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Abstract 

Obesity and insulin resistance are serious health concerns in children and adolescents 
(young people). Interventions to increase the potential for fat oxidation and improve 
insulin sensitivity could have widespread clinical relevance. Although exercise is often 
advocated for health, the factors implicated in the relationship between exercise, fat 
oxidation and insulin resistance are not well understood in young people. This thesis 
has investigated the effect of manipulations in exercise and breakfast on metabolism in 
young people, focusing on fat oxidation and postprandial blood glucose control. The 
first experimental study, Chapter 4, compared two different exercise protocols for 
estimating the intensity corresponding to maximal fat oxidation (Fatmax) in non-
overweight prepubertal children. A 3 min incremental protocol was recommended to 
provide an estimation of Fatmax using a wide range of intensities in this population. 
Using this protocol, Chapter 5 demonstrated that Fatmax was higher for treadmill 
compared with cycling exercise in pre- to early pubertal children. Furthermore, 
treadmill exercise resulted in higher rates of fat oxidation over a range of absolute and 
relative intensities and fat oxidation remained high over a wider range of intensities. 
Therefore, treadmill exercise (walking or slow running) is clearly preferential for 
promoting fat oxidation in this population. Subsequently, Chapter 6 examined the effect 
of mixed breakfast meals containing high (HGI) and low (LGI) glycaemic index 
carbohydrates on blood glucose, plasma insulin and fat oxidation in overweight and 
non-overweight girls. Breakfast GI did not affect fat oxidation during the postprandial 
rest period or subsequent exercise. However, the main finding of this study related to 
blood glucose; the higher blood glucose response following the HGI compared with 
LGI breakfast was more pronounced in the overweight girls. This suggested a reduced 
ability to cope with the metabolic demands of HGI breakfast consumption in 
overweight girls and highlighted that strategies to reduce insulin resistance in this 
population are required. Consequently, Chapter 7 investigated the effect of treadmill 
exercise at Fatmax performed 16 h prior to HGI breakfast consumption on blood 
glucose, plasma insulin and fat oxidation in overweight and non-overweight girls. 
Fatmax exercise reduced the postprandial insulin response in the non-overweight, but 
not the overweight, girls while blood glucose was unchanged in both groups. More 
encouragingly, fat oxidation was increased after exercise in both the overweight and 
non-overweight girls. Collectively, the four experimental studies within this thesis have 
demonstrated that treadmill exercise at Fatmax is an effective means of elevating fat 
oxidation both during and up to 16 h after exercise. When considering postprandial 
glucose and insulin responses to HGI breakfast consumption, LGI breakfasts should be 
recommended for overweight girls, whilst acute treadmill exercise at Fatmax can reduce 
postprandial insulin concentrations in non-overweight girls. Walking or slow running 
(Fatmax treadmill exercise) and LGI breakfast consumption may be best advocated in 
combination for promoting fat oxidation and improving postprandial blood glucose 
control in young people. These two simple lifestyle-related strategies may provide an 
effective, safe and attractive means for preventing and treating obesity, insulin 
resistance and related disorders. 
 
Key words: exercise, metabolism, substrate oxidation, fat oxidation, glucose, insulin, 
glycaemic index, overweight, children, adolescents. 
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Chapter 1 

 

Introduction 

 

Overweight and obesity among children and adolescents (young people) is currently a 

major global health concern (Ebbeling et al., 2002; Health Survey for England, 2009; 

Wang et al., 2011). Recent figures from the Health Survey for England (2009) indicate 

that around one third of 2 to 15 year olds are classified as either overweight or obese 

(31% boys and 28% girls) and around half of these young people are obese (16% of 

boys and 15% of girls). Whilst there have been alarming increases over the last few 

decades in England, numbers have stabilised since 2005, but remain a major concern. 

Obesity is associated with a range of adverse metabolic and cardiovascular health 

outcomes in young people, including insulin resistance, type 2 diabetes mellitus, 

dyslipidaemia and hypertension (Burke, 2006; Chiarelli and Marcovecchio, 2008). It is 

also clear that childhood obesity tracks into adulthood (Gordon-Larsen et al., 2004) and 

can have adverse consequences on mortality and morbidity in later life, including 

increased risk of premature mortality, cardiometabolic morbidity (diabetes, 

hypertension, ischaemic heart disease and stroke), asthma and polycystic ovary 

syndrome (Reilly and Kelly, 2011). Adiposity during childhood, therefore, represents 

an early beginning of a potentially lifetime pathological process. In addition, the 

combined medical costs associated with the treatment of these preventable conditions 

are a significant economic burden and set to increase (Wang et al., 2011). 

 

Insulin resistance represents a reduced ability to increase glucose uptake in response to 

a known quantity of exogenous or endogenous insulin and is the most common 

metabolic alteration related to obesity (Weiss and Kaufman, 2008). Population-based 

data has shown that insulin resistance is present in as many as 50% of obese adolescents 

(Lee et al., 2006). Evidence suggests that body fat contributes to the development of 

insulin resistance in young people; adiposity explains a large proportion of the variation 

in insulin resistance independent of age, sex and ethnicity (Lee et al., 2006) and insulin 

resistance increases in severity with the degree of adiposity (Weiss et al., 2004). Insulin 

resistance precedes the development of type 2 diabetes mellitus, with resultant high 

insulin levels and gradual development of impaired glucose tolerance (Weyer et al., 
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1999), which are also common in obese children and adolescents (Caprio et al., 1995; 

Sinha et al., 2002a). Moreover, insulin resistance represents an important link between 

obesity and other metabolic and cardiovascular complications in young people (Cruz et 

al., 2004; Lee et al., 2006; Srinivasan et al., 2002; Weiss and Kaufman, 2008). The 

manifestation of insulin resistance in prepubertal children with a relatively short 

duration of adiposity is particularly concerning for young people, since the development 

of insulin resistance appears to be independent of obesity duration (Caprio et al., 1996).  

 

The transition from adolescence to adulthood has been identified as a particularly high-

risk period for weight gain and the later development of metabolic complications (Artz 

et al., 2005; Gordon-Larsen et al., 2004). Independent of obesity, the pubertal transition 

from Tanner stage 1 to 3 is associated with a 32% reduction in insulin sensitivity with 

concomitant increases in fasting glucose, insulin and the acute response to glucose, 

which recovers by Tanner stage 5 (Goran and Gower, 2001). Therefore, insulin 

resistance associated with obesity may be further exacerbated by the influence of 

puberty. The presence of these conditions in young people is thus particularly 

concerning and a major effort to alleviate overweight and obesity in young people could 

have widespread clinical relevance. 

 

Various inter-related factors have contributed to the large multi-national increase in 

numbers of overweight and obese young people (Ebbeling et al., 2002). Despite this, it 

is generally agreed that a complex interplay between excessive energy intake and 

insufficient energy expenditure is at the root of the problem. Therefore, lifestyle 

modification involving a combination of dietary and exercise strategies is advocated for 

weight management (Frieden et al., 2010). Exercise reduces body fat by creating a 

negative energy balance, attenuating the loss of lean body mass and reducing the 

accumulation of visceral adipose tissue (Owens et al., 1999). Although dietary 

interventions are often more successful for reducing body mass, exercise may confer 

additional health benefits (Ben Ounis et al., 2009). Independent of changes in body 

mass and composition, exercise training improves insulin sensitivity (Bell et al., 2007) 

and reduces cardiovascular risk factors (Watts et al., 2004) in young people. Moreover, 

fitness appears to be a stronger independent predictor of insulin resistance than fatness 

in young people (Allen et al., 2007; Jim Nez-Pav et al., 2011) and is protective against 

morbidity and all-cause mortality in adults (Fogelholm, 2010). This suggests that 
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adequate levels of exercise and physical activity may counteract the negative influence 

of body fat on health. 

 

Collectively, the evidence suggests that efforts to reduce insulin resistance and other 

health markers in young people may be best focused on increasing physical activity 

rather than simply restricting energy intake to achieve weight loss. Moreover, it is 

widely recognised that obesity prevention provides a more effective and realistic 

solution than a cure (Frieden et al., 2010); thus, attention should be directed, not only to 

the obese, but also to overweight and non-overweight young people. It is crucial that 

these interventions are evidence-based, so continued research to enhance our 

understanding of exercise metabolism in young people is required.  

 

Carbohydrate (CHO) and fat are the major substrates that contribute to energy 

expenditure during rest and exercise. Mounting evidence suggests that the development 

of strategies to maximise fat oxidation in particular could facilitate weight loss and 

reduce insulin resistance. High fat oxidation rates can protect against long term weight 

gain (DeLany et al., 2006; Seidell et al., 1992) and exercise training–induced changes in 

fat oxidation predicted fat loss (Barwell et al., 2009). The link between fat oxidation 

and insulin resistance is currently a topic of great interest; an imbalance between free 

fatty acid (FFA) availability and skeletal muscle FFA uptake, storage and oxidation 

may lead to the accumulation of harmful intracellular FA metabolites that disrupt 

insulin signalling (Holloway et al., 2009). Moreover, the amount of lipid stored in the 

muscle as triacylglycerol is associated with insulin resistance and is increased in obese 

young people (Sinha et al., 2002b; Weiss et al., 2005). Conversely, exercise training 

(Bruce et al., 2006; Dubé et al., 2011) and acute exercise (Schenk and Horowitz, 2007) 

increase fat oxidation, reduce the accumulation of intracellular fatty acid metabolites 

and increase insulin sensitivity. These data highlight that the mechanism of improved 

insulin sensitivity following exercise is perhaps the result of changes in muscle 

substrate utilisation. Indeed, reviews of the area have concluded that obese individuals 

would benefit from interventions that increase the potential for oxidising fat (Holloway 

et al., 2009; Kelley, 2002).  

 

Several factors influence fat oxidation during exercise, including the exercise 

characteristics (intensity, mode, duration), individual participant characteristics (age, 
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sex, weight status) and pre-exercise diet. Among these factors, exercise intensity is of 

primary importance; fat oxidation increases from low to moderate intensities and then 

declines at higher intensities (Romijn et al., 1993). Much of the original work 

investigating fat oxidation during exercise can be criticised for estimating fat oxidation 

at only one or two intensities (Mácek et al., 1976; Rowland and Rimany, 1995). With 

this in mind, more recent work has estimated fat oxidation over a wide range of 

intensities using incremental exercise protocols and the relative exercise intensity that 

elicits the highest (‘maximal’) fat oxidation rate has been termed Fatmax (Achten et al., 

2002). Fatmax generally occurs between 30 and 60% peak oxygen uptake (V�O2peak) in 

young people and may be influenced by puberty (Riddell et al., 2008), body 

composition (Zunquin et al., 2009b) and exercise training (Brandou et al., 2003). 

Importantly, exercise training at Fatmax improves body composition, fat oxidation and 

several metabolic health markers in obese young people (Ben Ounis et al., 2008; 2009). 

However, several weaknesses may be highlighted in many studies that have identified 

Fatmax in young people, which have used a variety of exercise protocols and methods 

that have not been systematically evaluated. Furthermore, conclusions from these 

studies are often based on findings from boys and cycling exercise. It is clear that this 

research is still in its infancy and the effect of factors such as exercise mode, sex and 

cardiorespiratory fitness on Fatmax remain to be investigated. In particular, exercise 

mode is clearly an important modifiable factor for increasing individual fat oxidation. 

Further examination of the factors influencing Fatmax in young people could help to 

optimise interventions aimed at improving fat oxidation and health-related outcomes in 

young people.  

 

From a dietary perspective, the most effective way to enhance fat oxidation is to 

exercise in the fasted state (Horowitz et al., 1997). However, this would not be a 

practical or desirable option for many young people and humans are typically in the 

postprandial state. Furthermore, breakfast is often considered to be the ‘most important 

meal of the day’, providing a stable blood glucose concentration, which may 

subsequently influence appetite and energy reserves required for physical activity and 

cognitive tasks (Lien, 2007; Sandercock et al., 2010). Regarding health, there is 

convincing epidemiological evidence that it is important to not only encourage regular 

breakfast consumption (Barton et al., 2005; Timlin et al., 2008), but it is also critical to 

focus on breakfast composition (Deshmukh-Taskar et al., 2010; Djoussé and Gaziano, 
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2007). There has been great interest in the health benefits of breakfasts containing low 

glycaemic index (LGI) CHO for the prevention of obesity, diabetes and cardiovascular 

disease (Brand-Miller et al., 2009). The concept of glycaemic index (GI) was 

introduced as a method of classifying different CHO-rich foods according to their effect 

on postprandial glycaemia (Jenkins et al., 1981). The reduced postprandial glucose and 

insulin response to LGI compared with high GI (HGI) CHO consumption may have 

long term health implications for disease risk (Heine et al., 2004) and can promote 

satiety in young people, which has direct implications for weight management (Ludwig 

et al., 1999; Warren et al., 2003). Evidence in adults indicates that the attenuated 

glucose and insulin response to LGI breakfasts may also enhance postprandial fat 

oxidation during rest and subsequent exercise (Stevenson et al., 2009). This suggests 

that consuming a LGI breakfast may be a valuable compromise between promoting 

breakfast consumption and exercise in the fasted state to enhance fat oxidation in young 

people, but has yet to be investigated in this population. Furthermore, there is still a 

considerable degree of uncertainty regarding the effect of GI on fat oxidation even in 

the relatively well documented adult literature. The reduced glucose and insulin 

response, increased fat oxidation and prolonged satiety following LGI breakfast 

consumption may have clinical relevance for overweight and insulin resistant 

individuals (Holloway et al., 2009). Research of this nature may also be best focused 

adolescent girls, as physical activity levels are lower in girls compared with boys 

(Riddoch et al., 2007) and decline rapidly during adolescence (Armstrong and 

Welsman, 2006) and girls are less likely to eat breakfast daily (Timlin et al., 2008). 

 

Similar to LGI breakfast consumption, an acute bout of exercise appears to be another 

effective strategy to reduce postprandial insulin concentrations and increase fat 

oxidation in adults, although glucose concentrations often remain unchanged (Burton et 

al., 2008; Kokalas et al., 2005). This suggests that long term training adaptations are not 

necessarily required to improve these metabolic health markers. Several studies in 

young people have shown improved insulin sensitivity and fat oxidation after exercise 

training (Bell et al., 2007; Ben Ounis et al., 2008; 2009; Nassis et al., 2005), but the 

acute effect of exercise remains to be investigated . Importantly, examining these acute 

responses may have direct relevance for those who do not participate in regular exercise 

training. 
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To summarise, the health advantages of enhancing fat oxidation through exercise and 

potential interactions with insulin resistance could have valuable implications for the 

management of obesity, insulin resistance and conditions in which fat oxidation is 

disturbed. However, much of this evidence is based on findings from adults. Despite 

well recognised differences in metabolism between children and adults (Boisseau and 

Delamarche, 2000), the number of experimental studies investigating exercise 

metabolism in young people is relatively small. This thesis bridged some of these gaps 

in the literature by enhancing our understanding of exercise, fat oxidation and insulin 

resistance in young people and has, ultimately, provided valuable evidence to inform 

lifestyle interventions aimed at improving these health markers. 

 

1.1 Thesis structure and experimental aims  

The overall theme of this thesis was to investigate the effect of manipulations in 

exercise and breakfast on metabolism in young people, focusing on fat oxidation, 

glucose and insulin. Chapter 2 comprehensively and critically reviewed the literature 

that directly relates to the research line of enquiry, providing a basis and rationale for 

the experimental chapters. Chapter 3 has then provided a brief overview of the general 

methods used throughout the experimental chapters that follow to reduce unnecessary 

replication. The first two experimental chapters focused on fat oxidation during exercise 

in children. Chapter 4 examined the effect of exercise intensity on fat oxidation and 

compared two protocols for estimating Fatmax, as an examination of the literature 

revealed no consensus had been reached on the exercise protocol that should be used to 

estimate Fatmax in young people. The effect of exercise mode on Fatmax and fat 

oxidation was then examined in Chapter 5 by comparing fat oxidation over a range of 

exercise intensities during treadmill and cycling exercise. Subsequently, Chapter 6 

addressed the effect of pre-exercise CHO consumption on fat oxidation, by specifically 

comparing the effect of HGI and LGI mixed breakfast meals on metabolism in 

overweight and non-overweight girls. Blood glucose and plasma insulin were 

determined primarily to detect potential differences between the HGI and LGI 

breakfasts in this study, but also highlighted that attention should be focused on 

improving the exaggerated glucose and insulin responses in overweight girls following 

HGI breakfast consumption. Consequently, Chapter 7 examined the acute effect of 

Fatmax exercise on glucose, insulin and fat oxidation following HGI breakfast 
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consumption in overweight and non-overweight girls. Finally, the findings were 

discussed collectively in Chapter 8. 

 

The specific aims of the experimental studies presented were: 

Chapter 4: To compare Fatmax and maximal fat oxidation estimated using a 3 min 

incremental cycling protocol and a protocol consisting of several 10 min constant work 

rate exercise bouts in children.  

Chapter 5: To compare Fatmax and fat oxidation over a range of intensities between 

treadmill and cycling exercise in children. 

Chapter 6: To examine the effect of breakfast glycaemic index on glucose, insulin and 

fat oxidation during rest and subsequent exercise in overweight and non-overweight 

girls. 

Chapter 7: To examine the acute effect of Fatmax exercise on glucose, insulin and fat 

oxidation in overweight and non-overweight girls. 
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Chapter 2 

 

Review of Literature 

 

This chapter reviews and critically examines the literature that has investigated the 

impact of exercise on metabolism in young people, focusing on fat oxidation, glucose, 

insulin. The first section provides an overview of the interplay between fat oxidation, 

obesity and insulin resistance. This is followed by a comprehensive discussion of the 

factors influencing fat oxidation during exercise in young people. Subsequently, the 

effect of breakfast consumption on metabolism is discussed, leading to a more in-depth 

review of the effect of GI on glucose, insulin and fat oxidation during rest and exercise. 

The final section of this chapter reviews the literature that has examined the acute effect 

of exercise on glucose, insulin and fat oxidation. 

 

2.1 Fat oxidation, obesity and insulin resistance 

2.1.1 Obesity 

The partitioning of dietary fat between storage and oxidation may be important for 

weight management. Several lines of evidence suggest that low rates of fat oxidation 

can predispose individuals to weight gain. In adults, low rates of resting fat oxidation in 

the fasted state (Marra et al., 2004; Seidell et al., 1992) and over 24 hours (Zurlo et al., 

1990) predicted long-term weight gain and also weight regain following weight loss 

(Froidevaux et al., 1993). Furthermore, there is evidence that obese (Kim et al., 2000) 

and formerly obese (Ranneries et al., 1998) adults have reduced rates of fat oxidation. 

While the impaired ability to oxidise fat during fasting conditions in obese adults does 

not improve following weight reduction (Berggren et al., 2008; Kelley et al., 1999), just 

10 consecutive days of exercise training can increase fat oxidation in obese, formerly 

obese and non-obese adults (Berggren et al., 2008). Although evidence in young people 

is limited to just a few studies, longitudinal findings in 9 to 11 year old children showed 

that fat oxidation rates predicted fat gain two years later (DeLany et al., 2006). 

Nutritionally stunted children, a population at increased risk of overweight, also have 

impaired fasting and postprandial fat oxidation (Hoffman et al., 2000).  
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It is not clear whether young people who are already overweight or obese exhibit a 

reduced capacity for fat oxidation. During resting conditions, fat oxidation is elevated 

when expressed in absolute terms, similar when expressed per kg fat free mass (Maffeis 

et al., 1995; McMurray and Hosick, 2011; Zunquin et al., 2009b) and may be higher 

(Paz Cerezo et al., 2003) or similar (Butte et al., 2007) when expressed as a proportion 

of energy expenditure in overweight/obese compared with non-overweight young 

people. Obese young people, however, appear to have a reduced ability to oxidise fat 

during exercise (Lazzer et al., 2007; Zunquin et al., 2009b), which is discussed more 

extensively in section 2.5.3. A recent study concluded that, rather than increasing fat 

oxidation, it appears that overweight young people increase CHO oxidation to meet 

their increased energy requirements (McMurray and Hosick, 2011). Furthermore, their 

ability to be ‘metabolically flexible’ may be impaired (Aucouturier et al., 2011). 

Metabolic flexibility describes the ability to adapt substrate oxidation to availability and 

is perhaps best illustrated by the ability of skeletal muscle to switch between fat 

oxidation in the fasted state to CHO oxidation during insulin stimulated periods (Kelley 

and Mandarino, 2000). Signs of metabolic inflexibility in obese young people include a 

failure to stimulate glucose oxidation and suppress fat oxidation following insulin 

infusion (Caprio et al., 1995) and to increase insulin sensitivity during a high-CHO diet 

(Sunehag et al., 2005). Fasting hyperinsulinaemia (Odeleye et al., 1997) and the 

inability to adapt metabolically to changes in dietary macronutrient content (Eckel et 

al., 2006; Flatt, 1996) may predict further weight gain in these young people.  

 

2.1.2 Insulin resistance 

Mounting evidence has shown a strong association between the accumulation of fat 

within skeletal muscle and insulin resistance; this is currently a topic of great interest 

and has been reviewed by various authors (Eckardt et al., 2011; Holloway et al., 2009; 

Kelley et al., 2002a). Although much of this evidence is based on studies with adults 

due to the use of biopsy samples to measure intramuscular triacylglycerol (IMTG), 

intramyocellular lipid (IMCL) and extramyocellular lipid (EMCL), nuclear magnetic 

resonance spectroscopy techniques have been used in a few studies in young people. 

Sinha et al. (2002b) showed that both IMCL and EMCL content were elevated in obese 

compared with non-obese adolescents. Furthermore, IMCL content was correlated with 

waist circumference, body mass index (BMI) and fasting glucose:insulin ratio in 

healthy prepubertal boys (Ashley et al., 2002) and was closely linked to the 
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development of insulin resistance in obese prediabetic youth (Weiss et al., 2003). 

Interestingly, the relationship between IMCL and insulin resistance may be independent 

of adiposity; IMCL levels are elevated in obese insulin resistant adolescents (Weiss et 

al., 2005) and obese children with impaired glucose tolerance (Weiss et al., 2003) 

compared with their insulin sensitive/glucose tolerant obese counterparts. Furthermore, 

IMCL is elevated in lean insulin resistant offspring of type 2 diabetic adults (Jacob et 

al., 1999).  

 

The observation that lean endurance-trained athletes have both high levels of IMTG and 

insulin sensitivity, often referred to as the athlete’s paradox (Goodpaster et al., 2001), 

suggests the relationship between IMTG content and insulin resistance is not functional. 

Rather, IMTG provides a source for the generation of harmful fatty acid derived 

metabolites, including long-chain acyl CoA, diacylglycerol and ceramide, in skeletal 

muscle, which can disrupt the insulin-signalling pathway and induce insulin resistance 

(Eckardt et al., 2011; Itani et al., 2002). Thus, it appears that IMTG accumulation is 

perhaps a surrogate marker for other lipid species having a more direct effect on insulin 

action in obese and insulin resistant individuals, where it represents a dysfunction in fat 

metabolism (van Loon and Goodpaster, 2006). Conversely, greater IMTG storage in the 

trained state represents an adaptive response to endurance training, allowing a greater 

contribution of the IMTG pool as a substrate source during exercise (Bergman et al., 

2010; Goodpaster et al., 2001; Schrauwen-Hinderling et al., 2003). Indeed, 

enhancements in insulin sensitivity following training occur with concomitant increased 

IMTG stores, reduced fatty acid metabolite accumulation and increased fat oxidation in 

adults (Bruce et al., 2006; Dubé et al., 2011).  

 

The accumulation of IMTG and fatty acid metabolites may result from a combination of 

increased muscle FFA uptake and/or decreased fat oxidation in obese and insulin 

resistant individuals. Although the transport of FFA into the muscle is increased in 

obesity (Bonen et al., 2004), the capacity for fat oxidation appears to be paramount 

(Kelley et al., 1999). High resting fat oxidation rates may protect against insulin 

resistance in obese young people; fat oxidation was higher in obese insulin sensitive 

compared with obese insulin resistant adolescents, despite similar adiposity (Weiss et 

al., 2005). Furthermore, there is considerable evidence that metabolic inflexibility, 

which reflects a dysfunction in fat metabolism, is involved in the development of 
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insulin resistance in obese adults (Kelley and Mandarino, 2000) and some evidence in 

young people (Aucouturier et al., 2011). Indeed, obese insulin resistant compared with 

obese insulin sensitive adolescents have higher IMCL levels, reduced glucose disposal 

rate and a blunted suppression of fat oxidation during hyperinsulinaemia (Weiss et al., 

2005). 

 

Collectively, the evidence suggests a link between fat oxidation, insulin resistance and 

weight control in both young people and adults. Consequently, interventions to increase 

fat oxidation and thus improve the balance between FFA uptake and oxidation could 

have important health implications. Regular exercise may be a promising strategy to 

increase the ability for fat oxidation, reduce the accumulation of fatty acid metabolites 

and protect against insulin resistance (Bruce et al., 2006; Dubé et al., 2011). 

 

2.2 Skeletal muscle fat metabolism  

2.2.1 Regulation of skeletal muscle fat metabolism during exercise 

Fat and CHO are the major energy substrates during exercise (Romijn et al., 1993). The 

regulation of skeletal muscle fat metabolism is complex and multifactorial, with 

different mechanisms dominating at different exercise intensities. The potential sites 

that control skeletal muscle fat metabolism and oxidation during exercise include 

adipose tissue lipolysis and FFA delivery to the muscle, FFA transport across the 

muscle membrane, IMTG lipolysis and FFA transport across the mitochondrial 

membranes. It should be noted that the mechanisms proposed to control fat oxidation 

during exercise are largely based on studies with adults due to the invasive nature of the 

techniques employed, including arterial cannulation (Costill et al., 1977; Romijn et al., 

1993) and muscle biopsies (Kiens et al., 1997). Despite considerable progress during 

recent years, the factors controlling fat oxidation during exercise remain unclear and 

have not been investigated to any significant extent in young people. 

 

Adipose tissue lipolysis and FFA delivery to the muscle: Long-chain FFAs from 

adipose tissue provide a major source of fat for the muscle during exercise. Hormone-

sensitive lipase (HSL) is the rate-limiting enzyme involved in lipolysis; FFAs are then 

released from adipose tissue, bound to albumin in the blood and transported to the 

muscle. During exercise, elevated HSL activation and blood flow increases FFA 

delivery to the muscle and this increased FFA availability controls the up-regulation of 
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fat oxidation from rest to low and moderate intensity exercise (Costill et al., 1977; 

Romijn et al., 1993). During high intensity exercise, lactate accumulation may inhibit 

lipolysis (Boyd et al., 1974), although this has not always been confirmed (Trudeau et 

al., 1999). Nevertheless, elevating FFA availability during high intensity exercise does 

not increase fat oxidation to the same level seen at moderate intensity exercise (Romijn 

et al., 1995). This suggests that FFA availability only partially controls the down-

regulation of fat oxidation during high intensity exercise, thus mechanisms within the 

skeletal muscle must also be involved.  

 

FFA transport across the muscle membrane: The uptake of FFAs into the muscle 

likely involves both passive diffusion and protein-mediated transport. Over the last few 

years, knowledge of the regulation of cellular FFA uptake has risen dramatically. There 

is now evidence that the majority of FFAs enter the muscle via plasma membrane-

associated proteins, most notably fatty acid translocase (FAT)/CD36, plasma 

membrane-bound fatty acid binding protein (FABPpm) and, possibly, fatty acid 

transport protein (FATP) (Spriet, 2002). More specifically, FAT/CD36 (Bonen et al., 

2000) and FABPpm (Han et al., 2007) are acutely translocated from an intracellular 

pool to the plasma membrane during muscular contractions, thus increasing FFA 

transport across the plasma membrane and into the muscle cell. This suggests these 

transporter proteins are particularly relevant when considering exercise.  

 

IMTG lipolysis: A second major source of fat during exercise is the release of FFAs 

from IMTG (Watt et al., 2002). Although the mechanisms regulating IMTG lipolysis 

are largely unknown, HSL has been identified in skeletal muscle (Langfort et al., 1999; 

2000) and is activated during moderate intensity exercise, partly due to stimulation by 

adrenaline (Kjaer et al., 2000). Muscle HSL activity, therefore, appears to be another 

important regulator of exercise fat oxidation. 

 

FFA transport across the mitochondrial membranes: Fatty acid binding proteins 

chaperone FFAs in the cytoplasm to the surface of the outer mitochondria membrane. 

The carnitine palmitoyltransferase (CPT) complex, consisting of CPT-1, acylcarnitine 

translocase and CPT-2, regulates the transport of FFAs into the mitochondria. CPT-1, 

located on the outer mitochondrial membrane, catalyses the transfer of long chain fatty 

acyl groups from coenzyme (CoA) to carnitine. The generated acylcarnitine then 
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permeates the inner membrane, via acylcarnitine/carnitine translocase. CPT-2, located 

on the inner mitochondrial membrane, catalyses the transfer of the acyl group from 

carnitine to CoA. The re-formed acyl-CoA enters the ß-oxidation pathway, is further 

metabolised in the tricarboxylic acid (TCA) pathway and, finally, adenosine 

triphosphate (ATP) is produced in the electron transport chain in the process of 

oxidative phosphorylation (McGarry and Brown, 1997).  

 

CPT-1 is considered to be the rate-limiting enzyme involved in FFA transport into the 

mitochondria and numerous regulators of CPT-1 activity have been proposed. Malonyl-

CoA reversibly inhibits CPT-1 activity (Berthon et al., 1998; Starritt et al., 2000) and 

evidence in rodent muscle suggests a role for malonyl-CoA in the suppression of fat 

oxidation at high exercise intensities (Rasmussen et al., 1997). Malonyl-CoA is formed 

from acetyl-CoA, a reaction catalysed by acetyl-CoA carboxylase. Increased acetyl-

CoA and acetylcarnitine concentrations during high intensity exercise (Odland et al., 

1998) may thus increase malonyl-CoA (Saddik et al., 1993) and reduce fat oxidation. 

However, studies in humans have failed to provide evidence that malonyl-CoA is an 

important regulator of exercise fat metabolism (Odland et al., 1996; 1998). Despite this 

lack of evidence relating to exercise intensity, the sensitivity of CPT-1 to malonyl-CoA 

is increased in trained compared with untrained skeletal muscle (Starritt et al., 2000). 

Further, CPT-1 may bind to malonyl-CoA more efficiently at low pH levels (Mills et 

al., 1984), which may contribute to the down-regulation of fat oxidation at high exercise 

intensities when hydrogen ion accumulation reduces muscle pH. Moreover, a direct 

effect of reduced muscle pH on fat oxidation has been proposed; even small decreases 

in pH reduced CPT-1 activity in humans (Starritt et al., 2000). Reduced free carnitine 

availability may also be limiting to the CPT-1 reaction during high intensity exercise 

when glycolytic flux and acetyl-CoA formation are high, and thus contribute to 

reductions in fat oxidation (Stephens et al., 2007, van Loon et al., 2001). In addition to 

CPT-1, more recent evidence has shown that fatty acid transporter proteins are present 

on the mitochondrial membrane and are involved in the transport of FFA into the 

mitochondria, as well as the muscle. There is evidence that FAT/CD36 facilitates FFA 

mitochondrial transport, whereas the role of FABPpm appears to be related to 

transporting reducing equivalents into the mitochondrial matrix (Holloway et al., 2006; 

2007).  
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2.2.2 Assessment of fat oxidation: indirect calorimetry 

The non-invasive nature of indirect calorimetry is particularly attractive for the 

estimation of fat oxidation in young people. Indirect calorimetry relies on the 

assumption that oxygen consumption (V�O2) and carbon dioxide production (V�CO2) 

reflect gas exchange at the tissue level and that a physiological steady state has been 

reached (Frayn, 1983). However, V�CO2 increases due to the buffering of H+, resulting 

in non-oxidative V�CO2 production during high intensity exercise (Wasserman, 1984) 

and the respiratory exchange ratio (RER) may reflect the state of respiration rather than 

gas exchange at the muscle during hyperventilation and hypoventilation. Indirect 

calorimetry also assumes that other metabolic processes involving oxygen consumption 

and carbon dioxide production are negligible, such as gluconeogenesis, lipogenesis and 

ketogenesis (Frayn, 1983). Stable isotope tracer techniques represent another promising 

method of non-invasively estimating substrate oxidation in young people. In more 

recent years, this method has been used in conjunction with indirect calorimetry to 

estimate endogenous and exogenous substrate oxidation rates by measuring labelled 

CO2 in exhaled air (Riddell et al., 2000; Timmons et al., 2003; 2007a). 

 

Despite the issues associated with indirect calorimetry, under well-controlled steady 

state conditions the RER compares well with gas exchange at the tissue level 

(respiratory quotient, RQ) (Jansson and Kaijser, 1987) and can be used to estimate 

substrate oxidation. Romijn et al. (1992) found that indirect calorimetry was a valid 

measurement of substrate oxidation up to 80 to 85% V�O2peak when compared with a 

breath 13C/12C ratio method in five well-trained male cyclists, although more recent 

findings indicate that indirect calorimetry and stable isotope techniques started to 

deviate from 75% V�O2peak (Rowlands and Jeukendrup, 2004). Unfortunately, a similar 

exercise intensity does not appear to have been identified in young people. However, as 

fat oxidation tends to peak at low to moderate exercise intensities in children and 

adolescents (Brandou et al., 2003; Riddell et al., 2008), it is unlikely that fat oxidation 

will be estimated at intensities exceeding 75% V�O2peak in studies examining exercise 

fat oxidation, and particularly Fatmax, in this population. 

 

2.3 Exercise intensity and fat oxidation: the concept of Fatmax 

Exercise intensity is one of the primary factors influencing substrate oxidation during 

exercise. As exercise intensity increases, there is a progressive increase in the relative 
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contribution of CHO and decrease in the relative contribution of fat oxidation to energy 

expenditure (Brooks and Mercier, 1994). In absolute terms, CHO oxidation increases 

proportionally with exercise intensity, whereas fat oxidation increases from low to 

moderate intensities and then declines at higher intensities (Achten et al., 2002; Romijn 

et al., 1993). The exercise intensity that corresponds to maximal fat oxidation (MFO) 

has been termed Fatmax (Achten et al., 2002) and is typically expressed as % V�O2peak, 

as displayed in Figure 2.1.  

 

 
Figure 2.1 Fatmax and maximal fat oxidation (MFO) 

 

Fat oxidation during exercise has traditionally been assessed using a small number of 

prolonged steady state exercise bouts to ensure the valid use of indirect calorimetry in 

adults (Friedlander et al., 1998; Romijn et al., 1993) and young people (Mácek et al., 

1976; Rowland and Rimany, 1995). Using this method, comparative studies have 

determined the influence of age (Martinez and Haymes, 1992; Rowland and Rimany, 

1995), exercise mode (Mácek et al., 1976) and training status (Duncan and Howley, 

1998) on fat oxidation in young people. However, the use of a small number of exercise 

intensities used to estimate fat oxidation does not allow for a detailed examination of 

the effect of exercise intensity on fat oxidation and thus a precise estimation of Fatmax. 

Moreover, findings from comparative studies using a limited range of intensities may 

be confounded for failing to account for possible interactions with intensity. 
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Consequently, Achten et al. (2002) developed and validated a protocol to assess fat 

oxidation over a wide range of exercise intensities in trained men. Fat oxidation during 

an incremental exercise test with 3 min stages was compared with isolated exercise 

bouts performed at similar intensities. This comparison was required since there are two 

potential issues with a 3 min incremental protocol: (1) whether a physiological steady 

state is attained before the onset of the sampling period; and (2) whether there is a 

residual effect from stage to stage as the increments progress that influence subsequent 

fat oxidation estimations. Using the data from the 3 min incremental protocol, the 

relationship between fat oxidation and exercise intensity was determined and Fatmax 

was estimated subsequently for each individual. It was concluded that an incremental 

exercise test on a cycle ergometer starting at 95 W with 35 W increments every 3 min 

to exhaustion can be used for the determination of Fatmax and MFO in trained men, 

where Fatmax occurred at 64% V�O2peak. In addition to the identification of Fatmax, 

the 3 min incremental exercise test was used to estimate the range of intensities where 

fat oxidation was within 10% of maximum, which was termed the 10% Fatmax zone 

(Achten et al., 2002). This spanned a relatively large range of intensities between 55 

and 72% V�O2peak. However, a potential flaw of this study was that fat oxidation was 

estimated from average V�O2 and V�CO2 values from the final 2 min of each 3 min 

exercise stage, whereas a steady state is normally reached in 2 to 3 min in adults (Xu 

and Rhodes, 1999). It is, therefore, possible that not all participants reached a steady 

state after the first minute of each stage, questioning the validity of indirect calorimetry 

(Frayn, 1983). It should also be highlighted that comparisons of fat oxidation between 

the two protocols were only made at the group level and examination of within-

participant random variability between the measures would have been more insightful 

(Bland and Altman, 1986; Ludbrook, 1997).  

 

The 3 min incremental protocol is desirable for practical reasons and allows the 

estimation of fat oxidation across a wide range of exercise intensities compared with the 

use of prolonged isolated exercise bouts. Consequently, this protocol has been adapted 

for other studies with adults (Venables et al., 2005) and children (Riddell et al., 2008). 

However, the conclusion that the 3 min protocol provides a valid estimation of Fatmax 

reached by Achten et al. (2002) was challenged more recently (Meyer et al., 2007; 

2009). Meyer et al. (2007) reported that Fatmax could not be determined using five 1 

hour exercise bouts at different intensities below the individual anaerobic threshold 
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(IAT), as there was no significant difference in fat oxidation between exercise 

intensities for the group. However, fat oxidation did begin to decline at the highest 

exercise intensity and the inclusion of intensities above IAT may be required to elicit a 

significant decline in fat oxidation. Other potential limitations of this study should also 

be highlighted; daily fluctuations in RER may have influenced comparisons in fat 

oxidation between the 1 hour exercise bouts performed on 5 different days (Bagger et 

al., 2003), participants were not fasted and CHO ingestion has a profound effect on 

Fatmax and fat oxidation (Achten and Jeukendrup, 2003b), the group rather than 

individual level analysis and small sample size (10 male athletes) may have limited the 

ability to detect significant differences in fat oxidation and, finally, one of the men was 

not able to complete the highest intensity for 1 h due to exhaustion, suggesting the 

protocol may be inappropriate for other groups, such as children and individuals with 

low fitness levels.  

 

In a follow-up study, this group also questioned the reliability of Fatmax estimated 

using a 6 min incremental exercise protocol, reporting very large intra-individual 

variability in Fatmax, expressed as V�O2 (L·min-1) (Meyer et al., 2009). The 

combination of only five exercise stages and a subjective visual interpretation of the 

data may have precluded a precise estimation of Fatmax and contributed to a large 

proportion of the observed intra-individual variability. When using a 3 min incremental 

cycle test to estimate Fatmax, the coefficient of variation (CV) was 9.6% (Achten and 

Jeukendrup, 2003a) and a moderate test–retest reliability (r=0.60) was reported (Glass 

et al., 1999). However, using a bivariate relationship to quantify reliability does not 

account for systematic bias in the paired measurements and may depend on the range of 

values within the sample (Bates et al., 1996; Bland and Altman, 1995). 

 

2.4 Protocols to estimate Fatmax in young people 

Since the work by Achten et al. (2002), a variety of protocols have been used to 

estimate Fatmax in young people. The majority of studies have used incremental 

exercise tests, with stages of 3 (Riddell et al., 2008), 3.5 (Zunquin et al., 2009a; 2009b), 

4 (Aucouturier et al., 2009; Lazzer et al., 2010), 5 (Lazzer et al., 2007) and 6 (Brandou 

et al., 2006) min. However, adapting a protocol validated using trained adult male 

cyclists (Achten et al., 2002) may not be appropriate for other populations, including 

young people. Although 3 min stages were suggested to be too short to estimate Fatmax 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bagger%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bagger%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Jeukendrup%20AE%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Achten%20J%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jeukendrup%20AE%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract�
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in sedentary adults, an average underestimation of 2 W is unlikely to have any 

meaningful practical implications (Bordenave et al., 2007) and others have considered a 

mean step-increment of 26 W to be ‘small’ when estimating Fatmax (Meyer et al., 

2009). To the author’s knowledge, no studies have assessed potential differences in 

Fatmax between the different protocols employed in young people. Nevertheless, V�O2 

kinetics research has provided evidence that children reach a steady state faster than 

adults (Fawkner et al., 2002), suggesting that indirect calorimetry is valid earlier after 

exercise onset and supporting the use of shorter stages in this population. Furthermore, 

prior moderate or heavy intensity exercise does not affect the V�O2 kinetic response to 

subsequent moderate exercise in adults (Burnley et al., 2000; Gerbino et al., 1996), 

whilst prior heavy intensity exercise may even speed V�O2 kinetics during heavy 

intensity exercise (Gerbino et al., 1996). This implies that early exercise stages will not 

affect the time taken to reach a steady state during an incremental exercise test, 

although these studies used two square wave transitions separated by a 6 min rest period 

rather than an incremental protocol. Studies in children do not appear to have examined 

the potential residual effect of earlier exercise stages on fat oxidation during later 

exercise stages. In adults, prior bouts of exercise may increase fat oxidation (Goto et al., 

2007) and adipose tissue lipolysis (Stich et al., 2000) during subsequent exercise when 

compared with a single bout of prolonged exercise. Also, warm-up influences the 

metabolic response during a subsequent exercise bout, possibly due to increased blood 

flow and oxygen delivery to active muscles (Robergs et al., 1991), increased muscle 

temperature (Starkie et al., 1999) and lower blood and muscle lactate accumulation 

(Gray et al., 2002).  

 

Alternatively, other studies in young people have continued to use a more traditional 

approach of isolated exercise bouts lasting 6 min (Stephens et al., 2006) and 8 to 10 min 

(Maffeis et al., 2005) with standardised recovery periods to assess fat oxidation. The 

use of longer duration exercise bouts with rest periods increases the likelihood of 

attaining a steady state and may reduce the potential residual effect of previous exercise 

stages on fat oxidation. However, the use of this type of protocol has only allowed for 

the assessment of fat oxidation at three (Maffeis et al., 2005) and five (Stephens et al., 

2006) different exercise intensities. Although an understanding of the relationship 

between exercise intensity and fat oxidation may be possible, the small number of 

different exercise intensities precludes a precise estimation of Fatmax.  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Goto%20K%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Gray%20SC%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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A general issue with the protocols used to estimate fat oxidation is that during very 

prolonged exercise fat oxidation rates increase with time and are, therefore, unlikely to 

attain a ‘true’ steady state in both children (Delamarche et al., 1992; Timmons et al., 

2003) and adults (Romijn et al., 1992). Therefore, it should be noted that fat oxidation 

values estimated from protocols using short stages will likely underestimate those 

during prolonged exercise.  

 

2.4.1 Determination of V�O2peak 

The accurate determination of V�O2peak is essential for a meaningful expression of 

Fatmax, a parameter invariably expressed relative to this measurement. Several studies 

have used progressive exercise tests lasting 8 to 12 min to determine V�O2peak when 

assessing Fatmax in young people (Aucouturier et al., 2009; Maffeis et al., 2005; 

Stephens et al., 2006), whereas others have determined fat oxidation and V�O2peak 

during the same test lasting around 30 min in the fasted (Riddell et al., 2008) and non-

fasted (Zunquin et al., 2009a; 2009b) state. It is possible that the longer stage and 

overall exercise duration in the latter studies resulted in blunted V�O2peak values, 

although evidence in this area is unclear (Bentley et al., 2007). In addition, examination 

of maximal effort criteria suggests that V�O2peak may not have been reached 

consistently in some studies (Aucouturier et al., 2009; Riddell et al., 2008; Stephens et 

al., 2006). 

 

Many of the studies that have estimated Fatmax in obese young people have not 

measured V�O2peak directly, but have provided values based on the predictive equations 

of Wasserman et al. (1987) (Brandou et al., 2003; 2005; 2006) and the V�O2-heart rate 

relationship up to theoretical maximum heart rate (HRmax) and American College of 

Sports Medicine prediction equations (ACSM, 1995) (Lazzer et al., 2007; 2008). The 

theoretical maximal aerobic power (Wmaxth) has also been calculated using what 

Brandou et al. (2003; 2005; 2006) described as the Tanner equation, although it has not 

been possible to locate the original reference for this equation. However, Aucouturier et 

al. (2009) reported that the predictive equations of Wasserman et al. (1987) and the 

ACSM prediction equations overestimated V�O2peak compared with V�O2peak values 

obtained using a progressive incremental exercise test in obese young people. 

Consequently, 95% limits of agreement demonstrated that Fatmax was underestimated 

when expressed as % V�O2peak determined using the Wasserman et al. (1987) equations 
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(% V�O2peakW) and the ACSM prediction equations (% V�O2peakACSM). Agreement 

between methods was also poor when comparing Fatmax expressed relative to 

measured (% Wmaxm) and theoretical (% Wmaxth) maximal aerobic power. Despite these 

concerns, it should be noted that the direct measurement of V�O2peak may not be 

feasible in certain populations and within study comparisons in Fatmax may not be 

influenced when measuring V�O2peak indirectly providing the error is consistent. 

 

2.4.2 Identification of Fatmax 

Fatmax is typically identified using a graph of fat oxidation vs. exercise intensity and 

curve-fitting techniques (Achten et al., 2002). The start of the sampling period for 

V�O2 and V�CO2 used to estimate fat oxidation at each exercise intensity should be 

considered to assess whether the values used to estimate fat oxidation reflect a 

physiological steady state. Studies in young people have used respiratory values from 

2.5 to 3 min (Riddell et al., 2008), 3 to 3.5 min (Zunquin et al., 2009a; 2009b), 3 to 4 

min (Aucouturier et al., 2009), 3 to 6 min (Brandou et al., 2005; 2006), 4 to 5 min 

(Lazzer et al., 2007), 5 to 6 min (Stephens et al., 2006) and 5 to 10 min (Maffeis et al., 

2005) of exercise. Typically, it has been assumed that a steady state has been reached 

by the beginning of these sampling periods (Riddell et al., 2008) and only rarely have 

measurements been taken to confirm the attainment of a steady state in RER (Stephens 

et al., 2006). 

 

Although a clear advantage of an incremental test is the estimation of fat oxidation over 

a large number of intensities, studies have often not stated the number of exercise 

intensities used to derive the curve for the estimation of Fatmax (Riddell et al., 2008; 

Zunquin et al., 2009a; 2009b). Some studies using incremental exercise tests have 

estimated Fatmax using only five intensities (Brandou et al., 2003; 2006; Lazzer et al., 

2007), which is no more than when using isolated exercise bouts (Stephens et al., 2006). 

Furthermore, exercise intensities have often been restricted to up to 60% V�O2peak 

(Brandou et al., 2003; Zunquin et al., 2009a; 2009b), although Fatmax may have 

occurred out of this range (>60% V�O2peak) in some individuals due to high inter-

individual variability in Fatmax values (Riddell et al., 2008). In addition, only one study 

using curve-fitting techniques has reported r2 values (Riddell et al., 2008) to provide an 

indication of the goodness of the fit. 
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In studies using isolated exercise bouts, the highest rate of fat oxidation and 

corresponding exercise intensity (Fatmax) have been identified visually rather than 

using curve-fitting procedures (Maffeis et al., 2005; Stephens et al., 2006). This 

provides an indication of where the protocol specific peak fat oxidation and Fatmax 

occurred, rather than an interpolated estimation that may proffer greater precision. 

Furthermore, fat oxidation values for each intensity were pooled and the highest fat 

oxidation rate was determined from the averaged values, thus these studies did not 

account for individual differences in Fatmax. Riddell et al. (2008) used both polynomial 

curve-fitting techniques and a simple visual method to calculate Fatmax and MFO on 

an individual basis. However, as the difference between the modelling and visual 

method was not examined systematically, the level of agreement between these two 

methods is not available.  

 

It is clear that the techniques used to construct individual curves of fat oxidation against 

exercise intensity are not standardised across studies. Using individual curves is 

common and provides a more consistent measure of Fatmax for data that do not align to 

a perfect curve compared with using point estimates (measured values), although they 

may underestimate the measured MFO in adults (Chenevière et al., 2009). 

Alternatively, measured Fatmax values provide a direct indication and may be preferred 

for this reason. Therefore, it may be prudent to report both modelled and measured 

values.  

 

2.5 Factors influencing Fatmax and fat oxidation during exercise in young people 

Fat oxidation during exercise can influenced by several factors relating to the exercise 

characteristics (intensity, mode, duration), participant (sex, puberty, training) and pre-

exercise diet (Achten and Jeukendrup, 2003b; Boisseau and Delamarche, 2000; 

McMurray and Hosick, 2011; Venables et al., 2005).  The following section reviews 

potential factors affecting exercise fat oxidation in young people, including puberty, 

sex, obesity, exercise mode and exercise training, by drawing on studies that have 

assessed fat oxidation over a range of intensities. 

 

2.5.1 Puberty  

It was first demonstrated that children have lower RER values during exercise 

compared with adults 70 years ago (Robinson, 1938). Lower RER values have been 
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observed consistently in children compared with adults during submaximal exercise 

performed at similar absolute (Montoye, 1982; Robinson, 1938) and relative (Foricher 

et al., 2003; Martinez and Haymes, 1992) exercise intensities, indicating higher rates of 

fat oxidation in children. Younger children also have higher fat oxidation rates 

compared with older children during exercise at the same relative intensity (Timmons et 

al., 2007a; 2007b), suggesting puberty may modulate these age-related changes in fat 

oxidation. Only recently has the effect of puberty on fat oxidation during exercise been 

assessed over a wide range of intensities (Brandou et al., 2006; Stephens et al., 2006; 

Riddell et al., 2008; Zunquin et al., 2009a).  

 

In the only longitudinal study available, the effect of pubertal status on Fatmax was 

examined in five boys (Riddell et al., 2008). With a baseline age of 11 to 12 years, 

Fatmax was estimated annually over a period of 3.5 years and compared independently 

to nine adult males, who were only assessed on one occasion. Fatmax was higher in the 

boys at each pubertal stage compared with the men and decreased with increasing 

pubertal status over the 3.5 years. Similarly, MFO (mg·kg lean body mass-1·min-1) was 

comparable at Tanner stage 1 and 2, but had decreased to values akin to the men by 

Tanner 4. Fatmax was assessed using a 3 min incremental protocol and polynomial 

curve fitting-procedures; fat oxidation was estimated using values from the final 30 s of 

each stage, increasing the likelihood that a steady state was achieved when compared to 

the 2 min sampling period used by Achten et al. (2002). Although it was stated that a 

physiological steady state was reached during each 3 min stage, it is not clear how this 

was verified. The longitudinal design is a major strength of this study, permitting a 

more causative interpretation of the findings than cross sectional studies. Furthermore, 

this appears to be the only study to report the strength of the polynomial models used to 

define Fatmax; the r2 values were 0.75 (Tanner 1), 0.85 (Tanner 2/3), 0.79 (Tanner 4) 

and 0.81 (men), suggesting relatively strong goodness of fit. Despite these strengths, the 

small sample size limits the wider applicability of the findings, which should be 

replicated on a larger scale with both boys and girls. 

 

In support of Riddell et al. (2008), cross-sectional studies examining the influence of 

puberty on Fatmax using incremental exercise protocols have demonstrated that Fatmax 

and MFO (expressed per kg FFM) declines as pubertal status increases in obese 

children (Brandou et al., 2006; Zunquin et al., 2009a). In another study, the influence of 
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puberty on fat oxidation was assessed using fasted 5 to 6 min exercise bouts at 30, 40, 

50, 60 and 70% V�O2peak interspersed with 5 to 10 min rest periods in early-, mid- and 

late-pubertal boys and young men (Stephens et al., 2006). Fat oxidation was higher in 

prepubertal compared with pubertal boys. Peak fat oxidation was observed at 40% 

V�O2peak in the early and mid-pubertal boys and 30% V�O2peak in the late-pubertal 

boys, again implying that Fatmax decreases with puberty, although a precise estimation 

of Fatmax was precluded by the use of visual analysis to identify Fatmax rather than 

using customary individual curve-fitting procedures. However, it is noteworthy that 

participants performed a second V�O2peak test if maximal effort was not achieved 

initially. It was concluded that puberty reduces fat oxidation during exercise, with the 

development of an adult-like metabolic profile occurring between mid- to late-puberty 

and being complete by the end of puberty (Stephens et al., 2006). Very recent data 

indicate that the higher fat oxidation observed in prepubertal compared with pubertal 

boys may not apply to girls; no difference in fat oxidation (per kg FFM) during exercise 

was found between prepubertal and pubertal girls (McMurray and Hosick, 2011). This 

suggests a need for more studies including girls. 

 

Collectively, the available research suggests that advances in puberty reduce both 

Fatmax and the ability of FFM to oxidise fat during exercise in boys, a finding that has 

not been replicated in girls. However, the practical implications of 3 (Brandou et al., 

2006), 4 (Zunquin et al., 2009a) and 9 (Riddell et al., 2008) % V�O2peak reductions in 

Fatmax between prepubertal and postpubertal young people are more difficult to 

interpret and may have limited practical significance. A much larger reduction in 

Fatmax (25% V�O2peak) seems to occur when comparing the extremes of prepubertal 

boys and adult males (Riddell et al., 2008). These findings highlight the need to 

consider pubertal status when investigating exercise fat oxidation in young people. This 

may be achieved by providing an assessment of secondary sexual characteristics using 

Tanner scales (Tanner, 1962). Although this measure of pubertal status is widely used 

in paediatric exercise science (e.g., Brandou et al., 2006; Riddell et al., 2008; Stephens 

et al., 2006; Zunquin et al., 2009a), potential limitations should be highlighted. Firstly, 

individual variation and between-sex variation in the timing and tempo of pubertal 

events have long been recognised (Marshall and Tanner, 1969; 1970). Indeed, the 

length of time taken to progress through a stage depends on the individual and what is 

actually being measured is the interval between two stages. Problems in aligning 
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individuals may occur when an individual in the early phase of a stage of pubic hair 

development is rated the same as an individual in the late phase of the same stage and, 

as different pubertal events occur at different times, a girl at stage 3 of breast 

development is not necessarily at stage 3 for pubic hair development. Furthermore, girls 

enter and end puberty approximately 2 years before boys and pubertal events do not 

occur in the same sequence between the sexes. Therefore, it is difficult to align girls and 

boys for pubertal status when making between-sex comparisons (Sherar et al., 2004). 

The categorisation of Tanner stages can be performed by a trained physician (e.g., 

Brandou et al., 2006; Stephens et al., 2006; Zunquin et al., 2009a) or self reported by 

the participant (e.g., Riddell et al., 2008). Direct visual observation may be appropriate 

for clinical settings, but many young people (and their parents) feel uncomfortable with 

this method. In order to address these concerns, self-assessment techniques were 

developed and there is evidence that this method is accurate and reliable (Matsudo and 

Matsudo, 1994; Schlossberger et al., 1992; Williams et al., 1988). However, there are 

still concerns that young people may overestimate early stages and underestimate later 

stages of pubertal development (Cameron, 2002). 

 

Mechanisms controlling the higher Fatmax and fat oxidation in children are unclear. It 

has been proposed that high fat oxidation in children may be a default mechanism due 

to an underdeveloped glycolytic system; muscle biopsies have provided evidence of a 

higher proportion of type I muscle fibres in children compared with untrained adults 

(Bell et al., 1980; Fournier et al., 1982) and reduced activity of the enzymes 

phosphofructokinase (PFK) (Eriksson, 1972) and lactate dehydrogenase (LDH) (Kaczor 

et al., 2005) in children compared with adults. However, these results are limited and 

have not always been confirmed (Berg et al., 1986; Haralambie, 1982). During exercise, 

blood lactate concentration, an intermediate of CHO oxidation, is also lower in children 

than adults (Mácek et al., 1976; Mahon et al., 1997) and is inversely related to fat 

oxidation (Achten and Jeukendrup, 2004), perhaps due to an inhibition of adipose tissue 

lipolysis (Boyd et al., 1974). Moreover, the lactate increase above baseline (LIAB) 

coincides with the intensity at which fat oxidation begins to decline in children (Tolfrey 

et al., 2010) and adults (Achten and Jeukendrup, 2004) and the increase in blood lactate 

with intensity is more pronounced in men than boys (Mahon et al., 1997). This suggests 

increased lactate concentration between childhood and adulthood may explain 

reductions in both fat oxidation rates and Fatmax with puberty. Children also appear to 
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rely less on endogenous CHO; muscle biopsy data have shown reduced muscle 

glycogen content in children (Erikson et al., 1971; 1973) and, using stable isotope 

techniques, reduced endogenous CHO oxidation during exercise was reported in 

children (Timmons et al. 2003; 2007a; 2007b). However, exogenous CHO oxidation 

was higher in boys than men (Timmons et al., 2003) and decreased with puberty 

(Timmons et al., 2007a). No difference in exogenous CHO oxidation was reported in 12 

and 14 year old girls, although this may have been due to the small difference in 

puberty between the two groups (Tanner 3 and 4) (Timmons et al., 2007b). This work 

suggests that children do not have an underdeveloped glycolytic flux and it is more 

likely that glycogen stores limit CHO oxidation.  It is possible that higher IMTG stores 

observed in prepubertal children may contribute to an increased ability to oxidise fat, 

although such data obtained from muscle biopsy in children are extremely limited and 

may depend on training status (Bell et al., 1980). Increased FFA availability and uptake 

during exercise in children compared with adults has also been reported (Delamarche et 

al., 1992), but not always confirmed (Boisseau and Delamarche, 2000; Martinez and 

Haymes, 1992). Although no age-related changes in CPT activity or major differences 

in enzyme activities of fat metabolism were observed in children compared with adults 

(Haralambie, 1982; Kaczor et al., 2005), the CPT/2-oxoglutarate dehydrogenase ratio of 

enzyme activities in skeletal muscle may be higher in children (Kaczor et al., 2005), 

suggesting a preferential oxidation of fat over CHO.  

 

2.5.2 Sex 

The effect of sex on fat oxidation may be negligible before puberty, as between-sex 

differences in fat oxidation in adults appear to be due to sex hormones (Campbell and 

Febbraio, 2001; Hamadeh et al., 2005; Timmons et al., 2007a). Despite the documented 

effect of oestrogen supplementation increasing fat oxidation (Hamadeh et al., 2005), the 

effect of menstrual cycle phase on substrate oxidation remains unclear (Oosthuyse and 

Bosch, 2010). During exercise, testosterone concentration was inversely correlated with 

endogenous fat and exogenous CHO oxidation, but positively correlated with 

endogenous CHO oxidation, in boys (Timmons et al., 2007a). In girls, oestrogen 

concentration was inversely correlated with total fat and positively correlated with 

endogenous CHO oxidation (Timmons et al., 2007b). Thus, increases in sex hormones 

during the pubertal period may affect fat metabolism, resulting in differences in fat 

oxidation rates between the sexes. 
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The vast majority of studies assessing Fatmax in young people have only included boys 

(Table 2.1). It appears that only one study has compared Fatmax in boys and girls, 

specifically a group of obese and non-obese pubertal and postpubertal young people 

(Lazzer et al., 2007). It was found that sex did not influence Fatmax in the obese or 

non-obese groups. In agreement, no effect of sex on Fatmax was reported in overweight 

adults (Bogdanis et al., 2008), although Fatmax was higher in healthy women compared 

with men (Chenevière et al., 2011). Lazzer et al. (2007) also reported absolute MFO 

and fat oxidation at 30, 40, 50, and 60% V�O2peak was higher in obese and non-obese 

boys compared to girls. However, the higher FFM and predicted V�O2peak in the boys 

may explain these higher fat oxidation rates, rather than an independent sex effect. 

Indeed, a recent study reported no difference in FFM relative fat oxidation during three 

exercise intensities between girls and boys (McMurray and Hosick, 2011) and the 

higher absolute MFO in overweight men compared with women was diminished when 

scaled to FFM (Bogdanis et al., 2008). When men and women were matched for age, 

BMI and V�O2peak, MFO and fat oxidation between 35 and 85% V�O2peak (expressed 

per kg FFM) was greater in the women (Chenevière et al., 2011). In agreement, studies 

with adults have shown that women rely more on fat compared with men when 

comparing single exercise intensities (Devries et al., 2007; Tarnopolsky et al., 2007). 

Further research is required to examine the independent effect of sex on fat oxidation in 

young people, where participants are carefully matched for pubertal status, fitness and 

body composition. 

 

2.5.3 Obesity  

It is of great interest to estimate Fatmax in obese young people, since low fat oxidation 

may predispose obesity and insulin resistance (see section 2.1). Many Fatmax studies 

with young people have included obese individuals and have shown that Fatmax tends 

to occur around 40 to 55% V�O2peak in this group (Table 2.1). When comparing obese 

and non-obese pubertal boys directly, Fatmax and MFO expressed per kg FFM were 

lower in the obese boys (Zunquin et al., 2009b). In addition, fat oxidation was lower in 

the obese boys during exercise at 40, 50 and 60% V�O2peak, with no difference at 20 

and 30% V�O2peak. When obese and non-obese adolescent girls and boys were matched 

for V�O2peak and physical activity, Lazzer et al. (2007) reported only slightly lower 

Fatmax values in the obese groups and no difference in absolute fat oxidation rates over 
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five different exercise intensities. However, absolute fat oxidation tended to be higher 

in the obese adolescents for exercise intensities lower than 40% V�O2peak and lower for 

exercise intensities above 40% V�O2peak, which supports the results of Zunquin et al. 

(2009b). These findings suggest that obesity may reduce relative (Zunquin et al., 

2009b) and absolute (Lazzer et al., 2007) fat oxidation during moderate intensity 

exercise (40 to 60% V�O2peak). Importantly, matching obese and non-obese adolescents 

for fitness may reduce between-group differences in Fatmax and fat oxidation (Lazzer 

et al., 2007), suggesting increased cardiorespiratory fitness can improve these metabolic 

markers. Indeed, Fatmax and MFO are higher in trained compared with untrained adults 

(Nordby et al., 2006). However, predicted measures of V�O2peak used in the study by 

Lazzer et al. (2007) may not reflect measured V�O2peak (Aucouturier et al., 2009) and 

assessments of physical activity based on a questionnaire (Lazzer et al., 2004) rather 

than more objective measures, such as accelerometry and doubly labelled water, should 

be interpreted with caution (Arvidsson et al., 2005; Rush et al., 2008). Indeed, the 

sporadic nature of children’s physical activity (Bailey et al., 1995) makes these 

activities difficult to recall, quantify and categorise and the lower cognitive functioning 

of children compared with adults reduces their ability to accurately recall the intensity, 

frequency and duration of activities (Sallis, 1991). Consequently, these findings require 

confirmation. 

 

Few studies have examined the relationship between exercise intensity and fat oxidation 

during treadmill exercise. Maffeis et al. (2005) studied fat oxidation at 4, 5 and 6 km·h-1 

in prepubertal boys heterogeneous for adiposity using 8 to 10 min exercise bouts. This 

may be a compromise between prolonged bouts which would not be appropriate for 

children (Meyer et al., 2007) and incremental protocols (Achten et al., 2002). However, 

a precise estimation of Fatmax was not possible from only three walking speeds. Peak 

fat oxidation occurred at the slowest speed and corresponded to an exercise intensity of 

45% V�O2peak, which is similar to the 42% V�O2peak treadmill Fatmax later reported in 

obese boys (Lazzer et al., 2010). However, the possibility that higher fat oxidation may 

have occurred at even slower speeds should not be discounted, as data below the peak 

fat oxidation were not available. Moreover, fat oxidation did not change significantly 

with increasing walking speed, suggesting that larger increases in exercise intensity are 

required to elicit changes in fat oxidation in obese boys. This could also support the 

contention that fat oxidation may be relatively stable at exercise intensities below the 
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lactate threshold (Meyer et al., 2007). The lack of difference in fat oxidation between 

tertiles of obesity (Maffeis et al., 2005) may suggest that larger differences in adiposity 

are required to detect differences in fat oxidation. However, these findings were based 

on absolute rates of fat oxidation; the similar fat oxidation coupled with higher FFM in 

the severely obese group indicates that they oxidised less fat relative to FFM. 

Moreover, CHO oxidation was higher in the heavier children and a closer examination 

of the results suggested a tendency for fat oxidation to decrease with increasing severity 

of obesity; the non-significant differences may have resulted from a lack of statistical 

power (eight participants per tertile group). In support, a very recent study that 

estimated substrate oxidation at 4, 5.6 and 8 km·h-1 reported greater CHO oxidation 

with similar fat oxidation in overweight compared with non-overweight girls and boys 

(McMurray and Hosick, 2011). Similar to the study of Maffeis et al. (2005), fat 

oxidation peaked at the slowest speed and corresponded to approximately 30 to 40% 

V�O2peak in the overweight and non-overweight children. The lack of difference 

between groups (McMurray and Hosick, 2011) is in contrast to reports of reduced 

Fatmax values in obese young people (Zunquin et al., 2009b), although the inclusion of 

only three intensities did not allow a precise estimation of Fatmax. 

 

The lower Fatmax observed in obese young people suggests that this population must 

exercise at a slightly lower intensity to elicit MFO and that fat oxidation begins to 

decline at a lower exercise intensity, which may limit fat oxidation to a narrower range 

of exercise intensities. However, it is not clear whether this difference in Fatmax is 

particularly meaningful and there is limited evidence to support this finding (Lazzer et 

al., 2007; Zunquin et al., 2009b). It is also difficult to compare the findings of studies 

that have included participants with different characteristics, such as sex and pubertal 

status, and different exercise protocols performed in the fasted (Lazzer et al., 2007) and 

non-fasted (Maffeis et al., 2005; Zunquin et al., 2009b) states. Adult data, however, 

support these findings, with reports that Fatmax and fat oxidation (absolute and FFM 

relative) over a range of intensities were reduced in obese compared with non-obese 

adults (Pérez-Martin et al., 2001), although lower rates of fat oxidation have not always 

been confirmed in studies using fewer intensities (Goodpaster et al., 2002; Steffan et al., 

1999). Therefore, these findings require clarification in both young people and adults.  
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The mechanisms contributing to lower rates of fat oxidation in obese individuals are not 

well documented in young people, but have been examined more extensively in adults. 

It should be noted that these mechanisms are often based on resting measures and may 

not directly relate to exercise. Hormonal responses in obese young people have the 

potential to inhibit fat oxidation, including reduced growth hormone concentration, 

greater leptin and insulin concentrations and a blunted adrenaline response to exercise 

(Eliakim et al., 2006; McMurray and Hackney, 2005). Obesity also blunts the influence 

of oestrogen on fat metabolism (McMurray and Hackney, 2005). A lower percentage of 

type I muscle fibres, which primarily oxidise fat, has also been proposed to limit fat 

oxidation in obese individuals (Karjalainen et al., 2006; Kriketos et al., 1997). Lipolysis 

may decrease with obesity in adults (Blaak, 2003) and there is some evidence indicating 

reduced lipolysis and FFA availability in obese young people; under resting conditions 

obese children had a blunted rise in plasma FFA and glycerol during adrenaline 

infusion (Bougnères et al., 1997) and obese adolescent girls had an impaired 

responsiveness of ß2-adrenergic receptors to promote lipolysis in adipose tissue 

(Enoksson et al., 2000). Others have suggested that reductions in fat oxidation may not 

be explained by reduced FFA delivery, as obesity is associated with increased plasma 

FFA concentrations in young people (Heptulla et al., 2001) and adults (Boden, 2003) 

and increased plasma membrane FFA transport in adults (Bonen et al., 2004). 

Therefore, a reduction in the capacity of mitochondria to oxidise fat has been proposed 

as a plausible mechanism (Kelley et al., 2002b; Ritov et al., 2005). Reduced FFA 

transport into the mitochondria may limit fat oxidation in the obese. This has been 

attributed to reduced CPT-1 activity (Kim et al., 2000; Simoneau et al., 1999), which 

may be related to higher malonyl-CoA concentrations (Bandyopadhyay et al., 2006), 

and the redistribution of FAT/CD36 to the plasma membrane making less available for 

the mitochondria (Bonen et al., 2004). Moreover, obesity has been associated with an 

inability of FAT/CD36 to translocate to the plasma membrane in response to muscle 

contraction in rodents (Han et al., 2007). Increased FABP content was associated with 

increased weight loss and fat oxidation, suggesting a potential role in the low fat 

oxidation rates in obese individuals (Blaak et al., 2001). Although both mitochondrial 

dysfunction and content may be implicated in obesity-induced reductions in fat 

oxidation, mitochondrial content appears to be more important (Holloway et al., 2009). 

Obese adults have markedly reduced mitochondrial size, even when corrected for fibre 

type distribution (Kelley et al., 2002b) and reduced activity of the key enzymes citrate 
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synthase and β-hydroxy acyl dehydrogenase, which are common markers of 

mitochondrial volume and fat oxidation (Kim et al., 2000; Holloway et al., 2007; 

Simoneau et al., 1999). Furthermore, low levels of enzyme activities of the TCA cycle, 

the electron transport chain and β-oxidation have been observed in obese insulin 

resistant adults who concomitantly exhibit high resting RER values (Kelley et al., 1999; 

Simoneau et al., 1999). 

 

2.5.4 Exercise mode  

Studies comparing fat oxidation between exercise modes (treadmill and cycling 

exercise) in young people have traditionally used a small number of exercise intensities 

corresponding to the exercise mode-specific V�O2peak (Mácek et al., 1976). However, 

V�O2peak is typically 7 to 10% higher for treadmill compared with cycling exercise in 

untrained young people and adults (Mácek et al., 1976; Millet et al., 2009), thus 

comparing relative exercise intensities often results in a higher absolute V�O2 for 

treadmill exercise, which may explain differences in fat oxidation between exercise 

modes. The comparison of fat oxidation over a wide range of both relative (% mode-

specific V�O2peak) and absolute (absolute V�O2peak values) exercise intensities may 

overcome these issues and is perhaps the most appropriate procedure for examining the 

effect of exercise mode on fat oxidation.  

 

Lafortuna et al. (2010) estimated fat oxidation over a range of seven intensities during 

treadmill and cycling exercise in obese adolescent boys. Treadmill exercise promoted 

higher fat oxidation and lower RER values compared with cycling at comparable 

absolute and relative intensities (Lafortuna et al., 2010). Although similar data in young 

people do not appear to be available, the higher fat oxidation during treadmill compared 

with cycling exercise over a range of intensities is emerging as a consistent finding in 

adults (Achten et al., 2003; Capostagno and Bosch, 2010; Glass et al., 1999). However, 

a recent study reported no difference in MFO between treadmill and cycling exercise in 

moderately trained men and women (Chenevière et al., 2010). 

 

To the author’s knowledge, research directly comparing Fatmax between treadmill and 

cycling exercise in young people is not available. Although Fatmax was not estimated 

in the study of Lafortuna et al. (2010), graphical representations of fat oxidation versus 

exercise intensity suggest that peak fat oxidation occurred at a slightly higher intensity 
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during treadmill exercise in the obese adolescent boys. Similarly, Fatmax was higher 

for treadmill compared with cycling exercise in moderately trained adults (Chenevière 

et al., 2010). In contrast, other studies with adults have shown no difference in Fatmax 

between treadmill and cycling exercise in moderately trained men (Achten et al., 2003) 

or untrained men and women (Glass et al., 1999). Differences in the treadmill exercise 

protocols used in these adult studies may explain such discrepancies, where treadmill 

intensity has been increased via changes in gradient (Achten et al., 2003) or speed 

(Chenevière et al., 2010). 

 

The higher fat oxidation during treadmill exercise coincided with lower blood lactate 

concentrations compared with cycling exercise in the obese boys (Lafortuna et al., 

2010), indicating blood lactate accumulation may be a possible mechanism limiting fat 

oxidation during cycling in young people. In line with this, higher blood lactate and 

lower arterial pH and bicarbonate concentrations have been reported during cycling 

compared with treadmill exercise at comparable metabolic rates in adults (Miles et al., 

1980). Hydrogen ion accumulation in the sarcoplasm may inhibit CPT-1 activity, thus 

reducing fat oxidation (Starritt et al., 2000). The reduced muscle mass used during 

cycling compared with running performed at the same relative intensity has a long 

standing history (Hermansen and Saltin, 1969). This would result in a higher energy 

expenditure relative to active muscle mass and the recruitment of more type II muscle 

fibres during cycling, inducing a higher contribution of CHO and lower contribution of 

fat to energy expenditure. Furthermore, the release of catecholamines is proportional to 

exercising muscle mass (Lewis et al., 1983). As catecholamines are potent stimulators 

of lipolysis (Martin, 1996), the larger muscle mass during treadmill exercise may elicit 

a larger catecholamine response, contributing to increased FFA mobilisation and 

oxidation. Also, the eccentric muscle action in running may delay peripheral fatigue and 

reduce the recruitment of type II muscle fibres during running compared with cycling 

for the same relative exercise intensity (Carter et al., 2000).  

 

2.5.5 Exercise training  

A potential important practical application of Fatmax relates to exercise prescription to 

enhance fat oxidation, a training adaptation that may have particular relevance for 

obesity and insulin resistance (see section 2.1). It is well documented that exercise 

training improves insulin sensitivity in young people (Bell et al., 2007; Shaibi et al., 
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2008). In adults, enhancements in insulin sensitivity following training occur with 

concomitant increased IMTG stores, reduced FA metabolite accumulation and 

increased fat oxidation (Bruce et al., 2006; Dubé et al., 2008; 2011), suggesting the 

increased fat oxidation may mediate improvements in insulin sensitivity through 

reductions the accumulation of harmful FA metabolites. Moreover, increased IMTG 

content is a very early response to training, preceding improvements in insulin 

sensitivity (Schrauwen-Hinderling et al., 2003). Although both low (Schrauwen et al., 

2002) and high (Perry et al., 2008) intensity training can increase the capacity to oxidise 

fat, it is plausible that training at individual Fatmax can optimise these effects. Indeed, 

the primary benefit of training at this intensity is the promotion of high fat oxidation 

rates. Furthermore, it is possible that shifting Fatmax to a higher intensity may also 

favour fat oxidation by reducing the range of higher exercise intensities at which fat 

oxidation is low. The maintenance of high fat oxidation rates at high exercise intensities 

may also delay glycogen depletion and fatigue (Noakes, 2000). However, the practical 

significance of shifting Fatmax has not been investigated systematically.  

 

Training at Fatmax has been shown to both increase (Brandou et al., 2003) and have no 

effect (Lazzer et al., 2008) on Fatmax in obese young people. When increases in 

Fatmax were demonstrated, obese adolescents completed a combined programme 

involving dietary manipulation, nutrition classes and 45 min cycling at Fatmax every 

day for two weeks and, subsequently, a sub-group continued exercise training for a 

further 6 weeks (Brandou et al., 2003). Increased Fatmax (32 to 45% Wmaxth) and 

absolute fat oxidation at 30, 40 and 50% Wmaxth were only observed following the full 

eight week programme. However, part of this ‘improvement’ may be due to random 

variation in the measurement of Fatmax (Meyer et al., 2009) and control of diet or 

exercise in the days prior to testing was not mentioned. Interestingly, Fatmax was 

unchanged following a multidisciplinary weight-control programme involving two 

hours per week of exercise over a longer period of eight months in obese children, 

although, perhaps more importantly, MFO increased by 21% (Lazzer et al., 2008). 

Increases in V�O2peak following the programme may have contributed to the lack of 

change in Fatmax, whilst MFO improved (Lazzer et al., 2008). However, as these 

programmes involved a combination of exercise and dietary management, it is not 

possible to ascertain whether training at Fatmax would exert an independent effect 

(Brandou et al., 2003; Lazzer et al., 2008). 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Schrauwen%20P%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Perry%20CG%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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More recent work has investigated the effect of diet, training at Fatmax and combined 

diet and training at Fatmax (diet + training) on metabolism in obese young people (Ben 

Ounis et al., 2008; 2009; Elloumi et al., 2009). These studies have shown increases in 

the ability to oxidise fat during exercise following two month training and diet + 

training interventions, but not following dietary intervention alone (Ben Ounis et al., 

2008; 2009; Elloumi et al., 2009). Moreover, training and diet + training, but not diet 

alone, improved several health markers, including insulin resistance, adiponectin, 

resistin and HDL cholesterol, whereas dietary intervention induced more favourable 

changes in body composition (Ben Ounis et al., 2008; Elloumi et al., 2009). It was 

clear, however, that the diet + training groups improved all of the measured body 

composition and health markers (Ben Ounis et al., 2008; 2009; Elloumi et al., 2009). 

These findings suggest that training at Fatmax can have an independent effect on 

improving fat oxidation and various health markers in adolescents. However, 

combining Fatmax training with dietary intervention may result in more pronounced 

improvements in a larger number of health markers. 

 

Although these studies have shown health benefits of training at Fatmax, it is possible 

that training at a different exercise intensity is equally or more effective. Brandou et al. 

(2005) studied the influence of low intensity (LI) and high intensity (HI) exercise and a 

hypoenergetic diet on substrate oxidation during exercise in obese boys. Training 

consisted of cycling at Fatmax (average 51% Wmaxth) for the LI group and Fatmax 

+40% of Fatmax (average 61% Wmaxth) for the HI group, with energy expenditure 

being constant between groups, twice a week for two months. Although the absolute 

power output was significantly different between LI and HI, the difference in exercise 

intensity expressed as % Wmaxth and HR did not reach significance, thus the reported 

difference in exercise training between the LI and HI groups may not have been 

sufficient to induce a differential effect between the groups. Furthermore, the term ‘high 

intensity’ may be misleading, usually referring to exercise intensities higher than the 

61% Wmaxth or 156 beats⋅min-1 reported during HI training (Perry et al., 2008; van 

Aggel-Leijssen et al., 2002). After training, substrate oxidation was unchanged in the LI 

group, whereas the HI group oxidised less fat and more CHO during exercise at 20% 

and 30% Wmaxth. It was concluded that LI training maintains the ability to oxidise fat 
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during exercise, whilst HI training results in a shift towards CHO oxidation. These 

findings conflict with the existing literature that has generally reported higher fat 

oxidation rates following moderate intensity exercise training (Lazzer et al., 2008; van 

Aggel-Leijssen et al., 2002) and that high intensity training typically increases 

(Burgomaster et al., 2008; Talanian et al., 2007) or may not affect (van Aggel-Leijssen 

et al., 2002) exercise fat oxidation. Indeed, the increased CHO oxidation following HI 

training (Brandou et al., 2005) is somewhat surprising since training induces an array of 

skeletal muscle adaptations that promote fat oxidation whilst reducing CHO oxidation 

(Eriksson et al., 1973; Fournier et al., 1982; Kiens and Lithell, 1989; Tarnopolsky et al., 

2007). Moreover, in a well-controlled crossover study involving obese men who were 

not subject to energy restriction, fat oxidation increased by 44% after training at 

Fatmax, but not after isoenergetic interval training at intensities 20% above and below 

Fatmax. These improvements were evident despite no reported changes in body mass, 

body fat or V�O2peak (Venables and Jeukendrup, 2008). It was postulated that the 

failure to increase fat oxidation in the study by Brandou et al. (2005) may have been 

due to possible reductions in fat oxidation following the hypoenergetic diet (Franssila-

Kallunki et al., 1992; Schutz et al., 1992) that began two weeks before exercise training 

started. 

 

When examining the acute effects of Fatmax and HI exercise, total fat oxidation was 

higher during Fatmax (42% predicted V�O2peak for 45 min) compared with HI (67% 

predicted V�O2peak for 30 min) treadmill exercise in obese adolescent boys, despite a 

similar energy expenditure between exercise intensities (Lazzer et al., 2010). Although 

exercise intensity did not affect fat oxidation 60 min post-exercise, cumulative fat 

oxidation (exercise plus recovery) remained higher in the Fatmax group. Importantly, 

the groups were matched for body fat and V�O2peak. However, a crossover design may 

have been more appropriate to control for unknown factors that may result in individual 

differences in fat oxidation. The higher fat oxidation during Fatmax compared with HI 

exercise suggests that exercise training at Fatmax may promote fat oxidation when 

compared to higher intensities and supports the notion that larger differences in exercise 

intensity (around 25% V�O2peak) than those used by Brandou et al. (2005) (around 10% 

V�O2peak) may be required to elicit differences in fat oxidation when comparing 

Fatmax and HI training. However, potential benefits of training at Fatmax compared 

with other exercise intensities clearly require further study in young people. 
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Adaptations within skeletal muscle may be partly responsible for the metabolic 

adaptations to training in young people. Changes in oxidative enzyme activity following 

endurance training with little modification in glycolytic activity has been reported in 

boys (Eriksson et al., 1973; Fournier et al., 1982) and endurance, but not sprint training, 

increased the surface area of oxidative type I and more oxidative fast twitch type II 

fibres in adolescent boys (Fournier et al., 1982). Likewise, increased mitochondrial 

area/volume (Tarnopolsky et al., 2007), oxidative enzyme activity (Berthon et al., 1998; 

Kiens et al., 1997; Tarnopolsky et al., 2007) and a shift toward more oxidative fibre 

type composition (Dubé et al., 2008) may contribute to exercise-induced increases in fat 

oxidation in adults. The adult-based literature investigating additional mechanisms to 

explain the increased fat oxidation following endurance may be insightful when 

considering potential mechanisms in young people. Exercise-induced increases in fat 

oxidation do not appear to be due to increased plasma FFA availability; in fact training 

may reduce peripheral lipolysis and plasma FFA rate of appearance (Martin et al., 1993; 

Phillips et al., 1996). There is strong evidence that the elevated use of fat in the trained 

state results from increased IMTG storage, lipolysis and, ultimately, oxidation (Dubé et 

al., 2008; Kiens and Lithell, 1989; Phillips et al., 1996; Schrauwen-Hinderling et al., 

2003; van Loon and Goodpaster, 2006).  Exercise training increases total protein 

expression of FAT/CD36 (Tunstall et al., 2002) and FABPpm (Kiens et al., 1997) in 

adults, which is likely to improve FFA transport across the muscle membrane, while the 

higher CPT-1activity in trained compared to untrained adults (Berthon et al., 1998) and 

increased CPT-1 mRNA following training (Tunstall et al., 2002) may improve FFA 

transport across the mitochondrial membrane. Furthermore, exercise training alters the 

localisation of FAT/CD36 and increases its association with CPT-1, which may 

augment fat oxidation (Schenk and Horowitz, 2006).  

 

2.5.6 Conclusions 

Research examining Fatmax in young people is growing, but still appears to be in its 

infancy. The available literature indicates that Fatmax generally occurs between 30 and 

60% V�O2peak in young people (Table 2.1). Fatmax and exercise fat oxidation may 

decrease with puberty (Riddell et al., 2008) and obesity (Zunquin et al., 2009b), and 

increase following exercise training (Brandou et al., 2003). However, inconsistencies in 

the methods employed to estimate Fatmax limit inter-study comparisons. Future studies 
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estimating Fatmax in young people should address issues relating to the exercise 

protocol used to determine fat oxidation and V�O2peak, the appropriate use of indirect 

calorimetry, the control of diet and physical activity and the selected participant 

population (puberty, sex, age, training status). Research is required to verify whether 

the incremental protocol recommended by Achten et al. (2002), as used widely in adult 

and paediatric studies, is suitable for determining Fatmax specifically in young people. 

Reaching consensus on the exercise protocol used to estimate Fatmax in this population 

would provide more objective exercise prescription for maximising fat oxidation during 

exercise. Well-controlled studies examining the factors influencing Fatmax and fat 

oxidation, including exercise mode, sex, cardiorespiratory fitness and free living 

physical activity would help to further individualise exercise prescription for young 

people. Despite evidence in adults that treadmill compared with cycling exercise is 

preferential for enhancing fat oxidation, studies in young people have typically used 

cycling exercise and the effect of exercise mode on Fatmax has not been investigated. 

Additionally, conclusions from these studies are largely based on boys; it may be 

argued that girls should be targeted since physical activity levels are lower in this 

population (Riddoch et al., 2007). The practical function of the Fatmax concept also 

requires further work in young people, including the potential effect of exercise 

prescription at Fatmax on health biomarkers and body composition when compared to 

other more traditional exercise prescriptions.  
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Table 2.1 Summary of studies that have estimated Fatmax in young people 

Author n Weight 
status 

Pubertal 
status Sex Age 

(y) Fatmax 

Brandou et al. 
(2003) 7 OB Mixed stages M+F 13.7 

32% Wmaxth 
(pre-training) 
45% Wmaxth 

(post-training) 
Brandou et al. 

(2005) 7 OB Mixed stages M 11.8 51% Wmaxth 

Maffeis et al. 
(2005) 24 OB Prepubertal M 10 45% V�O2peak 

Brandou et al. 
(2006) 

7 
8 

OB 
OB 

Prepubertal 
Postpubertal

M 
M 

10.6 
13.5 

~50% Wmaxth  
~47% Wmaxth 

Stephens et al. 
(2006) 

9 
12 
11 

NO 
NO 
NO 

EP 
MP 
LP 

M 
M 
M 

10.3 
12.3 
15.0 

40% V�O2peak 
40% V�O2peak 
30% V�O2peak 

Lazzer et al. 
(2007) 

15 
15 
15 
15 

OB 
OB 
NO 
NO 

Pubertal and 
postpubertal

M 
F 
M 
F 

15.9 
15.6 
15.0 
15.0 

40% V�O2peak 
38% V�O2peak 
45% V�O2peak 
42% V�O2peak 

Lazzer et al. 
(2008) 19 OB Mixed M + F 8-12 48% V�O2peak 

(pre- and post-training) 

Riddell et al. 
(2008) 

5 
5 
5 
9 

NO 
NO 
NO 
NO 

T1 
T2/3 
T4 

Postpubertal

M 
M 
M 
M 

12.0 
13.2 
14.7 
23.8 

56% V�O2peak 
55% V�O2peak 
45% V�O2peak 
31% V�O2peak 

Aucouturier et 
al. (2009) 20 OB Not stated M+F 13.0 

53 %V�O2peak 
47% V�O2peakACSM 

38% V�O2peakW 
38% V�O2Wmax 

36% V�O2Wmaxth 

Zunquin et al. 
(2009a) 

16 
16 
14 

OB 
OB 
OB 

Prepubertal 
Pubertal 

Postpubertal

M 
M 
M 

9.7 
11.9 
14.6 

49% V�O2peak 
47% V�O2peak 
45% V�O2peak 

Zunquin et al. 
(2009b) 

17 
13 

OB 
NO 

Pubertal 
Pubertal 

M 
M 

12.1 
12.0 

47% V�O2peak 
55% V�O2peak 

Lazzer et al. 
(2010) 20 OB Pubertal and 

postpubertal M 14-16 42% V�O2peak 

OB – obese, M – male, F – female, Wmaxth – theoretical maximal aerobic power, 
V�O2peak – peak oxygen uptake, NO – non-obese, EP – early pubertal, MP – mid-
pubertal, LP – late-pubertal, T1 – Tanner 1, T2 – Tanner 2, T3 – Tanner 3, T4 – Tanner 
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4 (Tanner, 1962), ACSM – prediction equations (ACSM, 1995), V�O2peakW  – 
prediction equations (Wasserman et al., 1987). 
2.6 Breakfast consumption and fat oxidation  

It is well established that fat oxidation is maximised in the fasted state, increasing in 

direct proportion to the duration of fasting (Montain et al., 1991) and being suppressed 

by pre-exercise CHO consumption (Achten and Jeukendrup, 2003b; Horowitz et al., 

1997). In young people, exogenous CHO utilisation lowers the contribution of fat 

oxidation to energy expenditure during exercise (Riddell et al., 2000; Timmons et al., 

2003; 2007a; 2007b). Furthermore, Fatmax appears to be reduced following CHO 

consumption in adults (Achten and Jeukendrup, 2003b). The mechanisms responsible 

for the reduction in fat oxidation following CHO consumption relate to the rise in 

insulin that inhibits lipolysis and FFA availability (Horowitz et al., 1997) and the 

increase in blood glucose uptake and, therefore, CHO oxidation, which inhibits the rate 

of FFA entry into the mitochondria (Coyle et al., 1997; Sidossis et al., 1996).  

 

Although it is clear that exercise in the fasted state is preferential for augmenting fat 

oxidation, this may not be practical for young people and several lines of evidence 

support the promotion of regular breakfast consumption for health (Albertson et al., 

2009; Panagiotakos et al., 2008; Timlin et al., 2008). Benefits associated with regular 

breakfast consumption in young people include reduced mental distress and improved 

academic performance (Lien, 2007), nutritional benefits such as increased vitamin and 

mineral intake (Barton et al., 2005; Nicklas et al., 1993; Song et al., 2006), higher 

physical activity levels, higher cardiorespiratory fitness and lower levels of obesity 

(Sandercock et al., 2010). Indeed, a plethora of associated lifestyle behaviours may 

explain the relationship between breakfast consumption and health, including 

overeating later in the day (Dubois et al., 2009), increased snacking (Sjöberg et al., 

2003) and reduced physical activity (Sandercock et al., 2010). 

 

It has also been suggested that the observed relationships between breakfast 

consumption and health may not be due to consumption per se, but rather breakfast 

composition (Deshmukh-Taskar et al., 2010). Ready-to-eat cereals are commonly 

consumed for breakfast in westernised countries (Albertson et al., 2003; Ruxton et al., 

1996; Song et al., 2006). However, the nutritional content of these cereals varies 

considerably and there are concerns that the majority of ready-to-eat cereals marketed 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ruxton%20CH%22%5BAuthor%5D�
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to children fail to meet national nutrition standards; they are typically higher in energy, 

sugar and sodium, but lower in fibre and protein compared with cereals not marketed 

specifically for children (Schwartz et al., 2008). It has been suggested that the 

association between ready-to-eat cereal consumption and health may be attributed to 

whole-grain and not refined-grain cereals. Indeed, there has been considerable interest 

in the health benefits of whole-grain, fibre-rich, low-energy-dense breakfasts that 

contain LGI CHO (Kochar et al., 2007; Kosti et al., 2010), with a recent review 

recommending these types of breakfasts for weight management (Kosti et al., 2010). 

 

2.7 Glycaemic index 

The concept of GI was introduced as a method of classifying different CHO-rich foods 

according to their effect on postprandial glycaemia. It is defined as the incremental area 

under the two hour blood glucose curve following ingestion of 50 g available CHO as a 

percentage of the corresponding area following an equivalent amount of CHO from a 

standard reference product (glucose or white bread) (Jenkins et al., 1981). Values for GI 

range from 1 to 100 and CHOs can be classified as high (≥70), moderate (56 to 69) or 

low (≤55). Foods classified as HGI include refined grain products, white bread and 

potato, whereas LGI foods include whole grain products, legumes and fruits. Numerous 

published tables now contain GI values for a variety of foods, including The 

International Tables of Glycaemic Index (Atkinson et al., 2008). As the extent of 

postprandial glycaemia depends on both the GI and the amount of CHO consumed, the 

glycaemic load (GL) was later proposed to provide an indication of the total glycaemic 

effect of the diet and is calculated as the product of the GI and total dietary CHO 

divided by 100 (Salmerón et al., 1997). Critically, the consumption of mixed meals 

composed of commonly consumed foods more closely reflects ‘real world’ situations 

than assessing single CHO-containing foods. The GI of mixed meals can be predicted 

from the GI values of the component CHO foods. The weighted mean of the individual 

GI values is based on the percentage of the total meal CHO provided by each food and 

the predicted response is strongly correlated (r=0.987) with the actual glucose response 

(Wolever and Jenkins, 1986; Wolever et al., 2006).  

 

Various food factors influence the GI of CHO-containing foods, which are affected by 

the method of preparation, processing, variety, origin, maturation and degree of 

ripeness (Englyst et al., 2003; Pi-Sunyer, 2002). The term ‘available carbohydrate’ 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schwartz%20MB%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Atkinson%20FS%22%5BAuthor%5D�
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represents parts of the CHO that can be digested and absorbed, excluding dietary fibre. 

The type of monosaccharide (glucose, fructose, galactose) affects the GI, with fructose 

having a relatively low GI (Englyst et al., 2003; Foster-Powell et al., 2002). The ratio of 

amylose/amylopectin in starch is an important factor; the branched amylopectin is more 

rapidly digested than the unbranched amylose and results in a higher GI (Granfeldt et 

al., 1995). The macronutrient content of foods also affects the GI, with protein and fat 

reducing the glycaemic response (Ercan et al., 1994; Nuttall et al., 1984; 1985). 

However, these effects are negligible compared with the effect of CHO content on GI. 

Wolever and Bolognesi (1996) fed five meals varying in energy, fat, protein, CHO and 

GI to healthy participants and concluded the CHO source accounted for 85 to 94% of 

the variability of the glucose and insulin response. Controversy surrounds the effect of 

dietary fibre on GI (Pi-Sunyer, 2002).  Insoluble fibre has little impact on the glycaemic 

response compared with soluble fibre, which may lower the GI, possibly by acting as a 

physical barrier and delaying access of digestive enzymes and water to the starch within 

the cereal grain (Jenkins et al., 1981; Nuttall, 1993). 

 

2.7.1 Glycaemic index and insulin 

In general, glycaemic and insulinaemic responses to consumed CHO are well-related 

(Wolever et al., 2006). However, a potential criticism of GI is that it does not 

necessarily indicate the insulin response of all foods (insulinaemic index). In certain 

foods, although the GI can predict the glucose response to a meal it does not necessarily 

predict the insulin response (Pi Sunyer, 2002). Indeed, the addition of protein to a meal 

increased the insulin response without affecting glucose (van Loon et al., 2000). The 

unexpectedly high insulinaemic index of milk (Ostman et al., 2001) may be important 

when considering postprandial metabolism following breakfasts that typically contain 

milk.   

 

Although GI is believed to directly reflect the rate of digestion and glucose entry into 

the systemic circulation, the blood glucose concentration reflects both entry and 

removal of glucose from the blood. Schenk et al. (2003) reported a higher GI in corn 

flakes compared with bran cereal in men, but no difference in the rate of appearance of 

glucose. It was suggested that the earlier rise in postprandial insulin caused a 31% 

increase in the rate of disappearance of glucose following the bran cereal compared 

with the corn flakes, thus an earlier increase in insulin may result in increased glucose 
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uptake and reduce blood glucose concentrations (Schenk et al., 2003). In this study, 

however, the LGI bran cereal contained almost four times more protein than the HGI 

corn flakes, which may have increased insulin secretion, leading to a reduction in the GI 

of that meal (Nuttall et al., 1984). This highlights the importance of considering 

macronutrient content when examining the independent effect of GI. 

 

2.7.2 Dietary glycaemic index and health in young people 

The rate of glucose entry into the bloodstream and duration of elevated blood glucose 

concentration induce hormonal and metabolic changes that may affect health; mounting 

evidence suggests that the postprandial state contributes to the development of chronic 

disease (Heine et al., 2004). A recent review concluded that there is now a large body of 

evidence providing robust support for LGI diets in the prevention of obesity, diabetes, 

and cardiovascular disease (Brand-Miller et al., 2009). Although a relatively small 

number of interventions have assessed the impact of GI on health markers in young 

people compared with adults, the available evidence from a variety of studies indicates 

that reduced GI diets may have implications for lowering BMI, metabolic syndrome 

and cardiovascular risk factors, hyperglycaemia, fasted glucose and insulin and hunger 

in young people (Fajcsak et al., 2008; Rovner et al., 2009; Spieth et al., 2000). 

Moreover, a reduced-GL diet may be more effective at improving BMI and insulin 

sensitivity compared with a reduced-fat diet (Ebbeling et al., 2003). Encouragingly, 

health benefits of reducing dietary GI may be achieved by targeting the breakfast meal 

only (Pal et al., 2008). However, conflicting evidence has shown that dietary GI may 

not influence health markers in children (Cheng et al., 2009a). Potential health-

enhancing effects of reduced GI diets in young people are, therefore, encouraging but 

require greater research attention. 

 

2.8 Acute effect of breakfast glycaemic index on metabolism and satiety 

Diets rich in LGI foods may reduce metabolic disease risk through both direct 

metabolic effects and reductions in body weight. Plausible mechanisms may arise from 

the contrasting metabolic responses to HGI and LGI foods, which have been 

investigated using randomised controlled trials in adults and to a lesser extent in young 

people.  

 

2.8.1 Glucose and insulin 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fajcsak%20Z%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rovner%20AJ%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ebbeling%20CB%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pal%20S%22%5BAuthor%5D�
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Numerous studies in adults have shown that LGI compared with HGI mixed breakfast 

meals attenuate postprandial glycaemia and insulinaemia (Stevenson et al., 2006; 2009) 

and a few studies in adolescents have provided similar findings (Ball et al., 2003; 

Ludwig et al., 1999). In adults, a LGI breakfast (Liljeberg and Björck, 2000) or evening 

meal (Stevenson et al., 2005b; 2008) may also reduce postprandial glucose and insulin 

responses to subsequent standard meals; this is known as the ‘second meal effect’. 

Reduced blood glucose decreases the quantity of insulin required to clear glucose from 

the blood, which may up-regulate insulin receptors on cells and increase insulin 

sensitivity (Song et al., 2000). Furthermore, the reduced postprandial glycaemic and 

insulinaemic response to LGI breakfasts has been proposed to affect substrate 

metabolism and satiety.  

 

2.8.2 Fat oxidation during rest and subsequent exercise 

It is plausible that the attenuated postprandial insulin response to LGI breakfast 

consumption can augment subsequent fat oxidation (Wu et al., 2003). In this respect, 

LGI breakfast consumption may serve as a compromise between no breakfast (fasting) 

and HGI breakfast consumption. Several studies have investigated the effect of 

breakfast GI on fat oxidation during rest and subsequent exercise in adults; Table 2.2 

provides details of the most relevant studies.  

 

In adults, increased fat oxidation during the immediate postprandial rest period has been 

reported following a LGI compared with HGI breakfast (Stevenson et al., 2009). 

However, the majority of studies have not supported this finding (Díaz et al., 2005; 

Stevenson et al., 2006; Wee et al., 2005). It was suggested that the lower CHO load in 

the Stevenson et al. (2009) study compared with other studies reporting no effect of 

breakfast GI may have facilitated the reported differences in resting fat oxidation. When 

individuals consumed a HGI or LGI breakfast and lunch, higher resting fat oxidation 

was reported following the LGI meals after lunch only (Stevenson et al., 2005a). 

However, the consumption of a HGI compared with LGI evening meal did not 

influence fat oxidation following a standard HGI breakfast the next morning in men 

(Stevenson et al., 2005b) and women (Stevenson et al., 2008). Studies examining the 

more prolonged effect of GI on substrate oxidation have reported no difference in 

resting fat oxidation over 10 hours when obese women consumed a HGI or LGI 

breakfast and lunch (Díaz et al., 2005) and manipulation of dietary GI did not affect 24 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Stevenson%20EJ%22%5BAuthor%5D�
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h fat oxidation (McDevitt et al., 2000). However, glucose and insulin responses have 

not always been measured to confirm the expected differences between HGI and LGI 

meals (McDevitt et al., 2000). Furthermore, consuming two HGI compared with LGI 

meals for five consecutive days actually resulted in higher fat oxidation in trained men 

(Cocate et al., 2011). In line with this finding, resting fat oxidation was higher after 

high glucose (HGI)  compared with high fructose (LGI) meals in obese adults, despite 

greater glucose and insulin responses to the high glucose meal (Tittelbach et al., 2000), 

suggesting fat oxidation may depend on the type of LGI CHO consumed.  

 

Unlike resting fat oxidation, the majority of studies support the finding that LGI 

compared with HGI breakfast consumption results in higher fat oxidation during 

exercise performed 45 min to 3 h after breakfast (Sparks et al., 1998; Wee et al., 2005; 

Stevenson et al., 2006; 2009). These observations have typically been accompanied by 

higher plasma FFA and glycerol concentrations following LGI breakfasts (Sparks et al., 

1998; Stevenson et al., 2006; Wee et al., 1999; Wu and Williams, 2006). However, 

some studies have found no effect of breakfast GI on fat oxidation during  exercise 

(Bennard and Doucet, 2006; Febbraio and Stewart, 1996) and a recent study even 

reported higher fat oxidation during a cycling time trial performance when a HGI 

breakfast was consumed 45 min before exercise (Moore et al., 2010). The relationship 

between GI and fat oxidation is further complicated by findings that breakfast GI does 

not affect fat oxidation during exercise when comparing a moderate GI (MGI) and HGI 

breakfast (Backhouse et al., 2007) and no difference in fat oxidation was reported when 

exercise was preceded by two LGI or HGI meals rather than breakfast alone (Stevenson 

et al., 2005a). Furthermore, exercise fat oxidation was not affected when a LGI or HGI 

meal was provided the evening before (Stevenson et al., 2005b; 2008); this suggests 

that the ‘second meal effect’ does not apply to fat oxidation.  

 

The effect of GI on fat oxidation remains unclear and much of these data are based on 

findings from studies including small samples of trained or recreationally active adults 

(Table 2.2). Moreover, LGI breakfasts typically contain a higher proportion of fat, 

protein and fibre; some of these studies have failed to match meals for macronutrient 

content (Bennard and Doucet, 2006; DeMarco et al., 1999; Febbraio et al., 2000; 

Kirwan et al., 2001) and have provided meals of a set absolute size rather than relative 

to body size (Bernnard and Doucet, 2006; Kirwan et al., 2001). The majority of this 
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research has been conducted after an overnight fast (e.g. Stevenson et al., 2009; Wee et 

al., 2005), whereas some has not (Moore et al., 2010; Sparks et al., 1998). Therefore, 

these findings require further examination using well-controlled studies that have 

carefully matched the breakfasts for macronutrient content and included larger more 

diverse samples, such as young people and overweight individuals. 

 
It has been suggested that the reduced fat oxidation following HGI breakfasts is largely 

due to the higher insulin response, which increases muscle glycogen stores and 

utilisation, resulting in higher CHO and lower fat oxidation (Wee et al., 2005). Indeed, 

Wee et al. (2005) reported increased muscle glycogen concentration 3 h following a 

HGI breakfast, with no change following the LGI breakfast, and greater muscle 

glycogen utilisation during subsequent exercise in the HGI trial. This increased muscle 

glycogen utilisation following HGI breakfast consumption has been reported previously 

(Febbraio et al., 2000), but not consistently (Febbraio and Stewart, 1996). Contrasting 

findings may have been due to major differences in study design and, in particular, 

differences in the timing of the muscle biopsy, which has been obtained 30 min (Wee et 

al., 2005) or 2 h (Febbraio and Stewart, 1996) after exercise. Differences in FAT/CD36 

gene expression following HGI and LGI CHO consumption may be another underlying 

mechanism controlling differences in fat oxidation. In men, FAT/CD36 mRNA and 

protein levels were down-regulated 3 h after the consumption of a HGI post-exercise 

meal, but were unchanged when an isoenergetic LGI meal with similar macronutrient 

content was consumed (Cheng et al., 2009b). Conversely, muscle glucose transporter 

type 4 (GLUT-4) expression was reduced to the same extent following both meals, 

suggesting that this is not implicated in the relationship between GI and substrate 

oxidation. The effect of GI on FAT/CD36 expression may also be mediated through 

differences in the insulin response to meals differing in GI (Luiken et al., 2002; Smith 

et al., 2007). 

 

In general, evidence in adults supports the finding that a LGI compared with HGI 

mixed breakfast meal augments fat oxidation during exercise, although the effect of 

breakfast GI on resting fat oxidation remains unclear. Discrepancies between studies 

may be due to differences in breakfast size and composition, exercise mode, intensity 

and duration, the time interval between breakfast and exercise and participant 

characteristics (Table 2.2). It should be highlighted that the majority of these studies 
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have used endurance trained or recreationally active non-overweight adults as 

participants and a greater understanding of these responses in different populations may 

have more relevance for disease prevention. Moreover, similar studies in young people 

do not appear to be available. 

 

Table 2.2 Experimental studies examining the effect of glycaemic index (GI) on fat 
oxidation 

 

Author(s) Participants Experimental design Effect of GI on fat 
oxidation 

Backhouse 
et al. (2007) 6 women HGI or MGI breakfast consumed 3 h 

before 60 min walk at 50% V�O2peak 
Rest and exercise: no 

effect 

Bennard 
and Doucet 

(2006) 
8 men 

HGI or LGI breakfast (1.67 MJ (400 
kcal), 80 g CHO) consumed 1 h before 

1.67 MJ (400 kcal) 
treadmill exercise at Fatmax

Exercise: no effect 

DeMarco et 
al. (1999) 

10 trained 
men 

HGI or LGI breakfast  
(1.5 g CHO·kg BM-1) consumed 30 

min before 2 h cycle at 70% V�O2peak 

Exercise: Lower RER 
in LGI 

Febbraio 
and Stewart 

(1996) 

6 trained 
men 

HGI or LGI breakfast 
(1 g CHO·kg BM-1) consumed 45 min 

before 2 h cycle at 70% V�O2peak 
 

Exercise: No effect on 
RER 

 

Febbraio et 
al. (2000) 

8 trained 
men 

HGI or LGI breakfast 
(2 g CHO·kg BM-1) consumed 30 min 

before 2 h cycle at 70% V�O2peak 

Exercise: Tendency for 
higher fat oxidation in 

LGI 

Kirwan et 
al. (2001) 6 men 

HGI or MGI breakfast (75g CHO) 
consumed 45 min before cycle to 

exhaustion at 60% V�O2peak 
Exercise: No effect 

Moore et al. 
(2010) 

10 trained 
men 

(cyclists) 

HGI or LGI breakfast 
(1 g CHO·kg BM-1) consumed 45 min 

before 40 km cycling time trial 

Exercise: Higher fat 
oxidation in HGI 

Sparks et al. 
(1998) 

8  trained 
men 

HGI or LGI breakfast 
(1 g CHO·kg BM-1) consumed 45 min 
before 50 min cycle at 67% V�O2peak 

Exercise: Lower RER 
in LGI 

 

Stevenson 
et al. 

(2005a) 
9 men 

HGI or LGI breakfast  
and lunch (2 g CHO·kg BM-1)  

consumed, each followed by 3 h 
postprandial period; 60 min run at 

70% V�O2peak 3 h after lunch 

Rest: higher fat 
oxidation after lunch in 

LGI; no effect after 
breakfast 

Exercise: no effect 
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Stevenson 
et al. 

(2005b) 

5 active 
men 

HGI or LGI evening meal consumed 
the day before HGI breakfast (2 g 

CHO·kg BM-1); 60 min run at 65% 
V�O2peak performed 3 h after 

breakfast 

Postprandial rest and 
exercise: no effect  

Stevenson 
et al. (2006) 

8 active 
women 

 

HGI and LGI breakfast (2 g CHO·kg 
BM-1) consumed 3 h before  60 min 

run at 65% V�O2peak 

Rest: No effect 
Exercise: higher fat 

oxidation in LGI 

Stevenson 
et al. (2008) 

7 active 
women 

HGI or LGI evening meal consumed 
the day before HGI breakfast (all 

meals contained 2 g CHO·kg BM-1); 
exercise performed 3 h after breakfast 

Rest and exercise: no 
effect 

Stevenson 
et al. (2009) 

8 sedentary 
women 

HGI or LGI breakfast (1 g CHO·kg 
BM-1) consumed 3 h before 60 min 

walk at 50% V�O2peak 

Rest and exercise: 
higher fat oxidation in 

LGI 

Thomas et 
al. (1998) 

8 trained 
men 

HGI or LGI breakfast (1 g CHO·kg 
BM-1) consumed 1 h before cycle to 

exhaustion at 67% V�O2peak 

Exercise: higher fat 
oxidation in LGI 

Wee et al. 
(1999) 

8 adults (5 
men, 3 

women) 

HGI or LGI breakfast (2 g CHO·kg 
BM-1) consumed 3 h before run to 

exhaustion at 70% V�O2peak 

Rest: No effect (but 
higher CHO oxidation 

in HGI) 
Exercise: higher fat 

oxidation in LGI 

Wee et al. 
(2005) 

7 trained 
men 

HGI or LGI breakfast (2.5 g CHO·kg 
BM-1) consumed 3 h before 30 min 

run at 71% V�O2peak 

Rest: No effect 
Exercise: higher fat 

oxidation in LGI 

Wong et al. 
(2008) 

8 trained 
men 

HGI or LGI breakfast (1.5 g CHO·kg 
BM-1) consumed 2 h before 5k run at 

70% V�O2peak followed by 16 km 
performance run 

Rest: No effect 
Exercise: higher fat 

oxidation in LGI 

Wu et al. 
(2003) 

9 trained 
men 

HGI or LGI breakfast (2 g CHO·kg 
BM-1) consumed 3 h before 60 min 

run at 65% V�O2peak 

Rest: No effect 
Exercise: higher fat 

oxidation in LGI 

Wu and 
Williams 
(2006) 

8 trained 
men 

HGI or LGI breakfast (2 g CHO·kg 
BM-1) consumed 3 h before run to 

exhaustion at 70% V�O2peak 

Rest: No effect 
Exercise: higher fat 

oxidation in LGI 

GI – glycaemic index, HGI – high glycaemic index, MGI – moderate glycaemic index, 
LGI – low glycaemic index, V�O2peak – peak oxygen uptake, CHO – carbohydrate. 
 

2.8.3 Satiety 

Much of the interest surrounding GI and body weight regulation has stemmed from the 

finding that LGI foods have satiating properties that may reduce subsequent food 
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intake. Importantly, there is some evidence to support these claims in young people 

(Ball et al., 2003; Ludwig et al., 1999; Warren et al., 2003). In a well-controlled study, 

Warren et al. (2003) reported lower lunchtime energy intake and hunger ratings after 

LGI, and LGI with added sugar, breakfasts compared with HGI and habitual breakfasts 

(which were also HGI) in girls and boys. In support, Henry et al. (2007) found a 

tendency towards a reduced energy intake at lunch following a LGI breakfast compared 

with HGI breakfast in preadolescent children, although the mean difference was low 

(75 kJ, 18 kcal) and mainly confined to boys. However, the actual glucose and insulin 

responses to the breakfasts were not determined in these studies, thus it is not possible 

to confirm whether the breakfasts differing in GI induced the expected metabolic 

responses (Henry et al., 2007; Warren et al., 2003). Despite these concerns, studies that 

have determined postprandial glucose and insulin responses support these findings; 

voluntary energy intake and hunger ratings were greatest after a HGI, followed by a 

MGI and lowest after a LGI breakfast in obese adolescent boys (Ludwig et al., 1999). 

However, although the HGI and MGI breakfasts were matched for key variables, the 

LGI breakfast contained less CHO, more protein and more fat than the HGI breakfast, 

possibly confounding the GI comparison (Ludwig et al., 1999). In contrast, another 

study reported similar energy intake and hunger ratings when comparing a LGI meal 

replacement, LGI whole-food meal and HGI meal replacement in overweight 

adolescents (Ball et al., 2003). Encouragingly, however, time to request additional food 

was prolonged following the LGI breakfast, indicating that overweight and obese 

adolescents are satisfied for a longer time period after LGI compared with HGI 

breakfast consumption (Ball et al., 2003; Ludwig et al., 1999). The lower energy intake 

and prolonged satiety following LGI breakfast consumption suggests that breakfasts 

rich in LGI CHO could have direct implications for weight management and may partly 

explain the relationship between dietary GI and BMI (Du et al., 2009; Spieth et al., 

2000). In turn, reduced BMI may contribute to other health benefits associated with 

LGI diets, including increased insulin sensitivity and reduced cardiovascular risk 

factors (see section 2.7.2).  

 

Differences in glycaemia might underpin the relationship between GI and satiety, as the 

lower glucose concentration following a LGI compared with HGI breakfast explained 

much of the lower voluntary food intake later in the day in obese adolescent boys 

(Ludwig et al., 1999). Indeed, the rapid absorption of glucose following HGI breakfast 
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consumption stimulates insulin release, which promotes glucose uptake by the liver, 

skeletal muscle and adipose tissue, while suppressing both lipolysis in adipocytes and 

the release of glucose from the liver into the circulation. Subsequently, blood glucose 

concentration decreases rapidly. The decreased circulating concentrations of metabolic 

fuels following HGI breakfast consumption would be expected to result in increased 

hunger and food intake as the body attempts to restore energy homeostasis. In contrast, 

the attenuated glucose response following LGI breakfast consumption stimulates more 

subtle hormonal responses and the prolonged and continued absorption of nutrients 

means that the fasted state is reached much later. The hunger response is, thus, 

prolonged following LGI breakfast consumption, which would promote longer term 

satiety (Brand-Miller et al., 2002; Ludwig et al., 1999). 

 

2.8.4 Participant characteristics  

Glycaemic responses depend on several factors, including age, sex, BMI, ethnicity and 

insulin resistance, thus a concern of GI is that values may vary between individuals (Pi-

Sunyer, 2002). However, measuring the glycaemic response (as the area under the 

glucose concentration over time curve, AUC) is not the same as measuring the GI (food 

AUC relative to reference food AUC). Thus, factors affecting glycaemia will not affect 

the GI if these factors influence the AUC for the test food and the reference food to the 

same extent.  

Participant characteristics such as age, sex, BMI, ethnicity and insulin sensitivity are 

generally not believed to influence GI (Wolever et al., 2003; Lan-Pidhainy and 

Wolever, 2011; Perälä et al., 2011), although the insulinaemic index may depend upon 

the glycaemic control and insulin sensitivity of the individual (Lan-Pidhainy and 

Wolever, 2011). There is, however, some evidence supporting a role of training status 

on GI. The GI of breakfast cereals was lower in endurance trained compared with 

sedentary men due to the similar glucose response to the reference solution coupled 

with the lower glucose response to the test food (cereal) in the trained men (Mettler et 

al., 2007). However, the glucose response to both the test and reference food was lower 

in endurance trained compared with sedentary women, resulting in similar GI values 

between these groups (Mettler et al., 2008). Similarly, no difference in the GI of raisins 

and snack bars was found in mixed-sex groups of endurance trained and sedentary 

adults (Kim et al., 2008; Trompers et al., 2010). It has been suggested that the effect of 
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individual characteristics on postprandial glucose may depend on the specific food. 

Wolever et al. (2009) investigated the effect of several factors, including age, sex, 

ethnicity, BMI, waist circumference and fasting insulin on the GI values of three foods 

and reported the GI for fruit leather was lower in those with a high waist circumference, 

while fasting insulin and ethnicity affected the GI for white bread. Therefore, it remains 

possible that participant characteristics can affect GI values, although this effect may be 

specific to certain foods. 

2.8.5 Conclusions 

Experimental studies have shown that LGI compared with HGI breakfast consumption 

results in a reduced postprandial glucose and insulin response and, consequently, 

increased satiety and possibly fat oxidation. These findings may explain relationships 

between reduced dietary GI and improved health markers, such as BMI, insulin 

resistance and cardiovascular risk factors. However, further research in young people is 

required to extend and confirm findings from the adult-based literature. In particular, 

the effect of breakfast GI on fat oxidation does not appear to have been investigated in 

young people, despite a plethora of studies in adults (Table 2.2). Furthermore, research 

directly comparing the metabolic responses of HGI and LGI breakfasts in different 

populations is sparse. Substituting a HGI breakfast for a LGI breakfast may be 

particularly beneficial for overweight individuals through increased glycaemic control, 

fat oxidation and satiety. Moreover, differences in insulin resistance between 

overweight and non-overweight individuals (see section 2.1) suggests that it may be 

worthwhile comparing the metabolic responses to HGI and LGI breakfasts in these 

populations. In addition, this research may be best focused on girls, as physical activity 

levels are lower in girls compared with boys (Riddoch et al., 2007) and girls are less 

likely to eat breakfast daily (Timlin et al., 2008). Methodological considerations for 

future work include matching breakfasts for macronutrient content and determining the 

actual glucose and insulin responses to breakfasts differing in GI in young people. 

 

2.9 Acute effect of exercise on metabolism 

In addition to LGI breakfast consumption, exercise may represent another effective 

strategy to attenuate the adverse metabolic responses associated with HGI breakfasts. 

Although the metabolic benefits of exercise training in young people are well 

documented (Ben Ounis et al., 2009, Shaibi et al., 2008), the effect of acute exercise has 
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received little attention. This is somewhat surprising, since it is widely recognised in 

adults that many of the metabolic improvements associated with exercise stem from the 

most recent exercise session. Moreover, exercise training improves insulin sensitivity in 

young people independent of changes in body composition, thus we know that weight 

loss is not required for these metabolic improvements to be manifested (Bell et al., 

2007; Nassis et al., 2005). Therefore, the following section draws upon the literature in 

adults to review the acute effect of exercise on glucose, insulin and fat metabolism. 

 

2.9.1 Glucose and insulin 

It is well established in adults that a single exercise bout results in a transient increased 

insulin-mediated whole-body glucose uptake for up to 72 h post-exercise, but returns to 

baseline values thereafter (Horowitz, 2007; King et al., 1995). Accordingly, numerous 

studies in adults have assessed the effect of exercise on metabolism the next morning 

(12 to 16 h post-exercise). Reduced fasting (Horowitz et al., 2005) and postprandial 

insulin concentrations (Burton et al., 2008; Brestoff et al., 2009; Kokalas et al., 2005) 

the morning after a single bout of aerobic exercise compared with no exercise have 

been shown in healthy (Brestoff et al., 2009; Newsom et al., 2010), overweight/obese 

(Burton et al., 2008) and type 2 diabetic (Manders et al., 2010) adults. The acute effect 

of exercise on glucose is less clear, with studies reporting no effect (Brestoff et al., 

2009; Burton et al., 2008), reductions (Kokalas et al., 2005; Mitchell et al., 2008) or 

even a trend for higher (Gill and Hardman, 2000) postprandial glucose concentrations 

the morning after exercise. Nevertheless, reductions in insulin concentrations with 

unchanged glucose after exercise indicate improved glucose control. Indices of insulin 

sensitivity, including the homoeostasis model assessment for insulin resistance 

(HOMA-IR) and insulin sensitivity index, may also improve the morning after exercise 

(Brestoff et al., 2009; Kokalas et al., 2005), although some have observed no change 

(Burton et al., 2008; Holtz et al., 2008). It is possible that more sensitive measures of 

insulin resistance (e.g., glucose clamp methods, minimal model method) may be 

required to detect potential changes in some studies. Only one study appears to have 

measured glucose and insulin concentrations the morning after acute exercise in young 

people. MacEneaney et al. (2009) reported 2.51 MJ (600 kcal) of exercise did not affect 

fasting and postprandial glucose or insulin in overweight or non-overweight adolescent 

boys. However, this study was not specifically designed to examine glucose or insulin 

and this was reflected in the study design, which included a high-fat breakfast meal and 
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the measurement of only three blood samples during the immediate 2 h postprandial 

period (MacEneaney et al., 2009). The inclusion of a high CHO breakfast containing 

HGI CHO to induce greater glucose and insulin responses and more frequent blood 

sampling may be more appropriate to detect potential differences between conditions 

and groups. 

 

Glycogen repletion following exercise occurs in two distinct phases: an early insulin-

independent period of rapid glycogen resynthesis (lasting approximately 1 h post-

exercise) and a subsequent period (up to 72 h post-exercise) of slow insulin-dependent 

glycogen resynthesis (King et al., 1995; Price et al., 1999). Insulin-mediated glucose 

uptake is, therefore, elevated after exercise to facilitate glycogen synthesis (Holloszy, 

2005), which may ultimately reduce postprandial insulin concentrations. Indeed, the 

increase in insulin sensitivity after exercise has been found to be directly proportional to 

the magnitude of muscle glycogen depletion during exercise (Cartee et al., 1989; 

Wojtaszewski et al., 2000). Although the underlying cellular mechanisms controlling 

post-exercise increases in insulin-mediated glucose uptake remain elusive, increased 

GLUT-4 translocation from intracellular storage sites to the plasma membrane is 

thought to play a crucial role; GLUT-4 was translocated to the plasma membrane 3.5 h 

after exercise in rodents (Hansen et al., 1998) and immediately after exercise in adults 

(Kennedy et al., 1999; Thorell et al., 1999). Moreover, there was a progressive post-

exercise increase in GLUT-4 protein concentration that peaked at 16 h in rodents, 

although measurements were not taken after this time (Kuo et al., 1999), and GLUT-4 

mRNA was increased up to 22 h after exercise in adults (Stephens et al., 2010). Post-

exercise alterations in GLUT-4 may not be completely controlled by glycogen 

depletion, as isoenergetic exercise at 40 and 80% V�O2peak increased GLUT-4 mRNA 

and GLUT-4 protein to a similar extent in human skeletal muscle, despite greater 

glycogen degradation after the higher intensity exercise (Kraniou et al., 2006). In more 

recent years, other cellular mechanisms have been proposed to mediate post-exercise 

increases in insulin sensitivity (Maarbjerg et al., 2011), which relate to increased 

glycogen synthase activity (Koval et al., 1998), increased hexokinase II (HK II) mRNA 

(Koval et al., 1998, Stephens et al., 2010) and reduced muscle malonyl-CoA content 

(Frøsig et al., 2009).  
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2.9.2 Fat oxidation 

It is also well documented that fasting and postprandial fat oxidation are increased the 

morning after a bout of exercise in healthy (Schenk and Horowitz, 2007; Votruba et al., 

2002) and overweight/obese (Burton et al., 2008; Holtz et al., 2008) adults. Moreover, 

lower RER values (Burton et al., 2008) and increased fat oxidation as a percentage of 

total energy expenditure (Horton et al., 1998) suggest these post-exercise increases in 

fat oxidation are not solely due to increased total energy expenditure. However, similar 

studies in young people do not appear to be available. It has been postulated that the 

high metabolic priority for muscle glycogen synthesis following exercise could explain 

the concomitant elevated fat oxidation (Kiens and Richter, 1998). Indeed, lower post-

exercise insulin concentrations could augment fat oxidation (Horowitz et al., 1997). 

 

More recently, the contention that the elevated fat oxidation after exercise could 

contribute to enhancements in insulin sensitivity has received much attention and 

increasing support (Horowitz, 2007). Accumulation of fatty acid metabolites within the 

muscle can induce insulin resistance (see section 2.1). Schenk and Horowitz (2007) 

demonstrated that a single exercise bout protected against fatty acid induced insulin 

resistance in women, which was accompanied by increased IMTG synthesis, reduced 

accumulation of fatty acid metabolites within skeletal muscle and suppressed activation 

of proinflammatory pathways known to impair insulin action. Thus, FFA entering the 

muscle cell after exercise were preferentially partitioned toward IMTG synthesis rather 

than toward the accumulation of the more damaging fatty acid intermediates that impair 

insulin sensitivity. Further support for this comes from studies in rat skeletal muscle 

(Thrush et al., 2011). Additionally, reducing exercise fat oxidation through the 

ingestion of a lipolysis inhibitor abolished the exercise-induced reduction in 

postprandial insulin in men, highlighting the importance of promoting fat oxidation 

during exercise (Malkova et al., 1999). However, it cannot be discounted that the 

lowered muscle glycogen concentration the day after exercise may have contributed to 

enhancements insulin sensitivity (Schenk and Horowitz, 2007). Previous work 

demonstrated that raising IMTG concentration the morning after exercise via increased 

post-exercise dietary fat intake (Fox et al., 2004) or overnight lipid infusion (Schenk et 

al., 2005) did not alter insulin sensitivity. On the surface, this implied that post-exercise 

muscle glycogen content is more critical than IMTG in regulating exercise-induced 

changes in insulin sensitivity and conflicted with the notion that IMTG accumulation is 
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related to insulin resistance; however, this relationship is not functional (see section 

2.1). The higher IMTG content may have actually reflected an increase in the 

partitioning of FFA toward IMTG synthesis and a reduced accumulation of fatty acid 

metabolites, which is in agreement with the study of Schenk and Horowitz (2007).  

 

Possible underlying cellular mechanisms mediating the enhanced fat oxidation after 

acute exercise include increased abundance of FAT/CD36 at the mitochondrial 

membrane (Campbell et al., 2004), increased muscle LPL activity (Kiens and Richter, 

1998), reduced activity of pyruvate dehydrogenase (PDH, a key regulator of CHO 

metabolism; Kimber et al., 2003), reduced acetyl CoA, acetylcarnitine and pyruvate 

concentrations (Kimber et al., 2003) and increased adenosine monophosphate (AMP)-

activated protein kinase (AMPK) activity (Ruderman et al., 2003). Increased AMPK 

activity may lower malonyl-CoA content, facilitating the transport of FFA into the 

mitochondria, and post-exercise reductions in malonyl-CoA were correlated with 

improved insulin-stimulated glucose uptake in men (Frøsig et al., 2009), supporting the 

link between increased fat oxidation and insulin sensitivity after exercise.  

 

2.9.3 Energy and carbohydrate balance 

With the crucial mechanistic role of muscle substrate stores, energy and/or CHO 

balance appears to be the main factor governing changes in metabolism after exercise. 

This can be affected by exercise energy expenditure (intensity, duration, mode, 

participant characteristics) and post-exercise energy and macronutrient intake. The 

maintenance of an energy deficit following exercise augmented the exercise-induced 

reduction in postprandial insulin, increase in fat oxidation and decrease in RER the next 

morning in overweight men (Burton et al., 2008). It has been suggested that the 

relationship between exercise energy expenditure and reduction in HOMA-IR is 

curvilinear, with a relatively high threshold of 3.77 MJ (900 kcal) for improvements to 

be manifested in active men (Magkos et al., 2008). However, this study did not measure 

energy and CHO balance and participants only completed one exercise condition, thus 

differences between participants could have confounded the results. 

 

Studies directly comparing the independent effect of energy and CHO deficit suggest 

that the latter may be more important in explaining post-exercise increases in insulin 

sensitivity. Newsom et al. (2010) reported that the maintenance of an energy deficit 



Chapter 2: Review of Literature 
______________________________________________________________________ 

54 
 

after exercise did not augment post-exercise enhancements in insulin sensitivity, 

whereas CHO deficit prevented muscle glycogen restoration and increased insulin 

sensitivity the next morning. In support, despite post-exercise energy replacement, the 

maintenance of a CHO deficit augmented the increased non-oxidative glucose disposal 

(glucose storage) and reduced glucose oxidation 12 h after exercise compared with 

energy and CHO replacement. Moreover, the magnitude of change in insulin action the 

day after exercise was directly proportional to the magnitude of the CHO deficit (Holtz 

et al., 2008). When dietary CHO and protein were kept constant, the addition of energy 

to post-exercise meals in the form of fat (Fox et al., 2004) or overnight lipid infusion 

(Schenk et al., 2005) did not alter postprandial glucose, insulin or insulin sensitivity the 

next day, despite the substantially higher energy intake, providing further evidence that 

post-exercise CHO rather than energy intake appears to control changes in insulin 

sensitivity. However, these studies did not include a control condition with no exercise 

(Fox et al., 2004; Holtz et al., 2008; Schenk et al., 2005). At the cellular level, energy or 

CHO replacement following exercise facilitates muscle glycogen restoration, lowers 

GLUT-4 and HK II mRNA and blunts the increased plasma membrane GLUT-4 protein 

(Cheng et al., 2005; Chou et al., 2005), supporting the importance of post-exercise 

energy and CHO intake. 

 

In contrast, energy balance may be a more important factor driving post-exercise fat 

oxidation than CHO balance. Post-exercise energy deficit increased fat oxidation the 

day after exercise independent of CHO intake (Horowitz et al., 2005) and to a larger 

degree than CHO deficit (Newsom et al., 2010). Furthermore, post-exercise CHO 

deficit with energy replacement did not augment exercise-induced enhancements in fat 

oxidation (Holtz et al., 2008). In support, others have shown that exercise did not 

increase 24 h fat oxidation when exercise energy expenditure was replaced immediately 

post-exercise, although these studies did not include a CHO deficit condition (Dionne et 

al., 1999; Melanson et al., 2009). Energy deficit increases FFA availability, increases 

PDH kinase-4 mRNA expression and suppresses CHO oxidation even when dietary 

CHO content is not reduced (Horowitz et al., 2005), supporting the contention that 

energy rather than CHO deficit is paramount in this relationship. 

 

A potential limitation of studies attempting to examine the independent effects of 

energy and CHO deficit is that, relative to when the post-exercise meal restored energy 
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and CHO balance, the fat content of the meal was reduced to create a state of energy 

deficit with CHO balance and increased to create a state of CHO deficit with energy 

balance (Horowitz et al., 2005; Newsom et al., 2010). Thus, an alternative interpretation 

may be that the observed findings were a direct result of differences in fat intake 

between conditions, rather than energy or CHO deficit. However, as discussed, the 

ingestion of fat following exercise does not appear to affect changes in insulin 

sensitivity (Fox et al., 2004; Schenk et al., 2005).  

 

Importantly, it should be highlighted that exercise can induce favourable alterations in 

insulin and fat oxidation the next day even when energy and CHO balance is 

maintained, suggesting that energy and/or CHO deficit can augment these changes but 

is not a requirement (Burton et al., 2008; Newsom et al., 2010). Indeed, insulin 

sensitivity may continue to be elevated following exercise until glycogen is raised 

above pre-exercise levels and glycogen supercompensation is achieved (Cartee et al., 

1989; Kawanaka et al., 1999). Furthermore, an exercise-induced, but not an equivalent 

dietary-induced, energy deficit lowered postprandial insulin concentrations in adults 

(Gill and Hardman, 2000) and exercise lowered the elevated postprandial insulin 

response induced by systematic overfeeding even when opposed by continued energy 

surplus (Hagobian et al., 2006), suggesting that energy deficit is not the sole 

determinant of exercise-induced changes in postprandial metabolism.  

 

Although these studies enhance our understanding of the factors controlling post-

exercise changes in metabolism, the prescribed post-exercise diet may not reflect the 

normal dietary habits of individuals. Compensatory increases in energy intake may 

occur in the post-exercise period and there is evidence of increased appetite during the 

later stages of recovery following acute exercise (Malkova et al., 2008). Studying the 

effect of a bout of exercise with the maintenance of habitual diet on subsequent 

metabolism may, therefore, more directly reflect a ‘real world’ situation. When an ad 

libitum breakfast was provided the morning after exercise, exercise-induced reductions 

in postprandial insulin and elevations in postprandial fat oxidation still occurred (Farah 

et al., 2010). It is noteworthy that these effects persisted despite participants consuming 

around 1.26 MJ (300 kcal) and 12 g CHO more the morning after exercise, although 

this difference was not significant. Therefore, these metabolic benefits of acute exercise 

appear to extend to ‘real world’ settings where food intake is not carefully controlled. 
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2.9.4 Exercise characteristics 

There is some evidence that exercise intensity can affect post-exercise improvements in 

insulin. When compared with endurance exercise (75% V��O2peak), sprint intermittent 

exercise (125% V�O2peak) did not improve insulin sensitivity or reduce postprandial 

insulin, perhaps due to the longer exercise duration of the endurance exercise and 

possibly higher energy expenditure (Brestoff et al., 2009). However, when comparing 

isoenergetic bouts of low (35% V�O2peak) and high (70% V�O2peak) intensity exercise, 

hyperglycaemia was only reduced following the low intensity exercise in type 2 

diabetic men (Manders et al., 2010). This could be attributed to the high counter 

regulatory hormonal responses following high intensity exercise (Kjaer et al., 1990) or 

the eccentric load of sprint exercise and possible muscle damage (Del Aguila et al., 

2000). Indeed, eccentric exercise that results in muscle damage is followed by a 

transient period of insulin resistance (Kirwan et al., 1992). Interestingly, the increased 

GLUT-4 mRNA and GLUT-4 protein after exercise was independent of exercise 

intensity and duration, but the increase in total crude membrane GLUT-4 protein was 

more pronounced 3 h after low intensity exercise at 39% V��O2peak (106% higher) 

compared with high intensity exercise at 83% V��O2peak (61% higher), although this 

difference was not significant (Kraniou et al., 2006). In addition, exercise utilising a 

greater amount of muscle tissue may augment post-exercise reductions in glucose and 

insulin; two-leg cycling resulted in lower 18 h post-exercise glucose and insulin 

responses compared with one-leg cycling with a similar energy expenditure, possibly 

due to elevated muscular blood flow during the two-leg cycling (Brambrink et al., 

1997). Exercise intensity does not appear to affect the extent of the increase in post-

exercise fat oxidation when exercise energy expenditure is constant, although the higher 

fat oxidation during moderate compared with high intensity exercise may result in a 

higher cumulative fat oxidation (Melanson et al., 2002; Votruba et al., 2002).  

 

2.9.5 Obesity  

Despite observations of post-exercise increases in fat oxidation and reductions in 

insulin concentrations in non-overweight, overweight and obese adults (section 2.9.1 

and 2.9.2), studies directly examining the effect of weight status on exercise-induced 

changes in metabolism are sparse and have produced conflicting results. As discussed 

in section 2.9.1, exercise-induced changes in glucose and insulin were not observed in 

overweight or non-overweight adolescent boys (MacEneaney et al., 2009). In contrast, 
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exercise reduced postprandial insulin concentrations in both overweight and non-

overweight women (Mitchell et al., 2008) and in obese, but not non-obese, men (Gill et 

al., 2004).  A major flaw in these adult-based studies was that exercise intensity and 

duration were the same for all participants, and consequently, exercise energy 

expenditure was higher in the overweight/obese groups, confounding between-group 

comparisons (Gill et al., 2004; Mitchell et al., 2008). Indeed, the higher energy 

expenditure in the obese compared with non-obese men may explain why exercise-

induced reductions in postprandial insulin were observed in the obese men only (Gill et 

al., 2004). Furthermore, as with the study in adolescent boys (MacEneaney et al., 2009), 

glucose and insulin have not necessarily been the main outcome variables in these adult 

studies, which have included high-fat breakfast meals and infrequent blood sampling 

during the immediate postprandial period (Gill et al., 2004). There is also some limited 

evidence that exercise-induced changes in substrate oxidation may depend on the 

weight status of the individual (Melanson et al., 2009). In lean endurance trained, lean 

sedentary and obese sedentary adults, exercise with energy replacement (energy balance 

maintained) did not increase 24 h fat oxidation, whereas 24 h CHO oxidation increased 

in the lean endurance-trained and lean sedentary, but not the obese sedentary adults 

(Melanson et al., 2009). However, exercise characteristics (energy expenditure and 

exercise mode) differed between individuals, possibly confounding between-group 

comparisons.  

 

Obesity may affect the magnitude of exercise-induced changes in metabolism due to 

differences in fat and insulin metabolism between obese and non-obese individuals (see 

section 2.1). Obese adults have delayed adipose tissue blood flow, slower lipid 

mobilisation and lower plasma glycerol concentration 2 h post-exercise (Børsheim et 

al., 2000). Furthermore, patterns of subcellular distribution of GLUT-4 and FAT/CD36 

at the plasma membrane appear to be opposed in obesity; GLUT-4 translocation from 

intracellular stores to the sarcolemma by insulin is inhibited, whilst more FAT/CD36 is 

located at the plasma membrane (Bonen et al., 2002; 2004). Given the potential role of 

substrate transporters in mediating post-exercise changes in metabolism, it is plausible 

that potential metabolic improvements could depend on the weight status of the 

individual.  
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2.9.6 Conclusions 

Evidence in adults indicates that a single bout of exercise performed ~16 h prior to 

breakfast consumption can reduce postprandial insulin concentrations and increase fat 

oxidation, although the effect on glucose is less clear. These exercise-induced metabolic 

benefits may be augmented by maintaining the exercise-induced energy and/or CHO 

deficit. Possible mechanisms may relate to muscle glycogen depletion, GLUT-4 

translocation and a reduced accumulation of fatty acid metabolites. Although it is clear 

that exercise training can increase insulin sensitivity and fat oxidation in young people, 

studies have not yet examined the acute effect of exercise on these health markers. The 

clinical relevance of this work may be particularly important for overweight or obese 

individuals (see section 2.1), thus it would be worthwhile to assess the acute effect of 

exercise on postprandial glucose, insulin and fat oxidation in both overweight and non-

overweight young people. 

 

2.10 Summary 

The high prevalence of overweight and obesity in young people has prompted a need 

for evidence-based interventions aimed at improving metabolism and weight control in 

the paediatric population. Fat oxidation has been implicated in the development of 

insulin resistance, the most common metabolic alteration associated with obesity. 

Exercise increases fat oxidation and there has been growing interest in the exercise 

intensity that promotes maximal fat oxidation (Fatmax) in young people. However, 

little is known regarding the exercise characteristics that can be manipulated to augment 

increases in fat oxidation or whether the consumption of different types of breakfast 

meals affects this relationship. There has been considerable interest in the health 

benefits of LGI diets and exercise training, although studies have not yet examined the 

acute effect of breakfast GI or exercise on glucose, insulin and fat metabolism in young 

people. Based on the adult literature, it is plausible that acute manipulation of breakfast 

GI and a single exercise bout can induce favourable health outcomes in young people, 

relating to fat oxidation and insulin resistance. Overall, it is clear that our understanding 

of exercise metabolism in young people is severely lacking relative to that in adults. A 

better understanding of the exercise characteristics required to increase fat oxidation 

and reduce insulin resistance would provide valuable information for maximising the 

important metabolic benefits of each exercise session in young people.  
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Chapter 3 

 

General Methods 

 

The purpose of this chapter is to describe the methods used in the experimental studies 

that follow. These methods were common between studies; methods that specifically 

relate to individual studies are described within the individual experimental chapters 

(Chapters 4 to 7). 

 

3.1 Participants  

After gaining approval from the University Ethical Advisory sub-Committee, 

participants were recruited from local schools in Loughborough. Written informed 

consent was obtained from the primary carer and the participants provided their written 

“willingness to participate”. Participants were screened using a health history 

questionnaire (Appendix 1). Exclusion criteria included: known congenital heart 

disease, musculoskeletal problems, uncontrolled exercise-induced asthma, diabetes and 

epilepsy. 

 

3.2 Anthropometry 

Anthropometric characteristics were assessed and recorded prior to all experimental 

trials. Stature was measured using a stadiometer (Holtain, Holtain Limited, Dyfed, UK) 

to the nearest 0.01 m and body mass (BM) was measured using a beam balance scale 

(Seca Model 888, Hamburg, Germany) to the nearest 0.1 kg. Body mass index (BMI) 

was calculated as body mass (kg) divided by stature squared (m2). Skinfold thickness 

was determined from three different sites (triceps, subscapular and medial calf) on the 

right hand side of the body using a Harpenden skinfold calliper to the nearest 0.2 mm 

(Baty International, England). Each site was measured three times by the same 

investigator and the median value for each site was used to estimate percentage body fat 

(% BF) according to Slaughter et al. (1988). Fat free mass (FFM) in kg was estimated 

subsequently using the following equation: 

 

FFM = BM·(1-(%BF/100)) 
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Waist circumference was measured midway between the 10th rib and the iliac crest 

(McCarthy et al., 2005) using a Guilick tape measure (Creative Health Products, 

Plymouth, MI). With the assistance of a primary home-based carer (parent/guardian), 

participants provided a self-assessment of their physical maturation using secondary 

sexual characteristics, as discussed in section 2.5.1 (Tanner, 1962; Appendix 2). 

 

3.3 Gas exchange during rest and exercise 

Gas exchange was sampled continuously for all exercise tests and for 5 min periods 

during rest after the participant had rested on a bed in a supine position for 20 min. 

Ventilatory variables were measured on a breath-by-breath basis and displayed on-line; 

the K4 b2 (Cosmed, Rome, Italy) was used in Chapter 4 and 6 and the Metalyzer 3B 

(Cortex, Leipzig, Germany) was used in Chapters 5 and 7. The flow meter was attached 

to a facemask (Hans Rudolf, Shawnee, USA) of an appropriate size with a dead space 

volume of 32 to 40 mL, which was fitted carefully to the face and checked for leaks 

prior to each test. Gas calibration was performed according to the manufacturer’s 

recommendations using well ventilated room air and a bottled gas mixture containing 

5% CO2, 16% O2, balance N2 (K4 b2: Scott Medical Products, Plumsteadville, PA or 

Metalyzer 3B: Cranlea and Company, Birmingham, UK). The flow meter was 

calibrated using a bi-directional 3.0 L volume calibration syringe (Hans Rudolf, 

Shawnee, USA). All calibration procedures were carried out prior to each experimental 

test.  

 

3.4 Heart rate 

Heart rate (HR) was monitored and recorded continuously during exercise tests using 

short-range telemetry (Polar Vantage, Polar, Kempele, Finland).  

 

3.5 Exercise tests 

Exercise tests were performed on an electromagnetically-braked cycle ergometer 

(Excalibur Sport, Lode, Groningen, The Netherlands) or a treadmill (RunRace, 

TechnoGym, Gambettola, Italy). Prior to testing, participants were habituated to the 

laboratory environment, equipment and exercise protocols. In particular, they practiced 

exercising on the cycle ergometer at 60 revs·min-1 and walking and running on the 

treadmill at various speeds whilst breathing through the facemask.  The seat height and 

pedal cranks were adjusted for each child and replicated during subsequent 
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measurements using the cycle ergometer. Participants were asked to pedal at 60 

revs·min-1 for all exercise trials. 

 

3.5.1 Peak exercise test 

Participants completed a peak exercise test to volitional exhaustion for each of the 

experimental studies. All participants were asked to avoid strenuous exercise and 

caffeine on the day and food intake 2 h prior to testing. The exercise protocols used 

were as follows: 

 

Cycling: Following a 2 min warm-up of unloaded pedalling, the work rate increased by 

8 or 10 W·min-1 (dependent on body size) to attain a test duration of 10 to 12 min.  

Treadmill: Participants ran at an individual pre-determined fixed speed chosen to attain 

a test duration of 10 to 12 min. Following a 2 min warm-up at 0% gradient, the gradient 

increased by 1% each minute. 

 

In the absence of a plateau in V�O2, maximal effort was considered to have been 

reached if the following secondary criteria were achieved: HR levelling off at 

approximately 200 beats·min-1 and RER ≥1.05, in addition to the participant 

demonstrating clear subjective symptoms of fatigue (Armstrong et al., 1996). The 

highest 30 s moving average during the exercise test was recorded as V�O2peak. 

 

3.6 Indirect calorimetry 

Breath-by-breath ventilatory variables were interpolated into 1 second (s) intervals for 

all tests. Breath-by-breath responses occasionally contain values that are clearly 

artifactual, which may result from swallowing or coughing (Lamarra et al., 1987). 

Therefore, individual V�O2 and V�CO2 values that were >3 standard deviations (SDs) 

from the mean were removed (Lamarra et al., 1987), as were RER values >1. Indirect 

calorimetry does not provide a valid estimation of substrate oxidation for exercise 

intensities >80 to 85% V�O2peak in adults (Romijn et al., 1992) or during the non-

steady state (Frayn, 1983). Data >80% V�O2peak were, therefore, not used. 

Subsequently, average values for V�O2 and V�CO2 were calculated and used for 

analyses. 
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Fat oxidation rates were estimated using the following stoichiometric equation with the 

assumption that the urinary nitrogen excretion rate was negligible (Frayn, 1983): 

 

Fat oxidation (mg·min-1) = 1.67 x V�O2 (mL·min-1) - 1.67 x V�CO2 (mL·min-1) 

 

3.7 Blood sampling and analysis 

Capillary blood samples were obtained from a pre-warmed hand by finger prick using 

the Unistik 2 single-use lancing device (Owen Mumford, Oxford, UK) into Microvette 

CB300 ethylenediaminetetraacetic acid (EDTA) coated capillary blood collection tubes 

(Sarstedt Ltd, Leicester, UK). Capillary rather than venous blood sampling is preferred 

for reliable GI testing (Wolever et al., 2003). Duplicate 25 µL aliquots of whole blood 

were deproteinised in 250 µL of ice cooled perchloric acid (PCA; 2.5%), centrifuged 

for 4 min at 2415·g and stored at -20°C for blood glucose analysis. The remaining 

whole blood was centrifuged for 4 min at 2415·g. Plasma was then extracted and stored 

at -20°C for insulin analysis. 

 

Blood glucose concentration was determined spectrophotometrically using the glucose 

oxidase method (GOD-PAP, Randox, Crumlin, Ireland). Plasma insulin was measured 

in duplicate using an enzyme-linked immunosorbent assay (ELISA, Mercodia, Uppsala, 

Sweden). The total 120 min area under the curve (TAUC) for blood glucose and plasma 

insulin were calculated using the trapezium rule (Wolever and Jenkins, 1986). HOMA-

IR was calculated from fasted glucose and insulin concentrations using the following 

equation (Matthews et al., 1985): 

 

HOMA-IR = fasting plasma insulin (mU·L-1) x fasting plasma blood (mmol·L-1) / 22.5 

 

3.8 Perceived hunger 

Perceptions of hunger, satisfaction, fullness and prospective food consumption were 

assessed using 100 mm visual analogue scales (Flint et al., 2000). Following breakfast, 

participants were also asked to rate how much they liked the breakfast for the 

assessment of breakfast palatability (Appendix 3). 
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Chapter 4 

 

Exercise protocols to estimate Fatmax and maximal fat oxidation in children 

 

 

Abstract 

Consensus on the exercise protocol used to estimate Fatmax (the exercise intensity 
corresponding to maximal fat oxidation (MFO)) in children has not been reached. The 
present study compared Fatmax estimated using the 3 min incremental cycling protocol 
(3-INC) and a protocol consisting of several 10 min constant work rate exercise bouts 
(10-CWR) in 26 prepubertal children (13 boys and 13 girls aged 9.5(0.5) y). Group 
Fatmax values were the same for 3-INC and 10-CWR (55% V�O2peak, P=1.000) and 
95% limits of agreement (LoA) were ± 7% V�O2peak. The 95% LoA for Fatmax were 
small when considering the range of intensities where fat oxidation remained high. 
Group MFO values were similar between protocols (P=0.372), but 95% LoA were -94 
to 113 mg·min-1 and indicated a large degree of within-participant variation. It can be 
concluded that a 3 min incremental exercise protocol and prolonged isolated exercise 
bouts result in comparable estimations of Fatmax in prepubertal children. The 3 min 
exercise protocol is, therefore, recommended for practical reasons. However, caution 
should be maintained when estimating MFO in prepubertal children. 
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4.1 Introduction 

The exercise intensity that promotes MFO has been termed Fatmax (Achten et al., 

2002) and has received a recent surge in interest in young people (Aucouturier et al., 

2009; Brandou et al., 2006; Lazzer et al., 2007; 2010; Riddell et al., 2008; Zunquin et 

al., 2009a). Studies in young people have identified Fatmax using incremental protocols 

with exercise stages of 3 (Riddell et al., 2008), 3.5 (Zunquin et al., 2009a), 4 

(Aucouturier et al., 2009; Lazzer et al., 2010), 5 (Lazzer et al., 2007) and 6 (Brandou et 

al., 2006) min in duration. In contrast, others have continued to use a more traditional 

approach of isolated exercise bouts lasting 6 (Stephens et al., 2006) and 8 to 10 

(Maffeis et al., 2005) min with standardised recovery periods to estimate fat oxidation 

at different intensities (see section 2.4). 

 

The major advantage of using an incremental protocol with short stages is that fat 

oxidation can be estimated across a wide range of exercise intensities and in a single 

visit to the laboratory. Conversely, the use of longer duration exercise bouts can limit 

the estimation of fat oxidation to only three (Maffeis et al., 2005) or five (Stephens et 

al., 2006) different intensities, precluding a precise estimation of Fatmax. Furthermore, 

there is a trade-off between exercise stage duration and the number of exercise 

intensities; as stage duration increases, the number of exercise intensities may diminish 

(e.g., Brandou et al., 2006; Lazzer et al., 2007; Riddell et al., 2008) to such an extent 

that the advantage of the incremental protocol may be lost. Therefore, an incremental 

protocol with 3 min stages may be the preferred combination of stage duration and 

number of stages to estimate Fatmax.  

 

Studies using incremental protocols to estimate Fatmax in young people have adapted 

the 3 min protocol originally validated by Achten et al. (2002) in trained adult males. 

The primary issues with a 3 min incremental protocol are whether a physiological 

steady state is attained before the onset of the sampling period and whether there is a 

residual (carry-over) effect from stage to stage as the increments progress that influence 

subsequent fat oxidation estimations (see section 2.3 and 2.4). Oxygen and carbon 

dioxide kinetics research has shown that children attain a steady state faster than adults 

and V�O2 time constant values indicate the attainment of steady state within 2 min 

(Fawkner et al., 2002; Welsman et al., 2001). However, the time constant may be longer 

for V�CO2 (Cooper et al., 1990; Welsman et al., 2001) and, consequently, the 
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attainment of a steady state may be delayed. Furthermore, V�O2, but not V�CO2, 

kinetics may become progressively slower at higher work rate steps during incremental 

exercise with 3 min stages (Zhang et al., 1991). To the author’s knowledge, no studies 

have systematically examined the potential residual effect of incremental exercise on fat 

oxidation in children. Yet, in adults, it has been demonstrated that prior bouts of 

exercise may increase fat oxidation during subsequent exercise when compared with a 

single bout of prolonged exercise (Goto et al., 2007) and active warm-up may influence 

fat oxidation during a subsequent exercise bout, possibly by increasing acetylcarnitine 

(Gray et al., 2002, Odland et al., 1998) and reducing blood and muscle lactate 

concentrations (Boyd et al., 1974; Robergs et al., 1991). 

 

Research investigating the potential influence of sex on Fatmax in children appears to 

be limited to just one study (Lazzer et al., 2007) and the vast majority of this research is 

based on boys (e.g., Brandou et al., 2006; Riddell et al., 2008). Consequently, there is a 

need for studies to estimate Fatmax in girls and also examine any potential between-sex 

differences. 

 

Evidently, there is a lack of consensus on the type of protocol that should be used to 

estimate Fatmax in young people and inconsistencies in the methods employed limits 

inter-study comparisons (e.g., Riddell et al., 2008; Stephens et al., 2006). Considering 

the recent interest in Fatmax and potential clinical relevance of increasing fat oxidation 

(Ben Ounis et al., 2008; Holloway et al., 2009), it is important to systematically 

evaluate protocols suitable for estimating Fatmax in children specifically. A criterion 

(‘gold standard’) method for the measurement of Fatmax does not exist; a study 

comparing different protocols to estimate Fatmax would, therefore, provide valuable 

information. The aim of the present study was to compare Fatmax estimated using an 

incremental protocol with 3 min stages (3-INC) and several 10 min constant work rate 

(10-CWR) exercise bouts in prepubertal children. In addition, inclusion of girls and 

boys allowed an exploration of an independent sex effect. 

 

4.2 Methods 

4.2.1 Participants  

The sample consisted of 30 prepubertal children (15 boys and 15 girls) aged 8 to 10 y 

(26 were included in the final analyses). Anthropometric characteristics were assessed 
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and recorded prior to experimental trials, as described in the General Methods (section 

3.2). None of the girls had started the menstrual cycle. 

 

4.2.2 Apparatus 

All exercise tests were performed on an electromagnetically-braked cycle ergometer 

(Excalibur Sport, Lode, Groningen, The Netherlands). Gas exchange was measured on 

a breath-by-breath basis and displayed on-line using a portable metabolic cart (K4 b2, 

Cosmed, Rome, Italy). Calibration procedures were performed according to the 

manufacturer’s recommendations prior to every test (see section 3.3). 

 

4.2.3 Experimental design 

In this cross-sectional study, participants were asked to visit the laboratory on five 

separate occasions ~7 days apart. 

 

Visit 1: Cycling V�O2peak measurement 

The children were habituated to the laboratory environment, equipment and exercise 

protocols. Subsequently, an incremental test was completed to volitional exhaustion for 

the measurement of V�O2peak (see section 3.5.1). 

 

Visits 2, 3 and 4: Fatmax exercise trials 

Participants reported to the laboratory at 08:00 following a 12 h overnight fast. With the 

assistance of a primary home-based carer (parent/guardian), the children were asked to 

record their food and drink intake in the 24 h period prior to visit 2 and replicate this 

before visits 3 and 4 (Appendix 4). Participants also minimised their physical activity 

on the day prior to exercise testing. A healthy breakfast was provided on the completion 

of exercise. 

 

Visit 2 (incremental exercise test): Participants completed a submaximal incremental 

exercise protocol (3-INC) for the determination of Fatmax. The work rate began at 0 W 

and increased by 6 or 8 W every 3 min (work rate increment dependent on body size). 

The test was terminated when the RER was ~0.95 or the participant was exercising 

above 80% V�O2peak. The average number of stages completed was nine (range 8 to 

11), which corresponded to a total exercise duration of 27 min.  
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Visit 3 and 4 (constant work rate exercise bouts): Participants completed 6 x 10 min 

constant work rate exercise bouts (10-CWR) at exercise intensities corresponding to 

those in 3-INC, for which Fatmax had been identified previously. The bouts were 

performed in a randomly assigned counter-balanced order over the two visits (three 

bouts per visit) and were each separated by a 15 min rest period. The completion of this 

protocol resulted in an exercise duration of 60 min spanning ~2 h in total.  

 

Visit 5: Repeat measurement of cycling V�O2peak  

Participants performed a second exercise test for the confirmation of V�O2peak. The 

highest V�O2peak value from either visit 1 or 5 for each child was used for data 

analyses. The V�O2peak determined during visit 5 was higher than that determined 

during visit 1 for the group (P=0.003, ES: 0.56). 

 

4.2.4 Indirect calorimetry and Fatmax calculations 

Ventilatory variables during the final min of each stage (3-INC) or bout (10-CWR) 

were used for data analyses. As detailed in the General Methods, fat oxidation rates 

were calculated according to Frayn (1983) and data >80% V�O2peak were not used (see 

section 3.6). Confirmation of a steady state was achieved by checking the slope of the 

linear regression line for V�O2 and V�CO2 plotted against time during the final 5 min 

of each exercise bout for 10-CWR. The exercise bout was not included in data analyses 

if a steady state could not be confirmed (arbitrary slope >0.2). On average, nine 

exercise stages (3-INC) and five bouts (10-CWR) were included in data analyses for 

each child. 

 

For each individual, the results from 3-INC and 10-CWR were used to construct a 2nd 

order polynomial curve of fat oxidation rate against exercise intensity, expressed as % 

V�O2peak. The curve was used to estimate Fatmax (% V�O2peak), MFO (mg·min-1) and 

the 5% Fatmax zone (range of exercise intensities with fat oxidation rates within 5% of 

MFO) (Achten et al., 2002). The HR corresponding to Fatmax was calculated using the 

relationship between % V�O2peak and HR. The mean(SD) r2 values for the polynomial 

curves of fat oxidation against % V�O2peak were 0.80(0.18) for 3-INC and 0.81(0.21) 

for 10-CWR. An example of a graph and polynomial fit used to estimate Fatmax using 

both protocols for a participant is displayed in Figure 4.1. 
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A simple visual method was also employed to identify Fatmax and MFO (Riddell et al., 

2008) to confirm results from the modelled data, where MFO was taken as the highest 

recorded fat oxidation rate and Fatmax was the corresponding exercise intensity. 

 

 
Figure 4.1 Example of a graph of fat oxidation (mg·min-1) against exercise intensity 

(% V�O2peak) used to estimate Fatmax and maximal fat oxidation 
(MFO) from the 3 min incremental protocol (3-INC) and 10 min 
constant work rate bouts (10-CWR) 

 

4.2.5 Statistical analyses 

Statistical analyses were completed using SPSS software version 16.0 for Windows 

(SPSS Inc, Chicago, IL, USA). Shapiro-Wilk tests were used to confirm normal 

distribution and Levene’s tests were used to confirm homogeneity of variance. Separate 

2 x 2 mixed measures analysis of variance (ANOVA) repeated for protocol were used 

to examine the data for Fatmax and MFO. Student’s independent t-tests were used to 

compare the girls’ and boys’ characteristics. Values are expressed as mean(SD), unless 

stated otherwise, and effect sizes (ES) were calculated (Rosenthal, 1991). Statistical 

significance was accepted at P≤0.05. 

 

Limits of agreement (LoA) were used to compare 3-INC and 10-CWR at the individual 

level (Bland and Altman, 1986). Systematic error (SE), or bias, was determined by 

calculating the mean difference between 3-INC and 10-CWR and the random error 

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100

Fa
t o

xi
da

tio
n 

(m
g·

m
in

-1
)

Exercise intensity (% VO2peak)

3-INC
10-CWR



Chapter 4: Exercise protocols to estimate Fatmax 
______________________________________________________________________ 

70 
 

(RE) was the SD of the paired differences, as outlined by Bland and Altman (1986). 

The LoA were then calculated by determining a 95% limit above and below the mean 

difference (bias ± (1.96 × RE)). Student’s paired t-tests were used to examine the 

correlation between the residuals and the mean (proportional error check) and the 

absolute residuals and the mean (random error check). The 95% LoA for Fatmax were 

compared with estimated values for the 5% Fatmax zone (range of exercise intensities 

with fat oxidation rates within 5% of MFO) to determine their practical importance. 

 

4.3 Results 

4.3.1 Participant characteristics 

Complete data for 26 children (13 girls and 13 boys) were available for analyses. The 

four children excluded had r2 values below the arbitrarily chosen threshold of 0.5 for 

the polynomial models or less than four 10 min CWR bouts available for analyses. The 

boys had a lower BMI and % body fat compared with the girls (P≤0.05). The physical 

characteristics of the participants are displayed in Table 4.1. 

 

Table 4.1 Participant characteristics 

 Girls n=13 Boys n=13 Combined n=26 

Age (y) 9.3(0.6) 9.8(0.4) 9.5(0.5) 

Body mass (kg) 35.1(6.1) 32.3(5.3) 33.7(5.7) 

Stature (m) 1.37(0.06) 1.39(0.06) 1.38(0.06) 

BMI (kg·m-2) a 18.6(2.6) 16.5(1.6) 17.6(2.3) 

Body fat (%) a  21.7(4.7) 15.8(4.5) 18.8(5.4) 

FFM (kg) 27.2(3.5) 27.0(3.3) 27.1(3.3) 

Waist circumference (cm) 60.5(7.8) 59.7(4.9) 60.1(6.3) 

Tanner (pubic hair) † 1(0.5) 1(0.5) 1(0.5)  

V�O2peak (mL·kg-1·min-1) a  42(6) 51(7) 47(8) 

BMI – body mass index, FFM – fat free mass, Tanner stage – estimation of secondary 
sexual characteristics (Tanner, 1962), V�O2peak – peak oxygen uptake. 
a between sex significant difference (P<0.05) 
† median (interquartile range) 
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4.3.2 Peak exercise responses 

Peak V�O2 was higher in the boys compared with girls (P=0.002, ES: 0.57; Table 4.1). 

All participants included in the analysis achieved the criteria for the attainment of 

maximal effort. The mean(SD) peak responses for secondary criteria were RER 

1.07(0.07) and HR 201(7) beats·min-1 or 96(4)% age-predicted HRmax (220-age).  

 

4.3.3 Fatmax  

Group Comparison: At the group level, Fatmax (% V�O2peak) was the same for 3-INC 

and 10-CWR (P=1.000, ES: 0.000) and this was independent of sex (P=0.481, ES: 

0.14). Furthermore, the main effect for sex (P=0.262, ES: 0.23) showed that small 

differences in Fatmax between the girls and boys were not meaningful (Table 4.2).  

 

Table 4.2 Group comparisons of Fatmax and maximal fat oxidation (MFO) for the 
3 min incremental protocol (3-INC) and 10 min constant work rate bouts 
(10-CWR)  

 

 
Girls n=13 Boys n=13 Combined n=26 

3-INC 10-CWR 3-INC 10-CWR 3-INC 10-CWR 

Fatmax 
(% V�O2peak) 

54(6) 53(6) 57(9) 57(9) 55(7) 55(8) 

Fatmax 
(HR, beats·min-1) 141(15) 140(14) 140(12) 134(14) 141(13) 137(14) 

Fatmax 
% HRmax 

71(7) 71(8) 70(7) 67(8) 70(7) 69(8) 

MFO 
(mg·min-1) 255(45) 253(33) 265(54) 286(43) 260(49) 270(41) 

MFO 
(mg·kgFFM-1·min-1) 9.4(1.4) 9.4(1.7) 9.9(2.3) 10.8(2.2) 9.7(1.9) 10.1(2.0)

V�O2peak – peak oxygen uptake, HR – heart rate, MFO – maximal fat oxidation, FFM – 
fat free mass. 
 

Individual comparison: Individual paired data provided a systematic bias ± random 

error of 0 ± 4% V�O2peak, resulting in 95% LoA of ± 7% V�O2peak. Furthermore, 18 of 

the 26 participants had paired Fatmax values that were within 3% V�O2peak of each 
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other when comparing 3-INC and 10-CWR (Figure 4.2). Proportional bias was not 

evident from examination of the residuals and random errors were homoscedastic from 

examination of the absolute residuals (Table 4.3).  

 

The 5% Fatmax zone spanned 45(6) to 65(9)% V�O2peak for 3-INC and 47(6) to 

63(9)% V�O2peak for 10-CWR. Therefore, the 95% LoA were within the 5% Fatmax 

zone, suggesting that 3-INC provides a practically useful surrogate measure of 10-CWR 

(Figure 4.3).  

 

Table 4.3 Bias and limits of agreement for Fatmax and maximal fat oxidation 
(MFO) estimated using the 3 min incremental protocol (3-INC) and 10 
min constant work rate bouts (10-CWR) 

 

 Bias ± 
RE 95% LoA 

Residual check Absolute residual check 

R value P value R value P value 

Fatmax 
(% 
V�O2peak) 

0 ± 4 -7 to +7 0.10 0.626 0.12 0.545 

MFO  
(mg·min-1) 9 ± 53 -94 to +113 -0.19 0.364 -0.08 0.701 

RE – random error, LoA – limits of agreement, V�O2peak – peak oxygen uptake, MFO – 
maximal fat oxidation. 
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Figure 4.2 Bland-Altman plot of Fatmax (%V�O2peak) for the 3 min incremental 

protocol (3-INC) and 10 min constant work rate bouts (10-CWR)  
 

 

 
Figure 4.3 Visual representation of Fatmax 95% limits of agreement (LoA) fitting 

within the 5% Fatmax zone using group Fatmax values 
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4.3.4 MFO  

Group comparison: Group comparisons revealed similar MFO for 3-INC and 10-

CWR when expressed as mg·min-1 (P=0.372, ES = 0.18) and mg·FFM-1·min-1 (P=0.290, 

ES: 0.21). The sex by protocol interactions for both absolute (P=0.271, ES: 0.22) and 

scaled MFO (P=0.316, ES: 0.20) again indicated that the small between protocol effects 

were independent of sex. In addition, the main effect for sex for absolute (P=0.138, ES: 

0.30) and scaled MFO (P=0.171, ES: 0.28) showed that differences between the girls 

and boys were not meaningful (Table 4.2). 

 

Individual comparison: For absolute MFO, the systematic bias ± random error was 9 

± 53 mg·min-1 and, subsequently, 95% LoA were -94 to 113 mg·min-1, showing 

considerable individual variability when comparing 3-INC and 10-CWR (Figure 4.4). 

Proportional bias was not evident from examination of the residuals and random errors 

were homoscedastic from examination of the absolute residuals (Table 4.3). 

 

 
Figure 4.4 Bland-Altman plot of maximal fat oxidation (MFO; mg·min-1) for the 3 

min incremental protocol (3-INC) and 10 min constant work rate bouts 
(10-CWR) 
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4.3.5 Visual analyses  

Visual analyses were consistent with results from the polynomial modelled data. 

Fatmax values for 3-INC (55(10)% V�O2peak) and 10-CWR (56(8)% V�O2peak) were 

similar on a group basis (P=0.361, ES: 0.19). Individual analysis showed that 

systematic bias ± random error was 1 ± 5, resulting in 95% LoA of -9 to +11% 

V�O2peak for Fatmax. Absolute MFO for 3-INC (271(47) mg·min-1) and 10-CWR 

(277(40) mg·min-1) were similar again on a group basis (P=0.534, ES: 0.13). Systematic 

bias ± random error was 6 ± 53, resulting in 95% LoA of -97 to +109 mg·min-1 for 

absolute MFO. 

 

4.4 Discussion 

To the author’s knowledge, this was the first study to compare Fatmax estimated using 

different exercise protocols in children. Although the majority of studies have used 

incremental protocols to estimate Fatmax in children (e.g., Brandou et al., 2006; Riddell 

et al., 2008), there are two primary issues with a 3 min incremental protocol: (1) 

whether a physiological steady state is attained before the onset of the sampling period; 

and (2) whether there is a residual effect from stage to stage as the increments progress 

that influence subsequent fat oxidation estimations. Therefore, 10 min isolated bouts 

(10-CWR) were selected to potentially minimise these issues (Rowlands and Hopkins, 

2002) and Fatmax for each individual was compared between 3-INC and 10-CWR. This 

study has systematically demonstrated that a 3 min incremental exercise protocol and 

prolonged isolated exercise bouts result in comparable estimations of Fatmax in 

prepubertal girls and boys, indicating that a 3 min exercise protocol can be used to 

estimate Fatmax in this population. 

 

Fatmax for the group was identical when comparing the two protocols and individual 

analysis revealed that the 95% LoA were ± 7% V�O2peak. These limits are small 

enough to recommend the use of 3-INC for the estimation of Fatmax for various 

reasons. Firstly, fat oxidation rates were within 5% of MFO (mg·min-1) from 45 to 65% 

V�O2peak (3-INC) and 47 to 63% V�O2peak (10-CWR), thus the 95% LoA were within 

the limits of the 5% Fatmax zone. Furthermore, fat oxidation remained high (within 5% 

of MFO) over a wide range of exercise intensities, thus a small under- or over-

estimation in Fatmax is only likely to have negligible effect on absolute fat oxidation 

rates. A major strength of 3-INC is the estimation of fat oxidation at around ten 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Hopkins%20WG%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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different exercise intensities using a single test lasting approximately 30 min. Although 

the 2nd order polynomial r2 values (0.80 for 3-INC, 0.81 for 10-CWR) indicated a 

moderate to good goodness of fit for both protocols, it was not possible to estimate fat 

oxidation over the same number of exercise intensities for 3-INC and 10-CWR. Indeed, 

pilot work indicated a residual effect of over three repeated 10 min bouts on fat 

oxidation in a single fasted session similar to the up-regulation reported during 

prolonged steady state exercise (Delamarche et al., 1992). In this respect, 3-INC is 

undoubtedly practically advantageous when compared with 10-CWR, with the latter 

requiring multiple visits to the laboratory and the replication of food intake and physical 

activity in the days preceding each measurement. 

 

The findings of the present study are in agreement with Achten et al. (2002), where it 

was reported that a 3 min incremental protocol can be used to identify Fatmax in trained 

adult males when compared with longer isolated bouts. A more recent study comparing 

Fatmax using two incremental protocols in sedentary adults reported an average 

underestimation of 2 W when using 3 compared with 6 min stages and a maximum 

difference of 8 W (Bordenave et al., 2007). Given the small magnitude of these between 

protocol differences, the practical implications may be negligible. Therefore, the results 

of the present study support previous findings in adults that suggest only small 

differences are evident when comparing short and long exercise stages to estimate 

Fatmax (Achten et al., 2002; Bordenave et al., 2007). Furthermore, the V�O2 and 

V�CO2 kinetic response to moderate intensity exercise is faster in children compared 

with adults (Fawkner et al., 2002; Welsman et al., 2001), supporting the use of short 3 

min stages in children, although fat oxidation was not estimated in these studies. 

 

Fatmax for the group occurred at 55% V�O2peak (3-INC and 10-CWR), corresponding 

to heart rates of 141 (3-INC) and 137 (10-CWR) beats·min-1. Similarly, Fatmax values 

reported previously in prepubertal boys have ranged from 49 to 56% V�O2peak 

(Brandou et al., 2006; Riddell et al., 2008; Zunquin et al., 2009a). However, the 

majority of these studies have included obese participants (Brandou et al., 2006; 

Zunquin et al., 2009a), with only one study including non-obese boys (Riddell et al., 

2008). Moreover, this study has extended some of these findings to non-obese girls, a 

population where Fatmax values do not appear to be available. The wide limits of the 

5% Fatmax zone suggest that fat oxidation remained high over a large range of exercise 
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intensities, a finding that is also in agreement with Achten et al. (2002). Therefore, 

prescribing exercise within the Fatmax zone rather than Fatmax specifically may be 

sufficient to promote high fat oxidation rates. However, individual prescription is 

required for exercise at Fatmax (or within the Fatmax zone) due to the large inter-

individual variability observed in the present study (40 to 73% V�O2peak) and other 

studies with adults (Meyer et al., 2007). The 3 min incremental protocol provides a 

practical method for providing this individual exercise prescription. The large inter-

individual variation also suggests that fat oxidation should be assessed at exercise 

intensities as high as 73% V�O2peak in some children (Fatmax occurred above 60% 

V�O2peak in 6 of the 26 participants), although previous studies have only identified fat 

oxidation rates up to 60% V�O2peak (Brandou et al., 2006; Zunquin et al., 2009a).  

 

The findings related to MFO in the present study are less clear. On a group level, MFO 

was similar for 3-INC and 10-CWR (260 vs. 270 mg·min-1, respectively). However, the 

large 95% LoA (-94 to +113 mg·min-1) indicate considerable intra-individual variability 

when comparing protocols. Achten et al. (2002) also reported similar group fat 

oxidation rates between a 3 min incremental protocol and prolonged steady state bouts, 

but the correlation data provided did not allow insight at the individual level. Data from 

the present study suggests that the estimation of MFO depends on the protocol 

employed. However, the exercise protocol may only be partially responsible for these 

differences, as the residuals between 3-INC and 10-CWR were randomly distributed 

above and below the small bias. Although participants were asked to consume the same 

diet and to minimise physical activity the day preceding each Fatmax exercise test, this 

may not have been adequate to control for inherent day to day variations in RER and fat 

oxidation (Bagger et al., 2003); even controlling food intake 36 h before trials may not 

be sufficient (Meyer et al., 2007). Initial muscle glycogen content and dietary fat intake 

are both determinants of resting and exercise metabolism; therefore, variations in either 

or both may have influenced the results (Cameron-Smith et al., 2003; Goedecke et al., 

2002). When considering the clear practical applications of estimating Fatmax and the 

practical advantages of 3-INC, the discrepancy between the two protocols concerning 

MFO is not clear enough to recommend the use of prolonged isolated exercise bouts. 

Moreover, 3-INC may be used to estimate MFO in comparative studies. Importantly, 

studies estimating Fatmax should acknowledge the issues highlighted within this study 
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and caution should be maintained when reporting MFO values and making inter-study 

comparisons. 

 

A further finding of the present study was that sex did not influence Fatmax or MFO in 

prepubertal children. However, differences in V�O2peak, BMI and % body fat between 

the girls and boys may have affected the between sex comparison. In contrast to the 

present study, higher absolute fat oxidation has been reported in obese pubertal boys 

compared with girls (Lazzer et al., 2007). Differences between studies may have 

resulted from puberty, which has been shown to influence Fatmax and fat oxidation 

(Riddell et al., 2008). Further research is required to examine the effect of sex on 

Fatmax and fat oxidation during exercise in young people when these factors have been 

carefully matched.  

 

Possible limitations of the present study include the use of a 5% Fatmax zone to 

interpret the LoA rather than a previously defined clinical anchor. However, it is a 

reasonable assumption that a 5% reduction in MFO will have a small effect on total fat 

oxidation and thus the potential health benefits of exercising at MFO will continue to be 

promoted. Although steps were taken to increase the validity of indirect calorimetry for 

fat oxidation estimations (e.g., excluding data >80% V�O2peak, checking for a steady 

state in V�O2 and V�CO2), we assumed that the urinary nitrogen excretion rate was 

negligible and did not account for an increase in non-respiratory carbon dioxide 

excretion that may have resulted in an underestimation of fat oxidation at some of the 

higher exercise intensities (Rowlands, 2005). Furthermore, estimations of FFM were 

based on % body fat values from skinfold measurements, which could introduce a 

source of error in MFO values expressed relative to FFM. It should also be 

acknowledged that fat oxidation increases with exercise duration in children 

(Delamarche et al., 1992), thus the fat oxidation values reported using short duration 

exercise stages are likely to underestimate fat oxidation during prolonged exercise. 

Finally, the present study only included healthy prepubertal children. Consequently, it is 

not possible to recommend the use of 3-INC for children with conditions that may 

affect substrate oxidation or slow V�O2 or V�CO2 kinetics. Indeed, slower V�CO2 

kinetics in obese compared with non-obese children (Cooper et al., 1990) suggests that 

slightly longer stages (~4 min) may be preferred in this population (Aucouturier et al., 

2009; Lazzer et al., 2010). However, research in this area is inconclusive (Cooper et al., 
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1990; Unnithan et al., 2007). Future research investigating the validity of 3-INC in 

obese children is, therefore, warranted.  

 

In conclusion, an incremental exercise test with 3 min stages provided a similar 

estimation of Fatmax compared with several 10 min constant work rate exercise bouts 

in prepubertal children. However, caution should be maintained when estimating MFO 

in these children. The 3 min incremental protocol is, therefore, recommended to provide 

an estimation of Fatmax using a wide range of intensities and for practical reasons. The 

estimation of Fatmax using a practical protocol should ensure optimal exercise 

prescription for maximising fat oxidation during exercise that may help to manage 

obesity, insulin resistance and other health-related conditions.  
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Chapter 5 

 

Comparison of Fatmax and fat oxidation over a range of intensities during 

treadmill and cycling exercise in children 

 

 

Abstract  

Exercise mode and intensity are two of the main factors influencing fat oxidation during 
exercise. A direct comparison of fat oxidation over a range of exercise intensities and 
the estimation of Fatmax (exercise intensity that elicits maximal fat oxidation) during 
treadmill (TM) and cycling exercise (CE) does not appear to be available in children. 
Fat oxidation and Fatmax were compared during TM and CE in 22 pre- to early 
pubertal children (9 girls and 13 boys aged 9.9(0.8) y). Fat oxidation was higher for TM 
compared with CE over a range of absolute (V�O2, L·min-1) and relative (% V�O2peak) 
exercise intensities and this difference was more pronounced at higher intensities 
(P<0.05). Fat oxidation was higher in the boys compared with girls at similar relative, 
but not absolute intensities (P<0.05). Fatmax was higher during TM compared with CE 
and higher in boys compared with girls (P<0.05). The 5% Fatmax zone (range of 
exercise intensities where fat oxidation was within 5% of maximal fat oxidation) 
spanned a wider range of intensities for TM compared with CE (P<0.05). Collectively, 
these findings suggest that exercise programmes aimed at promoting high rates of fat 
oxidation in pre- to early pubertal children should include TM rather than CE regardless 
of the exercise intensity. Furthermore, Fatmax values indicate that brisk walking or 
slow running promotes maximal fat oxidation rates in this population. 
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5.1 Introduction 

Exercise mode and intensity are two of the main factors influencing fat oxidation during 

exercise and should, therefore, be considered when implementing interventions to 

promote high rates of fat oxidation (Achten et al., 2003). Fatmax (the intensity 

corresponding to MFO) has received increasing attention in young people and can be 

determined by estimating fat oxidation over a range of intensities in children (Chapter 

4). Cycling prescription at Fatmax has been shown to improve exercise fat oxidation 

and a number of health markers in young people (Ben Ounis et al., 2008; 2009). It is 

possible that walking or running may help to further optimise these effects through the 

recruitment of a larger active muscle mass and subsequent elevation of fat oxidation. 

However, studies comparing Fatmax between treadmill and cycling exercise in children 

do not appear to be available. Moreover, the adult literature is equivocal, with some 

showing Fatmax is similar during treadmill and cycling exercise (Achten et al., 2003; 

Glass et al., 1999) and another suggesting Fatmax is higher during treadmill exercise 

(Chenevière et al., 2010). 

 

Several considerations must be taken into account when comparing fat oxidation 

between exercise modes. Traditionally, studies examining the effect of exercise mode 

on fat oxidation have used a small number of exercise intensities corresponding to the 

exercise mode-specific V�O2peak (Houmard et al., 1991; Mácek et al., 1976). However, 

V�O2peak is typically 7 to 10% higher for treadmill compared with cycling exercise in 

untrained children and adults (Mácek et al., 1976; Millet et al., 2009), thus the higher 

absolute V�O2 during treadmill exercise may explain differences in fat oxidation 

between exercise modes. Therefore, a comparison of fat oxidation over a wide range of 

both relative (% mode-specific V�O2peak) and absolute (V�O2, L·min-1) exercise 

intensities is needed. Indeed, more recent work using incremental exercise protocols to 

estimate fat oxidation over a range of intensities has reported that treadmill exercise 

promotes higher fat oxidation rates compared with cycling at comparable absolute 

V�O2 values in obese adolescent boys (Lafortuna et al., 2010) and trained adults 

(Achten et al., 2003). In contrast, no difference in MFO during treadmill and cycling 

exercise was reported in moderately trained men and women (Chenevière et al., 2010). 

 

To the author’s knowledge, only one study has compared fat oxidation over a range of 

exercise intensities between treadmill and cycling exercise in young people, but Fatmax 
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was not estimated and this study was limited to obese adolescent boys (Lafortuna et al., 

2010). Similar studies involving girls and non-obese children appear to be unavailable 

and the influence of puberty on fat oxidation must be considered (Riddell et al., 2008). 

Therefore, the primary aim of the present study was to compare Fatmax and fat 

oxidation over a range of intensities during treadmill (TM) and cycling exercise (CE) in 

pre- to early pubertal children. A secondary aim of the study was to examine potential 

between-sex differences in Fatmax and fat oxidation. 

 

5.2 Methods 

5.2.1 Participants  

After gaining ethical approval from the University Ethical Advisory sub-Committee, 22 

pre- to early pubertal children (13 boys and 9 girls) aged 8 to 11 y volunteered to 

participate in the study. Anthropometric characteristics were assessed and recorded 

prior to experimental trials (see General Methods, section 3.2). None of the girls had 

started the menstrual cycle. 

 

5.2.2 Experimental design 

In this cross-sectional study, participants were asked to visit the laboratory on five 

separate occasions ~7 days apart. Following the habituation session, participants 

completed the treadmill trials (V�O2peak then Fatmax exercise test) and cycling trials 

(V�O2peak then Fatmax exercise test) in a counter-balanced order. Exercise tests were 

performed on an electromagnetically-braked cycle ergometer (Excalibur Sport, Lode, 

Groningen, The Netherlands) and motorised treadmill (RunRace, Technogym, 

Gambettola, Italy). Expired air was sampled continuously and displayed online using 

the Metalyzer 3B (Cortex, Leipzig, Germany). Calibration procedures were carried out 

prior to each experimental test (see General Methods, section 3.3). 

 

5.2.3 Experimental trials 

Participants performed incremental exercise tests to voluntary exhaustion for the 

measurement of TM and CE V�O2peak (see section 3.5.1). On separate days, the 

children then completed the Fatmax exercise trials (TM Fatmax and CE Fatmax). 

Participants reported to the laboratory at 08:00 following a 12 h overnight fast. With the 

assistance of a primary home-based carer, the children were asked to record their food 

and drink intake in the 24 h period prior to the first Fatmax test and replicate this before 
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the second Fatmax test (Appendix 4). Participants also minimised physical activity on 

the day prior to exercise testing. A healthy breakfast was provided after the exercise 

trials.  

 

The children performed a TM and CE submaximal incremental exercise protocol with 3 

min stages for the estimation of Fatmax: 

TM Fatmax exercise test: The speed began at 3 km·h-1 and increased by 0.5 km·h-1 

every 3 min at a constant gradient of 0%.  

CE Fatmax exercise test: The work rate began at 0 W and increased by 6 or 8 W every 

3 min (dependent on body size).  

 

Tests were terminated when the RER exceeded 0.95 or the participant was exercising 

above 80% V�O2peak. Expired air, HR and ratings of perceived exertion (RPE) were 

recorded during the final min of each 3 min stage. The average number of stages 

completed was 10(1) for both the TM and CE Fatmax tests, which corresponded to an 

exercise duration of 30 min.  

 

5.2.4 Indirect calorimetry and Fatmax calculations 

As detailed in the General Methods, ventilatory variables were collected on a breath-by-

breath basis and interpolated into 1 s intervals for all tests; V�O2 and V�CO2 values 

during the final min of each stage of the Fatmax exercise tests were edited (Lamarra et 

al., 1987), averaged and used for data analyses (see section 3.6). Data > 80% V�O2peak 
were removed. Fat oxidation was then calculated according to Frayn (1983). The 

average number of exercise stages included in data analyses for each participant was 

10(2) for TM and 9(1) for CE. 

 

For each individual, graphs of fat oxidation against % V�O2peak and V�O2 (L·min-1) 

were used to compare fat oxidation over a range of intensities between exercise modes. 

Fatmax (% V�O2peak), MFO (mg·min-1) and the 5% Fatmax zone (range of exercise 

intensities with fat oxidation rates within 5% of MFO) were estimated using individual 

2nd order polynomial curves of fat oxidation rate against % V�O2peak. The HR 

corresponding to Fatmax was calculated using the relationship between % V�O2peak 

and HR. The measured RPE value at Fatmax (% V�O2peak) was recorded for each 
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individual. Average r2 values for the polynomial curves of fat oxidation vs. % V�O2peak 

were 0.74(0.21) for TM and 0.71(0.17) for CE. 

5.2.5 Statistical analysis 

Statistical analyses were completed using SPSS software version 16.0 for Windows 

(SPSS Inc, Chicago, IL, USA). Shapiro-Wilk tests were used to confirm normal 

distribution and Levene’s tests were used to confirm homogeneity of variance. Separate 

2 x 2 (mode by sex) mixed measures ANOVA repeated for mode were used to examine 

the data for fat oxidation, Fatmax and Fatmax zone. Student’s independent t-tests were 

used to compare anthropometric characteristics by sex (Table 5.1). Pearson’s product 

moment correlation analyses were used to examine bivariate relationships between 

Fatmax, MFO, Fatmax zone, V�O2peak and anthropometric measures. Values are 

expressed as mean(SD), unless stated otherwise, and ES were calculated. Statistical 

significance was accepted at P≤0.05. 

 

5.3 Results 

5.3.1 Participant characteristics 

Complete data for 22 participants (13 boys and 9 girls) were available for analyses 

(Table 5.1). The girls were older than the boys (P=0.018, ES: 0.50) and, according to 

the self-assessment of pubic hair, 5 of the 9 girls but only 3 of the 13 boys had entered 

puberty (Tanner stage 2) (P=0.150, ES: 0.37).  

 

5.3.2 Peak exercise responses 

Treadmill V�O2peak (mL·kg-1·min-1) was ~15% higher than CE (P≤0.0005, ES: 0.87) 

and this difference was independent of sex (P=0.529, ES: 0.14). The boys’ V�O2peak 

values were higher than the girls’ by the same margin as the mode-related differences, 

although the ES was smaller (P=0.011, ES: 0.53; Table 5.1). 

 

All participants included in analysis achieved the criteria for the attainment of maximal 

effort. For the TM peak test, average peak responses for secondary criteria were RER 

1.08(0.06) and HR 204(7) beats·min-1 or 97(3) % age-predicted HRmax. For the CE peak 

test, average peak responses for secondary criteria were RER 1.15(0.09) and HR 196(7) 

beats·min-1 or 93(3) % age-predicted HRmax. 
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Table 5.1 Participant characteristics 

 Girls n=9 Boys n=13 Combined n=22 

Age (y) a 10.3(0.8) 9.6(0.6) 9.9(0.8) 

Body mass (kg) 35.1(4.8) 34.7(7.9) 34.9(6.7) 

Stature (m) 1.42(0.08) 1.43(0.09) 1.43(0.09) 

BMI (kg·m-2) 17.3(1.3) 16.9(2.3) 17.1(1.9) 

Body fat (%) 20.4(3.2) 16.8(6.3) 18.3(5.4) 

FFM (kg) 27.9(3.2) 28.5(4.5) 28.2(3.9) 

Waist circumference (cm) 58.2(4.7) 61.3(5.9) 60.1(5.6) 

Tanner (pubic hair) † 2(1) 1(0) 1(1) 

TM V�O2peak (mL·kg-1·min-

1) a 53(4) 59(5) 57(6) 

CE V�O2peak (mL·kg-1·min-1) 
a 45(8) 53(6) 49(8) 

BMI – body mass index, FFM – fat free mass, Tanner stage – estimation of secondary 
sexual characteristics (Tanner, 1962), TM – treadmill, V�O2peak – peak oxygen uptake, 
CE – cycle ergometer. 
a between sex significant difference (P≤0.05) 
† median (interquartile range) 
 

5.3.3 Fatmax 

Group mean values for parameters corresponding to Fatmax are displayed in Table 5.2. 

Fatmax (% V�O2peak) was higher for TM compared with CE (P=0.005, ES: 0.57). 

Although this difference was independent of sex (P=0.117, ES: 0.34), Fatmax was 

higher in the boys compared with girls (P=0.019, ES: 0.50) and the difference was 

marked for TM (12% V�O2peak) compared with CE (4% V�O2peak). The RPE at 

Fatmax was higher for TM compared with CE (P=0.029, ES: 0.47). Peak V�O2 

explained 44% of the variation in Fatmax for TM (r2=0.44), but only 4% for CE 

(r2=0.04). Peak V�O2 explained 32% of the variation in FFM relative MFO for TM 

(r2=0.32) and 20% of the variation in absolute MFO for CE (r2 = 0.20). The relationship 
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between TM Fatmax and absolute MFO was strong (r2=0.53), but only moderate for CE 

(r2=0.28). 

 

 

5.3.4 Fatmax zone 

The 5% Fatmax zone was wider for TM compared with CE (P=0.002, ES: 0.62) and the 

sex by exercise mode interaction was not meaningful (P=0.254, ES: 0.25). The 5% 

Fatmax zone extended over a greater range of exercise intensities in the boys compared 

with the girls (P=0.020, ES 0.49). There was a moderate correlation between Fatmax 

zone and V�O2peak for TM (r2=0.20) but not CE (r2=0.03). 

 

Table 5.2 Group comparisons of Fatmax and maximal fat oxidation (MFO) for 
treadmill (TM) and cycling exercise (CE)  

 

 Girls n=9 Boys n=13 Combined n=22 

 TM CE TM CE TM CE 

Fatmax       

   % V�O2peak 
a,b 52(13) 49(8) 64(10) 53(5) 59(13) 51(7) 

   % HRmax a,c 70(11) 67(8) 79(8) 67(6) 75(10) 67(7) 

   TM Speed (km·h-1) b 5.6(1.3)  7.2(1.4)  6.5(1.6)  

   CE Work rate (W)  31(11)  40(10)  36(11) 

   RPE a 12(3) 12(2) 12(3) 10(2) 12(3) 11(2) 

5% Fatmax zone (%V�O2peak)
a,b 20(6) 17(6) 26(6) 19(4) 24(6) 18(5) 

MFO (mg·min-1) a 217(60) 176(36) 262(61) 191(55) 243(63) 185(47) 

MFO (mg·kgFFM-1·min-1) a 7.9(2.5) 6.4(1.6) 9.3(2.3) 6.9(2.4) 8.8(2.5) 6.7(2.1) 

V�O2peak – peak oxygen uptake, HR – heart rate, TM – treadmill, CE – cycle 
ergometer, RPE – rating of perceived exertion, MFO – maximal fat oxidation, FFM – 
fat free mass. 
a between mode significant difference 
b between sex significant difference 
c sex by mode interaction (P<0.05) 
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5.3.5 Fat oxidation at relative and absolute exercise intensities 

The relationship between relative and absolute exercise intensity and fat oxidation is 

displayed in Figure 5.1 and 5.2, respectively. Fat oxidation was higher for TM 

compared with CE at similar absolute (P=0.009, ES: 0.54) and relative (P=0.004, ES: 

0.59) intensities. These exercise mode differences in fat oxidation were proportional to 

exercise intensity (P≤0.0005), but independent of sex (P≥0.503). Fat oxidation was 

higher for the boys compared with girls at similar relative (P=0.037, ES: 0.45), but not 

absolute (P=0.184, ES: 0.29) exercise intensities. 
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Figure 5.1 Comparison of fat oxidation rates between treadmill (TM) and cycling 

exercise (CE) at 30 to 70% V�O2peak for girls (a) and boys (b) 
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Figure 5.2 Comparison of fat oxidation rates between treadmill (TM) and cycling 

exercise (CE) at absolute V�O2 values for girls (a) and boys (b) 
 

5.4 Discussion 

The main finding from the present study was that fat oxidation was higher during 

treadmill compared with cycling exercise over a range of absolute and relative 

intensities in pre- to early pubertal girls and boys. Furthermore, Fatmax was higher and 

fat oxidation remained high (within 5% of MFO) over a wider range of intensities for 

treadmill exercise. These findings strongly suggest that treadmill exercise is preferential 

for promoting high rates of fat oxidation in children.  

 

Studies comparing fat oxidation between exercise modes have traditionally used a small 

number of intensities corresponding to the exercise mode-specific V�O2peak (Houmard 

et al., 1991; Mácek et al., 1976). However, comparing relative exercise intensities often 

results in a higher absolute V�O2 for treadmill exercise (Mácek et al., 1976; Millet et 

al., 2009) and, therefore, difficulties comparing exercise modes. Importantly, fat 

oxidation was higher during treadmill exercise over a range of both absolute and 

relative exercise intensities in the present study, indicating the higher fat oxidation 

during treadmill exercise was not due to a higher absolute V�O2. These findings are in 

agreement with studies in obese adolescent boys (Lafortuna et al., 2010) and trained 
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adults (Achten et al., 2003), as well as studies in adults that have compared relative 

intensities only (Capostagno and Bosch, 2010; Glass et al., 1999). The higher fat 

oxidation during treadmill compared with cycling exercise was more pronounced at 

higher intensities, which is also in line with work in adults (Achten et al., 2003), but 

appears to be a novel finding in young people. Not only were fat oxidation rates higher 

during treadmill compared with cycling exercise, they remained high over a wider 

range of intensities, with the 5% Fatmax zone spanning 24% V�O2peak for treadmill and 

18% V�O2peak for cycling exercise. In agreement, Chenevière et al. (2010) reported 

greater dilation (widening) of the treadmill compared with cycling fat oxidation curve, 

indicating a wider Fatmax zone. These findings suggest that treadmill exercise is 

preferable for exercise programmes aimed at promoting high rates of fat oxidation, 

particularly when it is difficult to monitor exercise intensity over prolonged periods of 

time.  

 

The higher Fatmax during treadmill compared with cycling exercise (59 vs. 51% 

V�O2peak) is another novel finding in children. Cycling Fatmax values are similar to 

those reported in the existing paediatric literature (see Chapter 2, Table 2.1), although 

data for treadmill Fatmax do not appear to be available in children. A similar study 

investigating fat oxidation over a range of seven intensities during treadmill and cycling 

exercise in obese adolescents did not estimate Fatmax, although graphical 

representations of fat oxidation support the findings of the present study indirectly 

(Lafortuna et al., 2010). In moderately trained adults, Chenevière et al. (2010) also 

reported a higher Fatmax for treadmill compared with cycling exercise. In contrast, 

other studies with adults have shown no difference in Fatmax between these exercise 

modes in moderately trained male cyclists (Achten et al., 2003) or untrained men and 

women (Glass et al., 1999). However, treadmill exercise intensity was increased via 

changes in gradient rather than speed (Achten et al., 2003). The comparison of cycling 

with uphill walking, two exercises dominated by concentric muscle contractions, rather 

than running, which has an eccentric component, may explain the difference in findings 

between the present study and Achten et al. (2003). Furthermore, when walking and 

running are performed at the same speed (above the walk-run transition), higher RER 

values have been reported during walking (Monteiro and de Araújo, 2009), which may 

contribute to a decline in fat oxidation and lower Fatmax during uphill walking 

compared with running. In addition, it is not possible to directly compare findings from 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Capostagno%20B%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bosch%20A%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Monteiro%20WD%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22de%20Ara%C3%BAjo%20CG%22%5BAuthor%5D�
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children and adults due to differences in the mechanisms controlling fat oxidation in 

these populations (Riddell, 2008; see section 2.5.1). 

 

Collectively, these findings indicate that brisk walking or slow running (5.2 to 7.6 km·h-

1) may provide both an effective and convenient means of promoting fat oxidation in 

pre- to early pubertal children. Increasing fat oxidation may have clinical relevance for 

the prevention and treatment of obesity, insulin resistance and other metabolic disorders 

(see section 2.1). Although Fatmax was higher for treadmill exercise, it still occurred at 

a moderate intensity. Therefore, treadmill exercise at Fatmax may also be feasible for 

overweight or obese children, especially since Fatmax appears to be lower in this 

population (Zunquin et al., 2009b). 

 

Studies with adults may provide some insight regarding possible explanations for the 

higher fat oxidation and Fatmax during treadmill compared with cycling exercise, as the 

mechanisms controlling fat oxidation in children are yet to be determined. The reduced 

muscle mass during cycling compared with running performed at the same relative 

intensity has a long standing history (Hermansen and Saltin, 1969). This would result in 

higher energy expenditure relative to active muscle mass in cycling and the recruitment 

of more type II muscle fibres, inducing a higher contribution from CHO and, 

consequently, a lower contribution of fat to energy expenditure. Furthermore, studies 

suggest the release of catecholamines is proportional to exercising muscle mass (Lewis 

et al., 1983). As catecholamines are potent stimulators of lipolysis, the larger muscle 

mass during treadmill exercise may elicit a larger catecholamine response and thus 

increased FFA mobilisation and oxidation (Martin, 1996). It has also been speculated 

that the eccentric muscle action in running may delay peripheral fatigue and reduce the 

recruitment of type II motor units during running compared with cycling for the same 

relative exercise intensity (Carter et al., 2000). In line with this, higher blood lactate and 

lower arterial pH and bicarbonate concentrations have been reported during cycling 

compared with treadmill exercise at comparable metabolic rates (Miles et al., 1980). 

Hydrogen ion accumulation in the sarcoplasm may inhibit CPT-1 activity (enzyme 

controlling the transport of FFA into the mitochondria), resulting in decreased fat 

oxidation (Starritt et al., 2000). Moreover, the higher fat oxidation during treadmill 

exercise coincided with lower blood lactate concentrations in the obese boys (Lafortuna 
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et al., 2010), indicating blood lactate accumulation may be a possible mechanism 

limiting fat oxidation during cycling exercise in young people. 

 

The LIAB coincides with Fatmax in children (Tolfrey et al., 2010) and adults (Achten 

and Jeukendrup, 2004). This implies that a higher LIAB during treadmill compared 

with cycling exercise could partially explain the higher Fatmax during treadmill 

exercise. Although blood lactate was not measured in the present study, the lactate 

threshold occurs at a higher intensity in treadmill compared with cycling exercise in 

children (Machado et al., 2009) and adults (Carter et al., 2000). The trained cyclists in 

the study by Achten et al. (2003) had similar blood lactate concentrations during 

treadmill and cycling exercise at a given intensity, possibly explaining the similar 

Fatmax values between exercise modes in this population. However, this would not 

explain the higher fat oxidation rates during treadmill compared with cycling exercise 

in the trained cyclists, indicating that other factors are likely to contribute to differences 

in fat oxidation. 

 

Sex did not influence fat oxidation at similar absolute intensities; the higher absolute 

V�O2 in the boys may explain the higher fat oxidation observed when comparing 

relative intensities. Interestingly, the difference in Fatmax between the girls and boys 

was markedly higher for treadmill (12% V�O2peak higher for the boys) compared with 

cycling exercise (4% V�O2peak higher for the boys). Furthermore, treadmill, but not 

cycling, Fatmax was related to V�O2peak. Research in adults is equivocal with some 

showing that Fatmax is higher in those with higher V�O2peak values during cycling 

(Nordby et al., 2006), whilst others have reported no relationship between Fatmax and 

V�O2peak during treadmill (Lima-Silva et al., 2010) or cycling (Stisen et al., 2006) 

exercise. In addition, V�O2peak was correlated with MFO for both treadmill and cycling 

exercise, a finding consistent with studies in adults (Lima-Silva et al., 2010). Indeed, 

cardiorespiratory fitness confers several health benefits which might enhance fat 

oxidation in children (Ortega et al., 2008). Higher V�O2peak values in the boys 

compared with girls along with the correlation between Fatmax and V�O2peak for 

treadmill (but not cycling) exercise may partially explain the higher treadmill (but not 

cycling) Fatmax values in the boys. It is also possible that the slightly higher Tanner 

stage in the girls may have contributed to the lower Fatmax in this group (Riddell et al., 

2008). However, the difference in Tanner stage between groups was small and 
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decreases in Fatmax and fat oxidation occur during mid- to late-puberty (Riddell et al., 

2008; Stephens et al., 2006). Therefore, differences in puberty between pre- and early 

pubertal children may not be sufficient to account for differences in Fatmax. 

Furthermore, as detailed in section 2.5.1, problems associated with self-report data and 

Tanner stages may mean that the measure of maturation was not accurate enough to 

assess small differences in puberty in the present study (Baxter-Jones et al., 2005) and 

the small sample size may limit between-sex comparisons in particular. 

 

Possible limitations of the present study include the use of indirect calorimetry to 

estimate fat oxidation. Although steps were taken to increase the validity of indirect 

calorimetry, it was assumed that the urinary nitrogen excretion rate was negligible and 

an increase in non-respiratory carbon dioxide excretion may have resulted in an 

underestimation of fat oxidation at some of the higher exercise intensities (Rowlands, 

2005). The exercise protocol employed does not appear to affect the estimation of 

cycling Fatmax. However, the MFO values reported may not be comparable to those 

estimated from more prolonged exercise bouts (Chapter 4) and a similar study involving 

treadmill exercise does not appear to be available. Despite these concerns, research with 

adults suggests that the V�O2 kinetic response to moderate intensity exercise is similar 

between running and cycling and a steady state is attained within two minutes (Carter et 

al., 2000).  

 

In conclusion, treadmill exercise is preferable for promoting fat oxidation compared 

with cycling due to the higher fat oxidation over a range of absolute and relative 

exercise intensities, higher Fatmax and wider Fatmax zone. Consequently, Fatmax 

values suggest brisk walking or slow running may provide both an effective and 

convenient means of promoting fat oxidation in pre- to early pubertal children. These 

recommendations relating to exercise mode and intensity could have considerable 

clinical relevance for guiding interventions designed to increase fat oxidation, which 

may be useful for preventing conditions such as obesity and insulin resistance. 
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Chapter 6 

 

Effect of breakfast glycaemic index on postprandial glucose, insulin and fat 

oxidation during rest and exercise in overweight and non-overweight girls 

 

 

Abstract  

The metabolic responses to mixed breakfast meals with different glycaemic indexes 
(GI) and their effects on substrate metabolism during exercise in adolescent girls have 
not been examined. The interaction with weight status also warrants investigation. The 
present study investigated the effect of mixed breakfast meals containing high GI (HGI) 
or low GI (LGI) carbohydrates on metabolic responses and fat oxidation during rest and 
exercise in overweight (OW; aged 12.6(0.5) y) and non-overweight (NO; aged 
13.1(0.4) y) girls. Eight OW and 12 NO adolescent girls consumed an isoenergetic HGI 
(GI=73) or LGI (GI=44) breakfast 120 min before completing a 30 min treadmill walk 
at 50% V�O2peak. Peak blood glucose concentration was higher for HGI compared with 
LGI in OW (P=0.023), but not NO (P=0.741) girls. Blood glucose total area under the 
curve (TAUC) was 13% higher in HGI compared with LGI in OW (P=0.006), but only 
4% higher in NO (P=0.072) girls. Plasma insulin data were loge transformed (lninsulin). 
Plasma lninsulin concentrations were not different between HGI and LGI (P>0.05). 
Peak plasma lninsulin concentration (P=0.016) and TAUC (P=0.001) were greater in 
OW than NO girls. Fat oxidation during postprandial rest and exercise was not different 
between breakfasts (P>0.05). The elevated glycaemic response following HGI 
compared with LGI breakfast consumption was more pronounced in the OW girls, 
suggesting a reduced ability to cope with the metabolic demands of the HGI, but not 
LGI, breakfast in this population. Manipulation of breakfast GI did not alter fat 
oxidation during rest or subsequent moderate intensity exercise in OW and NO 
adolescent girls. 
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6.1 Introduction 

It is well established that fat oxidation is maximised by exercising in the fasted state 

(Horowitz et al., 1997; Timmons et al., 2007a), but this may not be a practical option 

for young people. Moreover, several lines of evidence have shown benefits associated 

with regular breakfast consumption in young people, relating to academic performance 

(Lien, 2007), nutrition (Barton et al., 2005; Song et al., 2006), cardiorespiratory fitness 

and obesity (Sandercock et al., 2010). However, the relationship between breakfast and 

health benefits may not be due to consumption per se, but rather breakfast composition 

(Cho et al., 2003). There are concerns that ready-to-eat cereals commonly eaten by 

children and adolescents (Song et al., 2006) fail to meet national nutrition 

recommendations (Schwartz et al., 2008). In contrast, there has been considerable 

interest in potential health benefits of breakfasts containing LGI CHO (Ludwig et al., 

1999; Willett et al., 2002).  

 

Manipulation of the GI of a mixed breakfast meal affects postprandial glucose and 

insulin responses in young people (Ludwig et al., 1999) and adults (Stevenson et al., 

2009). Evidence that breakfasts rich in LGI CHO promote satiety in obese adolescents 

(Ball et al., 2003; Ludwig et al., 1999) suggest that LGI breakfast consumption could 

have direct implications for paediatric weight management. In adults, the reduced 

glucose and insulin response to a LGI compared with HGI breakfast can also result in 

increased fat oxidation during rest (Stevenson et al., 2009) and subsequent exercise 

(Stevenson et al., 2006; 2009; Wee et al., 2005; see section 2.8.2). This suggests that 

LGI breakfast consumption be a compromise between promoting breakfast 

consumption and fasted exercise for fat oxidation. However, breakfast GI does not 

affect fat oxidation during rest or exercise when comparing a MGI and HGI breakfast 

(Backhouse et al., 2007) or when exercise is preceded by two LGI meals rather than 

breakfast alone (Stevenson et al., 2005a). A recent study even reported higher fat 

oxidation during a cycling time trial following a HGI compared with LGI breakfast 

(Moore et al., 2010). Therefore, the influence of GI on postprandial fat oxidation 

remains unclear.  

 

Reductions in fat oxidation (Zunquin et al., 2009b), glucose tolerance (Sinha et al., 

2002a), and insulin sensitivity (Weiss et al., 2004) have been shown in overweight and 

obese young people. Substituting a HGI breakfast for a LGI breakfast may, therefore, 
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be particularly beneficial for these individuals through increased glycaemic control 

(Willett et al., 2002), fat oxidation (Stevenson et al., 2009) and satiety (Ludwig et al., 

1999). However, the majority of studies investigating the impact of GI on fat oxidation 

have included endurance trained or recreationally active adults as participants 

(Stevenson et al., 2006; Wu et al., 2003) and similar studies including overweight 

individuals or young people do not appear to be available, despite well recognised 

differences in metabolism between adolescents and adults (Riddell, 2008; Riddell et al., 

2008). Therefore, the present study examined the effect of HGI and LGI mixed 

breakfast meals on metabolic responses during rest and subsequent exercise in 

overweight and non-overweight adolescent girls. 

 

6.2 Methods 

6.2.1 Participants 

After gaining approval from the University Ethical Advisory sub-Committee, 8 OW and 

12 NO girls aged 11 to 13 y participated in the study. Overweight status was defined 

using age and sex specific BMI reference points (Cole et al., 2000). Anthropometric 

characteristics were assessed and recorded prior to experimental trials, as described in 

the General Methods (section 3.2). 

 

6.2.2 Preliminary measurements 

Participants completed a peak (see section 3.5.1) and submaximal treadmill exercise 

test. The submaximal exercise test consisted of 4 x 4 min bouts at different speeds to 

determine the relationship between treadmill speed and V�O2. Subsequently, the speed 

eliciting 50% V�O2peak was determined for each participant. 

 

6.2.3 Experimental protocol 

Participants completed two experimental trials (HGI and LGI) in a counter-balanced 

order (Figure 6.1). Trials were conducted a maximum 48 h apart for the girls who had 

irregular menstruation to minimise the potential influence of menstrual cycle phase on 

within-participant comparisons (Oosthuyse and Bosch, 2010). Due to the sporadic 

nature of the menstrual cycle in young adolescent girls, other studies have not 

accounted for menstrual cycle phase (Timmons et al., 2007b). The girls consumed the 

same diet and minimised physical activity in the 24 h prior to experimental trials 

(Appendix 4). 
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Participants reported to the laboratory at 08:00 following a 12 h fast. Following fasted 

measures, the girls consumed a HGI or LGI breakfast (Table 6.1) within 15 min. Blood, 

expired air samples and subjective ratings of hunger were collected at regular intervals 

during the 120 min postprandial period. Subsequently, the girls completed a 30 min 

treadmill walk at 50% V�O2peak. Water was available ad libitum throughout the first 

trial and the girls drank the same volume during the second trial.  

 

 
Figure 6.1 Schematic of protocol for the high glycaemic index (HGI) and low 

glycaemic index (LGI) experimental conditions 
 

 

6.2.4 Test breakfasts 

Participants were provided with a HGI or LGI breakfast containing 1.5 g CHO·kg BM-1 

(Table 6.1). The breakfasts were matched for energy, macronutrients and fluid, but the 

LGI breakfast was heavier and contained more fibre (P≤0.05). The GI values for 

individual foods were taken from the International Table of Glycemic Index and 

Glycemic Load Values (Atkinson et al., 2008) and breakfast GI was calculated from the 

weighted means of the GI values for the component foods (Wolever and Jenkins, 1986). 

The calculated GI for the breakfasts were 73 (HGI) and 44 (LGI). 
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Table 6.1 Composition of test breakfasts for a 45 kg girl 

Breakfast Description Macronutrient content 

HGI 

45 g Cornflakesa + 135 g 
skimmed milk, 44 g white bread, 

4 g jam, 5 g margarinea, 124 g 
water (total weight = 356 g) 

1498 kJ energy, 68 g CHO, 4.2 g 
fat, 11.6 g protein, 2.7 g fibre 

 
GI = 73b 

LGI 

41 g mueslia + 90 g skimmed 
milk, 107 g apple, 169 g apple 

juice, 87 g yoghurt  
(total weight = 493 gc) 

1498 kJ energy, 67 g CHO, 4.3 g 
fat, 11.7 g protein, 5.3 g fibre c 

 
GI = 44b 

HGI – high glycaemic index, CHO – carbohydrate, LGI – low glycaemic index. 
a Cornflakes, Kellogg’s; Flora original margarine spread, Unilever; Alpen no added 
sugar, Weetabix Ltd 
b Calculated according to Wolever and Jenkins (1986) with GI values taken from 
Atkinson et al. (2008) 
c Significant difference in total weight and fibre content between HGI and LGI (P≤0.05) 
 

6.2.5 Blood sampling and analysis 

Capillary blood samples were obtained by finger prick. Blood glucose and plasma 

insulin concentrations were then determined in duplicate, as detailed in the General 

Methods (section 3.7). Capillary rather than venous blood sampling is preferred for 

reliable GI testing (Wolever et al., 2003). Blood glucose and plasma insulin TAUC for 

the 120 min postprandial period were calculated using the trapezium rule (Wolever and 

Jenkins, 1986). HOMA-IR was also calculated (Matthews et al., 1985). The intra-assay 

CV for the duplicate samples was 2.4% for blood glucose and 6.3% for plasma insulin. 

 

6.2.6 Expired air and indirect calorimetry 

Breath-by-breath data were displayed online using a portable metabolic cart (K4 b2, 

Cosmed, Rome, Italy). Calibration procedures were carried out prior to each 

experimental test (see section 3.3). Fat oxidation rates were calculated using 

stoichiometric equations, with the assumption that the urinary nitrogen excretion rate 

was negligible and a physiological steady-state had been attained (Frayn, 1983; see 

section 3.6). Fat oxidation TAUC for the 120 min rest period was calculated using the 

trapezium rule and included in subsequent analyses. 
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6.2.7 Perceived hunger 

Perceptions of hunger, satisfaction, fullness, prospective food consumption and 

breakfast palatability were assessed using 100 mm visual analogue scales (see section 

3.8).  

 

6.2.8 Statistical analyses 

Statistical analyses were completed using SPSS (v16 SPSS Inc, Chicago, IL, USA). The 

insulin data were transformed using a natural logarithm (lninsulin) to normalise them 

and homogenise the variances between the groups. Breakfast by time (2 x 7) repeated 

measures ANOVA were used to examine differences between HGI and LGI over time 

for glucose and lninsulin; these were conducted separately for OW and NO girls. 

Breakfast by group (2 x 2) mixed measures ANOVA with breakfast as the repeated 

factor were used to compare the two groups directly for glucose and lninsulin TAUC. 

For resting and exercise fat oxidation, breakfast by group (2 x 2) mixed measures 

analysis of covariance (ANCOVA) with estimated FFM as the covariate was used. 

Homogeneity of regression slopes was confirmed prior to each ANCOVA. Paired 

sample t-tests with Bonferroni correction were used to compare glucose and lninsulin 

concentrations at different time points and to follow-up significant two-way 

interactions. Values are expressed as mean(SD), unless stated otherwise, and ES were 

calculated. Statistical significance was accepted at P≤0.05. 

 

6.3 Results 

6.3.1 Participant characteristics 

Complete data for 8 OW and 12 NO girls were available for analyses (Table 6.2). Body 

mass, BMI, body fat, FFM, waist circumference and hip circumference were higher in 

the OW compared with NO girls (P≤0.05), whereas V�O2peak (mL·kg-1·min-1) was 

higher in the NO girls (P≤0.0005). Two of the OW girls were insulin resistant (HOMA-

IR >3.16) (Keskin et al., 2005). 
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Table 6.2 Participant characteristics 

 OW n=8 NO n=12 

Age (y) 12.6(0.5) 13.1(0.4) 

Body mass (kg) a 70.9(19.4) 45.5(8.4) 

Stature (m) 1.61(0.08) 1.56(0.09) 

BMI  (kg·m-2) a 27.0(5.8) 18.5(2.0) 

Body fat (%) a 35.7(6.0) 19.2(3.9) 

FFM (kg) a 45(9) 37(6) 

Waist circumference (cm) a 84.6(13.5) 63.0(4.7) 

Hip circumference (cm) a 99.5(12.3) 82.1(8.2) 

Tanner (pubic hair)† 3(1) 3(1) 

V�O2peak (mL·kg-1·min-1) a 32(7) 45(6) 

OW – overweight, NO – non-overweight, BMI – body mass index, FFM – fat free 
mass, Tanner stage – estimation of secondary sexual characteristics (Tanner, 1962), 
V�O2peak – peak oxygen uptake. 
a significant difference between OW and NO (P≤0.05) 
†median (interquartile range) 
 

 

6.3.2 Blood glucose concentration 

Following breakfast, blood glucose concentrations increased and peaked at a median 

(interquartile range) time of 30(0) min for all trials, except in the OW HGI trial where it 

peaked at 45 min in 4 girls (median 37.5(15) min) (Figure 6.2). Breakfast by time 

interactions were found for OW (P≤0.001) and NO (P=0.001) girls; concentrations were 

higher in HGI compared with LGI at 45 (P=0.004) and 60 (P≤0.0005) min in OW girls 

and at 90 (P=0.006) and 120 (P=0.001) min in NO girls.  

 

There were no differences in fasting or postprandial glucose between OW and NO girls 

at any time points (P>0.05). However, breakfast by group interactions for peak blood 

glucose (P=0.053, ES: 0.44) and TAUC (P=0.026, ES: 0.50) were found. Peak blood 

glucose was higher for HGI compared with LGI in OW (6.1 vs. 5.5 mmol·L-1; P=0.023, 
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ES: 0.74), but similar between breakfasts in NO girls (5.8 vs. 5.9 mmol·L-1; P=0.741). 

There were no between group differences in peak blood glucose after the HGI 

(P=0.404) or LGI (P=0.122) breakfasts. Blood glucose TAUC was 13% higher in HGI 

compared with LGI in OW (P=0.006, ES: 0.82), but only 4% higher in NO girls 

(P=0.072, ES: 0.51). Moreover, HGI TAUC was 9% higher in OW compared with NO 

girls (P=0.070, ES: 0.41), but LGI TAUC was similar between the groups (P=0.831, 

ES: 0.05). Similarly, the pattern of blood glucose over time differed between the OW 

and NO girls for HGI (P=0.047, ES: 0.24), but not LGI (P=0.119). 
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Figure 6.2 Blood glucose response to the high glycaemic index (HGI) and low 

glycaemic index (LGI) breakfasts for overweight (OW) and non-
overweight (NO) girls. Breakfast was consumed between 0 and 15 min. 
Blood glucose concentration was higher in HGI compared with LGI at 
45 and 60 min in OW girls and at 90 and 120 min in NO girls 
(Bonferroni correction; significance was P≤0.025). 
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6.3.3 Plasma insulin concentration 

Following breakfast, plasma lninsulin concentration increased and peaked at a median 

(interquartile range) time of 30(15) and 30(0) min for HGI and LGI in NO and 30(15) 

min in the OW LGI trial, but 45(15) min in the OW HGI trial (Figure 6.3). Breakfast by 

time interactions were found for OW (P=0.012) and NO (P≤0.005); however, pairwise 

comparisons only revealed a single significant difference in NO girls at 120 min 

(P=0.001). Neither the main effect for breakfast nor the breakfast by group interaction 

for lninsulin TAUC were significant (P>0.05). Although a strong statistical trend in 

fasting lninsulin between the OW and NO girls was found (P=0.054, ES: 0.45), 

pairwise analyses were not significant (P>0.025). Peak lninsulin (P=0.016) and TAUC 

(P=0.001) were higher in OW than NO. Whilst Bonferroni follow-up indicated peak 

lninsulin was only significantly different following the HGI breakfast (P≤0.025), it was 

clear that both breakfasts led to significant differences in TAUC (P≤0.025) between 

OW and NO. HOMA-IR was higher in OW compared with NO (3.2 vs. 2.9, P=0.054). 

 

 
Figure 6.3 Plasma insulin response to the high glycaemic index (HGI) and low 

glycaemic index (LGI) breakfasts for overweight (OW) and non-
overweight (NO) girls. Breakfast was consumed between 0 and 15 min. 
Plasma lninsulin concentration was higher in HGI compared with LGI at 
120 min in NO girls (Bonferroni correction; significance was P≤0.025).  
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6.3.4 Fat oxidation 

Resting and exercise fat oxidation results by group and breakfast are shown in Table 

6.3. During both postprandial rest and subsequent exercise, absolute and ANCOVA 

FFM adjusted fat oxidation were not different between HGI and LGI breakfast 

conditions in either group of girls (P>0.05). 

 

During the postprandial rest period, absolute fat oxidation was higher in the OW 

compared with NO girls in HGI (P=0.004, ES: 0.61) and LGI (P=0.005, ES: 0.60). 

However, once between group differences in FFM were accounted for, resting fat 

oxidation was similar in the two groups of girls (P>0.05). During subsequent exercise, 

absolute and ANCOVA FFM adjusted total fat oxidation were not different when 

comparing the OW and NO girls for the HGI and LGI conditions (P>0.05). 

 

Table 6.3 Resting and exercise fat oxidation (area under curve over time): 
comparisons between breakfasts and groups 

 

Group Breakfast 
Rest (g⋅120 min-1) Exercise (g⋅30 min-1) 

Absolute FFM1 Absolute FFM1 

OW 
n=8 

HGI 0.25(0.10)a 0.20(0.05) 5.05(1.53) 4.49(1.71) 

LGI 0.26(0.13)b 0.18(0.07) 6.03(3.49) 5.08(2.38) 

NO 
n=12 

HGI 0.15(0.04) 0.16(0.09) 4.76(1.83) 5.14(1.66) 

LGI 0.13(0.05) 0.14(0.07) 5.23(1.63) 5.86(2.31) 

OW – overweight, NO – non-overweight, HGI – high glycaemic index, LGI – low 
glycaemic index. 
1ANCOVA adjusted values with FFM (fat free mass) as the covariate 
a Higher in OW compared with NO girls after consuming the HGI breakfast (P=0.004) 
b Higher in OW compared with NO girls after consuming the LGI breakfast (P=0.005) 
 

6.3.5 Hunger 

Perceptions of hunger, satisfaction, fullness, prospective food consumption and 

breakfast palatability were similar between trials (P>0.05).  
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6.4 Discussion 

The main finding of the present study was that the higher glycaemic response in HGI 

compared with LGI was more pronounced in OW than NO girls, possibly reflecting a 

reduced ability to cope with the metabolic demands of a HGI breakfast in OW girls. 

Breakfast GI did not affect fat oxidation during the 120 min postprandial rest period or 

subsequent moderate intensity exercise in OW and NO adolescent girls. 

 

A novel finding was that the higher glycaemic response to HGI compared with LGI 

breakfast consumption was exaggerated in the OW girls, mainly due to the delayed 

decline in blood glucose following the postprandial peak. This may indicate a delayed 

blood glucose uptake up to 60 min following HGI breakfast consumption in OW girls. 

Previous work has reported higher postprandial glucose responses to HGI compared 

with LGI breakfasts in obese adolescents, but these studies did not include non-

overweight participants for direct comparison (Ball et al., 2003; Ludwig et al., 1999). 

Furthermore, higher and more sustained postprandial glucose responses have been 

reported in obese compared with non-obese children (Sinha et al., 2002a). However, we 

were unable to locate another study that has investigated whether these differences 

between OW and NO young people are dependent on the GI of the consumed CHO. 

Perälä et al. (2011) recently reported that the higher glycaemic response to a HGI 

compared with LGI meal was similar in OW and NO 62 to 72 year olds. However, the 

meals only contained 50 g CHO and were not scaled to body mass. It is, therefore, 

difficult to directly compare the findings of the present study with those of Perälä et al. 

(2011) due to differences in study design and participants. 

 

It is possible that the combination of readily absorbed glucose from the HGI (but not 

LGI) breakfast and higher insulin resistance (HOMA-IR) in the OW girls contributed to 

the larger glycaemic response in the OW HGI trial. Furthermore, plasma insulin peaked 

earlier and returned towards baseline values for LGI, but remained elevated for HGI in 

the OW girls; the earlier peak in plasma insulin may have contributed to the more rapid 

decline in blood glucose in LGI. Indeed, a study in adults reported that 

hyperinsulinemia occurred earlier following a LGI compared with HGI breakfast and 

was associated with a higher rate of glucose disappearance between 30 and 60 min of 

the LGI postprandial period, resulting in reduced plasma glucose concentrations 

(Schenk et al., 2003). However, the larger amount of protein in the LGI bran cereal 
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compared with HGI corn flakes (Schenk et al., 2003) may have caused the increased 

insulin secretion (Pi-Sunyer, 2002), whereas the macronutrient content of the breakfasts 

in the present study was similar. 

 

Collectively, these findings indicate that LGI breakfasts may be beneficial for blood 

glucose control in OW girls. Furthermore, the elevated glycaemic response in the OW 

HGI trial may also increase voluntary food intake later in the day (Ludwig et al., 1999).  

Encouragingly, adults with higher postprandial glycaemic responses have a greater 

postprandial reduction when changing from HGI to LGI foods (Høstmark, 2007) and 

lowering breakfast GI for 21 days reduced fasting glucose and increased satiety in 

obese adults (Pal et al., 2008). Moreover, the similar palatability between the breakfasts 

in the present study indicates LGI breakfast promotion for OW girls may be feasible. 

As the higher fibre content in the LGI breakfast may have contributed to the lower 

glycaemic response to this breakfast (Pi-Sunyer, 2002), it may be more appropriate to 

recommend LGI high-fibre breakfasts (rather than LGI breakfasts) for OW girls. This is 

feasible since LGI foods typically contain more fibre than HGI foods. Nevertheless, 

confirmation of these results in larger groups of young people, including boys, is 

required.  

 

Breakfast GI did not affect postprandial fat oxidation during rest or exercise in either 

group of girls. However, it is noteworthy that LGI resulted in 12% higher exercise fat 

oxidation (ANCOVA adjusted for FFM) in both groups on average, a finding that may 

have meaningful health-related implications since higher rates of fat oxidation may 

ameliorate the development of obesity and insulin resistance (Holloway et al., 2009; see 

section 2.1). During exercise, studies in adults have reported higher fat oxidation 

following LGI breakfasts (Stevenson et al., 2009; Wee et al., 2005), no effect of GI 

(Backhouse et al., 2007; Stevenson et al., 2005a) or even higher fat oxidation following 

a HGI breakfast (Moore et al., 2010). During rest, most have reported no effect of 

breakfast GI on fat oxidation (Díaz et al., 2005; Stevenson et al., 2006; Wee et al., 

2005), although higher fat oxidation following LGI breakfast consumption has been 

shown (Stevenson et al., 2009). Inconsistencies between studies may be due to 

differences in breakfast size or composition, exercise mode, intensity and duration, 

postprandial time period and participant characteristics (see section 2.8.2; Table 2.2). 

However, higher exercise fat oxidation following LGI breakfasts has been reported 45 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22D%C3%ADaz%20EO%22%5BAuthor%5D�
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min to 3 h (Sparks et al., 1998; Stevenson et al., 2009) following breakfasts containing 

1 to 2.5 g CHO·kg BM-1 during exercise lasting 60 or 30 min at 50-71% V�O2peak 

(Stevenson et al., 2009; Wee et al., 2005). It is, therefore, difficult to ascertain which 

factors contribute specifically to the higher fat oxidation following LGI breakfasts in 

some adult studies. It is possible that the 1.5 g CHO·kg BM-1 breakfast, 120 min 

postprandial period and 30 min exercise duration at 50% V�O2peak used in the present 

study was a sub-optimal combination to induce differences in fat oxidation between 

HGI and LGI. Furthermore, differences in fat metabolism between adolescents and 

adults (Riddell et al., 2008) may have resulted in discrepancies between the present 

study and some of the adult literature. Therefore, further examination of the relationship 

between breakfast GI and fat oxidation in young people is warranted.  

  

The similar insulin response between HGI and LGI reported in the present study may 

have underpinned the similarity in fat oxidation (Horowitz et al., 1997). Furthermore, 

fructose has a lower GI than glucose, but results in higher blood lactate concentrations 

(Moore et al., 2000). It is possible that higher lactate concentrations compromised fat 

oxidation following the LGI breakfast through direct inhibition of adipose tissue FFA 

release (Boyd et al., 1974). Indeed, resting fat oxidation was lower after high fructose 

compared with high glucose meals in obese adults, despite lower glucose and insulin 

responses to the high fructose meal (Tittelbach et al., 2000). Although we did not 

measure blood lactate, higher postprandial lactate concentrations have been reported 

following LGI compared with HGI breakfasts (Stevenson et al., 2006). In addition, 

blood lactate can affect the validity of indirect calorimetry for fat oxidation estimations 

(Rowlands, 2005). However, it is unlikely that this was a factor in the present study 

since the girls exercised at a moderate intensity (50% V�O2peak) and additional steps 

were taken to increase the validity of indirect calorimetry (e.g., removing individual 

V�O2 and V�CO2 ≥3 SD’s from the mean and verifying a steady state in V�O2 and 

V�CO2).  

 

Although no difference in perceptions of hunger between breakfasts was reported, the 

120 min postprandial period may have been too short for differences to emerge 

(Anderson and Woodend, 2003; Stevenson et al., 2009). Furthermore, prolongation of 

satiety based on time to request food was found >3 h following LGI compared with 
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HGI foods in obese adolescents, despite no difference using hunger scales (Ball et al., 

2003).  

 In summary, the higher glycaemic response in HGI compared with LGI was more 

pronounced in OW girls, suggesting a reduced ability to cope with the metabolic 

demands of a HGI breakfast in this population. This provides further evidence for 

potential health benefits of LGI foods and suggests that LGI breakfast promotion for 

OW girls is warranted. Breakfast GI did not affect fat oxidation during rest or 

subsequent exercise in OW and NO adolescent girls, although further examination of 

this relationship young people is required. 
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Chapter 7 

 

Acute effect of Fatmax exercise on postprandial glucose, insulin and fat oxidation 

in overweight and non-overweight girls 

 

 

Abstract 

Acute exercise can reduce postprandial insulin concentrations and increase fat oxidation 
in adults, which may have important implications for insulin resistance and weight 
control. However, similar studies with young people or comparing overweight and non-
overweight individuals are sparse. Therefore, the acute effect of Fatmax exercise on 
glucose, insulin and fat oxidation was examined in 12 overweight (OW; aged 11.7(1.3) 
y) and 15 non-overweight (NO; aged 12.3(1.5) y) girls. Participants completed two 2-
day conditions in a counter-balanced order. On day 1, participants either expended 2.09 
MJ (500 kcal) during treadmill exercise at individual Fatmax (EX) or 0.47 MJ (112 
kcal) during rest (CON). On day 2, capillary blood and expired air samples were taken 
in the fasted state and at regular intervals for 120 min after high glycaemic index (HGI) 
breakfast consumption. Subsequently, blood glucose and plasma insulin concentrations 
were determined and fat oxidation was estimated. Blood glucose was similar between 
conditions in both groups (P≥0.05). Fasting plasma insulin (P=0.047) and total area 
under the 120 min curve (TAUC, P=0.049) were reduced in EX compared with CON in 
NO, but not OW girls (P≥0.05). Fasting fat oxidation was higher in EX than CON for 
the NO girls (P=0.036) and fat oxidation TAUC was higher in EX for both the OW and 
NO girls (P≤0.05). A bout of Fatmax exercise performed ~16 h before HGI breakfast 
consumption reduced fasting and postprandial insulin concentrations in NO girls and 
increased fat oxidation in both OW and NO girls. The higher post-intervention energy 
and CHO intake or a degree of ‘metabolic inflexibility’ in the OW girls may have 
compromised potential exercise-induced reductions in insulin in this group. 
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7.1 Introduction 

Mounting evidence has shown that high rates of fat oxidation may protect against 

insulin resistance and weight gain; this is currently a topic of great interest (DeLany et 

al., 2006; Holloway et al., 2009; see section 2.1). Chapter 6 highlighted that elevated 

insulin concentrations and insulin resistance have emerged as serious health concerns in 

young people, particularly those with high levels of adiposity (Sinha et al., 2002a; 

2002b). Moreover, these adverse metabolic outcomes are exacerbated by the 

consumption HGI breakfasts, which induce exaggerated glucose and insulin responses 

(Ball et al., 2003; Ludwig et al., 1999), and Chapter 6 indicated that OW girls may 

manifest an inability to control blood glucose after a HGI breakfast in particular. 

Ultimately, this is concerning since the postprandial state contributes to the 

development of chronic disease (Heine et al., 2004). Therefore, interventions to reduce 

postprandial glucose and insulin concentrations and increase fat oxidation in young 

people could have considerable clinical relevance. 

  

Exercise training can increase insulin sensitivity and fat oxidation in young people (Ben 

Ounis et al., 2009; Shaibi et al., 2008). In adults, however, it is also well established 

that such improvements in metabolism are largely a consequence of the acute effects of 

exercise rather than long-term training adaptations (Burton et al., 2008; King et al., 

1995). Furthermore, studying the acute effect of exercise reflects the metabolic 

responses of individuals who do not participate in regular exercise training. Studies in 

adults have reported that a single bout of aerobic exercise can increase insulin 

sensitivity (Newsom et al., 2010), reduce postprandial insulin concentrations (Burton et 

al., 2008; Kokalas et al., 2005) and increase fat oxidation the next day (Burton et al., 

2008; Holtz et al., 2008; Schenk and Horowitz, 2007), although the effect on glucose is 

less clear (Burton et al., 2008; Kokalas et al., 2005). Furthermore, improvements in fat 

oxidation and insulin sensitivity may be related; high rates of fat oxidation may reduce 

the accumulation of fatty acid metabolites (e.g., diacylglycerol, ceramides) within the 

muscle that interfere with insulin signalling (Holloway et al., 2009; see section 2.1). 

Markers of fatty-acid induced insulin resistance are present even in obese young people 

(Sinha et al., 2002b). Importantly, a single bout of exercise can protect against fatty 

acid-induced insulin resistance in adults by increasing the partitioning of fatty acids 

toward IMTG synthesis and reducing the accumulation of fatty acid metabolites 

(Schenk and Horowitz, 2007). In this respect, it is plausible that exercise at Fatmax (the 
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individual exercise intensity corresponding to peak fat oxidation) is particularly 

beneficial. 

 

Despite concerns of overweight and insulin resistance in young people and the well-

recognised improvements in metabolism after a single exercise bout in adults, studies 

examining the acute effect of exercise on glucose, insulin and fat metabolism in young 

people are not available. There are clear differences in metabolism between young 

people and adults (Riddell, 2008) and also between overweight (OW) and non-

overweight (NO) young people (Aucouturier et al., 2011). Thus, the interaction between 

exercise-induced changes in metabolism and weight status in young people requires 

examination. The present study examined the acute effect of Fatmax exercise on blood 

glucose, plasma insulin and fat oxidation in the fasted state and after HGI breakfast 

consumption in OW and NO girls. 

 

7.2 Methods 

7.2.1 Participants 

Twelve OW and 17 NO girls aged 9 to 14 y participated in the study (12 OW and 15 

NO girls were included in final analyses). Overweight status was defined using age and 

sex specific BMI reference points (Cole et al., 2000). Anthropometric characteristics 

were assessed and recorded prior to experimental trials, as detailed in the General 

Methods (section 3.2). 

 

7.2.2 Preliminary measurements 

Participants were familiarised with treadmill walking and running before completing 

two preliminary tests. First, an uphill incremental treadmill test was used to measure 

V�O2peak (see section 3.5.1). On a separate occasion, the girls completed a 4 min 

incremental exercise test to determine Fatmax. The speed increased by 0.5 km·h-1 every 

4 min (1% gradient). Tests were terminated when the RER exceeded 0.95 or the 

participant was exercising above 80% V�O2peak. Average V�O2 and V�CO2 values 

from the final min of each stage were used to estimate fat oxidation. Subsequently, 

Fatmax (% V�O2peak) was estimated using individual best-fit polynomial curves of fat 

oxidation rate against % V�O2peak. 
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7.2.3 Experimental conditions 

All participants completed two 2-day conditions in a counter-balanced order (Figure 

7.1). On day 1, participants either expended ~2.09 MJ (500 kcal) during treadmill 

exercise at individual Fatmax (EX) or rested (CON). On day 2, the girls reported to the 

laboratory at 08:00 after a 12 h overnight fast. After fasted measures, the girls 

consumed a HGI mixed breakfast meal providing 1 g CHO·kg BM-1 within 15 min. The 

nutritional content of the breakfast was calculated from information provided by the 

manufacturer. For a 50 kg participant, the breakfast contained 31.4 g cornflakes, 100.0 

g skimmed milk, 34.3 g white bread, 4.3 g margarine, 6.4 g jam and 114.3 g water 

(calculated GI=73). The GI values for individual foods were taken from the 

International Table of Glycemic Index and Glycemic Load Values (Atkinson et al., 

2008) and the GI was calculated from the weighted means of the GI values for the 

component foods (Wolever and Jenkins, 1986). The 120 min postprandial period 

commenced immediately after breakfast consumption; during which, capillary blood, 

expired air samples and subjective ratings of hunger were collected at regular intervals.  

 

 
 
Figure 7.1 Schematic of 2-day protocol for experimental conditions 
 

7.2.4 Control of diet and physical activity  

With the assistance of a parent, the girls were asked to record their food and drink 

intake in the 48 h period prior to day 2 of the first condition and replicated this in the 48 

h before the second condition (Appendix 4). As Fatmax is affected by pre-exercise 
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CHO consumption (Achten and Jeukendrup, 2003b), participants also consumed this 

diet in the 48 h prior to the Fatmax measurement in an attempt to prescribe Fatmax 

exercise in the same conditions that it was  measured. The girls were asked to minimise 

physical activity in the 48 h before the Fatmax measurement and experimental 

conditions.  

 

7.2.5 Menstrual cycle phase 

Ten of the participants had commenced menstruation and completed their experimental 

conditions 48 h apart to minimise the potential influence of menstrual cycle phase on 

within-participant comparisons (Oosthuyse and Bosch, 2010). After asking the girls to 

complete a menstrual cycle diary, the author attempted to conduct experimental 

conditions during the early follicular phase (days one to seven) to reduce between-

participant variability. However, five of the girls completed their experimental 

conditions during the early follicular phase, two during the late luteal phase and it was 

not possible to determine menstrual cycle phase in the remaining three girls due to 

irregularities in menstrual cycle. 

 

7.2.6 Expired air and indirect calorimetry 

Breath-by-breath data were displayed online using a gas analysis system (Metalyzer 3B, 

Cortex, Leipzig, Germany). Calibration procedures were carried out prior to each 

experimental test (see section 3.3). Fat oxidation rates were calculated using 

stoichiometric equations, with the assumption that the urinary nitrogen excretion rate 

was negligible and a physiological steady-state had been attained (Frayn, 1983; see 

section 3.6). Fat oxidation TAUC for the 120 min rest period was calculated using the 

trapezium rule and included in subsequent analyses. 

 

7.2.7 Blood sampling and analysis 

Capillary blood samples were obtained from a pre-warmed hand by finger prick and, 

subsequently duplicate blood glucose and plasma insulin concentrations were 

determined (see section 3.7). Blood glucose and plasma insulin TAUC for the 120 min 

postprandial period was calculated using the trapezium rule (Wolever and Jenkins, 

1986) and HOMA-IR was calculated from fasted glucose and insulin (Matthews et al., 

1985). The CV for the duplicate samples was 2.0 % for blood glucose and 5.8 % for 

plasma insulin. 
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7.2.8 Statistical analyses 

Statistical analyses were completed using SPSS software version 18.0 for Windows 

(SPSS Inc, Chicago, IL, USA). Shapiro-Wilk and Levene’s tests were used to verify 

normal distribution and homogeneity of variance, respectively. Greenhouse-Geisser 

correction was used when sphericity could not be assumed. Condition by time (2 x 7) 

repeated measures ANOVA were used to examine differences between EX and CON; 

these were conducted separately for OW and NO girls. To compare the two groups of 

girls directly, condition by group (2 x 2) mixed measures ANOVA with condition as the 

repeated factor were used to examine the fasting, peak and TAUC values for glucose, 

insulin and fat oxidation. Values are expressed as mean(SD), unless stated otherwise, 

and ES were calculated. Statistical significance was accepted at P≤0.05. 

 

7.3 Results 

7.3.1 Participant characteristics 

Participant characteristics are displayed in Table 7.1. Body mass, BMI, body fat, waist 

circumference and hip circumference were higher in the OW compared with NO girls 

(P<0.003), whereas V�O2peak (mL·kg-1·min-1) (P<0.0005) and Fatmax (% V�O2peak) 

(P=0.024) were higher in the NO girls. Two of the OW girls were insulin resistant 

(HOMA-IR >3.16) (Keskin et al., 2005). 
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Table 7.1 Participant characteristics 

 OW n=12 NO n=15 

Age (y) 11.7(1.3) 12.3(1.5) 

Body mass (kg) a 61.2(20.3) 42.2(7.9) 

Stature (m) 1.53(0.10) 1.54(0.09) 

BMI (kg·m-2) a 25.8(5.2) 17.7(1.8) 

Body fat (%) a 35.2(6.2) 19.1(5.1) 

FFM (kg) 39.0(10.3) 34.0(5.5) 

Waist circumference (cm) a 77.5(13.6) 61.7(4.9) 

Hip circumference (cm) a 90.4(15.7) 74.9(8.5) 

Tanner (pubic hair)† 3(1) 3(2) 

V�O2peak (mL·kg-1·min-1) a 41(6) 51(4) 

Fatmax (% V�O2peak) a 52(10) 63(12) 

OW – overweight, NO – non-overweight, BMI – body mass index, FFM – fat free 
mass, Tanner stage – estimation of secondary sexual characteristics (Tanner, 1962), 
V�O2peak – peak oxygen uptake. 
a significant difference between OW and NO (P≤0.05) 
†median (interquartile range) 
 

7.3.2 Energy expenditure and energy intake 

During the 2.09 MJ (500 kcal) Fatmax exercise bout, the OW girls exercised at 54(8)% 

V�O2peak and the NO girls exercised at 63(12)% V�O2peak (P=0.039). Exercise duration 

was 73(20) min for the OW and for 67(18) min for the NO girls (P=0.422). During the 

time-matched resting condition, the OW girls tended to expend more energy than the 

NO girls (0.51(0.11) vs. 0.43(0.12) MJ; P=0.079). 

 

Average daily energy and macronutrient intake in the 48 h prior to EX and CON was 

similar between the OW and NO girls (P>0.05). However, day 1 post-intervention 

(17:30 to 20:00) energy intake was higher in the OW compared with NO girls 

(4.11(1.87) vs. 2.96(0.84) MJ; P=0.042), whilst CHO (146(85) vs. 101(35) g; P=0.076) 
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and fat (31(12) vs. 23(10) g; P=0.079) intake tended to be higher. The counter-balanced 

assignment to EX and CON did not affect post-intervention energy or macronutrient 

intakes between OW and NO nor within OW and NO. 

 

7.3.3 Blood glucose concentration 

Blood glucose responses are shown in Figure 7.2. Postprandial blood glucose 

concentration increased and peaked at a median (interquartile range) time of 15(15) min 

for all conditions, except in the OW CON condition where it peaked at 30 min in 4 girls 

and 60 min in 1 girl (median 22.5(15) min). Fasting, peak and TAUC for blood glucose 

were similar between EX and CON in both groups of girls (P>0.05) and there were no 

differences in blood glucose concentration between the OW and NO girls (P>0.05) 

(Table 7.2). 

 

7.3.4 Plasma insulin concentration 

Plasma insulin responses are shown in Figure 7.3. Postprandial plasma insulin 

concentration increased and peaked at a median (interquartile range) time of 15(15) min 

for both conditions and groups. Fasting (P=0.047, ES: 0.50) and TAUC (P=0.049, ES: 

0.50) for plasma insulin were lower for EX compared with CON in the NO girls, but 

there was no difference in peak postprandial plasma insulin (P=0.263, ES: 0.30). All 

measures of plasma insulin were similar between conditions in the OW girls (P>0.05). 

Although not significantly different between conditions, HOMA-IR was 15% lower for 

EX in the NO girls (P=0.125, ES: 0.40), but 9% higher in the OW girls (P=0.663, ES: 

0.13). Fasting and postprandial plasma insulin concentrations (P≤0.0005) and HOMA-

IR (P=0.022, ES: 0.44) were higher in the OW compared with NO girls (Table 7.2).  

 

7.3.5 Fat oxidation   

Fat oxidation (mg·kgFFM-1·min-1) for both conditions and groups is displayed in Figure 

7.4. Fasting fat oxidation was higher (P=0.036, ES: 0.53) for EX compared with CON 

in the NO girls, but similar between conditions in the OW girls (P=0.790). Fat oxidation 

TAUC was higher for EX in the NO (P=0.005, ES: 0.66) and OW girls (P=0.04, ES: 

0.57). Fat oxidation was similar between the groups (P>0.05). When expressed relative 

to total energy expenditure (% EE), fasting (P=0.024, ES: 0.56) and TAUC (P=0.021, 

ES: 0.57) for fat oxidation was higher in EX compared with CON in NO, but not OW 

girls (P>0.05) (Table 7.2). 
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Table 7.2 Summary of fasting and postprandial responses  

 OW n=12 NO n=15 

 EX CON EX CON 

 
Glucose (mmol·L-1) 

Fasting 
Peak 
Average postprandial 
TAUC 

 
 

3.79(0.42) 
5.80(0.46) 
4.88(0.53) 
9.52(0.63) 

 
 

3.81(0.32) 
5.83(0.61) 
4.92(0.52) 
9.60(0.62) 

 
 

3.87(0.38) 
5.77(0.75) 
4.78(0.54) 
9.41(0.76) 

 
 

3.75(0.25) 
5.73(0.60) 
4.76(0.61) 
9.38(0.87) 

 
Insulin (pmol·L-1) 

Fasting  a 
Peak a 
Average postprandial  a 

            TAUC a 

 
 

96(112) 
745(377) 
419(253) 
769(411) 

 
 

92(79) 
712(325) 
439(256) 
809(451) 

 
 

26(13) 
274(116) 
144(66) 
259(89) 

 
 

32(18) b 
307(169) 
168(91) b 
304(128) b 

HOMA-IR a 2.90(3.91) 2.65(2.34) 0.75(0.40) 0.89(0.54) 

Fat oxidation (mg·kgFFM-1·min-1) 
Fasting 
Average postprandial 

            TAUC 

 
2.01(0.65) 
1.63(0.42) 
6.19(2.86) 

 
1.96(0.78) 
1.41(0.39) c 
4.80(2.55) c 

 
2.00(0.64) 
1.69(0.49) 
6.36(2.88) 

 
1.77(0.80) b 
1.45(0.58) b 
5.07(3.35) b 

Fat oxidation (% total EE) 
Fasting 
Average postprandial 

 
42(12) 
31(10) 

 
41(17) 
28(10) 

 
41(13) 
32(9) 

 
34(17) b 
27(11) b 

OW – overweight, NO – non-overweight, EX – exercise condition, CON – control 
condition, TAUC – total area under the curve, HOMA-IR – homeostasis model 
assessment for insulin resistance, FFM – fat free mass, EE – energy expenditure. 
a significant difference between OW and NO (P≤0.05) 
b significant difference between EX and CON within group for NO (P≤0.05) 
c significant difference between EX and CON within group for OW (P≤0.05) 
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Figure 7.2 Blood glucose concentration the morning after the exercise (EX) and 

control (CON) conditions for the overweight (OW) and non-overweight 
(NO) girls. Breakfast was consumed between 0 and 15 min.  
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Figure 7.3 Plasma insulin concentration the morning after the exercise (EX) and 

control (CON) conditions for the overweight (OW) and non-overweight 
(NO) girls. Breakfast was consumed between 0 and 15 min.  
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Figure 7.4 Fat oxidation the morning after the exercise (EX) and control (CON) 
conditions for overweight (OW) and non-overweight (NO) girls. 
Breakfast was consumed between 0 and 15 min.  
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7.4 Discussion 

The main finding of the present study was that 2.09 MJ (500 kcal) of Fatmax exercise 

performed ~16 h before HGI breakfast consumption reduced fasting and postprandial 

insulin concentrations in NO girls, with no change in blood glucose concentrations. 

However, exercise did not affect glucose or insulin concentrations in the OW girls. 

Furthermore, an increase in fat oxidation the day after Fatmax exercise was observed in 

both the OW and NO girls. To the author’s knowledge, this is the first study to 

demonstrate these acute exercise-induced metabolic effects in young people.  

 

Reductions in insulin after a single exercise bout in the NO girls are in agreement with 

studies in adults (Brestoff et al., 2009; Kokalas et al., 2005). However, similar studies in 

young people do not appear to be available for comparison and few studies have 

directly examined the potential effect of weight status on this relationship. Only one 

study appears to have reported glucose and insulin concentrations the day after exercise 

in young people, although this study was not specifically designed to examine these 

health markers (MacEneaney et al., 2009). In support of the present study, 2.51 MJ (600 

kcal) of exercise did not affect fasting and postprandial glucose or insulin in overweight 

adolescent boys; although, in contrast, insulin concentrations were not reduced in the 

non-overweight boys (MacEneaney et al., 2009). However, this study included a high-

fat breakfast meal and only three blood samples were taken during the immediate 120 

min postprandial period (MacEneaney et al., 2009); thus a direct comparison between 

the present study and the available literature in young people is limited. In adults, 

exercise reduced postprandial insulin in both overweight and non-overweight women 

(Mitchell et al., 2008) and in obese, but not non-obese, men (Gill et al., 2004). 

However, unlike the present study, all participants exercised at the same intensity and 

duration; the higher exercise energy expenditure in the obese men might explain why 

only they experienced an exercise-induced reduction in postprandial insulin 

concentration (Gill et al., 2004). Differences in participant characteristics, breakfast size 

and composition, and post-exercise energy and macronutrient intake may have also 

contributed to these disparate findings. In addition, differences in metabolism between 

young people and adults may have resulted in discrepancies between the present study 

and some of the adult-based literature (Riddell, 2008). 
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Exercise-induced reductions in insulin concentrations in the NO girls may be attributed 

to enhanced insulin sensitivity the morning after exercise. Studies in adults have shown 

that insulin sensitivity increases up to 72 h after exercise to facilitate muscle glycogen 

replenishment (see section 2.9.1). The major cellular mechanism controlling this 

increased insulin sensitivity appears to be increased GLUT-4 translocation to the 

plasma membrane (Thorell et al., 1999), although other mechanisms have emerged 

more recently (Maarbjerg et al., 2011). The exercise-induced reduction in insulin with 

no change in glucose indicates improved insulin sensitivity the morning after exercise 

in the NO girls; a lower insulin concentration was needed to control the rise in glucose. 

Although the reduction in HOMA-IR after exercise compared with rest was not 

statistically significant, it may have been meaningful enough to alter postprandial 

insulin. Exercise-induced reductions in postprandial insulin with no change in HOMA-

IR have also been shown in adults (Burton et al., 2008; Holtz et al., 2008), whereas 

others have reported reduced HOMA-IR (Brestoff et al., 2009). It is possible that more 

sensitive measures of insulin sensitivity (e.g., glucose clamp methods) were required to 

detect potential differences between trials in the present study.  

 

A bout of Fatmax exercise increased fat oxidation the next day in both the OW and NO 

girls, which appears to be another novel finding in young people and is consistent with 

studies in overweight (Burton et al., 2008) and non-overweight (Schenk and Horowitz, 

2007) adults. Several cellular mechanisms may contribute to this increased fat 

oxidation, including increased muscle LPL activity (Kiens and Richter, 1998), reduced 

PDH activity (Kimber et al., 2003) and possibly, similar to GLUT-4, the translocation 

of specific fatty acid transporters to the plasma membrane (Koonen et al., 2004). In 

adults, acute exercise increased the partitioning of fatty acids toward oxidation and 

IMTG synthesis, reduced the accumulation of fatty acid metabolites within skeletal 

muscle and suppressed activation of proinflammatory pathways known to impair insulin 

action (Schenk and Horowitz, 2007), suggesting elevations in fat oxidation after 

exercise may have contributed to the reduced insulin concentrations in the NO girls. 

Furthermore, reducing exercise fat oxidation through the ingestion of a lipolysis 

inhibitor abolished the exercise-induced reduction in postprandial insulin in men 

(Malkova et al., 1999). It is, therefore, conceivable that the high rates of fat oxidation 

during Fatmax exercise can augment potential exercise-induced enhancements in 

insulin sensitivity. However, a study comparing the acute effect of exercise at Fatmax 
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and exercise eliciting low rates of fat oxidation in young people is required for a more 

complete understanding of this relationship. The lower insulin concentrations after 

exercise may have also enhanced lipolysis and contributed to the elevated fat oxidation 

in the NO girls (Horowitz et al., 1997). Interestingly, unlike the NO girls, the OW girls 

did not experience an increase in fat oxidation as a proportion of total energy 

expenditure. This suggests that increased post-exercise total energy expenditure partly 

explained the elevated fat oxidation in the OW girls; thus different mechanisms may 

control the increased fat oxidation observed in the two groups. 

 

Importantly, exercise-induced reductions in insulin in the NO girls and elevations in fat 

oxidation in both groups occurred following just a single exercise bout and despite the 

maintenance of habitual diet, suggesting that these extend to a ‘real world’ setting 

where diet is not prescribed. Reduced postprandial insulin concentration indicates 

improved glucose control and may have implications for the prevention of insulin 

resistance and related chronic disease. Although insulin was not affected in the OW 

girls, elevations in fat oxidation may have long term implications for alleviating insulin 

resistance (Holloway et al., 2009; Kelley, 2002) and for weight control (DeLany et al., 

2006). Future research should consider the time-course of these metabolic 

improvements in young people, which may persist up to 72 h post-exercise (King et al., 

1995). 

 

Since insulin concentrations were markedly higher in the OW compared with NO girls 

in both the present study and Chapter 6, interventions to reduce insulin concentration 

may be particularly relevant for this population. A number of plausible reasons could 

explain why exercise did not affect insulin in the OW girls. Dietary analysis indicates 

that post-exercise energy and/or CHO replacement may have facilitated muscle 

glycogen restoration and attenuated potential exercise-induced reductions in insulin in 

the OW girls, as previously reported in adults (Burton et al., 2008; Newsom et al., 

2010). Indeed, post-intervention energy and CHO intake was higher in the OW 

compared with NO girls and may have resulted in positive energy/CHO balance, 

although energy and CHO balance was not measured directly. Interestingly, the OW 

girls consumed more energy and CHO regardless of whether they completed EX or 

CON first, which suggests that this dietary ‘compensation’ was not specifically 

exercise-induced, but may be related to body size or composition. It is also possible that 
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the study design did not permit changes in insulin in the OW girls. All participants 

expended a set amount of energy during exercise expressed in absolute terms, rather 

than relative to body mass, to reduce between-participant variability in exercise 

duration. Consequently, the OW girls expended less energy relative to body mass 

during the exercise bout, which may not have been sufficient to affect insulin in the 

heavier participants. A HGI breakfast was purposefully chosen due to the findings of 

Chapter 6, where it was concluded that interventions to attenuate the glucose and 

insulin response to this type of breakfast are required, particularly for OW girls. It is 

possible that the exercise was not sufficient to influence the response to a breakfast 

known to induce particularly exaggerated postprandial glucose and insulin responses. 

Finally, between-group differences in metabolism could also underpin the contrasting 

findings between the OW and NO girls. ‘Metabolic inflexibility’ has been observed in 

obese young people (Aucouturier et al., 2011; see section 2.1) and may have 

compromised the OW girls’ ability to change insulin metabolism in response to acute 

exercise, as observed following dietary changes (Sunehag et al., 2005). It has been 

suggested that a single exercise bout may not be a large enough stimulus to increase 

insulin action in those with reduced fitness and limited cellular mechanisms that might 

be required to enhance insulin action after exercise (Holtz et al., 2008). Future research 

should address these issues in OW and NO young people by manipulating exercise 

energy expenditure, post-exercise energy and/or CHO intake and examining the 

potential role of metabolic inflexibility. 

 

In conclusion, a bout of Fatmax exercise performed 16 h prior to HGI breakfast 

consumption reduced fasting and postprandial insulin in NO girls and elevated fat 

oxidation in both OW and NO girls. Importantly, these metabolic improvements were 

observed after just a single bout of exercise (2.09 MJ) and despite the maintenance of 

habitual diet. The higher post-intervention energy and CHO intake and/or a degree of 

‘metabolic inflexibility’ may have compromised a potential exercise-induced reduction 

in insulin in the OW girls. Further examination of these issues in young people is 

warranted.  
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Chapter 8 

 

General Discussion 

 

Over the past few decades, there has been an alarming increase in the prevalence of 

overweight and obesity among young people in England and throughout the world 

(Ebbeling et al., 2002; Health Survey for England, 2009; Wang et al., 2011). Since high 

adiposity is associated with numerous adverse health outcomes and often tracks into 

adulthood, immediate action is required to alleviate this public health problem. An 

imbalance between energy intake and expenditure is the underlying cause of weight 

gain, thus exercise and dietary strategies are strongly recommended for the management 

of obesity and associated metabolic disorders. Exercise is often advocated to confer 

additional health benefits that may not manifest following dietary intervention alone. 

Although expending energy through the oxidation of all macronutrients during exercise 

could facilitate weight loss, maximising fat oxidation in particular appears to have 

clinical relevance and is related to insulin resistance. The most efficacious interventions 

and recommendations must be evidence-based. Hence, a clear understanding of exercise 

metabolism and factors influencing fat oxidation and insulin resistance in young people 

is required. However, research investigating the interplay between exercise, diet, fat 

oxidation and insulin resistance in young people is sparse. This is somewhat surprising, 

since childhood and adolescence have been identified as critical periods of weight gain 

and the establishment of lifestyle behaviours. The experimental studies presented within 

this thesis sought to extend our understanding of how manipulations in exercise and 

breakfast consumption might influence glucose, insulin and fat metabolism in 

overweight and non-overweight young people. The purpose of this chapter is to 

collectively discuss and reflect upon the findings from these studies. 

 

8.1 Overweight, insulin resistance and fat oxidation in young people 

The clinical importance of increasing fat oxidation and reducing insulin resistance in 

young people has been highlighted throughout this thesis, providing a rationale for 

much of the experimental work presented. Therefore, first, it should be highlighted that 

the experiments within this thesis have clearly shown that overweight girls are more 

insulin resistant and, consequently, have insulin concentrations that are substantially 
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elevated compared with non-overweight girls (Chapters 6 and 7), confirming prior 

reports (Lee et al., 2006; Sinha et al., 2002a). It is noteworthy that much of the previous 

literature has compared obese and non-obese participants; the results reported herein 

have clearly shown that even overweight young people manifest elevated HOMA-IR 

values and insulin concentrations.  

 

Insulin resistance may be accompanied by low fasting fat oxidation and metabolic 

inflexibility in obese young people (Aucouturier et al., 2011). The OW and NO girls in 

Chapter 6 and 7 oxidised a similar amount of fat (per kg FFM) during fasting conditions 

(even when the data from the two studies were pooled, P≥0.05), postprandially and 

during exercise, although metabolic inflexibility was not assessed directly. Similar 

findings have emerged from studies that have estimated resting fat oxidation in young 

people (Maffeis et al., 1995; McMurray and Hosick, 2011; Zunquin et al., 2009b), 

although previous work indicates that obese young people have a reduced ability to 

oxidise fat during exercise (Lazzer et al., 2007; Zunquin et al., 2009b; see section 

2.5.3). Inconsistencies between the findings reported herein and some previous studies 

may be due to the inclusion of overweight rather than obese participants. Moreover, the 

comparison of fat oxidation between obese, overweight and non-overweight groups is 

further complicated by the unit of measurement for fat oxidation, i.e., absolute, per kg 

BM, per kg FFM or % total energy expenditure. It is, therefore, not clear whether 

overweight or obese young people have an impaired ability to oxidise fat. However, the 

work presented within this thesis has shown that Fatmax is reduced in OW girls 

(Chapter 7). This indicated that fat oxidation begins to decline at a lower exercise 

intensity in these girls, which may limit fat oxidation to a narrower range of intensities 

and reflect a reduced capacity for fat oxidation, particularly during higher exercise 

intensities. Furthermore, several lines of evidence indicate that enhancing fat oxidation 

has implications for protecting against future weight gain (DeLany et al., 2006; Marra 

et al., 2004) and insulin resistance (Aucouturier et al., 2011). Consequently, others have 

recommended that an effort to increase the capacity for fat oxidation within skeletal 

muscle should be among the goals for the prevention and treatment of obesity and 

insulin resistance (Holloway et al., 2009; Kelley, 2002). 
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8.2 ‘Optimising’ fat oxidation during exercise 

Despite the potential for exercise to elevate fat oxidation, no consensus has been 

reached on the type of exercise that is preferable for maximising the amount of fat 

oxidised. Moreover, evidence in young people is extremely limited relative to that in 

adults. Exercise characteristics (intensity, mode, duration), individual participant 

characteristics (age, sex, weight status) and pre-exercise diet are among the factors 

influencing fat oxidation during exercise. Of these factors, exercise intensity and mode 

are both central and easily modifiable. Therefore, Chapters 4 and 5 sought to determine 

how exercise intensity and mode might be best manipulated to promote high rates of fat 

oxidation in children. 

 

8.2.1 Estimation of Fatmax 

There has been a recent surge in studies that have prescribed exercise training at Fatmax 

in young people, demonstrating subsequent improvements in various health markers 

(Ben Ounis et al., 2010; 2011; Elloumi et al., 2009). However, a number of 

methodological considerations are associated with the estimation of Fatmax, which 

should be investigated prior to its implementation. In trained adults, a 3 min 

incremental protocol was validated for the estimation of Fatmax some time ago (Achten 

et al., 2002). This was necessary as there are two primary issues with a 3 min 

incremental protocol: (1) whether a physiological steady state is attained before the 

onset of the sampling period; and (2) whether there is a residual effect from stage to 

stage that influences subsequent fat oxidation estimations. Before attempting to 

contribute further to existing paediatric research, the first study within this thesis 

examined some of these issues by comparing two protocols to estimate Fatmax in a 

group of prepubertal girls and boys (Chapter 4). It was demonstrated that individual 

Fatmax values compare well when estimated using a 3 min incremental protocol and 10 

min isolated bouts, extending the results from Achten et al. (2002) in trained men to 

prepubertal children. Although group MFO values were similar, the large 95% LoA 

indicated that MFO did not compare well between the protocols on an individual level. 

Achten et al. (2002) also reported similar group fat oxidation values, but the statistical 

methods employed did not allow insight at the individual level; the results from Chapter 

4 indicate that this individual analysis was required. Although these findings suggest 

the estimation of MFO depends on the exercise protocol employed, the 3 min 

incremental protocol did not systematically under- or over-estimate MFO. Therefore, 
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other factors may have been partly responsible for variations in fat oxidation, including 

diet and physical activity in the days prior to the Fatmax exercise tests (Bagger et al., 

2003; Meyer et al., 2007).  

 

It was concluded that a 3 min incremental protocol can be used to estimate Fatmax, but 

caution should be exercised when estimating MFO for some individuals. The 3 min 

protocol has several clear advantages over using prolonged exercise bouts. Most 

notably, the estimation of fat oxidation across a wide range of exercise intensities (10 

on average) enables a more precise estimation of Fatmax. In addition, Fatmax can be 

measured on a single visit to the laboratory. This is important since Fatmax should be 

measured on an individual basis due to the large inter-individual variation in this 

metabolic marker; 10 min isolated bouts requiring multiple visits to the laboratory and 

the control of diet and exercise in the days preceding each measurement may not be 

feasible for many children. With these advantages in mind and the clear practical 

applications of estimating Fatmax, the discrepancy between the two protocols 

concerning MFO is not clear enough to recommend the use of prolonged isolated 

exercise bouts. Importantly, studies estimating Fatmax should acknowledge the issues 

highlighted within this study and caution should be maintained when reporting MFO 

values and making inter-study comparisons.  

 

8.2.2 Exercise mode 

Puberty (Riddell et al., 2008), obesity (Zunquin et al., 2009b) and training (Brandou et 

al., 2003) may influence exercise fat oxidation and Fatmax in young people; Chapter 5 

has extended this research by demonstrating that exercise mode is another important 

determinant. A novel finding of Chapter 5 was that Fatmax was higher for treadmill 

compared with cycling exercise (59 and 51% V�O2peak, respectively) in pre- to early 

pubertal children, suggesting children must exercise at a higher exercise intensity 

during treadmill exercise to elicit the mode-specific MFO. A review of the adult-based 

literature revealed that only one study has reported higher Fatmax values for treadmill 

compared with cycling exercise (Chenevière et al., 2010), with others reporting no 

difference (Achten et al., 2003; Glass et al., 1999); inconsistent findings may be due to 

differences in the treadmill exercise protocols employed (see section 2.5.4). 

Interestingly, the Fatmax zone was wider for treadmill exercise, thus fat oxidation 

remained high (within 5% of MFO) over a wider range of intensities. This indicates that 
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walking or slow running rather than cycling increases the likelihood of exercising 

within the Fatmax zone. Moreover, Chapter 5 provided strong evidence that rates of fat 

oxidation are elevated during treadmill compared with cycling exercise. The higher fat 

oxidation during treadmill exercise over a range of absolute and relative exercise 

intensities extended recent findings in obese adolescent boys (Lafortuna et al., 2010) to 

non-overweight pre- to early pubertal girls and boys. Importantly, the estimation of fat 

oxidation over a range of intensities and comparison at both relative and absolute 

exercise intensities overcame the limitations associated with previous research 

examining the effect of exercise mode in children (Mácek et al., 1976). It is, therefore, 

evident that treadmill exercise is preferable for promoting fat oxidation; children 

oxidise more fat during treadmill exercise regardless of exercise intensity and are more 

able to oxidise fat at higher intensities (higher Fatmax) and over a greater range of 

intensities (wider Fatmax zone).  

 

8.2.3 Determinants of Fatmax 

Group Fatmax values from Chapters 4 and 5 ranged between 49 and 62% V�O2peak, 

which is comparable with other studies in healthy prepubertal children (see Chapter 2, 

Table 2.1). However, there appears to be considerable inter-individual variation in 

Fatmax and potential determinants have emerged from the studies reported within this 

thesis. Chapter 5 showed, for the first time, that Fatmax was higher in boys compared 

with girls during treadmill exercise, whereas sex did not influence cycling Fatmax even 

when the sample size was increased by pooling the data from Chapters 4 and 5 

(P=0.137). However, differences in V�O2peak, BMI and body fat between the boys and 

girls may have affected between sex comparisons. Importantly, V�O2peak explained 

44% of the variation in Fatmax for treadmill, but only 4% for cycling exercise (Chapter 

5). This strong correlation along with the higher V�O2peak in the boys may have 

partially explained the higher treadmill Fatmax in the boys. Indeed, increased fitness 

and ability to oxidise fat at high intensities are common training adaptations (Bell et al., 

2007; Lazzer et al., 2008). It has previously been reported that sex did not influence 

cycling Fatmax in a group of obese and non-obese pubertal and postpubertal young 

people (Lazzer et al., 2007). However, similar studies including treadmill exercise do 

not appear to be available. Studies with adults are also limited and have yielded 

inconsistent findings; cycling Fatmax was higher in healthy women compared with men 

(Chenevière et al., 2011), whereas no effect of sex on treadmill Fatmax was observed in 
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overweight adults (Bogdanis et al., 2008). However, it is not possible to directly 

compare findings in pre- to early-pubertal children (Chapters 4 and 5) with these adult-

based studies due to the potential influence of puberty and sex hormones on fat 

oxidation (section 2.5.2). Finally, in Chapter 7, treadmill Fatmax was lower in the OW 

compared with NO girls, suggesting weight status is another important determinant of 

Fatmax. This compliments previous reports of reduced Fatmax values in obese pubertal 

boys (Zunquin et al., 2009b), while extending this finding to OW girls.  

 

8.3 Postprandial metabolism: effect of breakfast and exercise  

As discussed, brisk walking or slow running at Fatmax is a promising strategy to 

elevate fat oxidation in young people (Chapters 4 and 5). However, pre-exercise diet 

has a profound effect on substrate oxidation (Achten and Jeukendrup, 2003b; Timmons 

et al., 2007b). It is well established that fat oxidation is maximised in the fasted state 

(Riddell et al., 2000; Timmons et al., 2007a; 2007b), but this may not be a practical or 

desirable option for young people and the health benefits of regular breakfast 

consumption are well documented (Panagiotakos et al., 2008; Timlin et al., 2008). 

Moreover, exercise and dietary recommendations for weight control and health are 

commonly advocated in combination rather than independently. Consequently, 

Chapters 6 and 7 aimed to extend our understanding of the interaction between exercise, 

breakfast, postprandial metabolism and weight status in adolescent girls. This 

population was targeted specifically, as physical activity levels are lower in girls 

compared with boys (Riddoch et al., 2007) and decline rapidly during adolescence 

(Armstrong and Welsman, 2006) and girls are less likely to eat breakfast daily (Timlin 

et al., 2008). Therefore, it may be particularly worthwhile for interventions promoting 

physical activity and breakfast consumption to focus on this population. 

 

8.3.1 Breakfast glycaemic index  

There has been considerable interest in the health benefits of LGI diets in adults (Brand-

Miller et al., 2009) and, to some extent, in young people (Rovner et al., 2009; Spieth et 

al., 2000). Similarly, the acute metabolic effects of breakfasts differing in GI have been 

studied in adults, but mainly active and trained men (Stevenson et al., 2006; 2009; see 

section 2.8.2). Chapter 6 has extended some of these findings to young people (girls) 

and examined the interaction with weight status. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rovner%20AJ%22%5BAuthor%5D�
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In agreement with studies in adults (Stevenson et al., 2006; 2009) and young people 

(Ball et al., 2003; Ludwig et al., 1999), Chapter 6 has provided further evidence that 

LGI compared with HGI breakfast consumption attenuates the postprandial glucose 

response. However, previous work has not examined the potential interaction with 

weight status. Chapter 6 demonstrated, for the first time, that the higher glycaemic 

response following a HGI compared with LGI breakfast was more exaggerated in OW 

than NO girls. The results indicated a delayed blood glucose uptake up to 60 min 

following HGI breakfast consumption in OW girls, possibly reflecting a reduced ability 

to cope with the metabolic demands of this breakfast. The combination of readily 

absorbed glucose from the HGI (but not LGI) breakfast and higher insulin resistance 

(HOMA-IR) in the OW girls may have contributed to this exaggerated glycaemic 

response. Interestingly, the glycaemic response to HGI breakfast consumption was not 

different between the OW and NO girls in Chapter 7. However, it should be noted that 

postprandial blood glucose peaked slightly later in the OW CON condition compared 

with the other conditions (OW EX, NO CON and NO EX) in Chapter 7, suggesting a 

slightly delayed glucose uptake in the OW girls the day after rest, but not exercise. 

Nevertheless, differences in blood glucose between the OW and NO girls in Chapter 7 

were not significant, perhaps due to these OW girls being younger (11.7 vs. 12.6 y, 

P=0.008) and fitter (V�O2peak 41 vs. 32 mL·kg-1·min-1, P=0.008) than those in Chapter 

6. It is plausible that the increased fitness meant that the OW girls in Chapter 7 had an 

increased ability to control blood glucose, since fitness appears to be a stronger 

predictor of insulin resistance than fatness (Allen et al., 2007). Moreover, this study did 

not include a LGI breakfast trial for comparison and provided a smaller breakfast 

containing 1.0 rather than 1.5 g CHO·kg BM-1. It would, therefore, be of interest to 

systematically examine whether fitness and breakfast size influence the extent of the 

blood glucose response following HGI relative to LGI breakfast consumption in OW 

girls. Indeed, the GI of breakfast cereals was lower in endurance trained compared with 

sedentary men (Mettler et al., 2007), although this was not replicated in women (Mettler 

et al., 2008; see section 2.8.3). 

 

Breakfast GI did not affect postprandial fat oxidation during rest or subsequent 

moderate intensity exercise. However, it is noteworthy that LGI breakfast consumption 

resulted in 12% higher exercise fat oxidation in both groups, a finding that may have 

meaningful health-related implications (Holloway et al., 2009), especially for obese 
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young people who may have a reduced capacity for fat oxidation during exercise (see 

section 2.1 and 2.5.3). Consequently, these results require confirmation with a larger 

independent sample. Indeed, several (Stevenson et al., 2009; Wee et al., 2005; Wu et 

al., 2003), but not all (Moore et al., 2010) studies in adults have reported elevated fat 

oxidation during exercise following LGI compared with HGI breakfasts. The results 

reported in Chapter 6 are, however, in accordance with the majority of studies that have 

shown no effect of breakfast GI on fat oxidation during rest in adults (Díaz et al., 2005; 

Stevenson et al., 2006; Wee et al., 2005). In a study reporting both higher resting and 

exercise fat oxidation following a LGI breakfast, a relatively small amount of 

carbohydrate (1 g CHO·kg BM-1) was consumed 3 h before a 60 min walk at 50% 

V�O2peak (Stevenson et al., 2009). However, higher exercise fat oxidation following 

LGI breakfast consumption has been reported 45 min to 3 h (Sparks et al., 1998; 

Stevenson et al., 2009) following breakfasts containing 1 to 2.5 g CHO·kg BM-1 during 

exercise lasting 60 or 30 min at 50-71% V�O2peak (Stevenson et al., 2009; Wee et al., 

2005). Resting fat oxidation is typically similar between HGI and LGI breakfasts 

containing ≥2 g CHO·kg BM-1 (Stevenson et al., 2005; Wu et al., 2003). Although the 

majority of studies have used a 3 h postprandial period (Wu et al., 2003; Stevenson et 

al., 2009), a 10 h postprandial period also resulted in similar resting fat oxidation when 

obese women consumed a HGI or LGI breakfast and lunch (Díaz et al., 2005). It is, 

therefore, difficult to ascertain which factors contribute specifically to the higher fat 

oxidation following LGI breakfasts in some adult studies. It is possible that the 1.5 g 

CHO·kg BM-1 breakfast, 120 min postprandial period and 30 min exercise duration at 

50% V�O2peak used in Chapter 6 was a sub-optimal combination to induce differences 

in fat oxidation between HGI and LGI. Furthermore, the glycaemic response does not 

necessarily predict the insulinaemic response (Pi Sunyer, 2002; see section 2.7.1) and 

the similar insulin concentrations between HGI and LGI might have underpinned the 

similar fat oxidation (Horowitz et al., 1997). Therefore, studies examining the 

mechanistic basis for these findings in young people are welcomed. 

 

8.3.2 Acute exercise at Fatmax 

The exacerbated blood glucose response to HGI, but not LGI, breakfast consumption in 

the OW girls was somewhat ‘unexpected’ (Chapter 6). This finding, coupled with the 

higher insulin resistance (HOMA-IR) in the OW girls, prompted a need for 

interventions to improve blood glucose control in this population, particularly following 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22D%C3%ADaz%20EO%22%5BAuthor%5D�
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HGI breakfast consumption. The author was aware that exercise training has been used 

as an effective tool to increase insulin sensitivity and fat oxidation in young people 

(Ben Ounis et al., 2009; Shaibi et al., 2008). However, it is also well documented that 

just a single exercise bout can induce similar metabolic improvements in adults (Burton 

et al., 2008; King et al., 1995). This suggested that acute exercise could be 

recommended to improve insulin and fat metabolism in young people, if these findings 

were mirrored in this population. Documenting these so-called ‘instant’ health benefits 

of exercise that are associated with each individual bout in addition to the well known 

long term benefits may increase the attractiveness of exercise for young people and are 

more relevant to those who rarely participate in exercise. Therefore, a combination of 

the previous findings within this thesis culminated in a study to examine the acute effect 

of a bout of Fatmax treadmill exercise performed ~16 h before HGI breakfast 

consumption on postprandial glucose, insulin and fat oxidation in overweight and non-

overweight girls. 

 

It was reported, for the first time, that a bout of Fatmax exercise reduced fasting and 

postprandial insulin concentrations in NO girls, with no change in glucose. Thus, the 

insulin-lowering effects of acute exercise reported previously in adults (Brestoff et al., 

2009; Horowitz et al., 2005; Kokalas et al., 2005) also apply to NO girls. However, this 

improvement in metabolism depended on the weight status of the participant, as 

exercise did not affect insulin concentrations in the OW girls. Differences in exercise-

induced changes in insulin between the groups may have been partly attributed to the 

lower energy expenditure per kg BM (all girls expended the same absolute amount of 

energy), the higher habitual post-intervention energy and CHO intake (Burton et al., 

2008; Newsom et al., 2010) or a degree of ‘metabolic inflexibility’ (Aucouturier et al., 

2011) in the OW girls. These issues require further investigation, since interventions to 

alleviate insulin resistance should be targeted at this population in particular. More 

encouragingly, however, Fatmax exercise enhanced fat oxidation the next morning in 

both the OW and NO girls, which appears to be another novel finding in young people 

and is consistent with studies in adults (Burton et al., 2008; Votruba et al., 2002). This 

suggests that there is great potential for attaining a state of negative fat balance up to 16 

h after exercise. Furthermore, these exercise-induced metabolic benefits occurred 

following just a single exercise bout and despite the maintenance of habitual diet, 
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suggesting that they extend to a ‘real world’ setting where diet is not prescribed or 

manipulated.  

 

8.4 Practical implications 

The discussed research findings could have important practical implications for guiding 

interventions for weight management and metabolic health, for public health 

recommendations and could, ultimately have ramifications for the health of the 

paediatric population. The recommendations discussed within this section would be 

useful for practitioners and researchers and have been simplified to enable a greater 

understanding and their use in young people and for their parents directly.  

 

Regarding exercise prescription, brisk walking or slow running (5.2 to 7.6 km·h-1) 

provides an effective means of promoting high rates of fat oxidation and, from a purely 

metabolic perspective, is preferable over cycling. It is, therefore, recommended that 

interventions aimed at promoting high rates of fat oxidation use treadmill rather than 

cycling exercise. However, a combination of these two modes of exercise could be 

more attractive to young people wishing to experience more variety. Importantly, 

interventions incorporating Fatmax exercise should estimate Fatmax on an individual 

basis prior to implementation, which can be achieved using a single 3 min incremental 

exercise protocol. When it is not possible to determine Fatmax specifically, prescribing 

exercise around 50 to 60% V�O2peak should promote high rates of fat oxidation (within 

the Fatmax zone) in most children. In the more practical sense, walking or jogging 

exercise at a heart rate of 75% of the age-predicted maximum that feels ‘light to 

somewhat hard’ (corresponding to an RPE of 12) can be recommended for young 

people wishing to exercise within their Fatmax zone. If cycling, a slightly lower 

intensity of 67% of the age-predicted maximum heart rate would be preferential to 

increase the likelihood of achieving the exercise mode-specific maximal rate of fat 

oxidation. Engagement in exercise at this intensity should be achievable for overweight 

or obese individuals who might lack confidence and physical competence for higher 

intensity exercise. Indeed, low to moderate intensity exercise is associated with a more 

comfortable level of exertion, increased likelihood of exercising over long periods of 

time, increased adherence and reduced likelihood of musculoskeletal injury, particularly 

when weight-bearing activity is recommended (Albright et al., 2000; Lazzer et al., 

2011; Perri et al., 2002). Although Fatmax was higher for treadmill exercise, it still 
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occurred at a moderate intensity. Therefore, treadmill exercise at Fatmax should be 

feasible for overweight and obese young people, particularly since Fatmax is normally 

lower in this population (Chapter 7). These issues appear to be relevant since policies to 

make physical activity easier, safer, and more attractive have been advocated for young 

people (Frieden et al., 2010).  

 

Regular breakfast consumption is currently recommended for a range of benefits related 

to health and cognitive function in young people (Lien, 2007; Song et al., 2006; 

Sandercock et al., 2010). Although LGI breakfasts improve postprandial blood glucose 

control in both OW and NO girls, this thesis has provided evidence of an added effect 

for OW girls; emphasis may, therefore, be put on the importance of LGI breakfasts for 

this population in particular. Although GI has a negligible effect on fat oxidation in the 

hours following breakfast consumption, LGI breakfast consumption does promote 

slightly higher rates of fat oxidation during subsequent exercise and may be preferred 

for this reason. Consequently, campaigns endorsing breakfast consumption should 

specifically promote the consumption of LGI breakfasts, and actively discourage the 

consumption of HGI breakfasts as part of a healthy diet for young people. Since the 

majority of cereals marketed to children are HGI (Schwartz et al., 2008), immediate and 

continued action is required. Importantly, ratings of palatability indicate LGI breakfast 

promotion for OW girls should be feasible (Chapter 6). Young people and their parents 

should be made aware that girls wishing to improve their glycaemic control and 

increase fat oxidation should consume LGI breakfasts; examples include porridge, 

muesli, brown bread, all bran, fruit, and, generally, unprocessed food products that 

contain ‘wholegrain’ and fibre. Moreover, OW girls in particular should avoid HGI 

foods, which are highly processed and contain refined grains; examples include 

Cornflakes, Coco pops and white bread. Importantly, parents should encourage the 

consumption of LGI foods and make these foods available within the home. 

 

Exercise practitioners can now promote the metabolic benefits of acute exercise in 

young people, in addition to the long term benefits that many people are already aware 

of. Acute treadmill exercise at Fatmax appears to have a more dramatic effect than LGI 

breakfast consumption on reducing postprandial insulin responses in non-overweight 

girls and should be recommended for this purpose. Regardless of weight status, it is 

evident that acute exercise has a more profound effect than LGI breakfast consumption 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schwartz%20MB%22%5BAuthor%5D�
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on augmenting fat oxidation. It may also be prudent to recommend that steps should be 

taken to avoid dietary compensation in the post-exercise period. Importantly, these 

implications can be applied directly to girls (overweight and non-overweight), a 

population that should be targeted due to their low physical activity levels and reduced 

likelihood of consuming breakfast. Young people and their parents should be informed 

of these acute exercise-induced health benefits; lifestyle and health campaigns such as 

‘Change4Life’ may serve as an effective means to relay these messages to the general 

public.  

 

Overall, walking or slow running (Fatmax treadmill exercise) and LGI breakfast 

consumption may be best advocated in combination for maximising fat oxidation and 

improving postprandial blood glucose control in young people. These two simple 

lifestyle-related strategies may provide an effective, safe and attractive means for 

preventing and treating obesity, insulin resistance and related disorders. In support of 

this concept, one week of combined LGI diet and exercise induced favourable changes 

in lipid repartitioning within the muscle and increased insulin sensitivity in adults (Haus 

et al., 2011); thus the practical implications suggested from the findings within this 

thesis appear to be effective, at least in adults, and are relevant to current health-focused 

research. It is acknowledged that there is still much work to be done to alleviate obesity 

and associated metabolic disturbances in young people and the recommendations 

discussed within this section by no means provide a solution to this complex multi-

factorial problem. Indeed, recommendations pertaining to exercise and diet may be 

effective, but changing long term individual behaviour is difficult (Frieden et al., 2010). 

 

8.5 Recommendations for future research 

The various themes and findings within this thesis have stimulated several new 

interesting research questions that, if addressed, would be invaluable in extending this 

research. Specific directions for future research that have emerged from the individual 

studies have been discussed throughout Chapters 4 to 7 and some are highlighted within 

this section.   

 

Firstly, in a general context, it may be prudent to replicate some of the studies on a 

larger scale to increase the ability to extrapolate the findings to the wider population, as 

a number of the findings are novel and based on sample sizes of 20 to 30 participants. 
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This issue particularly pertains to between group comparisons, where the sub-group 

sample sizes were smaller. In this respect, there is clearly much work to be done 

regarding the effect of breakfast GI on metabolism in young people, including 

clarifying the effect of GI on fat oxidation and the impact of weight status. Similarly, 

studies employing more direct measures of fat oxidation (e.g., stable isotopes) and body 

composition (e.g., dual-energy X-ray absorptiometry) would also provide valuable 

information to extend and clarify some of the findings.  

 

Regarding exercise prescription, this thesis has clearly broadened our understanding of 

the factors influencing fat oxidation during exercise in young people. However, there is 

scope for future studies comparing a wider variety of exercise modes, such as 

swimming, and examining the effect of exercise duration to reach consensus on the 

type, intensity, and duration of exercise required for maximising fat oxidation. This 

research should be conducted in both overweight and non-overweight children due to 

differences in Fatmax between these populations. Although there is evidence that 

training at Fatmax compared with other exercise intensities is preferable for augmenting 

fat oxidation and insulin sensitivity in obese men (Venables and Jeukendrup, 2008), 

research comparing the metabolic benefits of acute exercise or training at Fatmax with 

other exercise intensities in young people is not available or is fraught with 

methodological limitations (see section 2.5.5). This research is crucial in defining the 

merits of exercising at Fatmax specifically.  

 

There is much scope to further research the interaction between GI, blood glucose and 

weight status. A combination of the findings from Chapters 6 and 7 suggest that it 

would be interesting to examine whether fitness and breakfast size influence the blood 

glucose response to HGI breakfast consumption in OW girls. Building on the issues 

raised in Chapter 7 and owing to the importance of the interplay between exercise and 

diet in weight management, the role of dietary ‘compensation’ in potentially attenuating  

exercise-induced improvements in metabolism should be addressed in young people. 

This can be achieved by prescribing diet to either maintain or abolish the exercise-

induced energy or CHO deficit. Importantly, a systematic examination of whether 

exercise induces dietary compensation in overweight and non-overweight young people 

would have meaningful implications from a metabolic viewpoint and for weight 

management. Finally, studies seeking to provide a mechanistic understanding of the 
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observed findings would be welcomed, although the invasive measures of many of the 

methods employed for this purpose may preclude such studies in young people. In 

particular, it would be interesting to examine the acute effect of Fatmax exercise on, not 

only fat oxidation and insulin resistance, but also IMCL content and fatty acid 

metabolites within skeletal muscle in young people; nuclear magnetic resonance 

spectroscopy may provide a useful tool for such investigations. 

 

The work within this thesis has provided a meaningful contribution to the existing 

literature and novel insights that will be useful in guiding future work. It is hoped that 

the directions for future research will serve as an important basis from which to extend 

and explore the findings in more detail, broaden our understanding of exercise 

metabolism and, ultimately, impact upon the long term future health of young people.  

 

 



 
 

140 
 

References 
 
Achten J, Gleeson M, Jeukendrup AE. Determination of the exercise intensity that 
elicits maximal fat oxidation. Med Sci Sports Exerc. 2002;34(1):92-7. 
 
Achten J, Jeukendrup AE. Maximal fat oxidation during exercise in trained men. Int J 
Sports Med. 2003a;24(8):603-8. 
 
Achten J, Jeukendrup AE. The effect of pre-exercise carbohydrate feedings on the 
intensity that elicits maximal fat oxidation. J Sports Sci. 2003b;21(12):1017-24. 
 
Achten J, Venables MC, Jeukendrup AE. Fat oxidation rates are higher during running 
compared with cycling over a wide range of intensities. Metabolism. 2003;52(6):747-
52. 
 
Achten J, Jeukendrup AE. Relation between plasma lactate concentration and fat 
oxidation rates over a wide range of exercise intensities. Int J Sports Med. 
2004;25(1):32-7. 
 
Albertson AM, Anderson GH, Crockett SJ, Goebel MT. Ready-to-eat cereal 
consumption: its relationship with BMI and nutrient intake of children aged 4 to 12 
years. J Am Diet Assoc. 2003;103(12):1613-9. 
 
Albertson AM, Affenito SG, Bauserman R, Holschuh NM, Eldridge AL, Barton BA. 
The relationship of ready-to-eat cereal consumption to nutrient intake, blood lipids, and 
body mass index of children as they age through adolescence. J Am Diet Assoc. 
2009;109(9):1557-65. 
 
Albright A, Franz M, Hornsby G, Kriska A, Marrero D, Ullrich I, Verity LS. American 
College of Sports Medicine position stand. Exercise and type 2 diabetes. Med Sci Sports 
Exerc. 2000;32(7):1345-60. 
 
Allen DB, Nemeth BA, Clark RR, Peterson SE, Eickhoff J, Carrel AL. Fitness is a 
stronger predictor of fasting insulin levels than fatness in overweight male middle-
school children. J Pediatr. 2007;150(4):383-7. 
 
Anderson GH, Woodend D. Effect of glycemic carbohydrates on short-term satiety and 
food intake. Nutr Rev. 2003;61(5 Pt 2):S17-26. 
 
Armstrong N, Welsman J, Winsley R. Is peak V�O2 a maximal index of children's 
aerobic fitness? Int J Sports Med. 1996;17(5):356-9. 
 
Armstrong N, Welsman JR. The physical activity patterns of European youth with 
reference to methods of assessment. Sports Med. 2006;36(12):1067-86. 
 
Artz E, Haqq A, Freemark M. Hormonal and metabolic consequences of childhood 
obesity. Endocrinol Metab Clin North Am. 2005;34(3):643-58, ix. 
 
Arvidsson D, Slinde F, Hulthèn L. Physical activity questionnaire for adolescents 
validated against doubly labelled water. Eur J Clin Nutr. 2005;59(3):376-83. 



 
 

141 
 

 
Ashley MA, Buckley AJ, Criss AL, Ward JA, Kemp A, Garnett S, Cowell CT, Baur 
LA, Thompson CH. Familial, anthropometric, and metabolic associations of 
intramyocellular lipid levels in prepubertal males. Pediatr Res. 2002;51(1):81-6. 
 
Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index 
and glycemic load values: 2008. Diabetes Care. 2008;31(12):2281-3.  
 
Aucouturier J, Rance M, Meyer M, Isacco L, Thivel D, Fellmann N, Duclos M, Duché 
P. Determination of the maximal fat oxidation point in obese children and adolescents: 
validity of methods to assess maximal aerobic power. Eur J Appl Physiol. 
2009;105(2):325-31.  
 
Aucouturier J, Duché P, Timmons BW. Metabolic flexibility and obesity in children 
and youth. Obes Rev. 2011;12(5):E44-53.  
 
Backhouse SH, Williams C, Stevenson E, Nute M. Effects of the glycemic index of 
breakfast on metabolic responses to brisk walking in females. Eur J Clin Nutr. 
2007;61(5):590-6.  
 
Bagger M, Petersen PH, Pedersen PK. Biological variation in variables associated with 
exercise training. Int J Sports Med. 2003;24(6):433-40. 
 
Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper DM. The level and 
tempo of children's physical activities: an observational study. Med Sci Sports Exerc. 
1995;27(7):1033-41. 
 
Ball SD, Keller KR, Moyer-Mileur LJ, Ding YW, Donaldson D, Jackson WD. 
Prolongation of satiety after low versus moderately high glycemic index meals in obese 
adolescents. Pediatrics. 2003;111(3):488-94. 
 
Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM. Increased malonyl-CoA levels in 
muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation 
and increased lipogenesis; thiazolidinedione treatment reverses these defects. Diabetes. 
2006;55(8):2277-85. 
 
Barton BA, Eldridge AL, Thompson D, Affenito SG, Striegel-Moore RH, Franko DL, 
Albertson AM, Crockett SJ. The relationship of breakfast and cereal consumption to 
nutrient intake and body mass index: the National Heart, Lung, and Blood Institute 
Growth and Health Study. J Am Diet Assoc. 2005;105(9):1383-9. 
 
Barwell ND, Malkova D, Leggate M, Gill JM. Individual responsiveness to exercise-
induced fat loss is associated with change in resting substrate utilization. Metabolism. 
2009;58(9):1320-8. 
 
Bates BT, Zhang S, Dufek JS, Chen FC. The effects of sample size and variability on 
the correlation coefficient. Med Sci Sports Exerc. 1996;28(3):386-91. 
 
Baxter-Jones ADG, Eisenmann JC, Sherar LB. Controlling for maturation in pediatric 
exercise science. Pediatr Exerc Sci. 2005;17(1):18-30. 



 
 

142 
 

 
Bell RD, MacDougall JD, Billeter R, Howald H. Muscle fiber types and morphometric 
analysis of skeletal msucle in six-year-old children. Med Sci Sports Exerc. 
1980;12(1):28-31. 
 
Bell LM, Watts K, Siafarikas A, Thompson A, Ratnam N, Bulsara M, Finn J, O'Driscoll 
G, Green DJ, Jones TW, Davis EA. Exercise alone reduces insulin resistance in obese 
children independently of changes in body composition. J Clin Endocrinol Metab. 
2007;92(11):4230-5.  
 
Bennard P, Doucet E. Acute effects of exercise timing and breakfast meal glycemic 
index on exercise-induced fat oxidation. Appl Physiol Nutr Metab. 2006;31(5):502-11. 
 
Ben Ounis O, Elloumi M, Ben Chiekh I, Zbidi A, Amri M, Lac G, Tabka Z. Effects of 
two-month physical-endurance and diet-restriction programmes on lipid profiles and 
insulin resistance in obese adolescent boys. Diabetes Metab. 2008;34(6 Pt 1):595-600.  
 
Ben Ounis O, Elloumi M, Lac G, Makni E, Van Praagh E, Zouhal H, Tabka Z, Amri M. 
Two-month effects of individualized exercise training with or without caloric restriction 
on plasma adipocytokine levels in obese female adolescents. Ann Endocrinol (Paris). 
2009;70(4):235-41.  
 
Ben Ounis O, Elloumi M, Makni E, Zouhal H, Amri M, Tabka Z, Lac G. Exercise 
improves the ApoB/ApoA-I ratio, a marker of the metabolic syndrome in obese 
children. Acta Paediatr. 2010;99(11):1679-85. 
 
Ben Ounis O, Elloumi M, Zouhal H, Makni E, Lac G, Tabka Z, Amri M. Effect of an 
individualized physical training program on resting cortisol and growth hormone levels 
and fat oxidation during exercise in obese children. Ann Endocrinol (Paris). 
2011;72(1):34-41.  
 
Bentley DJ, Newell J, Bishop D. Incremental exercise test design and analysis: 
implications for performance diagnostics in endurance athletes. Sports Med. 
2007;37(7):575-86. 
 
Berg A, Kim SS, Keul J. Skeletal muscle enzyme activities in healthy young subjects. 
Int J Sports Med. 1986;7(4):236-9. 
 
Berggren JR, Boyle KE, Chapman WH, Houmard JA. Skeletal muscle lipid oxidation 
and obesity: influence of weight loss and exercise. Am J Physiol Endocrinol Metab. 
2008;294(4):E726-32.  
 
Bergman BC, Perreault L, Hunerdosse DM, Koehler MC, Samek AM, Eckel RH. 
Increased intramuscular lipid synthesis and low saturation relate to insulin sensitivity in 
endurance-trained athletes. J Appl Physiol. 2010;108(5):1134-41.  
 
Berthon PM, Howlett RA, Heigenhauser GJ, Spriet LL. Human skeletal muscle 
carnitine palmitoyltransferase I activity determined in isolated intact mitochondria. J 
Appl Physiol. 1998;85(1):148-53. 
 



 
 

143 
 

Blaak EE, Glatz JF, Saris WH. Increase in skeletal muscle fatty acid binding protein 
(FABPC) content is directly related to weight loss and to changes in fat oxidation 
following a very low calorie diet. Diabetologia. 2001;44(11):2013-7. 
 
Blaak EE. Fatty acid metabolism in obesity and type 2 diabetes mellitus. Proc Nutr Soc. 
2003;62(3):753-60. 
 
Bland JM, Altman DG.Statistical methods for assessing agreement between two 
methods of clinical measurement. Lancet. 1986;1(8476):307-10. 
 
Bland JM, Altman DG. Comparing two methods of clinical measurement: a personal 
history. Int J Epidemiol. 1995;24(Suppl 1):S7-14. 
 
Boden G. Effects of free fatty acids (FFA) on glucose metabolism: significance for 
insulin resistance and type 2 diabetes. Exp Clin Endocrinol Diabetes. 2003;111(3):121-
4. 
 
Bogdanis GC, Vangelakoudi A, Maridaki M. Peak fat oxidation rate during walking in 
sedentary overweight men and women. J Sports Sci Med. 2008;7:525-31. 
 
Boisseau N, Delamarche P. Metabolic and hormonal responses to exercise in children 
and adolescents. Sports Med. 2000;30(6):405-22. 
 
Bonen A, Luiken JJ, Arumugam Y, Glatz JF, Tandon NN. Acute regulation of fatty 
acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem. 
2000;275(19):14501-8. 
 
Bonen A, Luiken JJ, Glatz JF. Regulation of fatty acid transport and membrane 
transporters in health and disease. Mol Cell Biochem. 2002;239(1-2):181-92. 
 
Bonen A, Parolin ML, Steinberg GR, Calles-Escandon J, Tandon NN, Glatz JF, Luiken 
JJ, Heigenhauser GJ, Dyck DJ. Triacylglycerol accumulation in human obesity and type 
2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and 
increased sarcolemmal FAT/CD36. FASEB J. 2004;18(10):1144-6.  
 
Bordenave S, Flavier S, Fédou C, Brun JF, Mercier J. Exercise calorimetry in sedentary 
patients: procedures based on short 3 min steps underestimate carbohydrate oxidation 
and overestimate lipid oxidation. Diabetes Metab. 2007;33(5):379-84.  
 
Børsheim E, Lönnroth P, Knardahl S, Jansson PA. No difference in the lipolytic 
response to beta-adrenoceptor stimulation in situ but a delayed increase in adipose 
tissue blood flow in moderately obese compared with lean men in the postexercise 
period. Metabolism. 2000;49(5):579-87. 
 
Bougnères P, Stunff CL, Pecqueur C, Pinglier E, Adnot P, Ricquier D. In vivo 
resistance of lipolysis to epinephrine. A new feature of childhood onset obesity. J Clin 
Invest. 1997 1;99(11):2568-73. 
 
Boyd AE 3rd, Giamber SR, Mager M, Lebovitz HE. Lactate inhibition of lipolysis in 
exercising man. Metabolism. 1974;23(6):531-42. 



 
 

144 
 

Brambrink JK, Fluckey JD, Hickey MS, Craig BW. Influence of muscle mass and work 
on post-exercise glucose and insulin responses in young untrained subjects. Acta 
Physiol Scand. 1997;161(3):371-7. 
 
Brand-Miller JC, Holt SH, Pawlak DB, McMillan J. Glycemic index and obesity. Am J 
Clin Nutr. 2002;76(1):S281-5. 
 
Brand-Miller J, McMillan-Price J, Steinbeck K, Caterson I. Dietary glycemic index: 
health implications. J Am Coll Nutr. 2009;28:S446-9. 
 
Brandou F, Dumortier M, Garandeau P, Mercier J, Brun JF. Effects of a two-month 
rehabilitation program on substrate utilization during exercise in obese adolescents. 
Diabetes Metab. 2003;29(1):20-7. 
 
Brandou F, Savy-Pacaux AM, Marie J, Bauloz M, Maret-Fleuret I, Borrocoso S, 
Mercier J, Brun JF. Impact of high- and low-intensity targeted exercise training on the 
type of substrate utilization in obese boys submitted to a hypocaloric diet. Diabetes 
Metab. 2005;31(4 Pt 1):327-35. 
 
Brandou F, Savy-Pacaux AM, Marie J, Brun JF, Mercier J. Comparison of the type of 
substrate oxidation during exercise between pre and post pubertal markedly obese boys. 
Int J Sports Med. 2006;27(5):407-14.  
 
Brestoff JR, Clippinger B, Spinella T, von Duvillard SP, Nindl BC, Arciero PJ. An 
acute bout of endurance exercise but not sprint interval exercise enhances insulin 
sensitivity. Appl Physiol Nutr Metab. 2009;34(1):25-32. 
 
Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: 
the "crossover" concept. J Appl Physiol. 1994;76(6):2253-61. 
  
Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJ, Dyck 
DJ. Endurance training in obese humans improves glucose tolerance and mitochondrial 
fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab. 
2006;291(1):E99-107.  
 
Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee 
SL, Gibala MJ. Similar metabolic adaptations during exercise after low volume sprint 
interval and traditional endurance training in humans. J Physiol. 2008;586(1):151-60.  
 
Burke V. Obesity in childhood and cardiovascular risk. Clin Exp Pharmacol Physiol. 
2006;33(9):831-7. 
 
Burnley M, Jones AM, Carter H, Doust JH. Effects of prior heavy exercise on phase II 
pulmonary oxygen uptake kinetics during heavy exercise. J Appl Physiol. 
2000;89(4):1387-96. 
 
Burton FL, Malkova D, Caslake MJ, Gill JMR. Energy replacement attenuates the 
effects of prior moderate exercise on postprandial metabolism in overweight/obese 
men. Int J Obes (Lond).2008;32(3):481–9. 
 



 
 

145 
 

Butte NF, Puyau MR, Vohra FA, Adolph AL, Mehta NR, Zakeri I. Body size, body 
composition, and metabolic profile explain higher energy expenditure in overweight 
children. J Nutr. 2007;137(12):2660-7. 
 
Cameron N. Assessment of maturation. In: Human Growth and Development. N. 
Cameron (Ed.). San Diego: Academic Press; 2002. pp. 363-382. 
 
Cameron-Smith D, Burke LM, Angus DJ, Tunstall RJ, Cox GR, Bonen A, Hawley JA, 
Hargreaves M. A short-term, high-fat diet up-regulates lipid metabolism and gene 
expression in human skeletal muscle. Am J Clin Nutr. 2003;77(2):313-8. 
 
Campbell SE, Febbraio MA. Effect of ovarian hormones on mitochondrial enzyme 
activity in the fat oxidation pathway of skeletal muscle. Am J Physiol Endocrinol 
Metab. 2001;281(4):E803-8. 
 
Campbell SE, Tandon NN, Woldegiorgis G, Luiken JJ, Glatz JF, Bonen A. A novel 
function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid 
transfer into the mitochondria. J Biol Chem. 2004;279(35):36235-41.  
 
Capostagno B, Bosch A. Higher fat oxidation in running than cycling at the same 
exercise intensities. Int J Sport Nutr Exerc Metab. 2010;20(1):44-55. 
 
Caprio S, Hyman LD, Limb C, McCarthy S, Lange R, Sherwin RS, Shulman G, 
Tamborlane WV. Central adiposity and its metabolic correlates in obese adolescent 
girls. Am J Physiol. 1995;269(1 Pt 1):E118-26. 
 
Caprio S, Bronson M, Sherwin RS, Rife F, Tamborlane WV. Co-existence of severe 
insulin resistance and hyperinsulinaemia in pre-adolescent obese children. 
Diabetologia. 1996;39(12):1489-97. 
 
Cartee GD, Young DA, Sleeper MD, Zierath J, Wallberg-Henriksson H, Holloszy JO. 
Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. Am 
J Physiol. 1989;256(4 Pt 1):E494-9. 
 
Carter H, Jones AM, Barstow TJ, Burnley M, Williams CA, Doust JH. Oxygen uptake 
kinetics in treadmill running and cycle ergometry: a comparison. J Appl Physiol. 
2000;89(3):899-907. 
 
Chenevière X, Malatesta D, Peters EM, Borrani F. A mathematical model to describe 
fat oxidation kinetics during graded exercise. Med Sci Sports Exerc. 2009;41(8):1615-
25. 
 
Chenevière X, Malatesta D, Gojanovic B, Borrani F. Differences in whole-body fat 
oxidation kinetics between cycling and running. Eur J Appl Physiol. 2010;109(6):1037-
45.  
 
Chenevière X, Borrani F, Sangsue D, Gojanovic B, Malatesta D. Gender differences in 
whole-body fat oxidation kinetics during exercise. Appl Physiol Nutr Metab. 
2011;36(1):88-95. 
 



 
 

146 
 

Cheng IS, Lee NY, Liu KL, Liao SF, Huang CH, Kuo CH. Effect of postexercise 
carbohydrate supplementation on glucose uptake-associated gene expression in the 
human skeletal muscle. J Nutr Biochem. 2005;16(5):267-71. 
 
Cheng G, Karaolis-Danckert N, Libuda L, Bolzenius K, Remer T, Buyken AE. Relation 
of dietary glycemic index, glycemic load, and fiber and whole-grain intakes during 
puberty to the concurrent development of percent body fat and body mass index. Am J 
Epidemiol. 2009a;169(6):667-77.  
 
Cheng IS, Liao SF, Liu KL, Liu HY, Wu CL, Huang CY, Mallikarjuna K, Smith RW, 
Kuo CH. Effect of dietary glycemic index on substrate transporter gene expression in 
human skeletal muscle after exercise. Eur J Clin Nutr. 2009b;63(12):1404-10.  
 
Chiarelli F, Marcovecchio ML. Insulin resistance and obesity in childhood. Eur J 
Endocrinol. 2008;159:S67-74.  
 
Chou CH, Tsai YL, Hou CW, Lee HH, Chang WH, Lin TW, Hsu TH, Huang YJ, Kuo 
CH. Glycogen overload by postexercise insulin administration abolished the exercise-
induced increase in GLUT4 protein. J Biomed Sci. 2005;12(6):991-8.  
 
Cocate PG, Pereira LG, Marins JC, Cecon PR, Bressan J, Alfenas RC. Metabolic 
responses to high glycemic index and low glycemic index meals: a controlled crossover 
clinical trial. Nutr J. 2011;10:1. 
 
Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for 
child overweight and obesity worldwide: international survey. BMJ. 
2000;320(7244):1240-3. 
 
Cooper DM, Poage J, Barstow TJ, Springer C. Are obese children truly unfit? 
Minimizing the confounding effect of body size on the exercise response. J Pediatr. 
1990;116(2):223-30. 
 
Costill DL, Coyle E, Dalsky G, Evans W, Fink W, Hoopes D. Effects of elevated 
plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol. 
1977;43(4):695-9. 
 
Coyle EF, Jeukendrup AE, Wagenmakers AJ, Saris WH. Fatty acid oxidation is directly 
regulated by carbohydrate metabolism during exercise. Am J Physiol. 1997;273(2 Pt 
1):E268-75. 
 
Cruz ML, Weigensberg MJ, Huang TT, Ball G, Shaibi GQ, Goran MI. The metabolic 
syndrome in overweight Hispanic youth and the role of insulin sensitivity. J Clin 
Endocrinol Metab. 2004;89(1):108-13. 
 
Del Aguila LF, Krishnan RK, Ulbrecht JS, Farrell PA, Correll PH, Lang CH, Zierath 
JR, Kirwan JP. Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and 
Akt-kinase in human skeletal muscle. Am J Physiol Endocrinol Metab. 
2000;279(1):E206-12. 
 



 
 

147 
 

Delamarche P, Monnier M, Gratas-Delamarche A, Koubi HE, Mayet MH, Favier R. 
Glucose and free fatty acid utilization during prolonged exercise in prepubertal boys in 
relation to catecholamine responses. Eur J Appl Physiol Occup Physiol. 1992;65(1):66-
72. 
 
DeLany JP, Bray GA, Harsha DW, Volaufova J. Energy expenditure and substrate 
oxidation predict changes in body fat in children. Am J Clin Nutr. 2006;84(4):862-70. 
 
DeMarco HM, Sucher KP, Cisar CJ, Butterfield GE. Pre-exercise carbohydrate meals: 
application of glycemic index. Med Sci Sports Exerc. 1999;31(1):164-70. 
 
Deshmukh-Taskar PR, Nicklas TA, O'Neil CE, Keast DR, Radcliffe JD, Cho S. The 
relationship of breakfast skipping and type of breakfast consumption with nutrient 
intake and weight status in children and adolescents: the National Health and Nutrition 
Examination Survey 1999-2006. J Am Diet Assoc. 2010;110(6):869-78. 
 
Devries MC, Lowther SA, Glover AW, Hamadeh MJ, Tarnopolsky MA. IMCL area 
density, but not IMCL utilization, is higher in women during moderate-intensity 
endurance exercise, compared with men. Am J Physiol Regul Integr Comp Physiol. 
2007;293(6):R2336-42.  
 
Díaz EO, Galgani JE, Aguirre CA, Atwater IJ, Burrows R. Effect of glycemic index on 
whole-body substrate oxidation in obese women. Int J Obes (Lond). 2005;29(1):108-14. 
 
Dionne I, Van Vugt S, Tremblay A. Postexercise macronutrient oxidation: a factor 
dependent on postexercise macronutrient intake. Am J Clin Nutr. 1999;69(5):927-30. 
 
Djoussé L, Gaziano JM. Breakfast cereals and risk of heart failure in the physicians' 
health study I. Arch Intern Med. 2007;167(19):2080-5. 
 
Du H, van der A DL, van Bakel MM, Slimani N, Forouhi NG, Wareham NJ, Halkjaer J, 
Tjønneland A, Jakobsen MU, Overvad K, Schulze MB, Buijsse B, Boeing H, Palli D, 
Masala G, Sørensen TI, Saris WH, Feskens EJ. Dietary glycaemic index, glycaemic 
load and subsequent changes of weight and waist circumference in European men and 
women. Int J Obes (Lond). 2009;33(11):1280-8.  
 
Dubé JJ, Amati F, Stefanovic-Racic M, Toledo FG, Sauers SE, Goodpaster BH. 
Exercise-induced alterations in intramyocellular lipids and insulin resistance: the 
athlete's paradox revisited. Am J Physiol Endocrinol Metab. 2008;294(5):E882-8.  
 
Dubé JJ, Amati F, Toledo FG, Stefanovic-Racic M, Rossi A, Coen P, Goodpaster BH. 
Effects of weight loss and exercise on insulin resistance, and intramyocellular 
triacylglycerol, diacylglycerol and ceramide. Diabetologia. 2011;54(5):1147-56.  
 
Dubois L, Girard M, Potvin Kent M, Farmer A, Tatone-Tokuda F. Breakfast skipping is 
associated with differences in meal patterns, macronutrient intakes and overweight 
among pre-school children. Public Health Nutr. 2009;12(1):19-28.  
 
Duncan GE, Howley ET. Metabolic and perceptual responses to short-term cycle 
training in children. Pediatr Exerc Sci. 1998;10(2):110-22. 



 
 

148 
 

Ebbeling CB, Pawlak DB, Ludwig DS. Childhood obesity: public-health crisis, 
common sense cure. Lancet. 2002;360(9331):473-82. 
 
Ebbeling CB, Leidig MM, Sinclair KB, Hangen JP, Ludwig DS. A reduced-glycemic 
load diet in the treatment of adolescent obesity. Arch Pediatr Adolesc Med. 
2003;157(8):773-9. 
 
Eckardt K, Taube A, Eckel J. Obesity-associated insulin resistance in skeletal muscle: 
Role of lipid accumulation and physical inactivity. Rev Endocr Metab Disord. 
2011;12(3):163-72. 
 
Eckel RH, Hernandez TL, Bell ML, Weil KM, Shepard TY, Grunwald GK, Sharp TA, 
Francis CC, Hill JO. Carbohydrate balance predicts weight and fat gain in adults. Am J 
Clin Nutr. 2006;83(4):803-8. 
 
Eliakim A, Nemet D, Zaldivar F, McMurray RG, Culler FL, Galassetti P, Cooper DM. 
Reduced exercise-associated response of the GH-IGF-I axis and catecholamines in 
obese children and adolescents. J Appl Physiol. 2006;100(5):1630-7. 
 
Elloumi M, Ben Ounis O, Makni E, Van Praagh E, Tabka Z, Lac G. Effect of 
individualized weight-loss programmes on adiponectin, leptin and resistin levels in 
obese adolescent boys. Acta Paediatr. 2009;98(9):1487-93.  
 
Englyst KN, Vinoy S, Englyst HN, Lang V. Glycaemic index of cereal products 
explained by their content of rapidly and slowly available glucose. Br J Nutr. 
2003;89(3):329-40. 
 
Enoksson S, Talbot M, Rife F, Tamborlane WV, Sherwin RS, Caprio S. Impaired in 
vivo stimulation of lipolysis in adipose tissue by selective beta2-adrenergic agonist in 
obese adolescent girls. Diabetes. 2000;49(12):2149-53. 
 
Ercan N, Gannon MC, Nuttall FQ. Effect of added fat on the plasma glucose and insulin 
response to ingested potato given in various combinations as two meals in normal 
individuals. Diabetes Care. 1994;17(12):1453-9. 
 
Eriksson BO, Persson B, Thorell JI. The effects of repeated prolonged exercise on 
plasma growth hormone, insulin, glucose, free fatty acids, glycerol, lactate and -
hydroxybutyric acid in 13-year old boys and in adults. Acta Paediatr Scand Suppl. 
1971;217:142-6. 
 
Eriksson BO. Physical training, oxygen supply and muscle metabolism in 11-13-year 
old boys. Acta Physiol Scand Suppl. 1972;384:1-48. 
 
Eriksson BO, Gollnick PD, Saltin B. Muscle metabolism and enzyme activities after 
training in boys 11-13 years old. Acta Physiol Scand. 1973;87(4):485-97. 
 
Fajcsak Z, Gabor A, Kovacs V, Martos E. The effects of 6-week low glycemic load diet 
based on low glycemic index foods in overweight/obese children--pilot study. J Am 
Coll Nutr. 2008;27(1):12-21. 
 



 
 

149 
 

Farah NM, Malkova D, Gill JM. Effects of exercise on postprandial responses to ad 
libitum feeding in overweight men. Med Sci Sports Exerc. 2010;42(11):2015-22. 
 
Fawkner SG, Armstrong N, Potter CR, Welsman JR. Oxygen uptake kinetics in 
children and adults after the onset of moderate-intensity exercise. J Sports Sci. 
2002;20(4):319-26. 
 
Febbraio MA, Stewart KL. CHO feeding before prolonged exercise: effect of glycemic 
index on muscle glycogenolysis and exercise performance. J Appl Physiol. 
1996;81(3):1115-20. 
 
Febbraio MA, Keenan J, Angus DJ, Campbell SE, Garnham AP. Preexercise 
carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the 
glycemic index. J Appl Physiol. 2000;89(5):1845-51. 
 
Flatt JP. Carbohydrate balance and body-weight regulation. Proc Nutr Soc. 
1996;55(1B):449-65. 
 
Flint A, Raben A, Blundell JE, Astrup A. Reproducibility, power and validity of visual 
analogue scales in assessment of appetite sensations in single test meal studies. Int J 
Obes Relat Metab Disord. 2000;24(1):38-48. 
 
Fogelholm M. Physical activity, fitness and fatness: relations to mortality, morbidity 
and disease risk factors. A systematic review. Obes Rev. 2010;11(3):202-21.  
 
Foricher JM, Ville N, Gratas-Delamarche A, Delamarche P. Effects of submaximal 
intensity cycle ergometry for one hour on substrate utilisation in trained prepubertal 
boys versus trained adults. J Sports Med Phys Fitness. 2003;43(1):36-43. 
 
Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and 
glycemic load values: 2002. Am J Clin Nutr. 2002;76(1):5-56. 
 
Fournier M, Ricci J, Taylor AW, Ferguson RJ, Montpetit RR, Chaitman BR. Skeletal 
muscle adaptation in adolescent boys: sprint and endurance training and detraining. 
Med Sci Sports Exerc. 1982;14(6):453-6. 
 
Fox AK, Kaufman AE, Horowitz JF. Adding fat calories to meals after exercise does 
not alter glucose tolerance. J Appl Physiol. 2004;97(1):11-6.  
 
Franssila-Kallunki A, Rissanen A, Ekstrand A, Ollus A, Groop L. Effects of weight loss 
on substrate oxidation, energy expenditure, and insulin sensitivity in obese individuals. 
Am J Clin Nutr. 1992;55(2):356-61. 
 
Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J 
Appl Physiol. 1983;55(2):628-34. 
 
Frieden TR, Dietz W, Collins J. Reducing childhood obesity through policy change: 
acting now to prevent obesity. Health Aff (Millwood). 2010;29(3):357-63. 
 



 
 

150 
 

Friedlander AL, Casazza GA, Horning MA, Buddinger TF, Brooks GA. Effects of 
exercise intensity and training on lipid metabolism in young women. Am J Physiol. 
1998;275(5 Pt 1):E853-63. 
 
Froidevaux F, Schutz Y, Christin L, Jéquier E. Energy expenditure in obese women 
before and during weight loss, after refeeding, and in the weight-relapse period. Am J 
Clin Nutr. 1993;57(1):35-42. 
 
Frøsig C, Roepstorff C, Brandt N, Maarbjerg SJ, Birk JB, Wojtaszewski JF, Richter 
EA, Kiens B. Reduced malonyl-CoA content in recovery from exercise correlates with 
improved insulin-stimulated glucose uptake in human skeletal muscle. Am J Physiol 
Endocrinol Metab. 2009;296(4):E787-95.  
 
Gerbino A, Ward SA, Whipp BJ. Effects of prior exercise on pulmonary gas-exchange 
kinetics during high-intensity exercise in humans. J Appl Physiol. 1996;80(1):99-107. 
 
Gill JM, Hardman AE. Postprandial lipemia: effects of exercise and restriction of 
energy intake compared. Am J Clin Nutr. 2000;71(2):465-71. 
 
Gill JM, Al-Mamari A, Ferrell WR, Cleland SJ, Packard CJ, Sattar N, Petrie JR, 
Caslake MJ. Effects of prior moderate exercise on postprandial metabolism and 
vascular function in lean and centrally obese men. J Am Coll Cardiol. 
2004;44(12):2375-82. 
 
Glass SC, Santos VJ, Armstrong D. The effect of mode of exercise on fat oxidation 
during exercise. J Strength Cond Res. 1999;13(1):29-34. 
 
Goedecke JH, St Clair Gibson A, Grobler L, Collins M, Noakes TD, Lambert EV. 
Determinants of the variability in respiratory exchange ratio at rest and during exercise 
in trained athletes. Am J Physiol Endocrinol Metab. 2000;279(6):E1325-34. 
 
Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin 
resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol 
Metab. 2001;86(12):5755-61. 
 
Goodpaster BH, Wolfe RR, Kelley DE. Effects of obesity on substrate utilization 
during exercise. Obes Res. 2002;10(7):575-84. 
 
Goran MI, Gower BA. Longitudinal study on pubertal insulin resistance. Diabetes. 
2001;50(11):2444-50. 
 
Gordon-Larsen P, Adair LS, Nelson MC, Popkin BM. Five-year obesity incidence in 
the transition period between adolescence and adulthood: the National Longitudinal 
Study of Adolescent Health. Am J Clin Nutr. 2004;80(3):569-75. 
 
Goto K, Ishii N, Mizuno A, Takamatsu K. Enhancement of fat metabolism by repeated 
bouts of moderate endurance exercise. J Appl Physiol. 2007;102(6):2158-64.  
 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gill%20JM%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Al-Mamari%20A%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ferrell%20WR%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Cleland%20SJ%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Packard%20CJ%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sattar%20N%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Petrie%20JR%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Caslake%20MJ%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=gill%202004%20effects%20of%20prior%20moderate%20exercise%20on%20postprandial%20metabolism�


 
 

151 
 

Granfeldt Y, Drews A, Björck I. Arepas made from high amylose corn flour produce 
favorably low glucose and insulin responses in healthy humans. J Nutr. 
1995;125(3):459-65. 
 
Gray SC, Devito G, Nimmo MA. Effect of active warm-up on metabolism prior to and 
during intense dynamic exercise. Med Sci Sports Exerc. 2002;34(12):2091-6. 
 
Hagobian TA, Braun B. Interactions between energy surplus and short-term exercise on 
glucose and insulin responses in healthy people with induced, mild insulin insensitivity. 
Metabolism. 2006;55(3):402-8. 
Hamadeh MJ, Devries MC, Tarnopolsky MA. Estrogen supplementation reduces whole 
body leucine and carbohydrate oxidation and increases lipid oxidation in men during 
endurance exercise. J Clin Endocrinol Metab. 2005;90(6):3592-9.  
 
Han XX, Chabowski A, Tandon NN, Calles-Escandon J, Glatz JF, Luiken JJ, Bonen A. 
Metabolic challenges reveal impaired fatty acid metabolism and translocation of 
FAT/CD36 but not FABPpm in obese Zucker rat muscle. Am J Physiol Endocrinol 
Metab. 2007;293(2):E566-75.  
 
Hansen PA, Nolte LA, Chen MM, Holloszy JO. Increased GLUT-4 translocation 
mediates enhanced insulin sensitivity of muscle glucose transport after exercise. J Appl 
Physiol. 1998;85(4):1218-22. 
 
Haralambie G. Enzyme activities in skeletal muscle of 13-15 years old adolescents. Bull 
Eur Physiopathol Respir. 1982;18(1):65-74. 
 
Haus JM, Solomon TP, Lu L, Jesberger JA, Barkoukis H, Flask CA, Kirwan JP. 
Intramyocellular lipid content and insulin sensitivity are increased following a short-
term low-glycemic index diet and exercise intervention. Am J Physiol Endocrinol 
Metab. 2011;301(3):E511-6.  
 
Health Survey for England, 2009: Child Trend Tables. The NHS Information Centre, 
2010. Available at: www.ic.nhs.uk/pubs/hse09trends 
 
Heine RJ, Balkau B, Ceriello A, Del Prato S, Horton ES, Taskinen MR. What does 
postprandial hyperglycaemia mean? Diabet Med. 2004;21(3):208-13. 
 
Henry CJ, Lightowler HJ, Strik CM. Effects of long-term intervention with low- and 
high-glycaemic-index breakfasts on food intake in children aged 8-11 years. Br J Nutr. 
2007;98(3):636-40.  
 
Heptulla R, Smitten A, Teague B, Tamborlane WV, Ma YZ, Caprio S. Temporal 
patterns of circulating leptin levels in lean and obese adolescents: relationships to 
insulin, growth hormone, and free fatty acids rhythmicity. J Clin Endocrinol Metab. 
2001;86(1):90-6. 
 
Hermansen L, Saltin B. Oxygen uptake during maximal treadmill and bicycle exercise. 
J Appl Physiol. 1969;26(1):31-7. 
 

http://www.ic.nhs.uk/pubs/hse09trends�


 
 

152 
 

Hoffman DJ, Sawaya AL, Verreschi I, Tucker KL, Roberts SB. Why are nutritionally 
stunted children at increased risk of obesity? Studies of metabolic rate and fat oxidation 
in shantytown children from São Paulo, Brazil. Am J Clin Nutr. 2000;72(3):702-7. 
 
Holloszy JO. Exercise-induced increase in muscle insulin sensitivity. J Appl Physiol. 
2005;99(1):338-43. 
 
Holloway GP, Bezaire V, Heigenhauser GJ, Tandon NN, Glatz JF, Luiken JJ, Bonen A, 
Spriet LL. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 
content and carnitine palmitoyltransferase I activity in human skeletal muscle during 
aerobic exercise. J Physiol. 2006;571(Pt 1):201-10.  
Holloway GP, Lally J, Nickerson JG, Alkhateeb H, Snook LA, Heigenhauser GJ, 
Calles-Escandon J, Glatz JF, Luiken JJ, Spriet LL, Bonen A. Fatty acid binding protein 
facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and 
human skeletal muscle. J Physiol. 2007;582(Pt 1):393-405. 
 
Holloway GP, Bonen A, Spriet LL. Regulation of skeletal muscle mitochondrial fatty 
acid metabolism in lean and obese individuals. Am J Clin Nutr. 2009;89(1):S455-62.  
 
Holtz KA, Stephens BR, Sharoff CG, Chipkin SR, Braun B. The effect of carbohydrate 
availability following exercise on whole-body insulin action. Appl Physiol Nutr Metab. 
2008;33(5):946-56. 
 
Horowitz JF, Mora-Rodriguez R, Byerley LO, Coyle EF. Lipolytic suppression 
following carbohydrate ingestion limits fat oxidation during exercise. Am J Physiol. 
1997;273(4 Pt 1):E768-75. 
 
Horowitz JF, Kaufman AE, Fox AK, Harber MP. Energy deficit without reducing 
dietary carbohydrate alters resting carbohydrate oxidation and fatty acid availability. J 
Appl Physiol. 2005;98(5):1612-8.  
 
Horowitz JF. Exercise-induced alterations in muscle lipid metabolism improve insulin 
sensitivity. Exerc Sport Sci Rev. 2007;35(4):192-6. 
 
Horton TJ, Pagliassotti MJ, Hobbs K, Hill JO. Fuel metabolism in men and women 
during and after long-duration exercise. J Appl Physiol. 1998;85(5):1823-32. 
 
Høstmark AT. Variations in the glycemic response to carbohydrates: do high 
responders have a special benefit of using low glycemic foods? Open Nutr J. 2007;1:1-
4. 
 
Houmard JA, Egan PC, Johns RA, Neufer PD, Chenier TC, Israel RG. Gastric 
emptying during 1 h of cycling and running at 75% V�O2max. Med Sci Sports Exerc. 
1991;23(3):320-5. 
 
Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in 
human muscle is associated with changes in diacylglycerol, protein kinase C, and 
IkappaB-alpha. Diabetes. 2002;51(7):2005-11. 
 



 
 

153 
 

Jacob S, Machann J, Rett K, Brechtel K, Volk A, Renn W, Maerker E, Matthaei S, 
Schick F, Claussen CD, Häring HU. Association of increased intramyocellular lipid 
content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. 
Diabetes. 1999;48(5):1113-9. 
 
Jansson E, Kaijser L. Substrate utilization and enzymes in skeletal muscle of extremely 
endurance-trained men. J Appl Physiol. 1987;62(3):999-1005. 
 
Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, 
Newman HC, Jenkins AL, Goff DV. Glycemic index of foods: a physiological basis for 
carbohydrate exchange. Am J Clin Nutr. 1981;34(3):362-6. 
 
Jim Nez-Pav N D, Castillo MJ, Moreno LA, Kafatos A, Manios Y, Kondaki K, B Ghin 
L, Zaccaria M, de Henauw S, Widhalm K, Moln R DN, Sj Str M M, Gonz Lez-Gross 
M, Ruiz JR. Fitness and fatness are independently associated with markers of insulin 
resistance in European adolescents; The HELENA Study. Int J Pediatr Obes. 2011;6(3-
4):253-60.  
 
Kaczor JJ, Ziolkowski W, Popinigis J, Tarnopolsky MA. Anaerobic and aerobic 
enzyme activities in human skeletal muscle from children and adults. Pediatr Res. 
2005;57(3):331-5.  
 
Karjalainen J, Tikkanen H, Hernelahti M, Kujala UM. Muscle fiber-type distribution 
predicts weight gain and unfavorable left ventricular geometry: a 19 year follow-up 
study. BMC Cardiovasc Disord. 2006;6:2. 
 
Kawanaka K, Han DH, Nolte LA, Hansen PA, Nakatani A, Holloszy JO. Decreased 
insulin-stimulated GLUT-4 translocation in glycogen-supercompensated muscles of 
exercised rats. Am J Physiol. 1999;276(5 Pt 1):E907-12. 
 
Kelley DE, Goodpaster B, Wing RR, Simoneau JA. Skeletal muscle fatty acid 
metabolism in association with insulin resistance, obesity, and weight loss. Am J 
Physiol. 1999;277(6 Pt 1):E1130-41. 
 
Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: 
a reexamination. Diabetes. 2000;49(5):677-83. 
 
Kelley DE. Skeletal muscle triglycerides: an aspect of regional adiposity and insulin 
resistance. Ann N Y Acad Sci. 2002;967:135-45. 
 
Kelley DE, Goodpaster BH, Storlien L. Muscle triglyceride and insulin resistance. Annu 
Rev Nutr. 2002a;22:325-46.  
 
Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human 
skeletal muscle in type 2 diabetes. Diabetes. 2002b;51(10):2944-50. 
 
Kennedy JW, Hirshman MF, Gervino EV, Ocel JV, Forse RA, Hoenig SJ, Aronson D, 
Goodyear LJ, Horton ES. Acute exercise induces GLUT4 translocation in skeletal 
muscle of normal human subjects and subjects with type 2 diabetes. Diabetes. 
1999;48(5):1192-7. 



 
 

154 
 

Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C. Homeostasis model 
assessment is more reliable than the fasting glucose/insulin ratio and quantitative 
insulin sensitivity check index for assessing insulin resistance among obese children 
and adolescents. Pediatrics. 2005;115(4):E500-3.  
 
Kiens B, Lithell H. Lipoprotein metabolism influenced by training-induced changes in 
human skeletal muscle. J Clin Invest. 1989;83(2):558-64. 
 
Kiens B, Kristiansen S, Jensen P, Richter EA, Turcotte LP. Membrane associated fatty 
acid binding protein (FABPpm) in human skeletal muscle is increased by endurance 
training. Biochem Biophys Res Commun. 1997;231(2):463-5. 
Kiens B, Richter EA. Utilization of skeletal muscle triacylglycerol during postexercise 
recovery in humans. Am J Physiol. 1998;275(2 Pt 1):E332-7. 
 
Kim JY, Hickner RC, Cortright RL, Dohm GL, Houmard JA. Lipid oxidation is 
reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab. 
2000;279(5):E1039-44. 
 
Kim Y, Hertzler SR, Byrne HK, Mattern CO. Raisins are a low to moderate glycemic 
index food with a correspondingly low insulin index. Nutr Res. 2008;28(5):304-8. 
 
Kimber NE, Heigenhauser GJ, Spriet LL, Dyck DJ. Skeletal muscle fat and 
carbohydrate metabolism during recovery from glycogen-depleting exercise in humans. 
J Physiol. 2003;548(Pt 3):919-27.  
 
King DS, Baldus PJ, Sharp RL, Kesl LD, Feltmeyer TL, Riddle MS. Time course for 
exercise-induced alterations in insulin action and glucose tolerance in middle-aged 
people. J Appl Physiol. 1995;78(1):17-22. 
 
Kirwan JP, Hickner RC, Yarasheski KE, Kohrt WM, Wiethop BV, Holloszy JO. 
Eccentric exercise induces transient insulin resistance in healthy individuals. J Appl 
Physiol. 1992;72(6):2197-202. 
 
Kirwan JP, Cyr-Campbell D, Campbell WW, Scheiber J, Evans WJ. Effects of 
moderate and high glycemic index meals on metabolism and exercise performance. 
Metabolism. 2001;50(7):849-55. 
 
Kjaer M, Hollenbeck CB, Frey-Hewitt B, Galbo H, Haskell W, Reaven GM. 
Glucoregulation and hormonal responses to maximal exercise in non–insulin-dependent 
diabetes. J Appl Physiol. 1990;68(5):2067–74. 
 
Kjaer M, Howlett K, Langfort J, Zimmerman-Belsing T, Lorentsen J, Bulow J, 
Ihlemann J, Feldt-Rasmussen U, Galbo H. Adrenaline and glycogenolysis in skeletal 
muscle during exercise: a study in adrenalectomised humans. J Physiol. 2000;528(Pt 
2):371-8. 
 
Kochar J, Djoussé L, Gaziano JM. Breakfast cereals and risk of type 2 diabetes in the 
Physicians' Health Study I. Obesity (Silver Spring). 2007;15(12):3039-44. 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kiens%20B%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Richter%20EA%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed/9688636�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22King%20DS%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Baldus%20PJ%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sharp%20RL%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kesl%20LD%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Feltmeyer%20TL%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Riddle%20MS%22%5BAuthor%5D�


 
 

155 
 

Kokalas N, Petridou A, Nikolaidis MG, Mougios V. Effect of aerobic exercise on 
lipaemia and its fatty acid profile after a meal of moderate fat content in eumenorrhoeic 
women. Br J Nutr. 2005;94(5):698-704. 
 
Kosti RI, Panagiotakos DB, Zampelas A. Ready-to-eat cereals and the burden of 
obesity in the context of their nutritional contribution: are all ready-to-eat cereals 
equally healthy? A systematic review. Nutr Res Rev. 2010;23(2):314-22.  
 
Koval JA, DeFronzo RA, O'Doherty RM, Printz R, Ardehali H, Granner DK, 
Mandarino LJ. Regulation of hexokinase II activity and expression in human muscle by 
moderate exercise. Am J Physiol. 1998;274(2 Pt 1):E304-8. 
 
Kraniou GN, Cameron-Smith D, Hargreaves M. Acute exercise and GLUT4 expression 
in human skeletal muscle: influence of exercise intensity. J Appl Physiol. 
2006;101(3):934-7.  
 
Kriketos AD, Baur LA, O'Connor J, Carey D, King S, Caterson ID, Storlien LH. 
Muscle fibre type composition in infant and adult populations and relationships with 
obesity. Int J Obes Relat Metab Disord. 1997;21(9):796-801. 
 
Kuo CH, Browning KS, Ivy JL. Regulation of GLUT4 protein expression and glycogen 
storage after prolonged exercise. Acta Physiol Scand. 1999;165(2):193-201. 
 
Lafortuna CL, Lazzer S, Agosti F, Busti C, Galli R, Mazzilli G, Sartorio A. Metabolic 
responses to submaximal treadmill walking and cycle ergometer pedalling in obese 
adolescents. Scand J Med Sci Sports. 2010;20(4):630-7.  
 
Lamarra N, Whipp BJ, Ward SA, Wasserman K. Effect of interbreath fluctuations on 
characterizing exercise gas exchange kinetics. J Appl Physiol. 1987;62(5):2003-12. 
 
Langfort J, Ploug T, Ihlemann J, Saldo M, Holm C, Galbo H. Expression of hormone-
sensitive lipase and its regulation by adrenaline in skeletal muscle. Biochem J. 
1999;340(Pt 2):459-65. 
 
Langfort J, Ploug T, Ihlemann J, Holm C, Galbo H. Stimulation of hormone-sensitive 
lipase activity by contractions in rat skeletal muscle. Biochem J. 2000;351(Pt 1):207-14. 
 
Lan-Pidhainy X, Wolever TM. Are the glycemic and insulinemic index values of 
carbohydrate foods similar in healthy control, hyperinsulinemic and type 2 diabetic 
patients? Eur J Clin Nutr. 2011;65(6):727-34.  
 
Lazzer S, Meyer F, Meyer M, Boirie Y, Vermoret M. Assessment on the usual physical 
activity in overweight and obese adolescents. Presse Med. 2004;33(18):1255-9. 
 
Lazzer S, Busti C, Agosti F, De Col A, Pozzo R, Sartorio A. Optimizing fat oxidation 
through exercise in severely obese Caucasian adolescents. Clin Endocrinol (Oxf). 
2007;67(4):582-8.  
 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kokalas%20N%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Petridou%20A%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nikolaidis%20MG%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mougios%20V%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=Effect%20of%20aerobic%20exercise%20on%20lipaemia%20and%20its%20fatty%20acid%20profile%20after%20a%20meal�


 
 

156 
 

Lazzer S, Molin M, Stramare D, Facchini S, Francescato MP. Effects of an eight-month 
weight-control program on body composition and lipid oxidation rate during exercise in 
obese children. J Endocrinol Invest. 2008;31(6):509-14. 
 
Lazzer S, Lafortuna C, Busti C, Galli R, Tinozzi T, Agosti F, Sartorio A. Fat oxidation 
rate during and after a low- or high-intensity exercise in severely obese Caucasian 
adolescents. Eur J Appl Physiol. 2010;108(2):383-91.  
 
Lazzer S, Lafortuna C, Busti C, Galli R, Agosti F, Sartorio A. Effects of low- and high-
intensity exercise training on body composition and substrate metabolism in obese 
adolescents. J Endocrinol Invest. 2011;34(1):45-52.  
 
Lee JM, Okumura MJ, Davis MM, Herman WH, Gurney JG. Prevalence and 
determinants of insulin resistance among U.S. adolescents: a population-based study. 
Diabetes Care. 2006;29(11):2427-32. 
 
Lewis SF, Taylor WF, Graham RM, Pettinger WA, Schutte JE, Blomqvist CG. 
Cardiovascular responses to exercise as functions of absolute and relative work load. J 
Appl Physiol. 1983;54(5):1314-23. 
 
Lien L. Is breakfast consumption related to mental distress and academic performance 
in adolescents? Public Health Nutr. 2007;10(4):422-8. 
 
Liljeberg H, Björck I. Effects of a low-glycaemic index spaghetti meal on glucose 
tolerance and lipaemia at a subsequent meal in healthy subjects. Eur J Clin Nutr. 
2000;54(1):24-8. 
 
Lima-Silva AE, Bertuzzi RCM, Pires FO, Gagliardi JFL, Barros RV, Hammond J, Kiss 
MAPDM. Relationship between training status and maximal fat oxidation rate. JSSM. 
2010;9(1):31-5. 
 
Ludbrook J. Comparing methods of measurements. Clin Exp Pharmacol Physiol. 
1997;24(2):193-203. 
 
Ludwig DS, Majzoub JA, Al-Zahrani A, Dallal GE, Blanco I, Roberts SB. High 
glycemic index foods, overeating, and obesity. Pediatrics. 1999;103(3):E26. 
 
Luiken JJ, Arumugam Y, Bell RC, Calles-Escandon J, Tandon NN, Glatz JF, Bonen A. 
Changes in fatty acid transport and transporters are related to the severity of insulin 
deficiency. Am J Physiol Endocrinol Metab. 2002;283(3):E612-21. 
 
Maarbjerg SJ, Sylow L, Richter EA. Current understanding of increased insulin 
sensitivity after exercise - emerging candidates. Acta Physiol (Oxf). 2011;202(3):323-
35. 
 
Mácek M, Vávra J, Novosadová J. Prolonged exercise in prepubertal boys. I. 
Cardiovascular and metabolic adjustment. Eur J Appl Physiol Occup Physiol. 
1976;35(4):291-8. 
 



 
 

157 
 

MacEneaney OJ, Harrison M, O'Gorman DJ, Pankratieva EV, O'Connor PL, Moyna 
NM. Effect of prior exercise on postprandial lipemia and markers of inflammation and 
endothelial activation in normal weight and overweight adolescent boys. Eur J Appl 
Physiol. 2009;106(5):721-9. 
 
Machado FA, Guglielmo LG, Greco CC, Denadai BS. Effects of exercise mode on the 
oxygen uptake kinetic response to severe-intensity exercise in prepubertal children. 
Pediatr Exerc Sci. 2009;21(2):159-70. 
 
Maffeis C, Pinelli L, Schutz Y. Increased fat oxidation in prepubertal obese children: a 
metabolic defense against further weight gain? J Pediatr. 1995;126(1):15-20. 
Maffeis C, Zaffanello M, Pellegrino M, Banzato C, Bogoni G, Viviani E, Ferrari M, 
Tatò L. Nutrient oxidation during moderately intense exercise in obese prepubertal 
boys. J Clin Endocrinol Metab. 2005;90(1):231-6.  
 
Magkos F, Tsekouras Y, Kavouras SA, Mittendorfer B, Sidossis LS. Improved insulin 
sensitivity after a single bout of exercise is curvilinearly related to exercise energy 
expenditure. Clin Sci (Lond). 2008;114(1):59-64. 
 
Mahon AD, Duncan GE, Howe CA, Del Corral P. Blood lactate and perceived exertion 
relative to ventilatory threshold: boys versus men. Med Sci Sports Exerc. 
1997;29(10):1332-7. 
 
Malkova D, Hardman AE, Bowness RJ, Macdonald IA. The reduction in postprandial 
lipemia after exercise is independent of the relative contributions of fat and 
carbohydrate to energy metabolism during exercise. Metabolism. 1999;48(2):245-51. 
 
Malkova D, McLaughlin R, Manthou E, Wallace AM, Nimmo MA. Effect of moderate-
intensity exercise session on preprandial and postprandial responses of circulating 
ghrelin and appetite. Horm Metab Res. 2008;40(6):410-5.  
 
Manders RJ, Van Dijk JW, van Loon LJ. Low-intensity exercise reduces the prevalence 
of hyperglycemia in type 2 diabetes. Med Sci Sports Exerc. 2010;42(2):219-25. 
 
Marra M, Scalfi L, Contaldo F, Pasanisi F. Fasting respiratory quotient as a predictor of 
long-term weight changes in non-obese women. Ann Nutr Metab. 2004;48(3):189-92.  
 
Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis 
Child. 1969;44(235):291-303. 
 
Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch 
Dis Child. 1970;45(239):13-23. 
 
Martin WH 3rd, Dalsky GP, Hurley BF, Matthews DE, Bier DM, Hagberg JM, Rogers 
MA, King DS, Holloszy JO. Effect of endurance training on plasma free fatty acid 
turnover and oxidation during exercise. Am J Physiol. 1993;265(5 Pt 1):E708-14. 
 
Martin WH 3rd. Effects of acute and chronic exercise on fat metabolism. Exerc Sport 
Sci Rev. 1996;24:203-31. 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22MacEneaney%20OJ%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Harrison%20M%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22O'Gorman%20DJ%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pankratieva%20EV%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22O'Connor%20PL%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Moyna%20NM%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Moyna%20NM%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Marshall%20WA%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tanner%20JM%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed/5785179�
http://www.ncbi.nlm.nih.gov/pubmed/5785179�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Marshall%20WA%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tanner%20JM%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed/5440182�
http://www.ncbi.nlm.nih.gov/pubmed/5440182�


 
 

158 
 

Martinez LR, Haymes EM. Substrate utilization during treadmill running in prepubertal 
girls and women. Med Sci Sports Exerc. 1992;24(9):975-83. 
 
Matsudo SMM, Matsudo VKR. Self-assessment and physician assessment of sexual 
maturation in Brazilian boys and girls: concordance and reproducibility. Am J Hum 
Biol. 1994;6(4):451-5. 
 
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. 
Homeostasis model assessment: insulin resistance and beta-cell function from fasting 
plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9. 
 
McCarthy HD, Jarrett KV, Emmett PM, Rogers I. Trends in waist circumferences in 
young British children: a comparative study. Int J Obes (Lond). 2005;29(2):157-62. 
 
McDevitt RM, Poppitt SD, Murgatroyd PR, Prentice AM. Macronutrient disposal 
during controlled overfeeding with glucose, fructose, sucrose, or fat in lean and obese 
women. Am J Clin Nutr. 2000;72(2):369-77. 
 
McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. 
From concept to molecular analysis. Eur J Biochem. 1997 15;244(1):1-14. 
 
McMurray RG, Hackney AC. Interactions of metabolic hormones, adipose tissue and 
exercise. Sports Med. 2005;35(5):393-412. 
 
McMurray RG, Hosick PA. The interaction of obesity and puberty on substrate 
utilization during exercise: a gender comparison. Pediatr Exerc Sci. 2011;23(3):411-31. 
 
Melanson EL, Sharp TA, Seagle HM, Horton TJ, Donahoo WT, Grunwald GK, 
Hamilton JT, Hill JO. Effect of exercise intensity on 24-h energy expenditure and 
nutrient oxidation. J Appl Physiol. 2002;92(3):1045-52. 
 
Melanson EL, Gozansky WS, Barry DW, Maclean PS, Grunwald GK, Hill JO. When 
energy balance is maintained, exercise does not induce negative fat balance in lean 
sedentary, obese sedentary, or lean endurance-trained individuals. J Appl Physiol. 
2009;107(6):1847-56.  
 
Mettler S, Lamprecht-Rusca F, Stoffel-Kurt N, Wenk C, Colombani PC. The influence 
of the subjects' training state on the glycemic index. Eur J Clin Nutr. 2007;61(1):19-24.  
 
Mettler S, Vaucher P, Weingartner PM, Wenk C, Colombani PC. Regular endurance 
training does not influence the glycemic index determination in women. J Am Coll 
Nutr. 2008;27(2):321-5. 
 
Meyer T, Gässler N, Kindermann W. Determination of "Fatmax"with 1 h cycling 
protocols of constant load. Appl Physiol Nutr Metab. 2007;32(2):249-56. 
 
Meyer T, Folz C, Rosenberger F, Kindermann W. The reliability of Fatmax. Scand J 
Med Sci Sports. 2009;19(2):213-21. 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Melanson%20EL%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sharp%20TA%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Seagle%20HM%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Horton%20TJ%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Donahoo%20WT%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Grunwald%20GK%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hamilton%20JT%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hill%20JO%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=melanson%202002%20effect%20of%20exercise%20intensity%20on%2024%20h�


 
 

159 
 

Miles DS, Critz JB, Knowlton RG. Cardiovascular, metabolic, and ventilatory 
responses of women to equivalent cycle ergometer and treadmill exercise. Med Sci 
Sports Exerc. 1980;12(1):14-9. 
 
Millet GP, Vleck VE, Bentley DJ. Physiological differences between cycling and 
running: lessons from triathletes. Sports Med. 2009;39(3):179-206.  
 
Mills SE, Foster DW, McGarry JD. Effects of pH on the interaction of substrates and 
malonyl-CoA with mitochondrial carnitine palmitoyltransferase I. Biochem J. 
1984;219(2):601-8. 
 
Mitchell JB, Rowe JR, Shah M, Barbee JJ, Watkins AM, Stephens C, Simmons S. 
Effect of prior exercise on postprandial triglycerides in overweight young women after 
ingesting a high-carbohydrate meal. Int J Sport Nutr Exerc Metab. 2008;18(1):49-65. 
 
Montain SJ, Hopper MK, Coggan AR, Coyle EF. Exercise metabolism at different time 
intervals after a meal. J Appl Physiol. 1991;70(2):882-8. 
 
Monteiro WD, Araújo CG. Cardiorespiratory and perceptual responses to walking and 
running at the same speed. Arq Bras Cardiol. 2009;93(4):418-25, 410-7. 
 
Montoye HJ. Age and oxygen utilization during submaximal treadmill exercise in 
males. J Gerontol. 1982;37(4):396-402. 
 
Moore MC, Cherrington AD, Mann SL, Davis SN. Acute fructose administration 
decreases the glycemic response to an oral glucose tolerance test in normal adults. J 
Clin Endocrinol Metab. 2000;85(12):4515-9. 
 
Moore LJ, Midgley AW, Thurlow S, Thomas G, Mc Naughton LR. Effect of the 
glycaemic index of a pre-exercise meal on metabolism and cycling time trial 
performance. J Sci Med Sport. 2010;13(1):182-8.  
 
Nassis GP, Papantakou K, Skenderi K, Triandafillopoulou M, Kavouras SA, 
Yannakoulia M, Chrousos GP, Sidossis LS. Aerobic exercise training improves insulin 
sensitivity without changes in body weight, body fat, adiponectin, and inflammatory 
markers in overweight and obese girls. Metabolism. 2005;54(11):1472-9. 
 
Newsom SA, Schenk S, Thomas KM, Harber MP, Knuth ND, Goldenberg N, Horowitz 
JF. Energy deficit after exercise augments lipid mobilization but does not contribute to 
the exercise-induced increase in insulin sensitivity. J Appl Physiol. 2010;108(3):554-60. 
 
Nicklas TA, Bao W, Webber LS, Berenson GS. Breakfast consumption affects 
adequacy of total daily intake in children. J Am Diet Assoc. 1993;93(8):886-91. 
 
Noakes TD. Physiological models to understand exercise fatigue and the adaptations 
that predict or enhance athletic performance. Scand J Med Sci Sports. 2000;10(3):123-
45. 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Newsom%20SA%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schenk%20S%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Thomas%20KM%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Harber%20MP%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Knuth%20ND%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Goldenberg%20N%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Horowitz%20JF%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Horowitz%20JF%22%5BAuthor%5D�
javascript:AL_get(this, 'jour', 'J Appl Physiol.');�


 
 

160 
 

Nordby P, Saltin B, Helge JW. Whole-body fat oxidation determined by graded 
exercise and indirect calorimetry: a role for muscle oxidative capacity? Scand J Med Sci 
Sports. 2006;16(3):209-14. 
 
Nuttall FQ, Mooradian AD, Gannon MC, Billington C, Krezowski P. Effect of protein 
ingestion on the glucose and insulin response to a standardized oral glucose load. 
Diabetes Care. 1984;7(5):465-70. 
 
Nuttall FQ, Gannon MC, Wald JL, Ahmed M. Plasma glucose and insulin profiles in 
normal subjects ingesting diets of varying carbohydrate, fat, and protein content. J Am 
Coll Nutr. 1985;4(4):437-50. 
 
Nuttall FQ. Dietary fiber in the management of diabetes. Diabetes. 1993;42(4):503-8. 
 
Odeleye OE, de Courten M, Pettitt DJ, Ravussin E. Fasting hyperinsulinemia is a 
predictor of increased body weight gain and obesity in Pima Indian children. Diabetes. 
1997;46(8):1341-5. 
 
Odland LM, Heigenhauser GJ, Lopaschuk GD, Spriet LL. Human skeletal muscle 
malonyl-CoA at rest and during prolonged submaximal exercise. Am J Physiol. 
1996;270(3 Pt 1):E541-4. 
 
Odland LM, Howlett RA, Heigenhauser GJ, Hultman E, Spriet LL. Skeletal muscle 
malonyl-CoA content at the onset of exercise at varying power outputs in humans. Am J 
Physiol. 1998;274(6 Pt 1):E1080-5. 
 
Oosthuyse T, Bosch AN. The effect of the menstrual cycle on exercise metabolism: 
implications for exercise performance in eumenorrhoeic women. Sports Med. 
2010;40(3):207-27.  
 
Ortega FB, Ruiz JR, Castillo MJ, Sjöström M. Physical fitness in childhood and 
adolescence: a powerful marker of health. Int J Obes (Lond). 2008;32(1):1-11.  
 
Ostman EM, Liljeberg Elmståhl HG, Björck IM. Inconsistency between glycemic and 
insulinemic responses to regular and fermented milk products. Am J Clin Nutr. 
2001;74(1):96-100. 
 
Owens S, Gutin B, Allison J, Riggs S, Ferguson M, Litaker M, Thompson W. Effect of 
physical training on total and visceral fat in obese children. Med Sci Sports Exerc. 
1999;31(1):143-8. 
 
Pal S, Lim S, Egger G. The effect of a low glycaemic index breakfast on blood glucose, 
insulin, lipid profiles, blood pressure, body weight, body composition and satiety in 
obese and overweight individuals: a pilot study. J Am Coll Nutr. 2008;27(3):387-93. 
 
Panagiotakos DB, Antonogeorgos G, Papadimitriou A, Anthracopoulos MB, 
Papadopoulos M, Konstantinidou M, Fretzayas A, Priftis KN. Breakfast cereal is 
associated with a lower prevalence of obesity among 10-12-year-old children: the 
PANACEA study. Nutr Metab Cardiovasc Dis. 2008;18(9):606-12.  
 



 
 

161 
 

Paz Cerezo M, Sierra Salinas C, del Río Mapelli L, Barco Gálvez A, Delgado Utrera C, 
Jurado Ortiz A. Influence of energy expenditure on childhood obesity. An Pediatr 
(Barc). 2003;58(4):316-21. 
 
Perälä MM, Hätönen KA, Virtamo J, Eriksson JG, Sinkko HK, Sundvall J, Valsta LM. 
Impact of overweight and glucose tolerance on postprandial responses to high- and low-
glycaemic index meals. Br J Nutr. 2011;105(11):1627-34. 
 
Pérez-Martin A, Dumortier M, Raynaud E, Brun JF, Fédou C, Bringer J, Mercier J. 
Balance of substrate oxidation during submaximal exercise in lean and obese people. 
Diabetes Metab. 2001;27(4 Pt 1):466-74. 
 
Perri MG, Anton SD, Durning PE, Ketterson TU, Sydeman SJ, Berlant NE, Kanasky 
WF Jr, Newton RL Jr, Limacher MC, Martin AD. Adherence to exercise prescriptions: 
effects of prescribing moderate versus higher levels of intensity and frequency. Health 
Psychol. 2002;21(5):452-8. 
 
Perry CG, Heigenhauser GJ, Bonen A, Spriet LL. High-intensity aerobic interval 
training increases fat and carbohydrate metabolic capacities in human skeletal muscle. 
Appl Physiol Nutr Metab. 2008;33(6):1112-23. 
 
Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GF, Hill RE, Grant SM. 
Effects of training duration on substrate turnover and oxidation during exercise. J Appl 
Physiol. 1996;81(5):2182-91. 
 
Pi-Sunyer FX. Glycemic index and disease. Am J Clin Nutr. 2002;76(1):S290-8. 
 
Price TB, Rothman DL, Shulman RG. NMR of glycogen in exercise. Proc Nutr Soc. 
1999;58(4):851-9. 
 
Ranneries C, Bülow J, Buemann B, Christensen NJ, Madsen J, Astrup A. Fat 
metabolism in formerly obese women. Am J Physiol. 1998;274(1 Pt 1):E155-61. 
 
Rasmussen BB, Winder WW. Effect of exercise intensity on skeletal muscle malonyl-
CoA and acetyl-CoA carboxylase. J Appl Physiol. 1997;83(4):1104-9. 
 
Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and 
adolescence on morbidity and premature mortality in adulthood: systematic review. Int 
J Obes (Lond). 2011;35(7):891-8.  
 
Riddell MC, Bar-Or O, Schwarcz HP, Heigenhauser GJ. Substrate utilization in boys 
during exercise with [13C]-glucose ingestion. Eur J Appl Physiol. 2000;83(4 -5):441-8. 
 
Riddell MC. The endocrine response and substrate utilization during exercise in 
children and adolescents. J Appl Physiol. 2008;105(2):725-33. 
 
Riddell MC, Jamnik VK, Iscoe KE, Timmons BW, Gledhill N. Fat oxidation rate and 
the exercise intensity that elicits maximal fat oxidation decreases with pubertal status in 
young male subjects. J Appl Physiol. 2008;105(2):742-8.  
 



 
 

162 
 

Riddoch CJ, Mattocks C, Deere K, Saunders J, Kirkby J, Tilling K, Leary SD, Blair SN, 
Ness AR. Objective measurement of levels and patterns of physical activity. Arch Dis 
Child. 2007;92(11):963-9. 
 
Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency 
of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes. 
2005;54(1):8-14. 
 
Robergs RA, Pascoe DD, Costill DL, Fink WJ, Chwalbinska-Moneta J, Davis JA, 
Hickner R. Effects of warm-up on muscle glycogenolysis during intense exercise. Med 
Sci Sports Exerc. 1991;23(1):37-43. 
 
Robinson S. Experimental studies of physical fitness in relation to age. 
Arbeitsphysiologie. 1938;10(3):251–323. 
 
Romijn JA, Coyle EF, Hibbert J, Wolfe RR. Comparison of indirect calorimetry and a 
new breath 13C/12C ratio method during strenuous exercise. Am J Physiol. 1992;263(1 
Pt 1):E64-71. 
 
Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. 
Regulation of endogenous fat and carbohydrate metabolism in relation to exercise 
intensity and duration. Am J Physiol. 1993;265(3 Pt 1):E380-91. 
 
Romijn JA, Coyle EF, Sidossis LS, Zhang XJ, Wolfe RR. Relationship between fatty 
acid delivery and fatty acid oxidation during strenuous exercise. J Appl Physiol. 
1995;79(6):1939-45. 
 
Rosenthal R. Meta-analytic Procedures for social research (2nd ed.). Newbury Park, 
CA: Sage; 1991. 
 
Rovner AJ, Nansel TR, Gellar L. The effect of a low-glycemic diet vs a standard diet on 
blood glucose levels and macronutrient intake in children with type 1 diabetes. J Am 
Diet Assoc. 2009;109(2):303-7. 
 
Rowland TW, Rimany TA. Physiological responses to prolonged exercise in 
premenarcheal and adult females. Pediatr Exerc Sci. 1995;7:183-91. 
 
Rowlands DS, Hopkins WG. Effects of high-fat and high-carbohydrate diets on 
metabolism and performance in cycling. Metabolism. 2002;51(6):678-90. 
 
Rowlands DS, Jeukendrup AE. Fat-oxidation during exercise: comparison of RER 13C-
glycogen enrichment method (Abstract). In E. Van Praagh, J. Coudert, N. Fellmann, P. 
Duché (Ed.). Proceedings of the 9th Annual Congress of European College of Sport 
Science. France: Clermont-Ferrand; 2004. 
 
Rowlands DS. Model for the behaviour of compartmental CO(2) stores during 
incremental exercise. Eur J Appl Physiol. 2005;93(5-6):555-68.  
 



 
 

163 
 

Ruderman NB, Park H, Kaushik VK, Dean D, Constant S, Prentki M, Saha AK. AMPK 
as a metabolic switch in rat muscle, liver and adipose tissue after exercise. Acta Physiol 
Scand. 2003;178(4):435-42. 
 
Rush EC, Valencia ME, Plank LD. Validation of a 7-day physical activity diary against 
doubly-labelled water. Ann Hum Biol. 2008;35(4):416-21. 
 
Ruxton CH, O'Sullivan KR, Kirk TR, Belton NR, Holmes MA. The contribution of 
breakfast to the diets of a sample of 136 primary-schoolchildren in Edinburgh. Br J 
Nutr. 1996;75(3):419-31. 
 
Saddik M, Gamble J, Witters LA, Lopaschuk GD. Acetyl-CoA carboxylase regulation 
of fatty acid oxidation in the heart. J Biol Chem. 1993;268(34):25836-45. 
 
Sallis JF. Self-report measures of children's physical activity. J Sch Health. 
1991;61(5):215-9. 
 
Salmerón J, Ascherio A, Rimm EB, Colditz GA, Spiegelman D, Jenkins DJ, Stampfer 
MJ, Wing AL, Willett WC. Dietary fiber, glycemic load, and risk of NIDDM in men. 
Diabetes Care. 1997;20(4):545-50. 
 
Sandercock GR, Voss C, Dye L. Associations between habitual school-day breakfast 
consumption, body mass index, physical activity and cardiorespiratory fitness in 
English schoolchildren. Eur J Clin Nutr. 2010;64(10):1086-92.  
 
Schenk S, Davidson CJ, Zderic TW, Byerley LO, Coyle EF. Different glycemic indexes 
of breakfast cereals are not due to glucose entry into blood but to glucose removal by 
tissue. Am J Clin Nutr. 2003;78(4):742-8. 
 
Schenk S, Cook JN, Kaufman AE, Horowitz JF. Postexercise insulin sensitivity is not 
impaired after an overnight lipid infusion. Am J Physiol Endocrinol Metab. 
2005;288(3):E519-25.  
 
Schenk S, Horowitz JF. Coimmunoprecipitation of FAT/CD36 and CPT I in skeletal 
muscle increases proportionally with fat oxidation after endurance exercise training. Am 
J Physiol Endocrinol Metab. 2006;291(2):E254-60. 
 
Schenk S, Horowitz JF. Acute exercise increases triglyceride synthesis in skeletal 
muscle and prevents fatty acid-induced insulin resistance. J Clin Invest. 
2007;117(6):1690-8.  
 
Schrauwen P, van Aggel-Leijssen DP, Hul G, Wagenmakers AJ, Vidal H, Saris WH, 
van Baak MA. The effect of a 3-month low-intensity endurance training program on fat 
oxidation and acetyl-CoA carboxylase-2 expression. Diabetes. 2002;51(7):2220-6. 
 
Schrauwen-Hinderling VB, Schrauwen P, Hesselink MK, van Engelshoven JM, 
Nicolay K, Saris WH, Kessels AG, Kooi ME. The increase in intramyocellular lipid 
content is a very early response to training. J Clin Endocrinol Metab. 2003;88(4):1610-
6. 
 



 
 

164 
 

Schutz Y, Tremblay A, Weinsier RL, Nelson KM. Role of fat oxidation in the long-
term stabilization of body weight in obese women. Am J Clin Nutr. 1992;55(3):670-4.  
 
Schwartz MB, Vartanian LR, Wharton CM, Brownell KD. Examining the nutritional 
quality of breakfast cereals marketed to children. J Am Diet Assoc. 2008;108(4):702-5. 
 
Seidell JC, Muller DC, Sorkin JD, Andres R. Fasting respiratory exchange ratio and 
resting metabolic rate as predictors of weight gain: the Baltimore Longitudinal Study on 
Aging. Int J Obes Relat Metab Disord. 1992;16(9):667-74. 
 
Shaibi GQ, Roberts CK, Goran MI. Exercise and insulin resistance in youth. Exerc 
Sport Sci Rev. 2008;36(1):5-11. 
 
Sherar LB, Baxter-Jones AD, Mirwald RL. Limitations to the use of secondary sex 
characteristics for gender comparisons. Ann Hum Biol. 2004;31(5):586-93. 
 
Sidossis LS, Stuart CA, Shulman GI, Lopaschuk GD, Wolfe RR. Glucose plus insulin 
regulate fat oxidation by controlling the rate of fatty acid entry into the mitochondria. J 
Clin Invest. 1996;98(10):2244-50. 
 
Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE. Markers of capacity to utilize 
fatty acids in human skeletal muscle: relation to insulin resistance and obesity and 
effects of weight loss. FASEB J. 1999;13(14):2051-60. 
 
Sinha R, Fisch G, Teague B, Tamborlane WV, Banyas B, Allen K, Savoye M, Rieger 
V, Taksali S, Barbetta G, Sherwin RS, Caprio S. Prevalence of impaired glucose 
tolerance among children and adolescents with marked obesity. N Engl J Med. 
2002a;346(11):802-10. 
 
Sinha R, Dufour S, Petersen KF, LeBon V, Enoksson S, Ma YZ, Savoye M, Rothman 
DL, Shulman GI, Caprio S. Assessment of skeletal muscle triglyceride content by (1)H 
nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to 
insulin sensitivity, total body fat, and central adiposity. Diabetes. 2002b;51(4):1022-7. 
 
Sjöberg A, Hallberg L, Höglund D, Hulthén L. Meal pattern, food choice, nutrient 
intake and lifestyle factors in The Göteborg Adolescence Study. Eur J Clin Nutr. 
2003;57(12):1569-78. 
 
Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, 
Bemben DA. Skinfold equations for estimation of body fatness in children and youth. 
Hum Biol. 1988;60(5):709-23. 
 
Schlossberger NM, Turner RA, Irwin CE Jr. Validity of self-report of pubertal 
maturation in early adolescents. J Adolesc Health. 1992;13(2):109-13. 
 
Smith AC, Mullen KL, Junkin KA, Nickerson J, Chabowski A, Bonen A, Dyck DJ. 
Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the 
progression of high-fat diet-induced hyperglycemia. Am J Physiol Endocrinol Metab. 
2007;293(1):E172-81.  
 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sherar%20LB%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Baxter-Jones%20AD%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mirwald%20RL%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=Limitations%20to%20the%20use%20of%20secondary%20sex%20characteristics%20for%20gender%20comparisons�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schlossberger%20NM%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Turner%20RA%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Irwin%20CE%20Jr%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed/1627576�


 
 

165 
 

Song YJ, Sawamura M, Ikeda K, Igawa S, Yamori Y. Soluble dietary fibre improves 
insulin sensitivity by increasing muscle GLUT-4 content in stroke-prone spontaneously 
hypertensive rats. Clin Exp Pharmacol Physiol. 2000;27(1-2):41-5. 
 
Song WO, Chun OK, Kerver J, Cho S, Chung CE, Chung SJ. Ready-to-eat breakfast 
cereal consumption enhances milk and calcium intake in the US population. J Am Diet 
Assoc. 2006;106(11):1783-9. 
 
Sparks MJ, Selig SS, Febbraio MA. Pre-exercise carbohydrate ingestion: effect of the 
glycemic index on endurance exercise performance. Med Sci Sports Exerc. 
1998;30(6):844-9. 
 
Spieth LE, Harnish JD, Lenders CM, Raezer LB, Pereira MA, Hangen SJ, Ludwig DS. 
A low-glycemic index diet in the treatment of pediatric obesity. Arch Pediatr Adolesc 
Med. 2000;154(9):947-51. 
 
Spriet LL. Regulation of skeletal muscle fat oxidation during exercise in humans. Med 
Sci Sports Exerc. 2002;34(9):1477-84. 
 
Srinivasan SR, Myers L, Berenson GS. Predictability of childhood adiposity and insulin 
for developing insulin resistance syndrome (syndrome X) in young adulthood: the 
Bogalusa Heart Study. Diabetes. 2002;51(1):204-9. 
 
Starkie RL, Hargreaves M, Lambert DL, Proietto J, Febbraio MA. Effect of temperature 
on muscle metabolism during submaximal exercise in humans. Exp Physiol. 
1999;84(4):775-84. 
 
Starritt EC, Howlett RA, Heigenhauser GJ, Spriet LL. Sensitivity of CPT I to malonyl-
CoA in trained and untrained human skeletal muscle. Am J Physiol Endocrinol Metab. 
2000;278(3):E462-8. 
 
Steffan HG, Elliott W, Miller WC, Fernhall B. Substrate utilization during submaximal 
exercise in obese and normal-weight women. Eur J Appl Physiol Occup Physiol. 
1999;80(3):233-9. 
 
Stephens BR, Cole AS, Mahon AD. The influence of biological maturation on fat and 
carbohydrate metabolism during exercise in males. Int J Sport Nutr Exerc Metab. 
2006;16(2):166-79. 
 
Stephens FB, Constantin-Teodosiu D, Greenhaff PL. New insights concerning the role 
of carnitine in the regulation of fuel metabolism in skeletal muscle. J Physiol. 
2007;581(Pt 2):431-44.  
 
Stephens FB, Norton L, Jewell K, Chokkalingam K, Parr T, Tsintzas K. Basal and 
insulin-stimulated pyruvate dehydrogenase complex activation, glycogen synthesis and 
metabolic gene expression in human skeletal muscle the day after a single bout of 
exercise. Exp Physiol. 2010;95(7):808-18.  
 



 
 

166 
 

Stevenson E, Williams C, Nute M. The influence of the glycaemic index of breakfast 
and lunch on substrate utilisation during the postprandial periods and subsequent 
exercise. Br J Nutr. 2005a;93(6):885-93. 
 
Stevenson E, Williams C, Nute M, Swaile P, Tsui M. The effect of the glycemic index 
of an evening meal on the metabolic responses to a standard high glycemic index 
breakfast and subsequent exercise in men. Int J Sport Nutr Exerc Metab. 
2005b;15(3):308-22. 
 
Stevenson EJ, Williams C, Mash LE, Phillips B, Nute ML. Influence of high-
carbohydrate mixed meals with different glycemic indexes on substrate utilization 
during subsequent exercise in women. Am J Clin Nutr. 2006;84(2):354-60. 
 
Stevenson E, Williams C, Nute M, Humphrey L, Witard O. Influence of the glycaemic 
index of an evening meal on substrate oxidation following breakfast and during exercise 
the next day in healthy women. Eur J Clin Nutr. 2008;62(5):608-16.  
 
Stevenson EJ, Astbury NM, Simpson EJ, Taylor MA, Macdonald IA. Fat oxidation 
during exercise and satiety during recovery are increased following a low-glycemic 
index breakfast in sedentary women. J Nutr. 2009;139(5):890-7.  
 
Stich V, de Glisezinski I, Berlan M, Bulow J, Galitzky J, Harant I, Suljkovicova H, 
Lafontan M, Rivière D, Crampes F. Adipose tissue lipolysis is increased during a 
repeated bout of aerobic exercise. J Appl Physiol. 2000;88(4):1277-83. 
 
Stisen AB, Stougaard O, Langfort J, Helge JW, Sahlin K, Madsen K. Maximal fat 
oxidation rates in endurance trained and untrained women. Eur J Appl Physiol. 
2006;98(5):497-506. 
 
Sunehag AL, Toffolo G, Campioni M, Bier DM, Haymond MW. Effects of dietary 
macronutrient intake on insulin sensitivity and secretion and glucose and lipid 
metabolism in healthy, obese adolescents. J Clin Endocrinol Metab. 2005;90(8):4496-
502.  
 
Talanian JL, Galloway SD, Heigenhauser GJ, Bonen A, Spriet LL. Two weeks of high-
intensity aerobic interval training increases the capacity for fat oxidation during 
exercise in women. J Appl Physiol. 2007;102(4):1439-47.  
 
Tanner JM. Growth at adolescents. Oxford, UK: Blackwell Scientific; 1962. 
 
Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, 
Hamadeh MJ. Influence of endurance exercise training and sex on intramyocellular 
lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. 
Am J Physiol Regul Integr Comp Physiol. 2007;292(3):R1271-8.  
 
Thorell A, Hirshman MF, Nygren J, Jorfeldt L, Wojtaszewski JF, Dufresne SD, Horton 
ES, Ljungqvist O, Goodyear LJ. Exercise and insulin cause GLUT-4 translocation in 
human skeletal muscle. Am J Physiol. 1999;277(4):E733-41. 
 



 
 

167 
 

Thrush AB, Harasim E, Chabowski A, Gulli R, Stefanyk L, Dyck DJ. A single prior 
bout of exercise protects against palmitate-induced insulin resistance despite an increase 
in total ceramide content. Am J Physiol Regul Integr Comp Physiol. 
2011;300(5):R1200-8. 
 
Timlin MT, Pereira MA, Story M, Neumark-Sztainer D. Breakfast eating and weight 
change in a 5-year prospective analysis of adolescents: Project EAT (Eating Among 
Teens). Pediatrics. 2008;121(3):E638-45. 
 
Timmons BW, Bar-Or O, Riddell MC. Oxidation rate of exogenous carbohydrate 
during exercise is higher in boys than in men. J Appl Physiol. 2003;94(1):278-84.  
 
Timmons BW, Bar-Or O, Riddell MC. Influence of age and pubertal status on substrate 
utilization during exercise with and without carbohydrate intake in healthy boys. Appl 
Physiol Nutr Metab. 2007a;32(3):416-25. 
 
Timmons BW, Bar-Or O, Riddell MC. Energy substrate utilization during prolonged 
exercise with and without carbohydrate intake in preadolescent and adolescent girls. J 
Appl Physiol. 2007b;103(3):995-1000.  
 
Tittelbach TJ, Mattes RD, Gretebeck RJ. Post-exercise substrate utilization after a high 
glucose vs. high fructose meal during negative energy balance in the obese. Obes Res. 
2000;8(7):496-505. 
 
Tolfrey K, Jeukendrup AE, Batterham AM. Group- and individual-level coincidence of 
the 'Fatmax' and lactate accumulation in adolescents. Eur J Appl Physiol. 
2010;109(6):1145-53.  
 
Trompers W, Perry TL, Rose MC, Rehrer NJ. Glycemic and insulinemic response to 
selected snack bars in trained versus sedentary individuals. Int J Sport Nutr Exerc 
Metab. 2010;20(1):27-33. 
 
Trudeau F, Bernier S, de Glisezinski I, Crampes F, Dulac F, Rivière D. Lack of 
antilipolytic effect of lactate in subcutaneous abdominal adipose tissue during exercise. 
J Appl Physiol. 1999;86(6):1800-4. 
 
Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A, Hargreaves M, Cameron-
Smith D. Exercise training increases lipid metabolism gene expression in human 
skeletal muscle. Am J Physiol Endocrinol Metab. 2002;283(1):E66-72. 
 
Unnithan VB, Baynard T, Potter CR, Barker P, Heffernan KS, Kelly E, Yates G, 
Fernhall B. An exploratory study of cardiac function and oxygen uptake during cycle 
ergometry in overweight children. Obesity (Silver Spring). 2007;15(11):2673-82. 
 
van Aggel-Leijssen DP, Saris WH, Wagenmakers AJ, Senden JM, van Baak MA. 
Effect of exercise training at different intensities on fat metabolism of obese men. J 
Appl Physiol. 2002;92(3):1300-9. 
 



 
 

168 
 

van Loon LJ, Saris WH, Verhagen H, Wagenmakers AJ. Plasma insulin responses after 
ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin 
Nutr.2000;72(1):96-105. 
 
van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ. The 
effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 
2001;536(Pt 1):295-304. 
 
van Loon LJ, Goodpaster BH. Increased intramuscular lipid storage in the insulin-
resistant and endurance-trained state. Pflugers Arch. 2006;451(5):606-16.  
 
Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise 
in healthy men and women: a cross-sectional study. J Appl Physiol. 2005;98(1):160-7.  
 
Venables MC, Jeukendrup AE. Endurance training and obesity: effect on substrate 
metabolism and insulin sensitivity. Med Sci Sports Exerc. 2008;40(3):495-502. 
 
Votruba SB, Atkinson RL, Hirvonen MD, Schoeller DA. Prior exercise increases 
subsequent utilization of dietary fat. Med Sci Sports Exerc. 2002;34(11):1757-65. 
 
Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic 
burden of the projected obesity trends in the USA and the UK. Lancet. 
2011;378(9793):815-25. 
 
Warren JM, Henry CJ, Simonite V. Low glycemic index breakfasts and reduced food 
intake in preadolescent children. Pediatrics. 2003;112(5):E414. 
 
Wasserman K. The anaerobic threshold measurement to evaluate exercise performance. 
Am Rev Respir Dis. 1984;129(2 Pt 2):S35-40. 
 
Wasserman K, Hansen JE, Sue DY, Whipp BJ. Principles of exercise testing and 
interpretation. Philadelphia: Lea and Febiger; 1987.  
 
Watt MJ, Heigenhauser GJ, Spriet LL. Intramuscular triacylglycerol utilization in 
human skeletal muscle during exercise: is there a controversy? J Appl Physiol. 
2002;93(4):1185-95. 
 
Watts K, Beye P, Siafarikas A, O'Driscoll G, Jones TW, Davis EA, Green DJ. Effects 
of exercise training on vascular function in obese children. J Pediatr. 2004;144(5):620-
5. 
 
Wee SL, Williams C, Gray S, Horabin J. Influence of high and low glycemic index 
meals on endurance running capacity. Med Sci Sports Exerc. 1999;31(3):393-9. 
 
Wee SL, Williams C, Tsintzas K, Boobis L. Ingestion of a high-glycemic index meal 
increases muscle glycogen storage at rest but augments its utilization during subsequent 
exercise. J Appl Physiol. 2005;99(2):707-14.  
 
Weiss R, Dufour S, Taksali SE, Tamborlane WV, Petersen KF, Bonadonna RC, Boselli 
L, Barbetta G, Allen K, Rife F, Savoye M, Dziura J, Sherwin R, Shulman GI, Caprio S. 



 
 

169 
 

Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin 
resistance, and altered myocellular and abdominal fat partitioning. Lancet. 
2003;362(9388):951-7. 
 
Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, Allen K, 
Lopes M, Savoye M, Morrison J, Sherwin RS, Caprio S. Obesity and the metabolic 
syndrome in children and adolescents. N Engl J Med. 2004;350(23):2362-74. 
 
Weiss R, Taksali SE, Dufour S, Yeckel CW, Papademetris X, Cline G, Tamborlane 
WV, Dziura J, Shulman GI, Caprio S. The "obese insulin-sensitive" adolescent: 
importance of adiponectin and lipid partitioning. J Clin Endocrinol Metab. 
2005;90(6):3731-7.  
 
Weiss R, Kaufman FR. Metabolic complications of childhood obesity: identifying and 
mitigating the risk. Diabetes Care. 2008;31(Suppl 2):S310-6. 
 
Welsman J, Fawkner SG, Armstrong N. Respiratory response to non-steady-state 
exercise in children and adults (Abstract). Symposium XXI of the European Group of 
Pediatric Work Physiology. Belgium: Corsendonk; 2001. 
 
Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory 
dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin 
Invest. 1999;104(6):787-94. 
 
Willett W, Manson J, Liu S. Glycemic index, glycemic load, and risk of type 2 diabetes. 
Am J Clin Nutr. 2002;76(1):S274S-S80. 
 
Williams RL, Cheyne KL, Houtkooper LK, Lohman TG. Adolescent self-assessment of 
sexual maturation. Effects of fatness classification and actual sexual maturation stage. J 
Adolesc Health Care. 1988;9(6):480-2. 
 
Wojtaszewski JF, Hansen BF, Gade, Kiens B, Markuns JF, Goodyear LJ, Richter EA. 
Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. 
Diabetes. 2000;49(3):325-31. 
 
Wolever TM, Jenkins DJ. The use of the glycemic index in predicting the blood glucose 
response to mixed meals. Am J Clin Nutr. 1986;43(1):167-72. 
 
Wolever TM, Bolognesi C. Prediction of glucose and insulin responses of normal 
subjects after consuming mixed meals varying in energy, protein, fat, carbohydrate and 
glycemic index. J Nutr. 1996;126(11):2807-12. 
 
Wolever TM, Vorster HH, Björck I, Brand-Miller J, Brighenti F, Mann JI, Ramdath 
DD, Granfeldt Y, Holt S, Perry TL, Venter C, Xiaomei Wu. Determination of the 
glycaemic index of foods: interlaboratory study. Eur J Clin Nutr. 2003;57(3):475-82. 
 
Wolever TM, Yang M, Zeng XY, Atkinson F, Brand-Miller JC. Food glycemic index, 
as given in glycemic index tables, is a significant determinant of glycemic responses 
elicited by composite breakfast meals. Am J Clin Nutr. 2006;83(6):1306-12. 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Williams%20RL%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Cheyne%20KL%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Houtkooper%20LK%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lohman%20TG%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=williams%20self%20assessment%20of%20sexual%20maturation%3A%20effects%20of%20fatness%20classification%20and%20actual%20ma�
http://www.ncbi.nlm.nih.gov/pubmed?term=williams%20self%20assessment%20of%20sexual%20maturation%3A%20effects%20of%20fatness%20classification%20and%20actual%20ma�


 
 

170 
 

Wolever TM, Jenkins AL, Vuksan V, Campbell J. The glycaemic index values of foods 
containing fructose are affected by metabolic differences between subjects. Eur J Clin 
Nutr. 2009;63(9):1106-14.  
 
Wu CL, Nicholas C, Williams C, Took A, Hardy L. The influence of high-carbohydrate 
meals with different glycaemic indices on substrate utilisation during subsequent 
exercise. Br J Nutr. 2003;90(6):1049-56. 
 
Wu CL, Williams C. A low glycemic index meal before exercise improves endurance 
running capacity in men. Int J Sport Nutr Exerc Metab. 2006;16(5):510-27. 
 
Xu F, Rhodes EC. Oxygen uptake kinetics during exercise. Sports Med. 
1999;27(5):313-27. 
 
Zhang YY, Johnson MC 2nd, Chow N, Wasserman K. Effect of exercise testing 
protocol on parameters of aerobic function. Med Sci Sports Exerc. 1991;23(5):625-30. 
 
Zunquin G, Theunynck D, Sesboüé B, Arhan P, Bouglé D. Evolution of fat oxidation 
during exercise in obese pubertal boys: clinical implications. J Sports Sci. 
2009a;27(4):315-8. 
 
Zunquin G, Theunynck D, Sesboüé B, Arhan P, Bouglé D. Comparison of fat oxidation 
during exercise in lean and obese pubertal boys: clinical implications. Br J Sports Med. 
2009b;43(11):869-70.  
 
Zurlo F, Lillioja S, Esposito-Del Puente A, Nyomba BL, Raz I, Saad MF, Swinburn 
BA, Knowler WC, Bogardus C, Ravussin E. Low ratio of fat to carbohydrate oxidation 
as predictor of weight gain: study of 24-h RQ. Am J Physiol. 1990;259(5 Pt 1):E650-7. 
 

 



Appendix 1: Health history questionnaire 
 

171 
 

HEALTH SCREEN QUESTIONNAIRE FOR STUDY VOLUNTEERS 
  
Name/Number   ...............……. 
 

• As a volunteer participating in a research study, it is important that your child is 
currently in good health and has had no significant medical problems in the past.  
This is (i) to ensure his/her continuing well-being and (ii) to avoid the 
possibility of individual health issues confounding study outcomes. 

• If your child has a blood-borne virus, or thinks that she may have one, please do 
not allow her to take part in this research. 

 

Please complete this brief questionnaire to confirm your child’s fitness to 
participate: 
 

1. At present, does your child have any health problem for s/he is: 

(a) on medication, prescribed or otherwise ............................  Yes 
 No  

(b) attending her/his general practitioner ...............................  Yes  No  

(c) on a hospital waiting list ..................................................  Yes  No  
 

2. In the past two years, has your child had any illness which required her/him to: 

(a) consult her/his GP ............................................................  Yes 
 No  

(b) attend a hospital outpatient department ............................  Yes  No  

(c) be admitted to hospital  ....................................................  Yes  No  
 

3. Has your child ever had any of the following: 

(a) Convulsions/epilepsy  ........................................................  Yes 
 No  

(b) Asthma  ..............................................................................  Yes  No  

(c) Eczema  ..............................................................................  Yes  No  

(d) Diabetes  ............................................................................  Yes  No  

(e) A blood disorder  ...............................................................  Yes  No  

(f) Head injury  .......................................................................  Yes  No  

(g) Digestive problems  ...........................................................  Yes  No  

(h) Heart problems  ..................................................................  Yes  No  

(i) Problems with bones or joints     ........................................  Yes  No  

(j) Disturbance of balance/coordination  ................................  Yes  No  

(k) Numbness in hands or feet  ................................................  Yes  No  

(l) Disturbance of vision  ........................................................  Yes  No  

(m) Ear / hearing problems  ......................................................  Yes  No  

(n) Thyroid problems  ..............................................................  Yes  No  

(o) Kidney or liver problems  ..................................................  Yes  No  
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(p) Allergy to nuts or dairy products  ......................................  Yes  No  
 
4. Has any, otherwise healthy, member of your family under the 

 
age of 35 died suddenly during or soon after exercise?  ..............  Yes  No  
 

If YES to any question, please describe briefly if you wish (e.g., to confirm 
problem was/is short-lived, insignificant or well controlled.) 
 
 
 
 
 
5. Additional questions for female participants 

(a) are your daughter’s periods normal/regular?  .................... Yes  No  Not started  

(b) is your daughter on “the pill”?  .......................................... Yes  No  Not known  

(c) could your daughter be pregnant?    ................................... Yes  No  Not known  
 

6. Please provide your contact details 
 

Name:  ……………………………………………………………………………… 
 
 
Telephone Numbers: ……………………………………………………………… 
 
 
Work  Home  Mobile  
 
Relationship to 
participant:……………………………………………………………………….. 
 
Daughter’s full 
name:……………………………………………………………………………… 
 
7. Is your daughter currently involved in any other research studies at the 

University? 
 Yes  No  

If yes, please provide details of the study 
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*Please fill in the form the day before your 1st morning visit and eat/ drink what 
you have written above (at similar times the day) before your 2nd morning visit. 

Thank you! 

Time of day 
(hours) 

Description of type of food or 
drink and cooking method   

(e.g. boiled potatoes, canned 
sweetcorn) 

Amount/ Portion  
(e.g. 20 g, 1 packet, 1 

small portion) 

07.00 – 08.00 
 

  

08.00 – 09.00 
 

  

09.00 – 10.00 
 

  

10.00 – 11.00 
 

  

11.00 – 12.00 
 

  

12.00 – 13.00 
 

  

13.00 – 14.00 
 

  

14.00 – 15.00 
 

  

15.00 – 16.00  
 

  

16.00 – 17.00 
 

  

17.00 – 18.00 
 

  

18.00 – 19.00 
 

  

19.00 – 20.00 
 

  

20.00 – 21.00 
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* 

FOOD DIARY 
 

Please record everything you eat and drink for 1 day before and on the day of your 2nd 
visit to the University (i.e., 2 full days). You can then copy the information that you 
record in an effort to eat and drink identical amounts of the same food and drink the days 
before and on your subsequent visits to the University – please see your study schedule. 
 

INSTRUCTIONS FOR USING THE FOOD DIARY AND SCALES 
 

• Everything that you eat and drink over the course of the day should be weighed and the 
weight and type of food or drink recorded. 

 
• Record each food item (e.g., bread, carrots) on a separate line. 
 
• To weigh food...switch scales on and check the display is working 
 
1. Put empty plate (or whatever container you are eating/drinking from) on the scales then 

press ZERO on the scales (the display should read zero) 
 
2. Add the first food item to the plate (e.g., potatoes) and record the weight of the food 
 
3. ZERO the scales again 
 
4. Add next food item (e.g., peas) to the plate 
 
5. ZERO the scales again... repeat until all separate food items are weighed and recorded 
 
6. If you leave any food, try to estimate how much you leave and write the proportion in your 

diary (e.g., left ¼ of peas, ½ of apple, etc..). 
 
• Do not forget to weigh and record second helpings and snacks eaten between meals. 
 
• Leftovers (e.g., apple cores) should be weighed and recorded in the leftovers column. 
 
• Eating Out – Most people eat foods away from home each day, please do not forget to 

record these. Take your diary and scales with you wherever it is possible. If this is too 
inconvenient just record the type of food eaten with an estimated weight (guess the 
weight/how much you ate) – but please write in your diary when a weight has been 
estimated rather than weighed. 

 
• Most snack foods will have the weight of the food on the packet so they do not need 

weighing if you eat the whole item (e.g., packet of crisps) – you just need to remember to 
write the weight down from the packet. 

 
 

We understand that accurately recording your food and drink intake requires time and effort and there may be 
occasions where weighing all food/drink is too difficult. However, please avoid just missing things out or simply 
making it up! If you are unable to weigh the food/drink that you consume, please indicate this on the food diary and 
express the amount in a different way (e.g. 1 slice of bread instead of 30 g of bread). This information is important 
for understanding our results from the study. Thank you! 
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DAY 1 – day before visit 2 
 
The times of day in the table below are just there to help prompt you – it does not matter if you need to use 
some of the space that does not correspond to when you actually ate or drank something. 

Time of 
day  

(hours) 

Brand name 
of 

food/drink 
(e.g. Heinz, 
Kelloggs) 

Detailed description of food/drink 
and cooking method   

(e.g. boiled potatoes, canned 
sweetcorn, bacon fried in butter/olive 

oil) 

Weight 
served 
(grams) 

Did you 
leave any? 
Weight of 
leftovers 
(grams) 

06.00 – 9.00     
     
     
     
     
     
     
     
     
     

9.00 – 12.00     
     
     
     
     
     
     
     
     

12.00 – 15.00     
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15.00 – 18.00     
     
     
     
     
     
     
     
     
     
     
     
     

18.00 – 21.00     
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DAY 2 – day of visit 2 
The times of day in the table below are just there to help prompt you – it does not matter if you need to use 
some of the space that does not correspond to when you actually ate or drank something. 

Time of 
day (hours) 

Brand name 
of 

food/drink 
(e.g. Heinz, 
Kelloggs) 

Detailed description of 
food/drink and cooking method   

(e.g. boiled potatoes, canned 
sweetcorn, bacon fried in 

butter/olive oil) 

Weight 
served 
(grams) 

Did you 
leave any? 
Weight of 
leftovers 
(grams) 

06.00 – 9.00     
     
     
     
     
     
     
     
     
     

9.00 – 12.00     
     
     
     
     
     
     
     
     

12.00 – 15.00     
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VISIT 2 AFTER SCHOOL TODAY!  
You do not need to record your food/drink the evening after visit 2, as there is no morning trial after 

visit 2 (there are only morning trials for visits 3 and 4). 
 

Please record what you eat and drink after visit 3 below...this is the 
most important part of the food diary! 

18.00 – 21.00     
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