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Abstract. We study the stability of m-sequences in the sense of de-
termining the number of errors needed for decreasing the period of the
sequences, as well as giving lower bounds on the k-error linear complex-
ity of the sequences. For prime periods the results are straightforward
so we concentrate on composite periods. We give exact results for the
case when the period is reduced by a factor which is a Mersenne number
and for the case when it is reduced by a prime p such that the order
of 2 modulo p equals p − 1. The general case is believed to be difficult
due to its similarity to a well studied problem in coding theory. We also
provide results about the relative frequencies of the different cases. We
formulate a conjecture regarding the minimum number of errors needed
for reducing the period at all. Finally we apply our results to the LFSR
components of several well known stream ciphers.

1 Introduction

Linear feedback shift registers (LFSRs) are frequently used in stream ciphers
(see, for example [7] [1] [2] [5] [16]) due to their well understood properties
and simplicity of construction in hardware. m-Sequences were first discussed by
Golomb [6], and have many interesting and well studied properties.

However, to our knowledge, one property that has not been studied is the
k-error linear complexity of such sequences. The k-error linear complexity of a
periodic sequence s is the minimum linear complexity of the sequences that can
be obtained from s by changing up to k terms in each period (see [3], [14]). The
stability of the linear complexity (i.e. high k-error linear complexity for small
values of k) is an important criterion [3] in the design of stream ciphers because
if a sequence has a low k-error linear complexity, an attacker could potentially
recover easily all but k terms of the sequence.

The k-error linear complexity and the error linear complexity spectrum are
very difficult to determine for a general sequence but for some classes of se-
quences polynomial time algorithms have been found [14] [12] [10] [9]. However,
these classes of sequences are usually chosen so that the k-error linear complexity
is easy to determine, rather than being chosen because they are used in cryp-
tographic primitives. We begin to rectify that in this paper by analyzing the
k-error complexity of m-sequences, specifically by finding lower bounds on the



minimum number of errors that are required to reduce the complexity of the
sequence.

By analogy to the k-error linear complexity, we can define the k-error period
of a sequence, i.e. the minimal period that we can obtain for a sequence by
changing up to k terms in each period. As the period of m-sequences is maximal
among all sequences of a given linear complexity, m-sequences are often used as
components of stream cipher in order to ensure a large period, see [8]. Therefore
it is perhaps even more important in such situations to guarantee the stability
of the period rather than of the linear complexity. Moreover for m-sequences we
cannot reduce the linear complexity without reducing the period and therefore
the minimum number of errors needed for reducing the period is a lower bound
for the minimum number of errors needed for reducing the linear complexity
(Proposition 1).

The case of m-sequences with prime period (Section 3.1) is relatively easy
and we obtain a closed form expression for the k-error linear complexity. When
the period is composite, the problem is related to the problem of determining the
weight enumerator of minimal cyclic codes (Section 3.2). This is a well studied
and as yet not fully solved problem (see for example [4]). The weight enumerator
is known for certain particular cases, but for the general case it seems no closed
form or algorithm better than brute force is known [4]. For two particular cases
we give exact formulae for the minimum number of errors needed to reduce
the period of the m-sequence by a factor q: the case when q is a Mersenne
number (Sections 3.3), and the case when q is a prime such that the order of
2 modulo q equals q − 1 (Section 3.4). Other particular cases could be treated
by looking at those minimal cyclic codes for which the weight enumerator is
known. In Section 3.5 we formulate a conjecture regarding the minimum number
of errors needed to reduce the period of an m-sequence at all. We show that if the
conjecture is true we can determine this number for at least 76% of m-sequences.
Finally, in Section 4 we study how these results relate to several cipher systems
(the eStream candidates Grain and DECIMv2, LILI-128 and SSC2) and show
that their LFSR component is secure from the point of view of the stability of
its period and linear complexity.

2 Preliminaries

We start by recalling a number of definitions and results. While this paper is
only concerned with binary sequences, all the results in this section hold for any
field K unless otherwise specified.

Definition 1. Given a degree n monic polynomial f = xn + cn−1x
n−1 + . . . +

c0 ∈ K[x] and n initial values, s0, s1, . . . , sn−1 ∈ K, we can recursively generate
an infinite sequence s = (s0, s1, . . .), by using the following linear recurrence
relation:

si = −si−nc0 − si−n+1c1 − . . .− si−1cn−1



for i ≥ n. Note that it is possible to generate identical sequences using different
polynomials. We refer to f as a characteristic polynomial for s, and any sequence
which can be generated in this way as a linear recurrent sequence.

Definition 2. For any linear recurrent sequence s, the characteristic polynomial
of the lowest degree is referred to as the minimum polynomial, and its degree the
linear complexity of the sequence. We will denote the linear complexity of s as
LC(s). Note that the all zero sequence has complexity zero.

Definition 3. A sequence s is called periodic if there exists an integer t such
that si = si+t for all i = 0, 1, . . .. We call t a period of s. We call the smallest
such t the minimal period of s and denote it by P(s).

We will identify a sequence s of period t with the finite sequence (s0, s1,-
. . . , st−1). We can then talk about the Hamming weight of the sequence s, de-
noted wt(s). Note that we do not restrict the period to being the minimal period,
so the period needs to be specified in order to determine the weight. Similarly
we can talk about the Hamming distance between two sequences s and s′ of the
same period, denoted d(s, s′).

Definition 4. Let f be a primitive polynomial of degree n. Then any non-zero
sequence generated by f is called an m-sequence.

Note that for any binary sequence generated by a polynomial of degree n,
the period can range between n and 2n − 1. The maximum is achieved exactly
when the sequence is an m-sequence.

The k-error linear complexity of a sequence is a parameter that generalizes
the linear complexity:

Definition 5. [14] [3] Let s be an infinite periodic sequence with period t and
0 ≤ k ≤ t. The k-error linear complexity of s is defined as:

LCk(s) = min{LC(s′) : s′sequence of period t, d(s, s′) ≤ k}.

Definition 6. [10] The error linear complexity spectrum of a sequence s of
period t is a list of pairs, (k,LCk(s)), where k takes all values in the range
0 ≤ k ≤ t. A critical point in the spectrum is one where LCk(s) < LCk−1(s).

Note that knowing the critical points of the error linear complexity spectrum
is enough to generate the whole spectrum. The extreme (and trivial) cases are
when we change all non-zero elements into zeros, obtaining the all-zero sequence;
also, for binary sequences we can change all zeros into ones obtaining a sequence
consisting only of ones.

Lemma 1. Let s be an infinite periodic sequence. Then LCwt(s)(s) = 0, so
the last critical point in the complexity spectrum is (wt(s), 0). If s is a binary
sequence, LCP(s)−wt(s)(s) ≤ 1 so if wt(s) > P(s)/2 the penultimate critical point
in the spectrum is (P(s)− wt(s), 1).



We will need a few other parameters related to k-error linear complexity:

Definition 7. The smallest k such that LCk(s) < LC(s) will be called the com-
plexity reduction value, denoted RLC(s). The minimum number of errors re-
quired in each period to reduce the linear complexity of s to a value that is at
most c will be denoted by ELCc(s).

Note that for any fixed sequence s, if we consider ELCc(s) as a function of
c, and LCk(s) as a function of k, then ELCc(s) is the minimum of the preimage
of c under LCk(s).

Example 1. Consider the binary sequence s whose minimal period is (0, 0, 0, 1, 0,-
0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0). Then s has the following complexity spectrum: (0,15),
(1,15), (2,10), (3,10), (4,5), (5,5), (6,2), (7,2), (8,0), (9,0), (10,0), (11,0), (12,0),
(13,0), (14,0), (15,0), (16,0). The critical points on this spectrum are (0,15),
(2,10), (4,5), (6,2), (8,0) and the complexity reduction value is 2. We also have,
for example, ELC5(s) = 4.

We define for the period of a sequence analogues of the k-error linear com-
plexity parameters:

Definition 8. For an infinite periodic sequence s we define the k-error period
to be:

Pk(s) = min{P(s′) : s′ sequence of period P(s), d(s, s′) ≤ k}

Note s′ above must have (possibly not minimal) period equal to P(s). The smallest
k such that Pk(s) < P(s) will be called the period reduction value, denoted RP(s).
We will denote by EPc(s) the number of errors required to reduce the period of
s to at most c.

Note that EPc(s) and Pk(s) have the same relation as ELCc(s) and LCk(s).

We recall some terminology from number theory.

Definition 9. A Mersenne number is any number of the form 2n − 1 for some
positive integer n. A Mersenne prime is a Mersenne number that is prime.

Note that in the definition of a Mersenne number we do not require that
either n or 2n − 1 be prime, by following the terminology used in, for example,
the Online Encyclopedia of Integer Sequences.

Definition 10. Let p be a prime. The multiplicative order of 2 modulo p is the
smallest integer u such that 2u ≡ 1 mod p. We will refer to this as simply the
order of 2 mod p and denote it as ordp(2).

Recall that for any integer v, 2v ≡ 1 mod p iff ordp(2)|v. Also, we recall
Fermat’s Little Theorem, which states that ordp(2) must divide p− 1.



3 k-Error Complexity and Period for Various Classes of
m-Sequence

In this paper we study binary m-sequences. We aim to determine the number of
errors needed for reducing the complexity of such sequences and the number of
errors needed for reducing the period. These two problems are closely related:

Proposition 1. For any given m-sequence s, the period reduction value is a
lower bound on the complexity reduction value. Moreover if s′ is any linearly
recurrent sequence with LC(s′) < LC(s) then P(s′) < P(s).

Proof. For any sequence of linear complexity n, its period length must be less
than or equal to 2n − 1, and this period length is exactly achieved by any m-
sequence of linear complexity n. Therefore, if we wish to consider sequences
with smaller linear complexity than a given m-sequence, they must have smaller
period as well.

3.1 Prime period

We will first deal with the relatively easy case when the period of the m-sequence
is prime. In this case, we are able to determine not just the period reduction
value, but the full error linear complexity spectrum, which trivially gives the
complexity reduction value.

Theorem 1. Consider an m-sequence, s, with P(s) = m = 2n − 1. If m is a
Mersenne prime, then the critical points of the k-error complexity spectrum of s
are: (0, n), ((m− 1)/2, 1), ((m + 1)/2, 0).

Proof. From Lemma 1 we know that the spectrum will contain at least the three
critical points listed in the statement. By Proposition 1, the only way to reduce
the complexity of s is by reducing its period to a factor of m, i.e. to 1, as m is
prime. That means s can only become a sequence of all ones (requiring (m−1)/2
changes) or a sequence of all zeros (requiring (m + 1)/2 changes).

This result shows that both the complexity reduction value and the period
reduction value are almost half the period length, which implies that such se-
quences are very secure from this point of view, in fact, by Lemma 1 they are
as secure as possible. Since it is possible to construct an m-sequence of length
equal to any Mersenne number, the frequency of such sequences is dependent
on the frequency of Mersenne primes among Mersenne numbers. There are no
known results about this, but the widely believed Lenstra-Pomerance-Wagstaff
Conjecture [13] implies that the proportion of Mersenne primes less than x as
a proportion of all Mersenne numbers is log log x/ log x. This implies that the
frequency of these sequences is low, and decreases as we consider longer se-
quences. Out of the smallest 200 lengths for m-sequences, 13 of them are prime,
a proportion of 0.07.



3.2 Reducing the period of an m-sequence by an arbitrary factor

For treating the case when the period is composite, reducing the period to a
factor r of the original period can be visualized by writing the sequence row-
wise in a table of r columns and aiming to make each column of the table contain
one single value. We formalize this as follows:

Definition 11. For a periodic sequence s, with P(s) = m and m = qr for some
integers q, r, we define the r-decimation matrix of s to be the q by r matrix T
with entries: Ti,j = sir+j for i = 0, . . . , q − 1 and j = 0, . . . , r − 1. That is, we
construct T by sequentially filling its rows with the values of s. It will often be
useful for us to refer to the columns of T as sequences themselves.

Note that using the notation above, the columns of T are r-regular, improper
decimations of s.

Lemma 2. The minimum number of errors needed for reducing the period m =
qr of a binary sequence s from m to r equals: EPr(s) =

∑r−1
i=0 min{wt(Ti), q −

wt(Ti)} where Ti are the columns of the r-decimation matrix of s.

Proof. The number of errors needed to make the column Ti contain only zeros
is wt(Ti) and to contain only ones is q − wt(Ti). If each column contains only
one value, then the period of the sequence has been reduced to r.

Note that an algorithm for computing by brute force the weight of the
columns of the decimation matrix is linear in the period length of the sequence.
However, for m-sequences the period length is exponentially higher than the
degree of the generator polynomial, so a more efficient algorithm, or a closed
formula, would be preferable.

Theorem 2. Let s be a sequence with P(s) = m = pe11 pe22 . . . perr (with pi prime
for all i). Then EPm/pipj

(s) ≥ EPm/pi
(s).

Proof. Note that a sequence of period m/pipj also has period m/pi. Therefore
EPm/pipj

(s) errors can change s into a sequence of period m/pi, and so the result
follows.

Corollary 1. Let s be a sequence with P(s) = m = pe11 pe22 . . . perr (with pi prime
for all i). Then RP(s) = mini{EPm/pi

}.

Corollary 1 implies that to determine the period reduction value for an m-
sequence, we will only need to consider reducing the period by a prime factor.

We recall the following results which shed light on the structure of the deci-
mation matrix:

Lemma 3. [15] Assume that T is the r-decimation matrix for an m-sequence s
with P(s) = qr. Then the columns of T are all generated by a single, irreducible
polynomial.



Lemma 4. [15] Let s be an m-sequence of period m, and assume m = qr. If
r = 2n−1 for some n (that is, r is a Mersenne number) then each column of the
q-decimation matrix of s will either be an m-sequence or the all zero sequence.
Further, each of the m-sequences will be identical, up to a cyclic shift.

The following is a closely related result from coding theory:

Theorem 3. ([11, Theorem 11, Ch. 8, §4]) Let q, n be integers such that n is
minimal such that q|2n − 1. Let s be an m-sequence with period length 2n − 1.
The columns of the (2n−1)/q-decimation matrix of s are a set of representatives
(with respect to the equivalence relation of cyclic shifting) for a minimal [q, n]
cyclic code.

Please note that the original version of the above theorem uses a matrix
which is the transpose of our decimation matrix.

Recall that a cyclic code of length q with generator polynomial g|xq − 1 can
be equivalently viewed as the set of sequences of period q with characteristic
polynomial equal to the reciprocal of the parity check polynomial (xq−1)/g. We
can define an equivalence relation on the set of sequences generated by a fixed
polynomial: two sequences of period t are equivalent if when represented as a
finite sequence of length t one can be obtained from the other by a cyclic shift.
We can therefore formulate the theorem above equivalently as follows:

Corollary 2. Let q, n be integers such that n is minimal such that q|2n− 1. Let
s be an m-sequence with period length 2n − 1. The columns of the (2n − 1)/q-
decimation matrix for s are a set of representatives for the set of sequences
generated by a fixed irreducible polynomial of degree n and order q.

We extend the results above to the case when n is not minimal with the
property that q|pn − 1:

Theorem 4. Let q, n be integers such that q|2n−1. Let n′ be minimal such that
q|2n′ − 1. Let s be an m-sequence with period length 2n − 1. In the (2n − 1)/q-

decimation matrix of s there are 2n−n′−1
q all-zero columns and 2n−n

′
columns

from each of the 2n
′
−1
q equivalence classes of the sequences generated by a fixed

irreducible polynomial of degree n′ and order q.

Proof. We decimate the sequence s in two stages. Let B be the (2n−1)/(2n
′−1)

decimation matrix of s. Each column of B has length 2n
′−1 and so by Lemma 4

it is either the all-zero column or one fixed m-sequence (possibly shifted). As
in [15, Section IV B] we can count how many of each we have and show that there

are 2n−n′−1
2n′−1 all-zero columns and 2n−n

′
m-sequences. To obtain the (2n − 1)/q-

decimation matrix T of s we can think of concatenating the first (2n
′−1)/q rows

of B to obtain the first row of T , then concatenating the next (2n
′−1)/q rows of

B to obtain the second row of T and so on. Looking at a particular column of B,
say column j, we see that its elements end up as columns j, j + (2n − 1)/(2n

′ −



1), j + 2(2n − 1)/(2n
′ − 1), . . . of T . Moreover, these columns of T are exactly a

(2n
′−1)/q-decimation matrix for the sequence in column j of B. If this sequence

is an m-sequence, then by Theorem 3 the resulting columns of T are exactly a
set of representatives for the equivalence classes of the sequences generated by
a fixed irreducible polynomial. If column j of B is all-zero, then obviously the
corresponding columns in T are also all-zero.

We have therefore:

Corollary 3. Let s be an m-sequence of length 2n − 1 and let q be a factor of
2n − 1. Let n′ be minimal such that q is a factor of 2n

′ − 1. Then:

EP(2n−1)/q(s) = 2n−n
′
EP(2n′−1)/q(s).

Recall that the weight enumerator (or weight distribution) of a code C of
length m can be defined as the list of integers A0, A1, . . . , Am with Ai equal
to the number of codewords in C that have Hamming weight equal to i. In a
minimal [q, n] cyclic code each of the q cyclic shifts of a non-zero codeword are
distinct i.e. there are exactly q codewords in each equivalence class, all of the
same weight. Therefore, as a consequence of Theorem 3 and Corollary 3 we have:

Corollary 4. Let s be an m-sequence of length 2n − 1 and let q be a factor of
2n − 1. Let n′ be minimal such that q is a factor of 2n

′ − 1. If A0, A1, . . . , Am is
the weight enumerator of a minimal [q, n′] cyclic code, then

EP(2n−1)/q(s) = 2n−n
′

q∑
i=1

min

{
Ai

q
, q − Ai

q

}
.

The problem of finding the weight enumerator for a general cyclic code is
a well studied, and yet unsolved, problem in coding theory (see, for example,
[4]). There are a number of particular cases for which the problem has been
solved, and we examine some of them in the next sections; others can be simi-
larly transferred. However the general case seems difficult as no better solution
than brute force (i.e. going through the decimation matrix and determining the
weight of each column) is known. In view of the corollary above, we suspect that
determining EPc(s) for s an m-sequence is an equally difficult problem.

For m-sequences of large length, Corollaries 3 and 4 above will allow us to
reduce the problem to one for an m-sequence of smaller length, for which we
can either find the weight enumerator if it falls in one of the particular cases
for which the weight enumerator is known, or if a brute force approach is the
only option, the chances of success are higher due to the shorter length of the
sequence. Examples will be given in Section 4.

3.3 Reducing the period by a Mersenne number

When the period length of an m-sequence is a Mersenne number 2n − 1 with
n not prime, a large number of factors of the period are Mersenne numbers



themselves and can easily be obtained by factorizing the exponent n. Namely,
if n′ is a factor of n, then 2n

′ − 1 is a factor of 2n − 1. In this section we will
compute the number of errors needed to reduce the period of an m-sequence by
a Mersenne number.

Theorem 5. Consider an m-sequence s with P(s) = m and assume m has a
factor of the form 2n

′ − 1. Then

EPm/(2n′−1)(s) = (m + 1)
2n
′−1 − 1

2n′
= wt(s)(1− 1

2n′−1
)

.

Proof. Let Ti be the i-th column of the q-decimation matrix T of s. By Lemma 4
each Ti is either an m-sequence (and therefore wt(Ti) = 2n

′−1) or the all zero
sequence (and so wt(Ti) = 0). As in the proof of Theorem 5 we can count how
many of each we have: (m+1)/2n

′
columns of T are m-sequences and the rest are

all-zero sequences. Applying Lemma 2, EPm/(2n′−1)(s) = ((m+ 1)/2n
′
)(2n

′−1−
1).

Note that Theorem 5 can also be viewed as a particular case of Corollary 3
for q = 2n

′ − 1, as in that case EP(2n′−1)/q(s) = EP1(s) = 2n
′−1 − 1 (to reduce

the period of an m-sequence to 1 we need to change all zeros into ones).

Example 2. The most important cases will be when the period length m is
reduced by a small factor. Theorem 5 shows that EPm/3(s) = (1/4)(m + 1),
EPm/7(s) = (3/8)(m+1), EPm/15(s) = (7/16)(m+1) and EPm/31(s) = (15/32)
(m + 1).

Corollary 5. If the period of an m-sequence s is being reduced by a factor that
is a Mersenne prime q, the smallest number of errors required will be when q = 3,
in which case (P(s) + 1)/4 errors are required, i.e. half of the weight of s. As q
increases, the number of errors approaches the weight of the sequence.

Example 3. Let s be an m-sequence of period to 4095. Then EP4095/3(s) =
EP1365(s) = 1024 = wt(s)/2 and EP4095/7(s) = EP585(s) = 1536 = (3/4) wt(s).

3.4 Reducing the period by a prime p with ordp(2) = p − 1

When p is a prime such that ordp(2) = p − 1, the factorization of xp − 1 into
irreducible factors is the trivial factorization xp−1 = (x−1)(xp−1+xp−2+. . .+1)
i.e. xp−1+xp−2+ . . .+1 is an irreducible polynomial of degree p−1. Therefore, if
s is an m-sequence of length 2p−1− 1, by Corollary 2 the columns of its (2p−1−
1)/p-decimation matrix are sequences generated by this irreducible polynomial,
i.e. sequences obtained by a parity-check bit type equation i.e. the sum of the
bits equals 0. For each even weight 2i there are

(
p
2i

)
such sequences, i.e. 1

p

(
p
2i

)



inequivalent sequences (equivalence under cyclic shifts). Hence by Lemma 2 we
have

EP(2p−1−1)/p(s) =

p−1
2∑

i=1

1

p

(
p

2i

)
min(2i, p− 2i).

With some combinatorial manipulation we will obtain:

Theorem 6. Let p be a prime such that ordp(2) = p−1. Let s be an m-sequence
of length 2p−1 − 1. Then:

EP(2p−1−1)/p(s) = 2p−2 − 1

2

(
p− 1
p−1
2

)
.

Proof.

EP(2p−1−1)/p =

p−1
2∑

i=1

1

p

(
p

2i

)
min(2i, p− 2i)

=
1

p

b p−1
4 c∑

i=1

2i

(
p

2i

)
+

p−1
2∑

i=b p−1
4 c+1

(p− 2i)

(
p

2i

)
=

1

p

b p−1
4 c∑

i=1

2i

(
p

2i

)
+

p−1
2∑

i=b p−1
4 c+1

(p− 2i)

(
p

p− 2i

)
=

1

p

p−1
2∑

j=1

j

(
p

j

)

=

p−1
2∑

j=1

(
p− 1

j − 1

)
.

The last expression is the sum of the combinatorial coefficients in Pascal’s tri-
angle on the row p− 1 up to but excluding the middle element. If we would also
add half of the middle element we would obtain exactly half of the total sum of
the row, i.e. 2p−2. Hence the result in the theorem follows.

Combining this Theorem with Corollary 3 we obtain:

Corollary 6. Let s be an m-sequence of length 2n−1 and let p be a prime factor
of 2n − 1. If ordp(2) = p− 1 then

EP(2n−1)/p(s) = 2n−1 − 2n−p
(
p− 1
p−1
2

)
= wt(s)(1− 1

2p−1

(
p− 1
p−1
2

)
).



3.5 The minimum number of errors needed for reducing the period
of an m-sequence

In the previous sections we examined the number of errors needed for reducing
the period of an m-sequence to specific factors of the original period. In this
section we examine the period reduction value, i.e. the minimum number of
errors needed for reducing the period of an m-sequence at all. By Corollary 1
this is the minimum among EPm/p(s) for the different prime factors p of the
period m. We can determine the minimum among different EPm/p(s) for those
p which fall in the cases of Theorem 5 and Corollary 6:

Corollary 7. Let s be an m-sequence with P(s) = m, and let p1 < p2 be factors
of m. Moreover assume that p1 and p2 are such that both satisfy condition (i) or
both satisfy condition (ii) or p1 satisfies condition (ii) and p1 satisfies condition
(i) below:

(i) being a Mersenne number
(ii) being a prime p such that ordp(2) = p− 1.

Then EPm/p1
(s) < EPm/p2

(s).

Proof. The first situation is immediate, for the second we use the combinatorial
inequality 4

(
2t
t

)
>
(
2(t+1)
t+1

)
. For the last situation using a Stirling inequality(

2t
t

)
≥ 22t−1

√
t

it suffices to prove that 1√
2(p1−1)

> 2
p2+1 , which can be easily

verified.

It would be tempting to conjecture that EPm/p1
(s) < EPm/p2

(s) for any
prime factors p1 < p2 of m. (Indeed we conjectured that in the preliminary
version of this paper.) However, this is not true, for example for m = 2180 − 1,
p1 = 31 (which falls into case (i) in Corollary 7) and p2 = 37 (which falls into
case (ii) in Corollary 7) we compute EPm/31(s) = 2180(15/32) ≈ 7.2 ∗ 1053 using

Theorem 5 and EPm/37(s) = 2179−2143∗
(
36
18

)
≈ 5.7∗1053 using Corollary 6. Hence

the reverse inequality EPm/p1
(s) > EPm/p2

(s) holds in this example. However,
for our purposes we are only interested in finding the minimum EPm/p(s) and
in this example neither of these primes achieves it, as EPm/3(s) = 2178 is lower
than both EPm/p1

(s) and EPm/p2
(s).

Proposition 2. Let s be an m-sequence with P(s) = 2n − 1 = m, and let p be
a prime such that p divides m and ordp(2) = p − 1. Then the smallest prime
factor of m is 3 and EPm/3(s) < EPm/p(s).

Proof. The prime factors of m are exactly those primes q with ordq(2)|n. For
the particular p in the statement we have therefore (p − 1)|n. Since p is odd
(obviously 2 is never a factor of 2n−1) that means n is even. On the other hand,
ord3(2) = 2, so 3 must be a factor (the smallest one) of 2n − 1 whenever n is
even.

Using Corollary 6 the inequality becomes
(p−1

p−1
2

)
< 2p−2 which can be easily

proved.



The results of this section together with an exhaustive search computation
for all sequences up to length 16383 = 214− 1 led us to the following conjecture:

Conjecture 1. Let s be an m-sequence with P(s) = m, and p1 be the smallest
prime factor of m. Then if p2 is any prime prime factor of m, EPm/p1

(s) ≤
EPm/p2

(s).

Corollary 1 becomes:

Corollary 8. Let s be an m-sequence of period m and let p be the smallest prime
factor of m. If Conjecture 1 holds then RP(s) = EPm/p(s).

Using Theorem 5 we obtain therefore:

Corollary 9. Let s be an m-sequence of period m. If the smallest factor of m
is a Mersenne prime 2n

′ − 1 and Conjecture 1 holds then the minimum number

of errors needed to reduce the period of s is RP(s) = (m + 1) 2n
′−1−1
2n′

.

We will estimate now what proportion of m-sequences are covered by Corol-
lary 9, i.e. the proportion of Mersenne numbers that admit a Mersenne prime
as their smallest factor. As previously stated, for a given prime p, the Mersenne
numbers that are multiples of p are exactly those of the form 2v−1 with ordp(2)|v.
Table 1 contains ordp(2) for small values of p. Note that ord2n−1(2) = n when
2n − 1 is prime.

Prime p ordp(2)

3 2
5 4
7 3
11 10
13 12
17 8
19 18
23 11
29 28
31 5
37 36
41 20
43 14

Table 1. ordp(2) for small prime p

We can compute how many Mersenne numbers have a particular prime as
their smallest factor. Consider all sequences whose period length is divisible by
3. Since the ord3(2) = 2, this is half of all sequences, and whenever 3 divides the
period length, it must be the smallest factor (since the period length is odd).
Now consider all sequences whose period length is divisible by 5. The order of
2 mod 5 is 4, which implies that if 5 divides the period length, then so does 3,



and so 5 cannot be the smallest factor, and so we do not have to consider it. Now
consider all sequences whose period length is divisible by 7. Since ord7(2) = 3, we
have that 1/3 of all period lengths are divisible by 7. However, half of those are
divisible by 3 as well, in which case 7 will not be the smallest factor. Therefore,
1/6-th of all period lengths will have 7 as their smallest factor. We can continue
on in this way, using the inclusion-exclusion principle to determine how many
period lengths have p as their smallest prime factor, and so determine how many
sequences have the smallest factor of their period length as a Mersenne Prime.
The results of these calculations for the first few Mersenne primes are contained
in Table 2

Prime p Proportion of Mersenne numbers having p as smallest factor

3 1/2
7 1/6
31 2/33
127 16/483
Table 2. Proportion of Mersenne numbers with certain factors

Adding up these results allows us to say that the proportion of m-sequences
whose period length has a Mersenne prime as its smallest factor is at least
0.76, and that for each of these sequences, the period reduction value is at
least (P(s) + 1)/4 (achieved for smallest factor 3). Note that this is a large
proportion of errors, as usually the largest number of errors considered is P(s)/20
or possibly P(s)/10. Out of the smallest 200 lengths of m-sequences, 146 of them
have a Mersenne prime as their smallest factor, a proportion of 0.73. From a
cryptographic standpoint this implies that using m-sequences as primitives in a
cipher scheme to ensure a minimum period of the output or to provide a lower
bound on linear complexity is a very secure method by this measure, since an
unreasonably large number of the bits need to be changed to reduce the period
or the linear complexity at all.

We can also determine the proportion of sequences which have a period length
that is composite, but that does not have a Mersenne Prime as its smallest factor.
Since the proportion of sequences that have prime period length will become
arbitrarily small as the lengths considered increases, and we have seen that
at least 0.76 of all sequences have period length that is divisible by a Mersenne
Prime, the proportion that do not cannot be more than 0.24. Out of the smallest
200 lengths for m-sequences, 41 were composite with their smallest factor not a
Mersenne prime, a proportion of 0.21. The smallest of these is the m-sequence
of length 2047 = 211 − 1, and we have calculated by brute force that the period
reduction value is 869, which is a large proportion of the weight of the sequence,
which is 1024. The next smallest example will occur for the m-sequence of length
8388607 = 223 − 1.



4 Application to Grain and other Stream Ciphers

We will now apply our results to one of the eStream Candidates, namely Grain
[7]. Grain is composed of a linear feedback shift register and a non-linear feed-
back shift register, whose outputs are combined using a non-linear function. We
will be looking at the LFSR, which has 80 registers, and a primitive feedback
polynomial:

f(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80

Therefore it generates an m-sequence of period length 280−1(≈ 1.2∗1024) which
we will refer to as s. It would clearly require a very large amount of processing
power to compute by brute force either the k-error complexity or the k-error
period for s, even for small values of k, but we can use the results of this paper
to study the security of this sequence. To reduce the period of the sequence, we
need to know the factors of its period length:

280 − 1 = 3 ∗ 52 ∗ 11 ∗ 17 ∗ 31 ∗ 41 ∗ 257 ∗ 61681 ∗ 4278255361

= p1 ∗ p22 ∗ p3 ∗ p4 ∗ p5 ∗ p6 ∗ p7 ∗ p8 ∗ p9

We can see that the smallest factor (3) is a Mersenne Prime. Therefore if Con-
jecture 1 holds the period reduction value for s is 280/4 = 278 ≈ 3.0 ∗ 1023 and
by Proposition 1 this is also a lower bound on the complexity reduction value.
This is half the weight of s, and implies that the sequence is very secure from
this point of view. We also note that the LFSR primitive is included as part of
Grain not to provide complexity for the output, but to ensure that the output
of the cipher has a very high minimum period. Therefore, while we have not
calculated the complexity reduction value of s in this case it is more important
to calculate the period reduction value which we have done.

We can go further than this, and determine the number of errors required to
reduce the period to several different values. To reduce the period by 3, 15 or 31,
we apply Theorem 5, to reduce the period by 5 or 11, we apply Corollary 6 and
to reduce the period by 17 we apply Corollary 3 and we calculate EP(28−1)/17
from the decimation tables by brute force.

EP(280−1)/3(s) = (1/4)280 = 278 ≈ 3.0 ∗ 1023

EP(280−1)/5(s) = 280−1 − 280−5
(

4

2

)
= 10 ∗ 275 ≈ 3.8 ∗ 1023

EP(280−1)/11(s) = 280−1 − 280−11
(

10

5

)
= 386 ∗ 270 ≈ 4.6 ∗ 1023

EP(280−1)/15(s) = (7/16)(280) = 7 ∗ 276 ≈ 5.3 ∗ 1023

EP(280−1)/17(s) = 280−8EP(28−1)/17 = 102 ∗ 272 ≈ 4.8 ∗ 1023

EP(280−1)/31(s) = (15/32)(280) = 15 ∗ 275 ≈ 5.7 ∗ 1023



We will also briefly provide some results that can be obtained by applying
the results in this paper to other ciphers. Firstly, SSC2 [16] uses an LFSR to
generate an m-sequence of length 2127−1, which is prime. Therefore, by Theorem
1 the complete error linear complexity spectrum for this sequence is: (0, 127),
(2126−1, 1), (2126, 0) and provided Conjecture 1 holds the period reduction value
is 2126 − 1.

DECIMv2 [1] uses an LFSR to generate an m-sequence of length

2192 − 1 = 32 ∗ 5 ∗ 7 ∗ 13 ∗ 17 ∗ 97 ∗ 193 ∗ 241 ∗ 257 ∗ 641 ∗ 673 ∗ 65537 ∗
6700417 ∗ 22253377 ∗ 18446744069414584321

≈ 6.3 ∗ 1057

Using Theorem 5 to reduce the period by 3 or 7 and Corollary 6 to reduce
the period by 5 or 13 we can calculate that:

EP(2192−1)/3(s) = 2190 ≈ 1.6 ∗ 1057

EP(2192−1)/5(s) = 5 ∗ 2188 ≈ 2.0 ∗ 1057

EP(2192−1)/7(s) = (3/8) ∗ 2192 ≈ 2.4 ∗ 1057

EP(2192−1)/13(s) = 793 ∗ 2181 ≈ 2.4 ∗ 1057

If Conjecture 1 holds, the period reduction value for s is 2190.
LILI-128 [2] uses two LFSRs both of which generate m-sequences. The first

is of length
239 − 1 = 7 ∗ 79 ∗ 8191 ∗ 121369 ≈ 5.5 ∗ 1011

and so by Theorem 5 we can say that

EP(239−1)/7(s) = 239 ∗ (3/8) ≈ 2.1 ∗ 1011

The second is of length 289 − 1 which is prime, and so by Theorem 1 its error
complexity spectrum is (0, 89), (288 − 1, 1), (288, 0) and provided Conjecture 1
holds the period reduction value is 288 − 1.

5 Conclusions

In this paper we have studied the k-error linear complexity and k-error period of
m-sequences. We have shown that although the general problem of determining
these values is likely to be difficult, there are certain cases where we can find
results. We have fully solved the case where the period length of the m-sequence
is prime. We have shown how in general the problem of determining the period
reduction value can be reduced to an equivalent problem for smaller sequences
and we have provided a closed form expression for the number of errors needed to
reduce the period by a Mersenne number or by a prime p where ordp(2) = p−1.
Subject to a conjecture we have provided results for the number of errors needed
to reduce the period for a large proportion (76%) of m-sequences. Finally we have
applied these results to several stream cipher primitives, namely Grain, SSC2,
DECIMv2 and LILI-128.
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