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Abstract 

Vehicle time headway is an important traffic parameter. It affects roadway safety, capacity, 

and level of service. Single inductive loop detectors are widely deployed in road networks, 

supplying a wealth of information on the current status of traffic flow. In this paper, we 

perform Bayesian analysis to online estimate average vehicle time headway using the data 

collected from a single inductive loop detector. We consider three different scenarios, i.e. 

light, congested, and disturbed traffic conditions, and have developed a set of unified 

recursive estimation equations that can be applied to all three scenarios. The computational 

overhead of updating the estimate is kept to a minimum. The developed recursive method 

provides an efficient way for the online monitoring of roadway safety and level of service. 

The method is illustrated using a simulation study and real traffic data. 

 

Keywords: Bayesian analysis; Microscopic flow characteristic; Recursive estimation; Single 

loop detector; Vehicle time headway 
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1. Introduction 

 

Single inductive loop detectors are widely deployed in road networks and play a 

fundamental role in intelligent transportation systems. The measurements provided by a 

single loop detector include traffic volume and occupancy. Li (2009) investigated the 

estimation of average vehicle speed using the data from a single loop detector, where the 

statistical analysis for vehicle speed was based on the measurements on occupancy and was 

performed conditional on the traffic volume measurements. From the perspective of 

information extraction, the measurements on traffic volume are not fully utilized. This paper 

is complementary to the work in Li (2009) and aims to extract the information contained in 

the measured traffic counts to estimate average vehicle time headway.  

Vehicle time headway is one of the most fundamental microscopic characteristics of 

traffic flow; it affects roadway safety, capacity, and level of service. It is also crucial for the 

understanding of driver behavior, and plays an important role in car-following theory and 

microscopic simulation studies (Brackstone et al., 2009; Kim and Zhang, 2011). For instance, 

the empirical study in Chang and Kao (1991) has shown that lane-changing behavior is 

closely related to vehicle time headway. Therefore, the information on vehicle time headway 

can help us have a better understanding about drivers’ behavior in roadways.  

Due to the difficulty in data collection, most existing studies on vehicle time headway 

focus on static analysis. Piao and McDonald (2003) and Marsden et al. (2003) have recently 

designed a new mobile device for data collection so that differences in driving behavior can 

be assessed under various traffic conditions. In these studies, car-following data were 

collected using an instrumented vehicle equipped with a range of sensors allowing the 

measurement of time gaps between the instrumented vehicle and the following vehicle. 

However, because of the cost of the device and manpower, this approach cannot be widely 

used for routine data collection in road networks.  
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Zhang et al. (2007) considered another approach. They used the data collected from a 

dual inductive loop detector to analyze vehicle time headway. A dual loop detector can 

provide information about traffic flow on a vehicle-by-vehicle basis, thus vehicle time 

headway can be estimated with high accuracy in Zhang et al. (2007). In addition, since the 

data are recorded automatically, manpower cost is kept to a minimum. However, this 

approach has a limitation: the devices for data collection, i.e. dual loop detectors, are neither 

mobile nor widely deployed in road networks so the information on vehicle time headway is 

available only for the locations where dual loop detectors are deployed. In contrast, the 

instrumented vehicles used by Piao and McDonald (2003) and Marsden et al. (2003) can be 

driven to virtually anywhere to collect data so that the differences in drivers’ behavior can be 

compared. For instance, Marsden et al. (2003) investigated three types of road, i.e. urban 

motorways, urban arterial roads, and urban streets, in several different sites in the U.K., 

France, and Germany.  

The studies mentioned above are static analysis where the estimate of headway cannot be 

updated rapidly as a new observation is collected. The obtained results are useful for long-

term transport planning or simulation studies but cannot be used for online traffic monitoring 

in intelligent transport systems. 

Compared to dual loop detectors, single inductive loop detectors (ILDs) are cheaper and 

much more widely installed. In recent years single ILDs have been used to analyze various 

traffic problems, including the estimation of vehicular speed (Dailey, 1999; Hazelton, 2004; 

Li, 2009), the detection of accidents (Cheu and Ritchie, 1995; Khan and Ritchie, 1998), and 

the estimation of travel time (Dailey, 1993; Petty et al., 1998; Liu et al., 2007). Recently, 

Dailey and Wall (2005) have suggested estimating average vehicle time headway using single 

loop data. Because single ILDs are deployed in most roadway sections of strategic motorway 
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networks for data collection, this approach makes online estimation of headway and thus the 

online monitoring of roadway safety widely feasible. 

The approach incorporated in this paper deviates from the conventional methods for 

headway analysis. It follows the Bayesian approach developed in Li (2009) to estimate the 

average headway. The aim of this paper is to improve on the estimator developed by Dailey 

and Wall (2005) by addressing the following issues. First, to accommodate the nature of 

traffic data that are collected online, we will develop a recursive approach. In contrast to the 

estimator of Dailey and Wall (2005) that depends only on the single observation collected in 

the current time interval, the estimate of the average headway parameter in this paper is 

updated recursively through a Bayesian approach where the current estimate is a weighted 

average of the previous estimate and the current observation. Since much more information is 

used in the estimation, it provides potential for improvement on the quality of the estimate. 

Secondly, as well as a point estimate of average headway, we also provide a measure of 

uncertainty by calculating the associated Bayesian credible interval and the posterior 

variance. Finally, we examine vehicle time headway in various traffic conditions, including 

both light and congested traffic, as well as the traffic disturbed by factors such as traffic 

signals, car overtaking, and lane changes.  

This paper is structured as follows. Section 2 is devoted to problem formulation. In 

Section 3 we consider the light traffic scenario and investigate recursive estimation of 

average vehicle time headway. The results are then extended to congested traffic and 

disturbed traffic conditions in Section 4. A unified algorithm is developed in Section 5. Then 

in Section 6 numerical analyses are carried out to illustrate the method. Finally, concluding 

remarks are offered in Section 7. All proofs of theorems are given in Appendix.  
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2.   Problem formulation  

 

2.1. Data from a single ILD 

Time headway is the elapsed time between the front of the lead vehicle passing a point on 

the roadway and the front of the following vehicle passing the same point. Because of the 

limitations of many commonly used sensors in traffic engineering, most existing studies 

focus on the average headway in time intervals with a pre-specified duration (see, e.g. Chang 

and Kao, 1991; Basu and Maitra, 2010). In particular, the measured traffic data from a single 

ILD are not at the individual vehicle level but rather the relevant information is aggregated 

over each time interval of fixed duration (say 20 or 30 seconds). Hence in this paper we will 

focus on the average headway parameter in each time interval during which the traffic data 

are aggregated.  

Now consider a single ILD that measures traffic flow during a time period that is split 

into a number of successive time intervals, each having a fixed duration of T. During each 

time interval k, data measured by the single ILD include (see, e.g., Dailey, 1999; Hazelton, 

2004; Li, 2009): 

 traffic volume km  defined to be the number of vehicles entering the front edge of 

the ILD in time interval k; 

 occupancy kO  defined to be the percentage of time that the ILD is occupied in 

time interval k.  

Hence, it is the pair of data },{ kk Om  that are available from the ILD in each time interval k 

(k=1,2,…). 

 

2.2. Statistical models for traffic volume  
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Rather than to investigate vehicle time headway using occupancy data kO  as Dailey and 

Wall (2005) did, we focus on traffic volume km . As we shall see later, much attention has 

been paid to traffic volume and many sophisticated models have been developed for it in 

traffic engineering. This enables us to investigate time headway under various traffic 

conditions. 

When traffic is light and there are no disturbing factors such as traffic signals and lane 

changes, the most commonly used model for traffic volume is Poisson distributions: 

 )(~| TPoissonmk    with   0 ,     (2-1) 

where T  is the duration of each time interval over which data are aggregated by the single 

ILD and   is the average rate of arrival. )( TPoisson   denotes a Poisson distribution with 

probability mass function !/)exp()();( k

m

k mTTmp k   . The reciprocal of the average 

rate of arrival  ,  /1 , is the average time headway at the aggregate level, which is the 

parameter of interest in this paper.  

A useful measure to characterize traffic condition in traffic engineering is the ratio of 

variance to mean volume r. When traffic is light and can be approximately modeled by a 

Poisson distribution, the ratio is equal to one, 1r .  

In reality, however, the ratio of variance to mean volume can greatly deviate from unity, 

indicating that Poisson distributions are no longer a suitable model. In particular, when traffic 

becomes heavier, freedom to maneuver is diminished and thus the variance of traffic volume 

is reduced, resulting in a ratio of variance to mean r that is substantially less than 1. In such a 

traffic condition, binomial distributions are usually more appropriate than Poisson 

distributions for modeling the traffic volume (Gerlough and Huber, 1975): 

 ))/(,(~),(|  TBinmk   with   1)/(0  T ,   (2-2) 
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where ),( pnBin  denotes a binomial distribution with probability mass function 

kk mnm

k
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The traffic volume km  in equation (2-2) has a mean of /T  with average headway 

parameter  . The variance of the traffic volume km  is equal to )}/(1){/(  TT   which is 

affected by the diffusion parameter  . In particular, the variance approaches zero as 

1)/( T , reflecting the fact that for heavily congested traffic the arrival of vehicles per 

time interval is nearly constant. On the other hand, the statistical model (2-2) collapses to a 

Poisson distribution (2-1) as 0)/( T . We also note that the ratio of variance to mean 

volume )/(1 Tr   is always less than unity for the binomial distribution (2-2). In traffic 

engineering it has been long known that for congested traffic, binomial distributions give a 

much better fit to traffic volume than Poisson distributions do.  

Next we consider another important scenario where traffic flow is disturbed by factors 

such as traffic signals, car overtaking, and lane changes. These disturbance factors lead to a 

larger variability in traffic volume and the ratio of variance to mean becomes substantially 

greater than 1. Negative binomial distributions are commonly used in this situation (Gerlough 

and Huber, 1975): 

 )/,(~),(| TbinNegmk   ,      (2-3) 

where ),( babinNeg   denotes a negative binomial distribution having probability mass 

function 
kma
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The traffic volume km  in equation (2-3) has a mean of /T  with average headway 

parameter  . The variance of the traffic volume km  is equal to )}/(1){/(  TT   which is 

affected by the diffusion parameter  . In particular, the variance is greatly inflated as 
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)/(T  becomes large. On the other hand, the statistical model (2-3) collapses to a Poisson 

distribution (2-1) as 0)/( T . In addition, the ratio of variance to mean volume is always 

greater than unity, 1)/(1  Tr , for negative binomial distributions (2-3).  

All the three statistical models for traffic volume are frequently applied in the traffic 

engineering literature although the Poisson distribution is more commonly used (e.g. 

Hazelton, 2001; Li, 2005). For instance, Basu and Maitra (2010) carried out a survey on a 

typical working day to collect the 5-min mainstream traffic counts at different junctions. Lan 

(2001) investigated a traffic flow predictor based on dynamic generalized linear model 

framework. Both papers used the variance-mean ratio to differentiate the three statistical 

distributions. In other applications, Nakayama and Takayama (2003), and Kitamura and 

Nakayama (2007) incorporated binomial distribution to characterize traffic volume, whereas 

Tian and Wu (2006) assumed a negative binomial distribution in their analysis. 

Before concluding this section, we consider an example of real traffic measured by a 

single ILD on a weekday (Thursday). The single ILD data were downloaded at 

http://www.its.washington.edu/tdad. The downloaded data included measurements on volume 

and occupancy during each time interval of duration 20s for twenty-four hours. The ILD is 

located in the north of Seattle in Interstate-5 with three lanes in both the northbound and 

southbound directions.  

Figure 1 displays the smoothed variance-mean ratio over the time of day in lane 2 and 

lane 3 for both directions. It can be seen from Figure 1 (upper left and lower left) that except 

for the early morning period during which the traffic was light and the ratio r was close to 

unity, traffic was congested in both northbound and southbound lane 2 throughout the day. 

This was characterized by a low ratio of variance to mean volume, thus suggesting that a 

binomial distribution model be a better choice than the Poisson.  

http://www.its.washington.edu/tdad
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On the other hand, the third lanes are overtaking lanes. For both the northbound and 

southbound directions, traffic in lane 3 exhibited a much larger variability during the day (see 

Figure 1, upper right and lower right) except for the afternoon peak time. Presumably this 

was the consequence of car overtaking and lane changing. Negative-binomial distributions 

thus would provide a better fit than Poisson distributions in this situation. 

 

(Figure 1 is about here) 

Fig. 1. The smoothed ratio of variance to mean volume over time in 

northbound lane 2 (upper left), northbound lane 3 (upper right), 

southbound lane 2 (lower left), and southbound lane 3 (lower right). 

 

 

3.   Recursive estimation of average headway for light traffic 

 

In this section, we consider statistical inference for the average headway parameter under 

the light traffic condition. Throughout this section it is assumed that there is no disturbing 

factor so that the traffic volume follows a Poisson distribution (2-1) with probability mass 

function !/)/exp()/();( 1

k

m

k mTTmp k   . We shall pool the current observation on 

traffic volume and the information obtained in the previous time intervals, and perform 

Bayesian analysis for the average headway parameter  . 

 

3.1.  Bayesian inference  

We start with the first time interval, 1k . It is assumed that during this time interval, 

there is no prior knowledge about the average headway parameter  . Hence, a non-

informative prior is used so that the subsequent inference is unaffected by information 

external to the current data. Throughout this paper, non-informative priors are chosen using 
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Jeffrey’s principle. For the Poisson distribution );( 1kmp , Jeffrey’s principle leads to the 

following non-informative prior: 

 2/32/1 )()(   Ip ,       (3-1) 

where )(I  is the Fisher information for  .  

Now applying Bayes’ rule to combine prior (3-1) with likelihood (2-1) );( 1kmp , we 

obtain the following posterior distribution of   in the first time interval: 

)|( 1mp  );()( 1

1

 mpp }/exp{)/(
)2/3( 1  TT

m



. 

Hence, the posterior distribution of   is an inverse gamma distribution ),2/1( 1 Tminv   

with a posterior mean equal to )2/1/( 11  mT  and a posterior variance equal to 

)2/3/( 1

2

1 m , where ),( inv  denotes an inverse gamma distribution having probability 

density function ) /exp( )}(/{)( )1( tttg     , and ( ) is the gamma function. Let 

2/112  m . Then the posterior distribution of   in time interval 1k  can be rewritten as 

))1(,( 122  inv .  

Now turning to the next time interval k (k=2,3,…), we specify the prior in time interval k 

as the posterior obtained in time interval 1k :  

 ))1(,(~ 1 kkkinv  ,       (3-2) 

where the prior mean is equal to 1k  and the prior variance is equal to )2/(2

1  kk  . The 

prior mean represents an estimate of the average headway parameter   obtained a priori. The 

hyper-parameter k  is associated with the accuracy of the prior information about  . Note 

that this prior distribution reflects prior knowledge on the average headway parameter for the 

‘local’ time interval k only. Throughout the whole time period of interest (e.g., a day), the 

time headway usually evolves over time and the ‘local’ prior changes accordingly.  
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Now we apply Bayes’ rule to combine likelihood (2-1) );( 1kmp  with prior (3-2). It can 

be shown by some algebra that the posterior distribution of   is  

))1(,(~| kkkkkk mminvm   ,     (3-3) 

where  

kkkkk mT /)1(1            (3-4) 

is the posterior mean with weight )1/()1(  kkkk m , and the posterior variance is  

Pkkkk Vmm  ˆ)2/()|var( 2  .      (3-5) 

We use the posterior mean as an estimate of the average headway parameter. Note that 

the currently observed average headway in time interval k is kmT /  which is usually 

considered as a crude estimate of  . From equation (3-4), the current estimate of   is a 

weighted average of the previous estimate 1k  and the current crude estimate kmT / .  

Now to assess the uncertainty of the estimate, we construct a credible interval for the 

headway parameter.  From the posterior distribution of   in (3-3), a 95% credible interval for 

  can be obtained: 

  ( ))(2(/)1(2 2

025.0 kkkkk mm   , ))(2(/)1(2 2

975.0 kkkkk mm   ),   (3-6) 

where )(2 df  is the value for the chi-squared distribution with df degrees of freedom that 

provides a probability of   to the right of the )(2 df  value.  

Now moving to the next time interval, we treat the posterior distribution (3-3) obtained in 

time interval k as the prior distribution in time interval 1k :  

))1(,(~ 11 kkkinv    ,       (3-7) 

where the diffusion parameter is updated as kkk m  1 . Hence, when a new observation 

1km  is available in time interval 1k , the estimate of   can be updated as outlined above.  
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3.2.   Recursive estimation 

For real traffic, the average headway parameter   evolves slowly over time. To take this 

into account, we follow Li (2009) and define a forgetting factor so that observations collected 

at different times are weighted differently, with the latest observations given the largest 

weights. Specifically, instead of (3-7), the prior distribution is now specified as 

 ))1(,(~ 11 kkkinv    ,       

where   is a forgetting factor lying in the interval (0, 1). This factor does not affect the prior 

mean of   but its prior variance is inflated, reflecting the fact that a priori we are less sure 

about the current value of   due to its evolution. This results in the following algorithm for 

the recursive estimation of  : 

 

Algorithm 1 (the estimation of average vehicle headway).  

Given: length of time interval T; forgetting factor  ; initial prior parameters: 2/11   and 

00  . 

For k=1:K 

Step 1. Collect the current measurement on traffic volume km ; 

Step 2. Calculate weight )1/()1(  kkkk m ; 

Step 3. Estimate the average headway parameter   by kkkkk mT /)1(1     ; 

Step 4. Calculate the posterior variance )2/(2  kkkP mV  ; 

Step 5. Update the diffusion parameter: )(1 kkk m  ; 

End. 
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If there is no vehicle passing through the ILD in a time interval k, then according to 

Bayesian theory the posterior distribution remains the same as the prior distribution. Hence 

we set 1 kk   and ),max( 11 kk   .   

It is clear that when the forgetting factor   becomes larger (smaller), the estimate of 

average headway becomes smoother (rougher). In particular, when   is taken as 0, all 

information collected previously is discarded and the current estimate is based solely on the 

current observation kmT / .  See Section 5.5 for further discussion on the choice of the 

forgetting factor.  

 

4.  Further extensions 

 

In this section we extend the results obtained in the previous analysis for light traffic to 

two other scenarios, congested traffic and disturbed traffic.  

 

4.1. Congested traffic  

As illustrated in Figure 1, when traffic becomes heavier, traffic volume per time interval 

is more uniform with smaller variability. To accommodate this nature, the Poisson model will 

be replaced with binomial distributions (2-2). For simplicity, in this subsection we shall focus 

on the analysis for the parameter of interest only, i.e. the average headway parameter  . The 

diffusion parameter   is assumed to be known from historical data. The estimation of   will 

be investigated in Section 5.   

As before, we suppose that we have no prior knowledge about   in time interval 1k  

and we specify the Jeffrey’s non-informative prior in the following analysis. 

 

Lemma 1. For the binomial distribution (2-2), the Jeffrey’s non-informative prior is 
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 2/12/3 )}//(11{)/()(   TTp  .     (4-1) 

 

Applying Bayes’ rule to combine prior (4-1) with likelihood (2-2) leads to the following 

posterior distribution of   in time interval 1k : 

 2/1)2/3(

1
11 )}//(11{)/()|(



mm

TTmp
 . 

In general, we suppose that the posterior obtained in time interval 1k  (k=2,3,…) has the 

following form: 

 kkk TTp
  

 )}//(11{)/()(
)1(

. 

The posterior obtained in time interval 1k  is now specified as the prior in time interval k 

which can be rewritten as 

 kkk

kkkkp
  





  )}//()1({)/()( 1

)1(

1     (4-2) 

with a prior mean of )}1(/{1  kkk T  .  

Now we apply Bayes’ rule to combine prior distribution (4-2) with the current 

observation on traffic volume in equation (2-2) to derive the posterior distribution in time 

interval k. The main result is summarized below:  

 

Theorem 1. Suppose that conditional on  , traffic volume km  follows a binomial 

distribution (2-2) with a known diffusion parameter  .  Then for the prior distribution of   

specified by (4-2), the posterior distribution of )1/( TcB   has an F distribution with 

degrees of freedom )1(2  kkkk mB   and )(2 kkk mA    respectively, where 

)1/()(  kkkkkB mmc   is constant. The posterior mean of   is given by 

kkkkk mT /)1(1            (4-3) 

with weight )1/()1(  kkkk m , and the posterior variance of   is given by 
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2))(1)(1()|var(   kkkkkPk mVm ,   (4-4) 

where PV  is defined in equation (3-5). In addition, a 95% credible interval for   is  

),1),((~( 975.0 kkkB ABFc   ))1),((~
025.0 kkkB ABFc  ,     

where 11 ))(1(~    kkkBB mcc . ),( baF  is the value for the F distribution with 

degrees of freedom a and b that provides a probability of   to the right of the ),( baF  

value.  

 

Now moving to the next time interval, the posterior distribution obtained in Theorem 1 

is treated as the prior distribution in time interval 1k . It can be rewritten as 

 111 )}//()1({)/()( 11

)1(  




 kkk

kkkkp
     (4-5) 

with the updated parameters kkk m  1  and   kk 1 . The prior distribution in (4-5) 

has the same functional form as that in equation (4-2). Hence, when a new observation 1km  

becomes available, Theorem 1 can be applied again to obtain the posterior distribution in 

time interval  1k  and the estimate of   can be updated using equation (4-3). In addition, 

we note that when k is large,   kk 1  is not small. In this case, equation (4-4) may be 

simplified: 

)}/()1(1{)|var(   kkkPk mVm .      (4-6) 

 

4.2. Disturbed traffic  

As shown in Figure 1, when traffic flow is disturbed by factors such as cars overtaking 

and lane-changing, traffic volume may have larger variability. In this situation, negative 

binomial distributions provide a better fit. As before, we assume that the diffusion parameter 
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  in equation (2-3) is known. We shall briefly discuss Bayesian analysis for the average 

headway parameter   below.  

First, the Jeffrey’s non-informative prior is specified for time interval 1k . 

 

Lemma 2. For the negative binomial distribution (2-3), the Jeffrey’s non-informative prior is 

 2/11 )/1()/()(   TTp  .      (4-7) 

   

The distribution given in Lemma 2 is a natural conjugate prior of the negative binomial 

distribution. As demonstrated later in Theorem 2, it is linked to a transformed F distribution.  

In general, motivated by Lemma 2, we suppose that the posterior obtained in the time 

interval 1k  has the following form:  

 
)(1

)/1()/()( kkk TTp
  

 ,     

which can be rewritten as 

 
)(

1

)1(

1 )}/()1{()/()( kkk

kkkkp
  





      (4-8) 

with a mean of )}1(/{1  kkk T  . The distribution in (4-8) is specified as the prior in 

time interval k. Now we can obtain the posterior in time interval k via Bayes’ rule.  

 

Theorem 2. Suppose that conditional on  , traffic volume km  follows a negative binomial 

distribution (2-3) with a known diffusion parameter  .  Then for the prior distribution of   

specified by (4-8), the posterior distribution of TcNB /  has an F distribution with degrees 

of freedom )(2   kkB  and )(2 kkk mA     respectively, where 

)/()(   kkkNB mc  is constant. The posterior mean of  is given by 

kkkkk mT /)1(1            (4-9) 

with weight )1/()1(  kkkk m , and a posterior variance of   is given by 
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)}/()1(1{)|var(   kkkPk mVm .     (4-10) 

A 95% credible interval for   is 

( ),(~
975.0 kkkNB ABFc  , ),(~

025.0 kkkNB ABFc  )     (4-11) 

with )/()1(~
kkkkNB mmc   .  

 

Now we update parameters kkk m  1  and   kk 1  so that the posterior 

distribution obtained in Theorem 2 can be rewritten as 

 
)(1 111 )/1()/()(  

 kkk TTp
  .     

This posterior is treated as the prior distribution in time interval 1k . Hence, statistical 

inference for   in time interval 1k  can be drawn in a similar manner. 

 

5.  A unified algorithm 

 

In this section we will first investigate how to estimate the diffusion parameter   and 

then develop a unified algorithm that can accommodate all three traffic conditions discussed 

in the previous sections. 

 

5.1. Estimation of the diffusion parameter via the method of moments 

In practice, before the foregoing recursive method is applied, the diffusion parameter   

needs to be estimated from historical data. In this subsection we focus on the method of 

moments. Suppose that we have collected some traffic volumes from the ILD, km  (k=1,…n), 

under the same traffic condition. The sample mean Ê  and variance V̂  can thus be calculated. 

We first consider the binomial distribution (2-2). Let E and V denote the theoretical mean 

and variance of the binomial distribution (2-2) respectively. It is easy to show that  
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)/(2 VEE  .         (5-1) 

Hence   can be estimated by replacing E and V with their sample counterparts Ê  and V̂ . 

The estimate of the diffusion parameter   in the negative binomial distribution (2-3) can 

be obtained similarly. Let E and V  be the theoretical mean and variance of the distribution 

(2-3) respectively. Then we can obtain   

)/(2 EVE  .        (5-2) 

Again the method of moments can be used to estimate   by replacing E and V with their 

sample counterparts, Ê  and V̂ . 

Clearly, when the sample variance V̂  is sufficiently close to the sample mean Ê ,  the 

estimated diffusion parameter ̂  will become very large in both equations (5-1) and (5-2). In 

this case, a Poisson distribution is a suitable alternative. In fact, as   becomes large, the 

binomial distribution (2-2) and negative binomial distribution (2-3) will approach to the 

Poisson distribution (2-1) under certain conditions.  

In practice, we can split the whole time period of interest (e.g. a day) into a number of 

relatively small sub-periods during which the traffic flow is approximately stationary. We 

then estimate the value of  for each sub-period. Consequently, throughout the day we can 

obtain a piecewise function of   for the online estimation of the average headway parameter.  

In the next subsection, we will investigate a more sophisticated approach to the estimation 

of the diffusion parameter.  

 

5.2.  A Bayesian approach to estimating the diffusion parameter 

Next, we take into account of non-stationarity of traffic flow and develop a Bayesian 

approach to estimating the diffusion parameter  . Consider non-stationary traffic flow where 

average headway evolves over time and is modeled via a random walk: 
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 kkk   1   with  )/1 ,0(~  Nk       

where 2  is the precision parameter. Let ),|( 1  kkp  denote the conditional 

distribution of k  and )( 1p  denote the distribution of the initial headway parameter 1 . 

Suppose that we know little about 1  a priori and )( 1p  is taken as a uniform distribution 

over an interval ),0( C .  

Now consider a sample of n traffic counts, km  (k=1,…,n), collected over n successive 

time intervals. Let ),|(  kkmf  denote the binomial distribution (2-2) or negative binomial 

distribution (2-3). To complete the model specification in Bayesian analysis, we need to 

specify the priors for   and  . We use non-informative priors for   and   in the analysis: 

the prior )(g  of   is chosen as a gamma distribution ),( 11 baGamma and the prior )(g  of 

  is chosen as a gamma distribution ),( 22 baGamma , where the hyper-parameters ia  and ib  

(i=1,2) are small. 

Applying Bayes’ rule, the posterior distribution is given by 

 )()()(),|(),|(),,,...,( 1

2

1

1

1  ggppmff
n

k

kk

n

k

kkn 






 .   

The above posterior can be simulated using a numerical approach and the parameter   can 

be estimated as its posterior mean. For this end, we follow Hazelton (2004) and use the 

following MCMC algorithm to simulate draws from the above posterior distribution where 

)(t

k , )(t  and )(t  denote the values of k ,   and   in the t-th iteration (t=1,2,…) 

respectively: 

 

Algorithm 2 (the estimation of the diffusion parameter). 

Given: length of time interval T; traffic volume km  (k=1,…,n) with 01 m . 
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Step 1. Initialization. t=1. Set )(t

k  equal to the crude estimate kmT /  if 0km ; otherwise 

)(

1

)( t

k

t

k  . Set 1)( t  and )(t  equal to (5-1) or (5-2), depending on the specified 

underlying distribution.  

Step 2. For k=1:n 

(a) Generate a candidate value of average headway in time interval k, )( p

k , from the 

proposal distribution )(q , where )(q  is given by )/1 ,( )()(

2

ttN  if k=1; )(q  is 

given by ))2/(1 ,2/)(( )()(

1

)(

1

tt

k

t

kN     if 1<k<n; and  )(q  is given by 

)/1 ,( )()(

1

tt

nN   if k=n. 

(b) Define the acceptance probability as 

)
),|(

),|(
,1min(

)()(

)()(

1 tt

kk

tp

kk

mf

mf
r




 . 

Accept )( p

k  with probability 1r . If the candidate is accepted, let )()1( p

k

t

k   ;     

otherwise )()1( t

k

t

k   . 

Step 3. Generate )1( t from the gamma distribution  

 ))(5.0,2/)1((
2

2)(

1

)(

11 



n

k

t

k

t

kbnaGamma  . 

Step 4. Generate a candidate value of  , )( p , from the proposal distribution ),( 2)(  tN , 

where   is a tuning parameter which can be tuned during the simulation. Define the 

acceptance probability as 

)

)(),|(

)(),|(

  ,1min(
)(

1

)()1(

)(

1

)()1(

2

t
n

k

tt

kk

p
n

k

pt

kk

gmf

gmf

r

















 . 

Accept )( p  with probability 2r . If the candidate is accepted, let )()1( pt   ;     otherwise 

)()1( tt   . 
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Step 5. Update t by t+1 and go to Step 2 until t reaches to a given size.  

 

Overall, the above MCMC algorithm is a mix of Gibbs sampler and Metropolis-Hastings 

algorithm. In each iteration t, )1( t  can be generated straightforwardly. However, the other 

parameters are drawn using the Metropolis-Hastings algorithm.  

 

5.3. Robustness of the estimate of average headway  

Now we extend Algorithm 1 in Section 3.2 to the scenarios of congested traffic and 

disturbed traffic.   

First, we consider the posterior means. Comparing equations (3-4), (4-3), and (4-9) 

obtained under different traffic conditions, we can see that the three posterior means share a 

common form of formula: 

kkkkk mT /)1(1    . 

Hence the recursive formula used for the estimation remains unchanged no matter what the 

traffic condition is and which statistical model is used in the analysis.  

However, it should be noted that unlike the ordinary moving average with a constant 

weight, the developed method uses a traffic-dependent weight to pool information collected 

over different time intervals since the weight )1/()1(  kkkk m  depends on the 

traffic volume per se. For heavier (or lighter) traffic with larger (or smaller) values of traffic 

volume km , the weight k  for the previous estimate 1k  is lower (or higher).  

Next we turn to the posterior variances. Similar to Section 3.2, we introduce the 

forgetting factor   and let )(1   kk  with an initial value of 00  . It is 

straightforward to obtain )}1/()1{( 1   k

k . Substituting it into equations (4-4) 

and (4-10), and noting equations (5-1) and (5-2), the formulae for the posterior variances of 
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average headway under both congested and disturbed traffic conditions can be written in a 

unified form: 

)}1/()1)(1](/)[(1{)|var( 12  k

kkPk mEEVVm  .   (5-3) 

Note that equation (5-3) also includes the light traffic scenario as its special case: when traffic 

is light and there is no disturbing factor, in theory we have VE  , and thus equation (5-3) 

collapses to equation (3-5), i.e. Pk Vm )|var( . Furthermore, when k is large, we have 

01 k . Normally this limiting behavior is rapidly achieved. Hence, the posterior variance 

(5-3) may be further simplified to be: 

)}1)(1](/)[(1{)|var( 2   kkPk mEEVVm .   (5-4) 

It can be seen from (5-4) that, although the posterior variances derived under different 

traffic conditions share the same form of formula (5-4) for computation purposes, the 

characteristic of uncertainty associated with the estimate differs for different scenarios. In 

particular, depending on the sign of EV   (i.e. positive, negative, or zero), the variability of 

the posterior estimate is greater than, less than, or equal to the benchmark PV . Hence, 

compared with that for light traffic, the variability of the posterior estimate is smaller for 

congested traffic. This is mainly because under the congested traffic condition, freedom to 

maneuver is diminished and thus the headway between each lead vehicle and the following 

vehicle becomes more uniform. The decreased variability of traffic volume leads to a smaller 

posterior variance of the average headway parameter. Likewise, under the condition that 

traffic is disturbed, the headway between a lead vehicle and the following vehicle varies 

substantially, resulting in a larger posterior variance of the average headway parameter. 

On the basis of the foregoing discussion, Algorithm 1 can be extended for the estimation 

of the average headway parameter under all three traffic conditions by modifying Step 4: 

 

Modified Algorithm 1 (the estimation of average vehicle headway).  
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Step 4. Estimate the posterior variance by )}1)(1](ˆ/)ˆˆ[(1{ 2   kkP mEEVV . 

 

5.4. Forecasting and model validation  

It is important to check a built model before it is applied. In practice, however, it is 

difficult to directly compare the true values of the parameters with the corresponding 

estimated values since the true values of the parameters of interest are normally unknown. To 

circumvent this problem, the built models are usually validated by comparing the 

measurements of the observable variables to the corresponding forecasted values produced by 

the model. From the perspective of predictivism, it is the accuracy of predictions that is the 

ultimate test of the built model (Press, 2003).  

In this subsection we investigate the issues of forecasting and model validation. For the 

problem of average headway estimation, let )|( kmp   denote the posterior distribution of 

average headway   in time interval k. According to the previous analysis, )|( kmp   is given 

by equation (3-3) or by Theorem 1 or 2, depending on the traffic condition. Let )|( 1 kmf  

denote the probability mass function of traffic volume in time interval k+1 that is given by 

equation (2-1) or (2-2) or (2-3).  

The posterior predictive distribution of the traffic volume in the time interval k+1 is 

defined to be (Press, 2003): 

  dmpmfmmg kkkk )|()|()|( 11    . 

Then the one-step-ahead forecast taken as the mean of the posterior predictive distribution is 

given by dxmxxgm kk  )|(ˆ
1 . The following theorem provides the one-step-ahead forecast 

of the traffic volume.  
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Theorem 3. Suppose that traffic volume km  follows a Poisson distribution (2-1) or a 

binomial distribution (2-2) or a negative binomial distribution (2-3).  If the initial prior is 

specified to be non-informative via Jeffrey’s principle, then the one-step-ahead forecast of the 

traffic volume 1km  can be calculated using a unified formula below: 

 )/(ˆ
1 kkk Tm  ,        (5-5) 

where )]1)(1/[())((   kkkkkkk mm  and by convention we choose 

  for Poisson distributions so that k  collapses to )1/()(  kkkk mm   in this case.  

 

Theorem 3 indicates that the one-step-ahead forecast of the traffic volume 1
ˆ

km  obtained 

in the current time interval k is equal to the duration of the time interval T divided by the 

current estimate of average headway k  and adjusted by a factor of k .  

In practice, in order to validate the method developed in this paper, we calculate the one-

step-ahead forecast 1
ˆ

km  in each time interval k. We then compare 1
ˆ

km  to the true traffic 

volume 1km  observed in time interval k+1 (k=1,…,n). The overall performance of the 

developed method is assessed via the root mean squared error (RMSE): 

 2/1

2

2 )}1/()ˆ({  


nmmRMSE
n

k

kk .      (5-6) 

This is illustrated in the empirical analysis in Section 6.2.  

 

5.5. Choice of the forgetting factor 

In practice, the forgetting factor is usually treated as a tuning parameter so that it is 

determined experimentally. In this paper, the forgetting factor is chosen in a way such that 

the overall forecast error measured by RMSE is kept at the minimum level.  
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Specifically, suppose that we have collected a set of observations km  (k=1,…,n) on 

traffic volume during the period of a day that is of research interest. Consider a grid of points 

from min  to max  by a step of 
~

 ( 10 maxmin   ), for instance, a grid of points between 

0.05 to 0.95 by a step of 0.05. For each point taken by  , we apply the modified Algorithm 1 

to estimate the average headway and to calculate the one-step-ahead forecast of traffic 

volume using Theorem 3. The forecasted and observed traffic volumes are then compared. 

The forgetting factor is chosen so that it leads to the minimum RMSE in equation (5-6).  

 

6.      Numerical studies  

In this section, we first carry out a simulation study and then perform an empirical 

analysis to examine the performance of the developed method.  

 

6.1.     A simulation study  

A major advantage of carrying out a simulation study is that the ‘true’ values of the 

average headway parameter are known a priori so that it is straightforward to assess the 

performances of different estimation methods in terms of accuracy. 

 

6.1.1. Data generation 

Consider an ILD that measures traffic volume during a number of successive time 

intervals, each having a duration of T=20s. Traffic flow was simulated in 720 time intervals. 

To accommodate the nature that vehicle headway evolves slowly over time, the ‘true’ value 

of the average headway k  in time interval k (k=1,…,720) was simulated using a random 

walk model having an initial value of 2.5s. The random noise of the random walk followed a 

normal distribution with a zero mean and a standard deviation of 0.01s. The minimum 

simulated average headway was set equal to 0.6s in the data generation. The counts km  of 
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vehicles passing through the ILD were simulated using a negative binomial distribution 

having a mean of kT /  and a diffusion parameter of  . The latter parameter was set at 

different levels in the experiments. Figure 2 displays the simulated values of average 

headway in one run of the experiments.  

 

(Figure 2 is about here) 

Fig. 2. The simulated average headway in one run of the simulation 

experiments with  =10.  

 

6.1.2. Repeated experiments 

In the following experiments, the diffusion parameter   was set equal to 5, 10, 20 and 50 

respectively. In each experiment, the 720 time intervals were split into two sub-periods, one 

including the first 180 time intervals and the other the remaining 540 intervals. The traffic 

counts simulated in the first sub-period were treated as the modeling data upon which the 

diffusion parameter   was estimated and the value of the forgetting factor   was 

determined using the method in Section 5. The performance of the developed estimation 

method was assessed using the data in the second sub-period, where the RMSE between the 

true values k
 

and the estimated values of average headway k̂  (k=1,…,540) was calculated:

 

 2/1
540

1

2 }540/)ˆ({



k

kkRMSE  . 

In total 100 runs were conducted for each experiment. The developed method was 

compared with the crude estimate kmT /  in terms of average RMSE over the 100 runs, as 

displayed in Table 1.  

 

(Table 1) 
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From Table 1, it can be seen that the developed method has a better performance than that 

of the crude estimation method. This is not surprising: statistically the developed method 

pools the information collected in the current and previous time intervals via the Bayes’ rule 

to estimate the average headway, whereas the crude estimation method uses the current 

observation only.  

 

6.2.  A practical example 

 

In this subsection we return to the real traffic data discussed in Section 2 and present an 

empirical analysis for the data. As mentioned before, the collected data includes the counts of 

vehicles passing through a selected single ILD near Seattle within each 20s time interval 

during a normal working day (Thursday).  

In the following analysis, the whole day of interest was split into four time periods, i.e. 

midnight to 6 a.m. (period I), 6 a.m. to noon (period II), noon to 6 p.m. (period III), and 6 

p.m. to midnight (period IV). For illustration purposes, we consider the traffic in northbound 

lane 3 only. As shown in Figure 1 (upper right), this includes two important scenarios, 

disturbed traffic and heavy traffic. The data collected on Thursday is termed testing data 

hereafter. For the modeling purposes we also downloaded the traffic data one day before (i.e. 

on Wednesday), termed modeling data hereafter. The diffusion parameter and forgetting 

factor were determined using the modeling data.  

 

6.2.1.   Recursive estimation of average headway 

For each time period, we first used the method in Section 5 to determine the forgetting 

factor based on the modeling data. The modified Algorithm 1 was then applied to the testing 

data to estimate average headway. The estimated average headway parameter over time is 
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displayed in Figure 3. It can be seen that during the early morning period, the estimated 

average headway was between 10s and 15s. In the transition period between 5 a.m. and 7 

a.m., it reduced rapidly to about 2s. This level was maintained until about 9 p.m. When the 

traffic became light in the late evening, it returned to a higher level. These results are in line 

with those in Zhang et al. (2007) obtained using dual loop detector data.  

 

(Figure 3 is about here) 

Fig. 3. The estimated average headway in the periods of midnight to 6 

a.m. (upper left),  6 a.m. to noon (upper right),  noon to 6 p.m. (lower 

left),  and 6 p.m. to midnight (lower right).  

 

To evaluate the performance of the developed method, we calculated the RMSEs between 

the one-step-ahead forecasts of traffic volume km̂  and the observed values km  using 

equation (5-6). The accuracy was then compared to the crude estimation method where the 

forecasted traffic volume was taken as the duration of the time interval T divided by the crude 

estimate of headway in each time interval.  

 

(Table 2) 

 

It can be seen that the developed method outperformed the crude estimation method: 

except for the early morning period, the average forecast error of the proposed method is 

about one vehicle less than that of the crude estimation in each 20s time interval.  

 

6.2.2.   Bayesian inference for the diffusion parameter 



 29  

Next, we focus on period I and consider the measure of uncertainty. We first investigate 

the diffusion parameter   using the modeling data in period I. Figure 1 (upper right) 

suggests that a negative binomial distribution model be suitable for this period.  

We carried out a Bayesian analysis outlined in Section 5.2 to estimate the diffusion 

parameter  . For the priors of   and  , ),( 11 baGamma and ),( 22 baGamma , we followed 

Hazelton (2004) and set the hyper-parameters ia  and ib  (i=1, 2) equal to 0.001. The upper 

bound C  of  )( 1p  was set equal to 40s.  

The posterior distribution was obtained using the MCMC method outlined in Section 5.2. 

In total 5000 iterations were carried out, where the first 2000 iterations were treated as burnt-

in period and thus the corresponding results were discarded; the remaining 3000 draws were 

retained for the subsequent analysis. The obtained posterior distribution of   is displayed in 

Figure 4. The estimate of  using the posterior mean is 15.42 with a posterior standard 

deviation of 6.02.  

 

(Figure 4 is about here) 

Fig. 4. Histogram of 3000 draws from the posterior distribution of 

parameter   using the modeling data in the morning period of 

midnight to 6 a.m. 

 

Next we turn to investigate the uncertainty of the average headway estimate. Using the 

estimated value of   from the modeling data, the credible interval for the testing data was 

constructed, as displayed in Figure 5. It can be seen that although the estimated average 

headway was mostly around 12s or so before 5 a.m., the envelope of the 95% credible 

interval was much wider. The upper limit can be as high as 25s or occasionally even over 
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30s. This is mainly the consequence of the large variability of traffic in this overtaking lane 

and in this early morning period.  

 

(Figure 5 is about here) 

Fig. 5. The estimated average headway in the early morning (real line) and 

the associated envelope of a nominal 95% credible interval (dotted lines). 

 

7.   Concluding remarks 

 

Single inductive loop detectors provide measurements on both traffic volume and 

occupancy. The research in Li (2009) on vehicular speed estimation used occupancy data and 

the statistical analysis was performed conditional on traffic volume. This paper is 

complementary to the work in Li (2009) and aims to extract the information contained in the 

measurements on traffic volume.  

Under three important traffic conditions, i.e. light traffic, heavy traffic, and disturbed 

traffic, this paper has investigated the estimation of average headway using the data measured 

from a single ILD. A unified approach has been developed for the recursive estimation of 

average headway. It shows that the estimates obtained under the three traffic conditions share 

a common set of recursive equations. Hence, the estimation method is robust in the sense that 

it does not depend on either the change in traffic condition or the choice for statistical 

models. The computational overhead of updating the estimate is also kept to a minimum.  

Since single ILDs are deployed throughout strategic arterial roadways, this recursive 

method is applicable in a wide geographical area for online monitoring of roadway safety and 

the level of service.  

 

Appendix. Proofs of the theorems 
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The proofs of Lemma 1 and Theorem 1 are given below. Lemma 2 and Theorem 2 can be 

shown in a similar manner.  

 

Proof of Lemma 1. Let );( km  denote the probability mass function of the distribution in 

equation (2-2). Then  

 )}/(1log{)(log);(log  Tmmconstm kkk  .  

It is easy to verify that  

 })/(/{)/2)((//);(log 22222  TTmTmm kkk   .  

Then the Fisher’s information for   is equal to  

1322 )/(1(}/);(log{)(    TTmEI k   

and the Jeffrey’s non-informative prior is proportional to 

2/1)}({ I 2/12/3 )}//(11{)/(   TT  . This completes the proof.  

 

Proof of Theorem 1. Applying Bayes’ rule to combine prior (4-2) with likelihood (2-2) 

yields the following posterior distribution:  

 )|()()|(  kk mppmp  kkkkk mm
TT




  )}//(11{)/(
)1(

. 

Let )1/(  TcB   with constant )1/()(  kkkkkB mmc  . It is easy to 

verify that random variable   follows an F distribution with degrees of freedom 

)1(2  kkkk mB   and )(2 kkk mA    respectively. The posterior mean, posterior 

variance, and Bayesian credible interval can be obtained straightforwardly from the F 

distribution. This completes the proof.  

 



 32  

Proof of Theorem 3. First we note that the one-step-ahead forecast can be calculated using 

the well-known identity: }|),|({)|(ˆ
111 kkkkkk mmmEEmmEm   . It is straightforward to 

obtain  /),|( 1 TmmE kk   from equation (2-1) or (2-2) or (2-3), depending on the 

assumption on the underlying distribution for traffic volume. Hence we have 

}|{ˆ 1

1 kk mTEm 

   . If traffic volume follows Poisson distribution (2-1), the posterior of  is 

given by (2-3). In this case it is easy to verify that  }|{ 1

kmE  )1/()(1 

kkkkk mm  .  

Next we show that Theorem 3 holds when traffic volume follows a binomial distribution 

(2-2). From Theorem 1, the posterior distribution of )1/(  TcB   has an F distribution 

with degrees of freedom )1(2  kkkk mB   and )(2 kkk mA   . We note 

 }|)/({}|{ˆ 1

1 kBBkk mccEmTEm   

 . 

By some algebra the above mathematical expectation can be shown equal to )/( kk Tr  . The 

proof for the case of the negative binomial distribution is similar. 
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Fig. 1. The smoothed ratio of variance to mean volume over time in northbound lane 2 (upper 

left), northbound lane 3 (upper right), southbound lane 2 (lower left), and southbound 

lane 3 (lower right). 
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Fig. 2. The simulated average headway in one run of the simulation experiments with  =10. 

 



 38  

 

Fig. 3. The estimated average headway in the periods of midnight to 6 a.m. (upper left),  6 

a.m. to noon (upper right),  noon to 6 p.m. (lower left),  and 6 p.m. to midnight (lower 

right). 
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Fig. 4. Histogram of 3000 draws from the posterior distribution of parameter   using the 

modeling data in the morning period of midnight to 6 a.m. 
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Fig. 5. The estimated average headway in the early morning (real line) and the associated 

envelope of a nominal 95% credible interval (dotted lines). 
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Table 1. Average RMSEs over 100 runs between the ‘true’ and estimated average headways  

 

  =5  =10  =20  =50 

The developed method 0.40 0.37 0.35 0.35 

The crude estimation 3.41 2.89 2.22 1.94 

 

 

 

Table 2. RMSEs between the observed traffic volumes and the corresponding one-step-ahead 

forecasts 
 

 Period I 

(midnight – 

6:00 a.m.) 

Period II 

(6:00 a.m. – 

12:00 noon) 

Period III 

(12:00 noon – 

18:00 p.m.)  

Period IV 

(18:00 p.m. – 

midnight) 

The developed method 1.55 3.35 2.90 2.66 

The crude estimation 1.84 4.38 3.91 3.60 

 

 

 

 

 


