which most  of today’s manufactured devices 

are based. A further extension, namely IEEE 802.11e standard [20], has been emanated to support quality of service 

(QoS) in wireless environment. It  defines specific MAC layer strategies to assure reliable performance on the wireless 

link for different traffic categories.

Nowadays, the IEEE 802.11g standard is the most widely accepted worldwide. It involves the license-free 2.4 GHz 

ISM band (2.4–2.4845 GHz), in the same way as the IEEE 802.11b standard, and supports a maximum data rate of 54 

Mbps, in the same way as the IEEE 802.11a standard. IEEE 802.11g standard devices are backwards compatible with 

IEEE 802.11b ones. They use the OFDM modulation scheme for data rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mbps, 

and revert  to complementary code keying (CCK, as in the case of the IEEE 802.11b standard) for 5.5 and 11 Mbps, and 



differential binary phase shift keying (DBPSK)/differential quadrature phase shift  keying (DQPSK)+DSSS for 1 and 2 

Mbps. Moreover, 14 different frequency channels are defined, each of which characterized by 22 MHz bandwidth. In 

USA, channels 1 through 11 are allowed, in Europe channels 1 through 13 can be used, and in Japan only channel 14 is 

accessible. Due to the available bandwidth, the channels are partially overlapped, and the number of non-overlapping 

usable channels is only 3 in USA and Europe (e.g., channels 1, 6, and 11).

To assure QoS, the IEEE 802.11g standard refers to IEEE 802.11e one. With respect to the distributed 

coordination function (DCF), in fact, the IEEE 802.11e standard includes an additional hybrid coordination function 

(HCF), which both combines the capabilities of DCF and of the point coordination function (PCF) and adds some 

improvements. The HCF uses both a contention-based channel access method, called enhancement distributed channel 

access (EDCA) mechanism, for contention-based transfer, and a controlled channel access, referred to as controlled 

channel access (HCCA) mechanism, for contention-free transfer. In both mechanisms (EDCA and HCCA), the station 

is allowed to transmit  only when it gains a transmission opportunity (TXOP), called EDCA TXOP or HCCA TXOP, 

respectively. In the EDCA mechanism, QoS is performed through the use of access categories (ACs), characterized by 

traffic categories (TC) and multiple independent backoff entities. In the IEEE 802.11e standard, a station is 

characterized by four ACs, having independent  transmission queues. An AC is basically an enhanced variant of the 

DCF, which contends for a TXOP according to some suitable parameters [20].

In the HCCA mechanism, the access to the wireless medium is managed by using a hybrid coordinator (HC), whose 

access priority is higher than that of a station supporting QoS. The HC gains the control of the wireless medium waiting 

for a shorter time interval with respect to the stations using the EDCA procedures. In particular, when the wireless 

medium is assessed idle for at  least  one point  inter-frame space (PIFS), it transmits the first  frame with such a duration 

value as to cover the contention-free period. During this period, the HC assigns to the stations the needed TXOPs. At 

the end of either mechanism, an admission control phase is performed, as described in [20].

III. MEASUREMENT TEST-BED

Tests are conducted within a protected and controlled environment, i.e. a shielded semi-anechoic chamber compliant 

with electromagnetic compatibility requirements for radiated emission tests. Experiments aim to emulate the actual 



operating scenario of a WLAN compliant  with IEEE 802.11g standard. A cross-layer approach is applied in order to 

assess the performance of WLAN in supporting video streaming applications. More specifically, different  metrics at 

different protocol stack layers are measured: streaming time at application layer, lost packets at transport  layer, and 

MAC retransmission at link layer. Additionally, video quality is measured through the software VQM, which 

implements a standardized method to objectively measure video quality [26].

A block diagram of the measurement test-bed is shown in Fig.1. It consists of the following components.

1) A WAP54G access point (AP) by Linksys, compliant with the IEEE 802.11g standard.

2) A notebook “Host1”, with Intel Pentium Dual Core @ 1.73 GHz, 4 GB of RAM, which communicates with the 

AP at a 100 Mbps rate and through a 5 m length UTP category 3 cable, and acts as the source of the video stream.

3) Two notebooks, “Host2” and “Host3”, which are equipped with Intel Core 2 Duo @ 2 GHz processor, 4 GB 

RAM and built-in Wi-Fi card (Airport) compliant with IEEE 802.11b/g standard, and act, respectively, as the receiver 

of the video stream and as the source of the cross traffic. They are both connected to the AP  through an IEEE 802.11g 

wireless connection, according to a DCF MAC layer access method along with CSMA/CA protocol. The parameters of 

the hosts are provided for the sake of completeness of the experimental setup description and for potential experiment 

repeatability purposes. 

4) Two notebooks, “Host4” and “Host5”, which are equipped with Intel Core 2 Duo @ 2 GHz processor and 4 GB 

RAM. Both notebooks have their built-in Wi-Fi card disabled, and are connected to an ASUS USB adapter Wi-Fi card, 

namely WL-167G, compliant with IEEE 802.11 g standard. They are thus used as monitoring devices for Host2 and 

Host3.



Fig. 1. Measurement testbed.

5) A further notebook, “Host6”, which is connected to an Ethernet switch to which also Host2, Host3, Host4 and 

Host5 are connected. This makes it  possible to control via remote desktop the four hosts in the chamber from Host6, 

which is outside.

6) Another ASUS WL-167G, which is placed near the AP connected to Host6 through a USB cable.

The same test-bed characterizes both the operating modes that have been considered for the experiments. DCF and 

HCF access methods are respectively exploited in the normal and QoS mode. Indeed, in the QoS mode, the AP is 

configured in such a way to recognize the video streaming packets as a traffic category, and applies the specified QoS, 

whereas, in the normal mode the best-effort service is invoked.



IV. MEASUREMENT TOOLS

The whole set of software tools used in the experiments are open-source, free available in the public domain. 

Specifically, VideoLAN [24] is a free cross-platform media player released under the GNU General Public License 

[28]. It  can be used as a multicast and unicast streaming generator, supporting a large number of audio and video 

formats. It  also allows the choice of the receiver buffer time length. In the experiments, VideoLAN is used by Host1 to 

generate the test videos, and by Host2 to decode the received data flow with a buffer time length of 300 ms.

Wireshark is an open-source packet analyser tool for multilevel packet analysis [22]. It  allows in-depth investigation 

about network problems and performance, and accurate testing of new protocols. It provides meaningful information 

about the incoming packets characteristics and contents. All information carried by packets is read, analysed and 

presented to the user by Wireshark. This include fields like timestamps, which indicate the time when a packet  was 

recorded and flags in the packet indicating whether a packet  has been retransmitted at  the MAC layer or not. Packet 

losses are calculated by counting with Wireshark the number of packets sent  by the sender and the number of packets 

received at the receiver. The number of lost packets can be calculated by subtracting the number of packets received 

from the number of packets sent. In the experiments, it is used both to assess the correct  operation of the WLAN and 

measure the PLR.

D-ITG is a distributed Internet traffic generator [27], whose architecture allows the generation of traffic and the 

regulation of key parameters such as packet inter-departure time and length. It also allows measuring several QoS 

parameters at both sender and receiver side, and obtaining a complete report  of measured parameters over the whole 

measurement time. D-ITG is, in particular, used to generate WLAN traffic in the second scenario.

VQM is a Video Quality Metric algorithm, based on the models referred to by ITU Recommendation BT.1683 [26]. 

It  provides video quality estimates rather close to those achievable from subjective analysis. It  requires two input video 

streams: the original one, taken as reference, and the effectively displayed one, possibly corrupted, to be analyzed. As 

final result, VQM provides an overall quality score, mapped on a scale from 0 up to 1, where 0 means that  no 

impairment is perceivable and 1 that a maximum level of impairment is visible.



V. MEASUREMENT PROCEDURE

Experiments are conducted emulating a real-world unidirectional video streaming, compliant  with H.264, and 

characterized by different  video data rate. The features of the video used in the tests are chosen according to a typical 

configuration exploited for sharing and spreading video contents over the Internet. In particular, the video is 

characterized by, (i) Constrained Baseline profile (CBP), (ii) level two, (iii) CIF (Common Intermediate Format, 352 × 

288) picture format, (iv) three different mean data rate respectively of nearly 300 kbit/s (referred to as “low” profile), 

600 kbit/s (referred as “medium” profile) and 800 kbit/s (referred as “high” profile), and (v) RTP/UDP as 

communication protocol.

Concurrently to the video streaming, a suitable cross traffic is generated on the same wireless link, in both modes, 

by synthetic traffic generator D-ITG. The cross traffic profile is CBR (constant  bit rate), with bit rates equal either to 

20 Mbps or 40 Mbps in order to encompass different  conditions of network load. Furthermore, different  IP cross traffic 

packet size is chosen, respectively equal to 512 bytes and 1400 bytes. Experiments with no cross traffic are also carried 

out. 

Generally, Host2 generates a request to Host1, through the AP by wireless connection, for streaming an H.264 

encoded video located on Host 1. Once the connection is accepted, Host1 sends the video to Host2 via the AP, 

exploiting a UDP connection. Host2 down-streams the received H.264 video using the VLC media player.

The sniffer software Wireshark is installed on Host4, Host5 and Host6 in order to process the data captured by 

WL167G cards. The choice of having monitoring hosts which are different  from those involved with the WLAN 

permits to gather packets retransmissions at MAC layer. Otherwise, they could not  be captured from the machine that  is 

generating the retransmissions neither from the machine that the retransmissions are destined to.

A cross-layer approach is applied in order to assess the performance of WLAN in supporting video streaming 

applications in presence/absence of QoS mechanisms. More specifically, different  metrics at  different protocol stack 

layers are measured, such as streaming time at  application layer, lost  packets at  transport layer, and MAC 

retransmission at link layer. The streaming time is measured from the log file of the client computer as the difference 

of the timestamp of the last  UDP video packet from the timestamp of the first  UDP video packet. The number of 



MAC retransmissions at  link layer and the packet  loss ratio at transport  layer are jointly measured, because they give 

different  information: the former gives an indication of the relative data link layer conditions and can be significantly 

different  from zero even when no packet  is lost at transport layer. Additionally, video quality is measured through the 

software VQM, which implements a standardized method to objectively measure video quality in off-line mode. In 

detail, the streamed video is stored by VLC on the client after each experiment, and then compared by VQM to the 

original video file, which acts as reference.

VI. EXPERIMENTAL RESULTS

A. Normal mode scenario

Table I synthesizes the results of 15 experiments related to a normal mode UDP connection. Experiments are first 

ordered by cross traffic bit rate, then by cross traffic packet  size and, finally, by video bit rate. Fig. 2 to 4 respectively 

depict packet loss ratio (PLR), number of MAC-layer retransmissions (Retx) and time to stream results. 

The first  three experiments show that when the video streaming quality (VQM) is almost  perfect no cross traffic is 

present, as none of the packets is lost. Although these tests could seem banal, it  has been done to verify that  the 

connection is working properly, as so is the application.

Table I. Measurement results in the normal mode scenario

#

Cross trafficCross traffic
Video
profile

Measurement resultsMeasurement resultsMeasurement resultsMeasurement resultsMeasurement results

# Packet size 
[byte]

Bit rate 
[Mbit/s]

Video
profile

Packets sent Retransmissions PLR [%] Time to 
stream [s]

VQM 
score

1 0 0 Low 5276 1 0 116.7 0
2 0 0 Medium 6192 5 0 112.9 0
3 0 0 High 6617 5 0 135.1 0
4 1400 20 Low 5237 3666 0 157.1 0.1
5 1400 20 Med 6047 4033 0 114.2 0.1
6 1400 20 High 6519 3817 0 155.5 0.1
7 512 20 Low 4152 2354 21.8 112.8 0.4
8 512 20 Med 6034 3503 20.4 128.2 0.4
9 512 20 High 6468 3825 20.3 141.3 0.4



10 1400 40 Low 5105 2111 28.5 152.4 0.6
11 1400 40 Med 6027 2131 27.6 140.5 0.6
12 1400 40 High 6459 2309 26.9 164.5 0.6
13 512 40 Low 5347 1367 55.2 137.2 0.8
14 512 40 Med 6144 1272 50.3 119.2 0.8
15 512 40 High 6412 1306 50.9 143.8 0.8

There is a clear influence of cross traffic rate on the performance of the video streaming and a direct relation 

between PLR and cross traffic bit  rate. Fig. 2 clearly shows this trend: the higher the cross traffic rate, the higher (on 

average) the number of packets that do not  reach the receiver due to congestion. Given that the PLR is the ratio of 

packets received over packets transmitted, the PLR increases with increasing cross traffic rate. However, contrary to 

what one would reasonably expect, another metric that  is the number of retransmissions (see Fig. 3), seem to prove 

such consideration wrong. The experimental outcomes show that number of retransmission is almost halved when the 

bit  rate doubles from 20 Mbits/s to 40 Mbit/s. In fact, looking at the number of retransmissions while forgetting about 

the PLR is misleading, but thanks to the cross-layer approach such a paradox can be explained as follows. When the 

wireless link becomes more congested, more video packets are lost  because they are dropped by the AP. As 

retransmissions are counted at MAC layer, their number decreases because less video packets are transmitted on the 

wireless link.The dependence of PLR on cross traffic packet  size can also be simply explained. Given the cross traffic 

bit  rate, smaller packets mean a higher number of total packets and therefore, according to the MAC layer protocol, a 

higher overhead which causes the channel to be occupied for a larger proportion of time. Thus, more video packets are 

dropped in the queue of the AP and, consequently, lost. Therefore, with smaller cross traffic packet  size, the PLR 

increases. 

Finally, it  is interesting to observe that  while the PLR is extremely sensitive to cross traffic, the streaming time 

seems to vary randomly but without  significant correlation to it. Such a behavior is peculiar to UDP: the video source 

host emits packets at  the given rate, then these packets have to share the channel with cross traffic and a number of 

them is possibly dropped by the AP. However, being UDP a connectionless protocol, none of these packets is 

retransmitted at  transport  layer and, so, the streaming time does not  vary significantly. On the contrary, it  is the quality 



of the video that is affected and reflects the packet  loss. Had TCP been used, a quick degradation of the streaming 

time would have been observed as the cross traffic increased, as already noticed with noise [19].

It  is interesting to observe that, in line of principle, a relation between the cross traffic and video quality could be 

exploited by the network for extracting information about video quality, on the basis of the actual amount  of data 

traffic present in the network. A proper control strategy of data traffic flow could thus be implemented to assure a 

defined quality to video steaming applications. Similarly, the relation between VQM and PLR can allow the video 

receiver to implement  a suitable feedback procedure towards the AP for reducing the data traffic into the network as 

long as the desired video quality is achieved.

Fig. 2. PLR results in the normal mode scenario.



Fig. 3. Retransmissions results in the normal mode scenario.

Fig. 4. Streaming time results in the normal mode scenario.



Fig. 5. VQM results in the normal mode scenario.

B. QoS mode scenario

As already discussed, in the QoS mode scenario, the WLAN has suitable been configured for providing QoS by 

giving precedence to video streaming packets with respect to cross traffic packets. More specifically, the AP has been 

configured in such a way as to classify the video streaming packets as a traffic category (i.e. AC_VI), through proper 

rules, and supply the QoS according with the following parameters: i) TXOP equal to 3008 ms; CWmin = 15; and 

CWmax equal to 31. Being these values suggested by IEEE 802.11e standard for AC_VI category, they are also given 

as default ones into any AP setup configuration. 

The obtained results, in terms of PLR, VQM score, time to stream and retransmissions, are summarized in Table II 

for all the experiments. Fig. 6 to 9 separately show the metrics taken into consideration.

From the measurement results, the following considerations can be made.

· VQM score is strictly related to PLR. Indeed, only when a heavy PLR is experienced the video quality 

worsens. This is the case of experiment number 15. On the contrary, if low PLR values are measured, the final 

quality falls into an acceptable value range.



· There is a non linear relationship between cross traffic (both rate and packet size) and PLR as seen in Fig. 7. 

Initially, PLR remains very small (PLR ≤ 1.3%) as the cross traffic is not high enough to create congestion in 

the link and, therefore, there are no lost  packets. However, if a threshold is exceeded, as happens in point 15 

of Fig. 7 with PLR=4.0%, then the effects of cross traffic on PLR increase exponentially. 

· The HCF mechanism improves the channel access function reducing the nominal values of all metrics except 

the time to stream. This means the QoS mechanism assures high priority level to video streaming also in 

presence of cross traffic characterized by a high bit rate.

· The time to stream does not benefit from the QoS mechanism. In fact, it  is still distributed in a random way, 

in agreement  with what  observed in the normal mode scenario. This is reasonable because the packet loss is 

due only to buffer overflow, as no air collisions can be experienced in our test-bed.

· It  is interesting to observe that high time to stream values (as measured for experiment  number 15) do not 

influence the final video quality score. That  is, the buffer length of VLC is capable of managing these 

deviations and providing a good video quality to the final users.

Table II. Measurement results in the QoS mode scenario.

#
Cross trafficCross traffic Video

profile
Measurement resultsMeasurement resultsMeasurement resultsMeasurement resultsMeasurement results

#
Packet size 

[byte]
Bit rate 
[Mbit/s]

Video
profile Packets sent Retransmissions PLR[%] Time to 

stream [s]
VQM 
score

1 0 0 Low 5276 1 0 116.7 0
2 0 0 Med 6192 2 0 112.9 0
3 0 0 High 6617 1 0 114.1 0
4 1400 20 Low 5237 100 0 120.1 0.1
5 1400 20 Med 6047 107 0 144.2 0.1
6 1400 20 High 6519 108 0 143.5 0.1
7 512 20 Low 4152 89 0 138.6 0
8 512 20 Med 6034 78 1.0 146.2 0.2
9 512 20 High 6468 120 1.2 141.3 0.1
10 1400 40 Low 5105 75 0 142.0 0.1
11 1400 40 Med 6027 111 0.6 138.9 0.1
12 1400 40 High 6459 160 1.0 141.6 0.2
13 512 40 Low 5347 101 0 129.6 0
14 512 40 Med 6144 131 1.3 135.2 0.1
15 512 40 High 6412 260 4.0 147.2 0.4



Fig. 6. VQM results in the QoS mode scenario.

Fig. 7. PLR results in the QoS mode scenario.



Fig. 8. Retransmission results in the QoS mode scenario.

Fig. 9. Time to stream results in the QoS mode scenario.

VII. CONCLUSION

The paper has presented an experimental study of the effects of bandwidth limitations on video streaming over 

WiFi. A proper measurement  test-bed has been designed for the scope in a controlled environment, i.e. a semi-

anechoic chamber. The transport layer protocol considered is UDP, which is by far the more used for video streaming 

over WiFi. Tests have been conducted in two operating modes: a normal mode and a QoS mode. 



Experimental results have shown a dependence of PLR on the cross traffic rate and packet size, but there is no 

evidence of a dependence of the total streaming time on the cross traffic. This is reasonable considering that  UDP is a 

connectionless protocol. Regarding VQM, it has been observed that high time to stream values does not influence the 

final video quality score. That is, the buffer length of VLC is capable of managing these deviations and providing a 

good video quality to the final users. Moreover, it has come out  that only when a heavy PLR is experienced the video 

quality worsens significantly. On the contrary, if low PLR values are measured, the final quality falls into an 

acceptable value range.

Ongoing research activity is focused on measuring wireless video streaming performance under different QoS 

assurance strategies, as well as considering more complex scenarios where cross traffic and in-channel interference 

are jointly affecting the communication.
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