

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Inferring Malicious Network Events In

Commercial ISP Networks Using Traffic

Summarisation

by

Peter Sandford

A Doctoral Thesis

Submitted in partial fulfilment

of the requirements for the award of

Doctor of Philosophy

of

Loughborough University

14th November 2011

Copyright 2011 Peter Sandford

Thesis Access Form

Copy No…………...…………………….Location………………………………………………….……………...…

Author…………...………………………………………………………………………………………………..…….

Title……..

Status of access OPEN / RESTRICTED / CONFIDENTIAL

Moratorium Period:…………………………………years, ending…………../…………200……………………….

Conditions of access approved by (CAPITALS):……………………………………………………………………

Supervisor (Signature)………………………………………………...…………………………………...

School of……………………………………………………………………...…………………………………

Author's Declaration: I agree the following conditions:

Open access work shall be made available (in the University and externally) and reproduced as necessary at the
discretion of the University Librarian or Dean of School. It may also be digitised by the British Library and made
freely available on the Internet to registered users of the EThOS service subject to the EThOS supply agreements.

The statement itself shall apply to ALL copies including electronic copies:

This copy has been supplied on the understanding that it is copyright material and that no quotation from the
thesis may be published without proper acknowledgement.

Restricted/confidential work: All access and any photocopying shall be strictly subject to written permission from
the University Dean of School and any external sponsor, if any.

Author's signature……………………………………….Date…………………………………...…………...……...

users declaration: for signature during any Moratorium period (Not Open work):
I undertake to uphold the above conditions:

Date Name (CAPITALS) Signature Address

4.1e

Research Student Office, Academic Registry

Loughborough University, Leicestershire, LE11 3TU, UK

Switchboard: +44 (0)1509 263171 Fax: +44 (0)1509 223938

Certificate of Originality

This is to certify that I am responsible for the work submitted in this thesis,

that the original work is my own except as specified in acknowledgments or in

footnotes, and that neither the thesis nor the original work contained therein has

been submitted to this or any other institution for a degree.

. .

Peter Sandford

14th November 2011

Abstract

With the recent increases in bandwidth available to home users, traffic rates for

commercial national networks have also been increasing rapidly. This presents

a problem for any network monitoring tool as the traffic rate they are expected

to monitor is rising on a monthly basis. Security within these networks is para-

mount as they are now an accepted home of trade and commerce. Core networks

have been demonstrably and repeatedly open to attack; these events have had

significant material costs to high profile targets.

Network monitoring is an important part of network security, providing in-

formation about potential security breaches and in understanding their impact.

Monitoring at high data rates is a significant problem; both in terms of processing

the information at line rates, and in terms of presenting the relevant information

to the appropriate persons or systems.

This thesis suggests that the use of summary statistics, gathered over a num-

ber of packets, is a sensible and effective way of coping with high data rates. A

methodology for discovering which metrics are appropriate for classifying signi-

ficant network events using statistical summaries is presented. It is shown that

the statistical measures found with this methodology can be used effectively as

a metric for defining periods of significant anomaly, and further classifying these

anomalies as legitimate or otherwise. In a laboratory environment, these metrics

were used to detect DoS traffic representing as little as 0.1% of the overall network

traffic.

The metrics discovered were then analysed to demonstrate that they are ap-

propriate and rational metrics for the detection of network level anomalies. These

metrics were shown to have distinctive characteristics during DoS by the analysis

of live network observations taken during DoS events.

This work was implemented and operated within a live system, at multiple

sites within the core of a commercial ISP network. The statistical summaries

are generated at city based points of presence and gathered centrally to allow for

spacial and topological correlation of security events.

The architecture chosen was shown to be flexible in its application. The system

was used to detect the level of VoIP traffic present on the network through the

implementation of packet size distribution analysis in a multi-gigabit environment.

It was also used to detect unsolicited SMTP generators injecting messages into

the core.

ii

Monitoring in a commercial network environment is subject to data protec-

tion legislation. Accordingly the system presented processed only network and

transport layer headers, all other data being discarded at the capture interface.

The system described in this thesis was operational for a period of 6 months,

during which a set of over 140 network anomalies, both malicious and benign were

observed over a range of localities. The system design, example anomalies and

metric analysis form the majority of this thesis.

Acknowledgements

There are many people I’d like to thank for their help and support over the years

where this research has progressed;

Prof. David Parish for his patience, guidance and friendship

My wife Rachel, for her support and understanding

My brother Mark for galvanising my interest in the field of networks

John for his deciphering of my endless LATEXissues

Everyone who has given a kind word or a well meant prod in the posterior!

i

List of Publications

“Understanding Increasing Traffic Levels for Internet Abuse Detection”, P. Sand-

ford, DJ Parish and JM Sandford, Security Journal, 202, 2007, pp 63-76, ISSN

0955-1662.

“Detecting security threats in the network core using Data Mining techniques”,

P. Sandford, DJ Parish and JM Sandford, in Network Operations and Management

Symposium, 2006. NOMS 2006. 10th IEEE/IFIP page 1-4

“Identifying Internet Abuse in ISP Networks” P. Sandford, DJ Parish and JM

Sandford, in Proceedings of Safety and Security in a Networked World: Balan-

cing Cyber-Rights and Responsibilities. September 8-10, 2005, Oxford, United

Kingdom

“Analysis of SMTP Connection Characteristics for Detecting Spam Relays”, P.

Sandford, DJ Parish and JM Sandford, in Proceedings of the International Multi-

Conference on Computing in the Global Information Technology. Bucharest, Ro-

mania, 2006.

ii

Contents

Acknowledgements i

List of Publications ii

1 Introduction 1

1.1 Summary . 1

1.2 Original Research Contribution . 3

1.3 Structure of the Thesis . 4

2 An Overview of Network Monitoring 5

2.1 Monitoring as Part of Network Security and Information Assurance 6

2.2 Monitoring as Part of Network Management 8

2.3 Monitoring Grouped by Data Used 8

2.3.1 Packet Data . 9

2.3.2 Meta Data . 9

2.4 Monitors Grouped by Data Rate 10

2.4.1 Monitoring up to 100 Mbit/s 10

2.4.2 Monitoring up to 1000 Mbit/s 10

2.4.3 Monitoring at over 1000 Mbit/s 11

2.5 Monitors Grouped by Topology . 11

2.5.1 Monitoring at a Single Point 11

2.5.2 Monitoring by Traffic Splitting 12

2.5.3 Distributed Monitoring . 12

2.6 Monitoring For Security Purposes 13

2.6.1 Security Monitoring Grouped by Detection Type 13

2.6.1.1 Detection Through Signature 13

2.6.1.2 Detection Through Anomaly 13

2.6.1.3 Composite Detection 14

2.6.2 Security Monitoring Grouped by Learning Mechanism 14

2.6.2.1 Self Learning . 14

2.6.2.2 Taught . 14

iii

CONTENTS iv

2.6.3 Security Monitoring Grouped by Analysis Technique 15

2.6.3.1 State Aware Detection 15

2.6.3.2 Stateless Detection 16

2.7 Network Threats . 16

2.7.1 Worm Threats . 16

2.7.2 Trust Abuse Threats . 17

2.7.3 Denial of Service . 17

2.7.3.1 Flood Based Attacks 18

2.7.3.2 Multiplier Based Attacks 18

2.7.3.3 Service Vulnerability Attacks 20

2.8 Motivation . 20

2.9 Mitigation Techniques . 21

2.9.1 Mitigation Grouped by Action 21

2.9.1.1 Proactive Mitigation 22

2.9.2 Reactive Mitigation . 22

2.9.3 Mitigation Grouped by Location 22

2.9.3.1 Single Host Mitigation 23

2.9.3.2 Local Area Network Mitigation 23

2.9.3.3 Wide Area Network (WAN) Mitigation 23

2.10 Summary . 23

3 Related Work 25

3.1 Denial of Service . 25

3.2 Traffic Capture and Processing . 28

3.3 Feature Selection and Intrusion Detection 29

3.4 Intrusion Prevention . 30

3.5 Summary . 31

4 An Infrastructure for Data Capture 33

4.1 System Design . 33

4.1.1 Introduction . 33

4.1.2 Architecture Overview . 34

4.1.3 Data Rate . 36

4.1.4 Data Availability and Permissibility 36

4.2 Hardware Design and Testing . 37

4.2.1 Network Context . 37

4.2.2 Data Rates . 37

4.3 Software Design . 41

4.3.1 Proprietary Software . 42

CONTENTS v

4.3.2 A Novel Signature Detector 45

4.3.2.1 Operation . 45

4.3.2.2 Limitations . 47

4.4 Summary . 47

5 Applying Data Mining 49

5.1 Detection Theory . 49

5.2 Data Mining Tools . 50

5.2.1 Clustering / Self Organising Maps 50

5.2.2 Artificial Neural Networks (ANN) 51

5.2.3 Artificial Neural Networks & Weighting 51

5.2.4 Graphing and Displaying the Data 52

5.2.5 Data Preparation . 52

5.2.6 Laboratory Emulation . 53

5.2.6.1 Traffic Emulation 53

5.2.7 Worm Traffic . 61

5.3 Summary . 65

6 Operation of the System 66

6.1 Data Rate . 66

6.2 Protocols . 67

6.3 TTL . 69

6.4 Packet Sizes . 71

6.5 Port Usage . 71

6.6 SMTP Monitoring . 74

6.7 Summary . 76

7 Live Data 77

7.1 Gathering the data . 78

7.2 Training . 78

7.3 UDP DoS Example . 80

7.4 TCP DoS Example . 80

7.5 Feature Selection . 82

7.6 Malicious Attack Summary . 86

7.7 Summary . 88

8 Discussion of the Data Mining Parameters 89

8.1 Defining Normality (Feature Selection) 89

8.1.1 A Note on Distributions . 90

8.1.2 TTL Field Analysis . 90

CONTENTS vi

8.1.3 Packet Size Analysis . 92

8.1.4 TCP Port Analysis . 95

8.1.5 IP Address Counts and IP Identification 97

8.2 Summary . 99

9 Conclusion 100

9.1 Further Work . 102

References 103

A SMTP Investigations 110

B Gatherer C Code 119

List of Figures

2.1 Example Network Topology . 12

2.2 A simple flood based DoS attack 18

2.3 A spoofed flood based DoS attack 19

3.1 DoS Classifications . 26

3.2 Reflector Attacks . 27

4.1 System Topology . 34

4.2 Geographic System Topology . 35

4.3 Data rate against packet size . 38

4.4 Packet count against packet size . 39

4.5 Interrupt Thrashing . 40

4.6 Software Block Diagram . 44

4.7 Signature Detection Mechanism . 46

5.1 Anomaly Variable Space . 50

5.2 Monthly Data Rate . 52

5.3 Stacheldraht Topology . 55

5.4 Laboratory DoS - Kohonen Network 58

5.5 Laboratory DoS - Kohonen Network (2) 58

5.6 Laboratory DoS - K-Means Cluster 59

5.7 Laboratory DoS - K-Means Single Cluster 60

5.8 Detection Rates . 60

5.9 Worm infection topology . 63

5.10 Arp Packets . 64

6.1 Data Rate Variation . 67

6.2 Protocol Variation . 68

6.3 Protocol Variation as a Proportion of Overall Traffic 69

6.4 TTL Packets Per Second against Hour of the Day 70

6.5 TTL Proportion against Hour of the Day 70

6.6 Protocol Variation as a Proportion of Overall Traffic 72

vii

LIST OF FIGURES viii

6.7 Port 80 Packets Per Second against Hour of the Day 73

6.8 Port 4662 Packets Per Second against Hour of the Day 73

6.9 Proportion of Overall Traffic from Major Ports 74

7.1 Self Organising Map . 79

7.2 Clustering Algorithm . 79

7.3 UDP DoS - Packets Per Second . 81

7.4 UDP DoS - IP Subnets Per Sample 81

7.5 TCP DoS - SYN Flags Per Second 82

7.6 TCP DoS - Average Packet Size . 83

7.7 TCP DoS - Source Subnets Per Sample 84

7.8 TCP DoS - Source Subnets Per Second 85

7.9 Comparison of Input Weightings . 86

8.1 TTL Distribution Under Non-Attack Conditions 90

8.2 TTL Distribution Under DoS Attack Conditions 92

8.3 Packet Size Distribution Under Non-Attack Conditions(full scale) . 93

8.4 Packet Size Distribution Under Non-Attack Conditions(small scale) 93

8.5 Packet Size Distribution Under DoS Attack Conditions(small scale) 94

8.6 TCP Port Distribution Under Non-Attack Conditions 95

8.7 TCP Port Distribution Under DoS Attack Conditions 96

8.8 Bidirection Traffic . 97

8.9 IP Source:Destination Ratio Under DoS Attack Conditions 98

8.10 Most Common IP Identification Number Under DoS Attack Con-

ditions . 98

List of Tables

4.1 Data Transmit and Receive Rate 39

5.1 Emulation Traffic Mix . 54

5.2 Laboratory DoS Traffic Mixes . 56

5.3 Packet Fields . 57

5.4 DoS Relative Importance of Detection Metrics 61

7.1 UDP DoS Relative Importance of Detection Metrics 84

7.2 TCP DoS Relative Importance of Detection Metrics 85

7.3 Network Attacks Observed, Grouped by Month 87

8.1 Operating System Default TTL Values 91

8.2 Highest TCP Port Usage and Associated Applications 96

ix

Acronyms

ANN Artificial Neural Network.

DNS Domain Name System.

DoS Denial of Service.

FPGA Field-Programmable Gate Array.

GBit/s Billion Bits Per Second.

HSN High Speed Networks.

IDS Intrusion Detection System.

IIS Internet Information Services.

IMS IP Multimedia Subsystem.

IPS Intrusion Prevention System.

MBit/s Million Bits Per Second.

MSS Maximum Segment Size.

MTU Maximum Transmission Unit.

NAPI New API (Application Programming Interface).

NAT Network Address Translation.

NIC Network Interface Card.

NIDS Network Intrusion Detection System.

OSI Open Systems Interconnection Reference.

POP Point of Presence.

x

Acronyms xi

SIP Session Initiation Protocol.

SMTP Simple Mail Transfer Protocol.

SOM Self Organising Map.

TCP Transmission Control Protocol.

TFN Tribe Flood Network.

TTL Time to Live.

VLAN Virtual Local Area Network.

VoIP Voice over IP.

WAN Wide Area Network.

Chapter 1

Introduction

1.1 Summary

Security over the Internet is becoming increasingly important. Consumers are re-

lying on the Internet for much of their shopping [1], demonstrating increasing trust

from the general populous in the technology. Financial institutions increasingly

rely on the Internet for trading of equities and commodities, replacing the more

traditional methods of dedicated leased lines.

There are many threats to the security of the Internet, some involving the

privacy of data, some involving the security of hosts, others the infrastructure of

the networks themselves.

Towards home user security, recent advances in most current operating systems

allow the automatic patching of potential vulnerabilities, in many cases without

any direct user intervention. The deployment of firewalls by default in operating

systems has become common and the use of anti-virus software has become more

pervasive. Recent operating systems deploy strategies such as making memory seg-

ments writable or executable, but not both. In the UK, consumer ISP connectivity

is often achieved via routers which perform NAT for a household, preventing direct

inbound Internet access.

Business users often employ layered sophisticated commercial firewalls, filter-

ing all traffic which is present on their network. Most businesses employ admin-

istrators who will ensure that security on business hosts is in agreement with the

appropriate policies.

While the security offered on single hosts and local networks is strengthened in

line with their changing use, the security offered in core networks has not moved

in line with this. The infrastructure the Internet employs has been demonstrably

vulnerable to attack, even for major corporations hosting in distributed environ-

ments. Filtering of packets is often limited to simple metrics such as application

1

CHAPTER 1. INTRODUCTION 2

layer port numbers.

Response times to denial of service attacks on major hosts have led to changes

in the way that major targets are hosted. There is a sizeable body of research

on coping with, and mitigating denial of service; however, much of this research

requires action from core routers, which ISPs are slow to implement. ISPs are

generally reluctant to increase the load on core routers, as the increase in load will

incur a cost in performance and therefore bandwidth. Attacks are still common,

even for high profile sites [2].

Dealing with these attacks is problematic because:

• The data rates in core networks preclude stateful packet inspection

• Processing on core network devices is extremely limited

• Expert analysis is required to determine the sources of attacks

• Mitigation of these attacks is difficult to achieve at the receiver

The research described in this thesis attempts to provide a low cost (in pro-

cessing terms), practical network anomaly detector. The potentially huge costs

of processing packets and flows at full line rate were avoided, instead inferring

activity from summarised data.

This research can be divided into several major activities as outlined here.

Initial studies were undertaken to investigate the viability of traffic capture and

analysis at high data rates using relatively cheap hardware (discussed in section

3.2).

A fundamental issue with research of this nature, is the validation of results. In

a live network situation, it is impossible1 to ascertain the accuracy of classification.

This is due to the lack of availability of any independent method of corroboration

(traditional IDS systems were of limited use due to their dependence on the packet

data, inability to classify at line rate, and inherent fallibility). To combat this,

verification was attempted via two mechanisms; firstly a laboratory emulation

was constructed in order to generate network misuse in a controlled environment

(discussed in section 6.2.6), secondly results were compared (and shown to be

consistent) with internal tools used by the ISP networking analysts, which do

have access to higher levels of information.

Data mining tools and methodologies were used at several levels of abstrac-

tion to investigate relationships between network events and the laboratory data,

allowing for careful feature selection for use with the live implementation.

1Given reasonable resource limitations

CHAPTER 1. INTRODUCTION 3

Once deployed, a database of training events was built from live data, classified

by manual inspection and informed by the laboratory investigation, alongside

general literature and experience in the field.

Data mining was again employed to investigate relationships in the data, lead-

ing to automated classifiers, which were run in real time to classify data on a

pseudo real time basis.

1.2 Original Research Contribution

This work contributes to the network security monitoring field in several ways.

It adds to the body of research proving the use of statistical summaries to be an

effective and scalable way of monitoring for security purposes. It demonstrates

a method for determining what these summaries should contain, and how they

should be applied. This is a novel contribution, as it applies feature selection

to live data taken from a core network, where previously only metrics based on

domain knowledge had been used. This is applied in a data sensitive2 environment,

forcing the use of header values. Header values are used by the network at different

layers to move messages about the network, and are therefore considered non-

sensitive information. The header values were summarised into distributions for

analysis purposes. These statistical summaries are combined with techniques to

utilise them in a live and operational system. This research was conducted on a

live national network, which gives it strength due to its practical nature, but also

introduces challenges due to the lack of control over the data.

Given the fact the network that was operated on was data sensitive, finger-

printing of packet data is extremely difficult. To this end, the development of

fingerprinting using the TCP checksum is also a novel contribution. This mechan-

ism has applications for fast full packet fingerprinting via the checksum calculation

being done on the NIC. This is particularly useful for its ability to operate without

the data field, allowing for its application in environments where the data field is

not available (such as the environment in which this research was conducted).

During the course of the work, there was a contribution to the field of unso-

licited SMTP traffic detection, via IP profiling at the sender site. This concept

breaks from the normal methods for dealing with unsolicited SMTP in that in

does not filter at the receiver. The privileged data set which this research has

access to, allows detection of spam at the source in a configurable manner. This

research has already been published [3] and is a potential area for further future

study; in particular the effort to distinguish further groups of SMTP generators,

2The core of an ISP network is subject to privacy laws, and therefore packet data may not
be examined by a third party

CHAPTER 1. INTRODUCTION 4

such as legitimate mail servers and mailing lists. This work is not the focus of

this thesis, but is discussed in Section 6.6. A copy of the published paper may be

found in appendix A.

1.3 Structure of the Thesis

In Chapter 2 the general field of network monitoring is discussed in its varying

scales and coverage. Chapter 3 presents the associated research from the most

recent years in the area. This is grouped into three categories; network monitoring

in a broad context, monitoring and prevention for security applications, and finally

data mining in a network context.

Chapter 4 describes the system with which the data used in the research was

captured and analysed. This section is split into hardware, software and system

design sections.

Chapter 5 brings in the concept of data mining, and how it has been used in

the research. This looks at both the development of appropriate metrics for the

detection of criminal activity, and their application.

Chapters 6, 7 and 8 describe and discuss the data which has been collated

and the patterns, relationships and types of activity that have been found in the

data. Two example anomalies and their analysis are shown. The features which

are selected are further investigated to demonstrate their appropriateness.

Chapter 9 draws some conclusions from the work, and discusses the possibility

for further investigation.

Chapter 2

An Overview of Network

Monitoring

Chapter 2 offers an overview of network monitoring with an emphasis on its applic-

ation to network security. Of particular relevance to the research are the sections

on monitoring at over one thousand Mbit/s and detection through anomaly.

Because of the security focus of the monitoring, this chapter begins by describ-

ing how the monitoring undertaken fits into an overall security model and within

network monitoring as a whole.

Monitoring differing information, at differing data rates and in differing loca-

tions is discussed. The chapter then moves onto monitoring in a security context

grouped by detection mechanisms, learning mechanisms and analysis techniques.

It then describes the stimulus for network attackers using the honeynet project’s

‘MEECES’ [4] acronym which provides a survey of motivating factors for the par-

ticipation in illegal network activity.

This leads onto looking at mitigation techniques, grouped by topology and by

the action taken. Finally it discusses data processing and characterisation.

Monitoring communication networks is a topic in which there has been consid-

erable research over a considerable length of time. The networks being monitored

have increased in size (both geographical and numerical) and data rate by orders

of magnitude and the importance of accurate data has increased proportionately.

Network monitoring is a useful source of information for network managers,

planners, security managers, marketing personnel and others. Information is

gathered at many scales, from individual host usage to core networks with hun-

dreds of thousands of hosts.

5

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 6

2.1 Monitoring as Part of Network Security

and Information Assurance

Information Assurance is a wide ranging term, used to encompass confidentiality,

integrity, authentication, availability and non-repudiation.

• Confidentiality

The definition for confidentiality from ISO17799 [5] is ”ensuring that inform-

ation is accessible only to those authorised to have access”. In computer

security this is most often achieved through the use of cryptography.

• Integrity

In terms of data integrity, this means that data is only modified with proper

authorisation. This is not limited to the intentional alteration of data by

a non-trusted party, but includes errors introduced through degradation of

data. Examples would be a fire which caused the loss of data, or undetected

network errors leading to corrupt data [5].

• Authentication

This is the process by which users, or information is identified. Authentica-

tion allows this to be done in a way which prevents the information, or user

from being forged or invented.

• Availability

For data to be useful, it must be available in some form. This requires that

the information, and a method to access it, is available to an authenticated

and authorised user [5].

• Non-repudiation

This is closely tied with Integrity, in that non-repudiation requires that all

parties are aware of the state of the transaction. Once sent, it should not

be possible to deny sending a transaction, nor possible to deny receiving a

transaction, once received.

A reasonable example of these features in action would be an online banking

transaction. In this example, authentication (via SSL certificates), confidentiality

(via RSA cryptography) and integrity (via TCP’s re transmission and checksum

algorithms 1) are all provided through the widespread use of the HTTPS protocol.

1These are not full-proof

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 7

Non-repudiation is handled at the application, and availability is handled by the

individual infrastructure of the banking organisation.

The research undertaken here was primarily interested in DoS, which falls

within the remit of availability. A threat to the network is a threat to the ability of

a user to access information over it. A DoS attack is explicitly aimed at impairing

the availability of information or of a service. For example, when a DoS attack

is performed against a website, the intent is to prevent legitimate access to this

resource, limiting its availability.

Network security is a very broad topic, and ranges from the physical security of

devices through to vulnerabilities in protocols. In [6] the authors describe network

security as divisible into three ‘D’s.

• Defense

Defence is the most obvious of the forms of network security. Employing

network defences reduces the chances of degradation of network performance

or the compromise of other assets. Traditional network defences include

devices such as firewalls, router access lists, spam and/or virus filters.

• Deterrence

Deterrence is described as the second mode of security and involves redu-

cing the frequency of security compromises by providing some unfavourable

consequence resulting from a security compromise. Examples of deterrents

would be national laws and company acceptable use policies.

• Detection

The third ‘D’ is detection. Detection allows the severity of security com-

promises to be limited. In the absence of detection, security compromises

could continue to do damage for an unlimited duration. Examples of detec-

tion based security would include IDS, log files and others. A very recent

example of the importance of this type of security would be the compromise

of a Sony Entertainment data base containing considerable amounts of cus-

tomer data [7], which has been painstakingly analysed to identify potential

breaches of privacy.

The research in this thesis is primarily concerned with detection, with the

potential for expansion into defence. As such, most of the functionality falls

within the remit of network monitoring, the next section of this chapter deals

with network monitoring in differing categories.

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 8

2.2 Monitoring as Part of Network

Management

FCAPS is the ISO Telecommunications Management Network model and frame-

work for network management [8]. It defines five areas of interest, these are:

• Fault Management

In the context of network management, a fault is an event which has a neg-

ative impact on the network. The role of fault management is to, where

possible, predict these events. Where prediction and prevention is not pos-

sible, fault management locates and mitigates the cause of the fault.

• Configuration Management

Configuration management involves auditing existing network devices, track-

ing changes made to configuration and to allow planning for future develop-

ment.

• Accounting Management

In the context of this research, accounting management refers to the man-

agement of users in terms of the provisioning of authorisation,authentication

and backup.

• Performance Management

Performance management involves measuring metrics such as utilisation,

error rate and response times for existing infrastructure. Ongoing monitoring

of metrics such as these allow for capacity planning for future requirements.

• Security Management

Security management is primarily concerned with controlling access to the

devices on the network, and to the network itself.

Packet capture can provide information for fault, configuration, performance

and security management. However, the research presented here is primarily con-

nected with fault and security management. DoS attacks and worm threats cer-

tainly affect performance but in an indirect manner.

2.3 Monitoring Grouped by Data Used

The research described in this thesis utilises data from packets collected on ISP

networks. In this section the different types of data available to monitors and their

uses are described.

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 9

Information can be gained from either data directly contained in the packets

contents, or data about them. The data can also be gained from the routers,

switches, firewalls, proxies, load balancers and other devices present on the net-

work. In this thesis, the data will be split into two categories. It is possible to

record the layer 3 protocol from the IP protocol field; it is also possible to record

the time of the packet’s arrival. This section has subdivided monitoring by these

types of data, which are here named ‘Packet’ and ‘Meta’ data respectively.

2.3.1 Packet Data

Packet data can be used for identifying more detailed information such as which

applications are present on a network. In a security context packet data is often

used as a ‘signature’ to detect malicious packets.

Tools such as TCPDump [9] and Ethereal (and later Wireshark) [10] are pop-

ular for the capture and analysis of packet level data. At higher data rates tools

like NetFlow [11] allow sub sampling of packets to provide detailed information

without storing huge quantities of traffic. Packet data has the potential to reveal

many details about communication on a network. This ranges from the obvi-

ous, such as the application flow data, through to the more abstract, such as the

operating systems, load levels on the hosts involved etc., 2.

Packet data is often applied in scenarios such as intrusion detection, where

particular packet signatures are potentially interesting. Monitoring packet level

data can have large overheads, which is discussed later in this chapter.

2.3.2 Meta Data

The term ‘meta data’ is used in this thesis to define data which is inferred from

data, rather than packet fields directly. Examples would include delay, loss and

inter-arrival times, which while they are data about packets, they are not contained

in the packets themselves.

One of the most obvious examples of meta data monitoring is the use of the

classic ‘ping’ program to gauge delay across network paths using the ICMP echo

request and reply mechanism. The application has become widespread in its

distribution and application [12].

Routing information can be extracted from a network using tools such as

traceroute and tcptraceroute, which use the TTL feature in IP to have packets

dropped at each layer three device on the network3.

2Operating systems can be inferred from TTL, and load levels can be inferred from IP iden-
tification numbers in many stack implementations

3Some administrators view this type of topology discovery as a security vulnerability in itself,

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 10

Other examples of the use of meta data would include bandwidth monitoring

and loss statistics taken both passively and actively.

2.4 Monitors Grouped by Data Rate

The system developed in this research eventually monitored data rates in excess

of 6GBit/s. In this section monitoring networks at varying rates is discussed.

The requirement for monitoring of links has meant that with the increase in

bandwidth in the core, a commensurate increase in the capability to monitor

bandwidth has been needed. Commercial products are available for the purposes

of capturing traffic from links at 10Gbit and above. Monitoring at these varying

data rates in more detail here is described.

2.4.1 Monitoring up to 100 Mbit/s

Monitoring at low data rates with current hardware allows a comprehensive level

of processing to be undertaken on the traffic with even modest processing power.

Full traffic records can be stored, containing all data within packets over significant

periods of time.

Simply storing all of the packets at one hundred Mbit/s gives around forty-five

gigabytes of data per hour. Standard PC architectures now house hundreds of

gigabytes of hard disk space; therefore even on cheap hardware the whole data

portion of packets can be stored for many hours at this data rate, however, even

with large storage arrays, uncompressed data would be difficult to store for exten-

ded periods of time.

2.4.2 Monitoring up to 1000 Mbit/s

Monitoring at gigabit rates can cause problems for off the shelf PC hardware. The

problems that IDS systems face at these rates has been discussed in [13], where

the authors discuss the load in terms of memory associated with maintaining

state on connections, the potential for packet drops due to network load and the

potential for exhausting the available CPU resources. These problems are non-

trivial to circumvent, and often result in compromises between system resources

and detection rates. Common problems of interrupt rates are also discussed in

section 4.2.2.

The issues of storing data increase by an order of magnitude moving from

100Mbit/s to 1Gbit/s. As presented in the previous section, storing all packets

and accordingly prevent layer 3 devices from sending the ICMP TTL exceeded message responses

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 11

at 100Mbit/s leads to forty-five gigabytes of data per hour. At 1000Mbit/s this

figure is four hundred and fifty gigabytes per hour.

2.4.3 Monitoring at over 1000 Mbit/s

With the introduction of 10Gbit core network links, the requirement to monitor

at this speed has developed. Monitoring at these rates is usually limited to meta

data analysis except in specialised applications [14].

10Gbit NICs are commonly available even for consumer desktop computers,

however, these cards are often not capable of coping with the full data rate on a

10Gbit link, and are instead simply compatible with the standard. Commercial

specialist monitoring interfaces are available, which give the ability to perform

large amounts of processing and filtering on the interface, reducing the load on

the monitoring host. Companies such as Endace and Napatech offer products

which give very strong capture performance at these data rates [15][16].

2.5 Monitors Grouped by Topology

The system described in this thesis monitored an ISP network in a distributed

manner, gathering data and collating it at a centralised point. This section char-

acterises different methods of data collection in terms of topology.

It is possible to monitor at one or more sites on a network. The topology of the

monitoring system needs to be matched with the type of data which the system

designer intends to extract. The types of possible topology and their prime uses

are explained here.

2.5.1 Monitoring at a Single Point

In a situation where packets are broadcast at layer 2, as with a hub, it is possible to

monitor multiple hosts on a network from a single point. However, most modern

layer 2 devices switch packets, preventing passive monitors from intercepting traffic

which is not directed to them.

In a switched environment where monitoring is being performed on the host

which is of interest, no extra work is required; however, if this is not the case, it is

often necessary to create a span port, mirror port or in the case of fibre, an optical

tap [17].

Port spanning generally refers to traffic from multiple switch ports being copied

to a signal ‘span’ port. Port mirroring generally refers to traffic from a single port

being replicated to a ‘mirror’ port. Port spanning would generally be performed on

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 12

specific VLANs or ports. Consideration has to be given to the data rates involved,

as spanning several 1Gbit ports to a single 1Gbit monitoring session may lead to

dropped messages. Even in the case where a single port is spanned, the duplex

nature of Ethernet may lead to frames being dropped. A port tap is a physical

device which in the case of fibre, splits a proportion of the traffic to a secondary

cable, leading to a reduction in signal strength on the original line.

2.5.2 Monitoring by Traffic Splitting

In situations where traffic rates are high (or where redundancy is desirable), it

can be desirable to split traffic streams to allow multiple hosts to analyse the

data. Often devices such as load balancers can be used. If configured intelligently,

load balancers can ensure that related traffic is consistently fed to the relevant

monitoring host. This is commonly achieved through ‘sticky’ session addresses

(or SSL certificate, or other method), where a balancer will remember which way

a particular host has been forwarded for a certain period of time. This ensures

that there is some consistency in which devices receives the data from specific

hosts [18].

2.5.3 Distributed Monitoring

On many networks, it is not sensible to monitor all the required traffic at any

single point.

Figure 2.1: Example Network Topology

In figure 2.1 monitoring between the firewall and internet would give all traffic

flowing on and off the network but not, for example, traffic from the web servers

to the database servers. In this type of situation, it is often desirable to monitor

at multiple points on the network, to provide coverage of relevant information.

Distributed monitoring comes with additional problems; multiple copies of

the same packet may be captured, leading to confusion in analysis alongside the

increase in the storage requirement.

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 13

2.6 Monitoring For Security Purposes

The data gathered in this research was analysed to attempt the detection of ma-

licious activity across the network monitored. This was achieved via anomaly

detection through statistical analysis of summarised data. In this section, net-

work security monitoring in a broader context is outlined.

As usage of networks has become more focused on commercial interests, the

importance of security has increased. The application of network monitoring to

detect network misuse has formed a large part of the body of network monitoring

research.

2.6.1 Security Monitoring Grouped by Detection Type

While the system eventually developed in this research was primarily anomaly

based, there were several potential alternative options available. This section

describes some of these options.

NIDSs are designed to monitor a network, host or both and detect events

which it classifies as an intrusion. These systems are often closely linked with

IPSs which provide some form of mitigation in addition to detection. Intrusion

Detection systems are traditionally subdivided into two main categories, those of

signature detectors and anomaly detectors [19].

2.6.1.1 Detection Through Signature

Signature based systems are built on knowledge of the behaviour of the intrusions

they attempt to detect. This knowledge maybe about the types of process activity

the intrusion will exhibit, or perhaps a particular string pattern present in a packet.

A good example of this type of detector would be the open source IDS ‘Snort’ [20].

Signature based systems traditionally provide good detection rates, but require

prior knowledge of the misuse they detect, making them weak at detecting new

attacks. Certain types of attack, such as polymorphic worms, try to make this

type of detection more difficult, though still possible [21].

2.6.1.2 Detection Through Anomaly

Anomaly based systems utilise an understanding of normal behaviour for a host,

network or both, to define deviations from this normal as potential intrusions.

The definition for normal activity used by the system can be gained via prior

knowledge or via machine learning over time.

Analogies can be drawn with credit card processing, where spending patterns

undergo similar analysis, and where anomalies are found, payments are stopped.

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 14

As with credit card processing, network anomaly detection is prone to false pos-

itives and negatives; however, unlike signature detection, it is less vulnerable to

issues in detecting newer attacks [19].

2.6.1.3 Composite Detection

Composite detectors can provide more information than a purely signature or

anomaly based system, and are often in practice systems which provide a better

measure of the quality of the alarm. These detectors are in essence simply both

anomaly and signature detector based systems. They suffer, and benefit from all

the strengths and weaknesses of their component parts.

2.6.2 Security Monitoring Grouped by Learning

Mechanism

The system developed in this research used a combination of self learning and

taught mechanisms to classify network traffic. In this section describe these mech-

anisms are explained.

2.6.2.1 Self Learning

Self Learning systems are based on anomaly detection, and over time build a

statistical model of normality, they then spot significant deviations from this nor-

mality. As these systems are self learning they have the potential for alerts to be

generated for innocuous events.

In situations where systems are entirely unsupervised, extreme care must be

taken with the input data, and the handling of alerts. In practice, few systems

are entirely unsupervised in a network monitoring context.

2.6.2.2 Taught

Training of IDS systems can be achieved in several ways. In the case of anomaly

based systems, this is often achieved through pre-classified data-sets, where the

system is taught to classify along a similar line to the training set.

In the case of signature based detection, the teaching is often considerably more

direct. Often exact patterns are specified to the system, which then attempts to

find them and classify appropriately.

Systems which are programmed can positively generate alerts, as in the case

of signature detectors, or negatively generate them in the case of anomaly based

systems.

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 15

2.6.3 Security Monitoring Grouped by Analysis

Technique

This research used summarised information to analyse the data present on the

network, however, many systems use other mechanisms. This section describes

some of the available options.

Where and what a system is designed to monitor is linked with the level of data

available to a system. One of the more intensive tasks when monitoring network

data is real-time flow reconstruction. This is both in terms of the memory required

to store the connections and associated data, and in terms of the processing re-

quired to match packets to connections. The majority of traffic on the network

monitored for this research was TCP/IP traffic, which is split into flows by IP:Port

pairs. The server port is normally static, with a randomly chosen ephemeral client

port.

Flow reconstruction is the process in which packet streams are turned into

communication streams. Packets are assigned to particular flows, normally by IP

address, Port (in the case of TCP or UDP traffic), sequence numbers and other

variables. This can be hardware intensive in terms of both memory and processing

requirements as the packet and flow rate increases.

There are two main types of monitor in this category, ‘state aware’ and ‘state-

less’ detectors [19].

2.6.3.1 State Aware Detection

State aware detectors monitor the flow information contained within the network

traffic. This allows a level of information suitable to find connection based an-

omalies. A good example of this would be the Synchronise Packet exploit within

many TCP stack implementations [22], used as a mechanism within a Denial of

Service attack. The state monitoring would then be aware of many half open

connections.

State Aware detection can analyse entire flows of data, and is therefore able to

detect sensitive information which is contained over several packets. A mechanism

to avoid detection in a non-state aware system would be to set the MTU for a

connection to something very small, forcing all data to be split into small sections,

avoiding detection from non-connection aware systems. This could be achieved by

settings within the operating system of the attacker’s machine.

State aware systems may monitor meta data about connections; an example

may be to monitor the inter arrival time of packets within a telnet session, which

may enable the differentiation between human and scripted input.

It is also possible (and indeed common) to reconstruct connections at an even

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 16

higher level e.g., looking at http headers or ftp transfers.

2.6.3.2 Stateless Detection

Stateless detectors do not keep track of flows, and treat each packet as an in-

dividual entity. This allows for higher throughput, at the cost of information

availability. In some cases this type of detection is unable to correctly identify

attacks; these cases include polymorphic worms and encrypted connections.

2.7 Network Threats

Network Threats (which are also referred to as malicious network events) are the

primary focus of the detection in this research. This section describes different

types of network threat.

Network threats are varied and numerous, covering a range of activities, from

password security on a single host to hundreds of thousands of hosts being involved

in single attacks at a target.

To provide a bounded summary, the review of network security threats is

limited here, discussions of physical site security at router housing would be in-

appropriate. Instead the emphasis on threats is with regards to networks rather

than hosts. The relevant threats are placed into the following headings.

2.7.1 Worm Threats

A computer Virus refers to code which replicates itself. A worm is an extension

of this, and contains a mechanism to spread between hosts.

Worms can be characterised by their ability to propagate from one host to

another either directly or indirectly, through their own mechanism, or by means

of an existing one such as e-mail [23]. Worms can be classified as having the

following stages:

1. Target Discovery

This can be done through means of active scanning, passively (where the

host waits for contact from a vulnerable host) or pre-generated lists either

on or off the infected host. It is worth noting that some worms have no target

discovery mechanism, and simply transmit to randomly generated targets.

2. Transmission

Transmission of the worm is achieved either by using some known vulner-

ability on a target host, using its own transmission mechanism, and gaining

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 17

some level of privilege on the target host or by some existing communication

mechanism, such as email. Some worms use a secondary channel to transfer

the worm code such as blaster [24].

3. Execution (Activation)

Execution of the worm can be achieved via direct human action, indirect

human action (such as a machine reboot), via scheduled process activity or

via self execution.

Worm behaviour is sometimes classified as ‘direct’ or ‘indirect’. Direct worms

are defined by their use of their own transmission mechanism. They are normally

self executing, leading to potentially high infection rates. Direct worms are per-

haps the most threatening to a network as they can produce large traffic volumes

with indirect DoS type effects on a network.

Indirect worms are in contrast defined by their use of a secondary communic-

ation channel such as email or a peer to peer file transfer, and their use of human

based activation.

2.7.2 Trust Abuse Threats

Trust based abuse does not fall directly under the remit of this research. Due to

its characteristics it does not have a great impact on network performance. Trust

based attacks are in essence informational attacks. These attacks attempt to gain

some information of value from a user and are often referred to as phishing. This is

most commonly through email. Common target information includes credit card

details and passwords for valuable accounts such as eBay [25].

2.7.3 Denial of Service

In a denial of service attack, a malicious user exploits the connectivity

of the Internet to cripple the services offered by a victim site [26].

DoS attacks can be costly to victims, perhaps the most famous example being

an attack in February 2000, where a large scale Distributed Denial of Service attack

was launched against several high profile targets, including www.Amazon.com and

www.eBay.com.

The attacks can be varied in many ways; they can use genuine or spoofed

addresses, any number of hosts in any control topology, they can use varying data

rates and can last from minutes to weeks [22].

The attacks may be grouped by the method in which the DoS is achieved.

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 18

2.7.3.1 Flood Based Attacks

Flood based attacks rely on consuming resources through the transmission of

large amounts traffic. The crudest form of this is simply sending enough UDP

packets (or indeed any protocol, UDP floods were the most common form of

attack observed during the research) that the target hosts bandwidth is completely

consumed, preventing other legitimate traffic from arriving. This is depicted in

figure 2.2, as can been seen, if the proportion of the total traffic represented by

DoS is sufficiently high then legitimate traffic is statistically much less likely to

be delivered [22]. In this first case, mitigation is relatively simple provided there

is sufficient bandwidth available further up stream. Blocking all traffic from the

attacker address destined for the victim would allow normal service levels to be

resumed.

Figure 2.2: A simple flood based DoS attack

This attack can be made harder to mitigate through the use of IP spoofing.

Spoofing is a colloquial term meaning forging. A host which spoofs its IP ad-

dresses, places another host’s IP address in the source IP field of its outgoing IP

packets, making them appear to have been sent by a different host. This is shown

in figure 2.3.

2.7.3.2 Multiplier Based Attacks

Multiplier attacks are an extension of flooding attacks whereby the attacker utilises

some method of increasing the load on the target via a secondary mechanism. An

example of this would be to send a broadcast ICMP echo request with a source

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 19

Figure 2.3: A spoofed flood based DoS attack

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 20

address spoofed to that of the target. All hosts receiving the echo request would (if

not disabled) reply to the target, generating a potentially large multiplier. With

a potentially modest amount of traffic sent by an attacker, huge volumes of traffic

may be generated, flooding the available bandwidth for the victim.

2.7.3.3 Service Vulnerability Attacks

Service vulnerability attacks make use of some potential multiplier within a service.

The classic example of this is the connection limit within most TCP based servers.

If a TCP based server allows 15 concurrent connections, and each connection has

a timeout of 3 seconds, then by sending 5 ‘synchronise’ TCP packets per second

at the target, and not responding past that packet, the connection limit will be

permanently reached [22]. Another example of this would be repeatedly calling a

processor intensive server side operation within a web server, effectively denying

processor time to legitimate users.

2.8 Motivation

Network and host vulnerabilities can provide a wide range of possibilities for crim-

inal individuals and groups. What they gain from this activity gives insight into

their likely patterns and targets.

The Honeynet project was n group of people sharing a common interest, which

originated in America, who used interactive network monitors to observe and track

illegitimate activity on the internet.

From their research they determined a set of motivational factors for which

they use the acronym ‘MEECES’ (a play on the FBI’s MICE) [4]. The acronym

is made up as follows:

• Money

Financial gain, whether through extortion or though more direct means such

as credit card details.

• Ego

Hacking remote machines can give a feeling of self-importance to the offend-

ers.

• Entertainment

Individuals sometimes gain satisfaction by causing embarrassment or turmoil

which others (often system administrators) have to attempt to recover.

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 21

• Cause

Some groups have particular interests to advance. There have been attacks

directed toward corporations, governments and individuals.

• Entrance to social group

Most hacker communities are meritocracies and therefore hacking a difficult

target is a primary source of social capital.

• Status

Similar to the entrance to social group motivator, in that social capital is

gain through the demonstration of technical skill. While this set may be

somewhat limited, and only briefly discussed here, it is more than sufficient

for the purposes of this thesis.

While this set may be somewhat limited, and only briefly discussed here, it is

more than sufficient for the purposes of this thesis.

2.9 Mitigation Techniques

There are various means by which security threats may be detected and mitigated

against. Mitigation techniques are particularly successful where the behaviour of

malicious activities are clearly defined, consistent, and filterable. Where attacks

are polymorphic (in the case of worms), large scale or widely distributed mitigation

is more difficult. This thesis will progress to discussion on how data mining and

packet summaries may be used to inform packet filters, allowing useful dropping

of DoS traffic.

A primary concern with mitigating against malicious activity on the Internet

lies in the changing threat landscape. At the instantiation of this research, direct

worms were considered by many to be the biggest threat to the Internet as a whole.

Since this date the main sources of computer infections have moved toward indirect

threats such as mass mailing worms[27]. A botnet is a series of compromised

computers, with a mechanism for disseminating control between them. Many

botnets now exist, some comprising of millions of individual computers[28][29].

Some of these botnets are used for generating spam email. A description of the

Statcheldraht botnet tool is given in section 5.2.6.1.

2.9.1 Mitigation Grouped by Action

There are a multitude of mechanisms to mitigate against a multitude of threats,

here the techniques are split into ‘proactive’ and ‘reactive’.

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 22

2.9.1.1 Proactive Mitigation

A good example of proactive DoS mitigation was highlighted in the national

press[30]. In this case a business website was targeted through DoS for extor-

tion purposes. The owner of the site refused to pay the demanded fee, and risked

further DoS attacks. Following a series of emails, the ransom was increased to

$50,000 (£28,000) Instead of paying the ransom, the owner of the site had his

traffic routed through a third party, specialising in the filtering of DoS traffic.

Spoofed based attacks can be actively prevented via ingress (sometimes called

egress) filtering[31]. This technique prevents traffic with a source address which

does not belong to a network from leaving that network. It requires an altruistic

stance from network operators, and is not universally deployed.

Another example of proactive mitigation occurred when the blaster worm tar-

geted Microsoft’s automatic updates server. The worm was captured and the

target noted. Microsoft removed the DNS record for windowsupdate.com on Au-

gust 15th, 2003 [32] preventing the worm from being able to resolve the intended

target to a reachable network address.

2.9.2 Reactive Mitigation

The traditional methods for dealing with DoS often involve tracing the sources

manually and administrators filtering the traffic out at source. This can be both

time consuming and costly, and therefore is only a solution for corporate scale

organisations.

Port blocking is a common method of preventing the spread of worm traffic,

though it is not always possible4. The network that was monitored in this research

has blocked inbound traffic on the following ports 135 (TCP), 137 (UDP), 138

(UDP), 139 (TCP), 445 (UDP and TCP), 593 (TCP), 1433 (TCP), 1434 (UDP)

and 27374 (TCP); all in response to vulnerabilities and potential vulnerabilities

in services which by default host on these ports 5. It is perhaps worth noting

that some of these ports were blocked pro-actively, an example being ports used

for Windows local file sharing, which then later prevented worm spread when

exploitation techniques were discovered on those services.

2.9.3 Mitigation Grouped by Location

Mitigation of certain activities requires the technique to be applied at a particular

position in the network. In this section some common mitigation locations are

4 Blocking port 80 on a commercial broadband network would in all probability be unpopular
amongst the customer base.

5For a full description of the monitored network, see Section 4.2.1

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 23

detailed.

2.9.3.1 Single Host Mitigation

Mitigation of DoS attacks such as simple flooding can be impossible on-host.

Some protection from service vulnerability attacks can be possible through tuning

options in software. As an example, it is possible to reduce the default TCP

connection time-out, making the host less vulnerable to Syn floods.

Mitigation of worm traffic is normally achieved via a combination of host based

firewalls and anti-virus software. The most readily available host based firewalls

function by blocking unused ports, which is of limited use defending against attacks

against a service.

More sophisticated firewalls use techniques as described in section 2.9 to block

specific packets or connections.

2.9.3.2 Local Area Network Mitigation

Local networks were traditionally designed with a model of ‘crunchy on the outside,

chewy in the middle’ [33]. This is in reference to the fact most local area mitigation

is achieved at a gateway. While it may seem a fallacy to only protect a network

at a single point, the traditional view of network threats originates outside the

local network. It made sense historically to defend a network at the single point of

access, thereby protecting all machines while only having to secure at one point.

With the increase of laptop use and the increase of secondary attacks (attackers

entering networks via email and other conduits) this method of network defence

is becoming less effective.

2.9.3.3 Wide Area Network (WAN) Mitigation

Due to the larger data rates in WAN networks, many carriers consider themselves

simply carriers. This means they do not take responsibility for the data which is

present on their network. Consequently, their interests lie in mitigating potential

threats to the network itself. WAN mitigation is extremely limited.

2.10 Summary

This chapter has presented an overview of network monitoring, describing the

application of network monitoring to management and security. It has discussed

the various topologies and data rates which may be encountered, and discussed the

challenges associated with monitoring at high bandwidth sites. Various network

threats have been described alongside some of the common methods for detecting

CHAPTER 2. AN OVERVIEW OF NETWORK MONITORING 24

and mitigating against them. This chapter described how DoS attacks vary in

terms of target, vulnerability and mechanism.

The next chapter will present research into the problems associated with net-

work security monitoring, with a focus on the detection and mitigation of DoS.

Chapter 3

Related Work

In this section other related research in the field is examined, and the implications

are discussed. Security network monitoring has become a broad research field,

drawing from many related subjects. This chapter presents some of the research

most relevant to the thesis.

Much of the research can be allocated into one of four categories; denial of

service, feature detection, traffic capture / processing and mitigation.

This research was heavily involved with capturing traffic from a high data rate

network. There is a large body of research in this field, section 2.4 outlines some

of the major concepts.

3.1 Denial of Service

Denial of Service is one of the most common threats to network resources. Research

into Denial of Service became focussed in February 2000, when several high profile

targets such as Yahoo, Amazon, Buy, CNN and others were hit with traffic rates

of around 1GB/sec.

In [22] the authors classify DoS attack using several metrics. These classifica-

tions are shown in figure 3.1.

In 2006 Moore et al. investigated how common DoS activity was on the

Internet[34], this was achieved by monitoring IP space for responses from DoS

victims to spoofed DoS attacks. They show that the number of DoS attacks

with short durations is significant which corroborates the results presented in this

thesis; the number of attacks observed by Moore et al. was around 20-40 unique

victim IP addresses per hour. The research was limited to detecting spoofed DoS,

which becomes less common as ingress (sometimes egress) filtering is applied by

more network devices.

Flood based attacks are becoming more sophisticated; In [35] the authors de-

25

CHAPTER 3. RELATED WORK 26

Figure 3.1: DoS Classifications. Figure taken from [22]

scribe the use of intermediary, unwitting hosts to generate traffic directed at a

victim. This was achieved by spoofing the address of the victim, and sending

traffic to a ‘reflector’ host, which in turn replies to the victim’s IP. This can been

seen in 3.2.

Ingress filtering is a good counter measure to this type of attack, as spoofing

of the source addresses becomes much more limited. The authors note that there

may be the possibility of application level reflectors, but that these would be easier

to filter.

Wireless networks present a particular challenge due to their inherent broadcast

nature. In [36] the authors present a survey of DoS attacks on common public

WiFi locations such as airports, coffee shops and university campuses. They also

discuss some of the countermeasures available.

Denial of service is not limited to the Internet. There has been interest in the

potential damage caused by DoS attacks in sensor networks [37] and the potential

risks specific to them. More recently D. Raymond et al examined the attacks

specific to sensor networks, which target their susceptibility to denial of sleep style

attacks [38]. Sensor networks have limited resources, as with all systems, but unlike

many networks they are battery powered. This leads to unique vulnerabilities.

DoS provides differing challenges for differing areas of networking. Voice Over

IP (VOIP) has become a recent area of interest, and has its own vulnerabilities to

resource based DoS. VOIP uses the Session Initiation Protocol (SIP), and in [39]

the authors examine the potential attack vectors present in the protocol.

DoS is not limited to traditional computer networks. Attacks have been dis-

covered utilising vulnerabilities in mobile phone 3G technology. In [40] the author

describes an attack against the IMS (IP Multimedia Subsystem) framework, ef-

CHAPTER 3. RELATED WORK 27

Figure 3.2: Reflector Attacks. Figure taken from [35]

CHAPTER 3. RELATED WORK 28

fectively rendering networks using it alongside SIP (Session Initiation Protocol)

unusable, with relatively small volumes of input traffic.

Tools for generating DoS are many and varied. The tool used to generate DoS

traffic in this research was Stacheldraht, the authors of [41] compare several dis-

tributed DoS (or DDOS) generating tools. The tools examined were Trinoo, TFN

(Tribe Flood Network), Stacheldraht and Mstream. Each tool uses a hierarchical

topology, containing one or more attackers, a sent of handlers and potentially large

amounts of agents. The agents are responsible for generating the attack traffic.

Control of the handlers is achieved by a variety of methods, including telnet style

terminals through to blowfish [42] encrypted ICMP commands. A more thorough

examination of the DDOS tool used in this research can be found in [43].

3.2 Traffic Capture and Processing

There are many topologies at many scales present in the Internet today. The

desired data defines where in this set of topologies we should monitor traffic.

The differing locations for monitoring can be thought of as following one of two

branches, Core monitoring and Local monitoring. The main distinctions between

core and local branches are data rates and heterogeneity.

The problems of dealing with high data rates, especially when in relation to

IDS type applications have been at length by several sources; Holger Dreger et

al. describe trading off resource against detection rates, and the problems with

memory and processor management in differing applications [13]. They discuss

difficulties in several areas; firstly in dealing with the large number of packets per

second. Secondly, in coping with the traffic diversity found in high volume net-

works, and thirdly, attempting to maintain state for the monitored connections.

They name the primary difficulty for stateless IDS systems as the processor con-

sumption, and for stateful IDS systems, the memory management. They further

present several strategies for compromising detection rates to improve the ability

to cope with the rate of data.

These problems have been addressed in many different ways. Sometimes

through summarisation, sometimes, as with [44] it is done by splitting the traffic

intelligently to allow processing by current hardware. The key research in the

traffic splitting methodology is to maintain the consistency of the data between

‘slices’. This technology is similar to that of a load balancer, which are often

deployed in other environments.

H. Song et al. develop an FGPA based solution to signature detection, and ap-

ply the novel use of a bit-vector algorithm [45]. The signatures were taken from the

snort database [20], and therefore classification accuracy was commensurate with

CHAPTER 3. RELATED WORK 29

snort’s performance, more importantly though, signature detection was achieve at

rates of a gigabit per second; the authors suggest that through improved hardware

10Gbit/s could be achieved.

In [46] the authors use a variety of capture mechanisms (Endace cards, standard

NICs and FPGA based solutions) which allow for sampling or filtering of the

data. This approach has been used in applications such as IDS and probabilistic

IP traceback. Network cards produced by Endace and Napatech allow for high

data rate capture by mapping the network card memory directly into user space.

This technique has also been implemented by the open source driver modification

pf ring [47], where the community have achieved competitive packet capture rates

with commodity hardware.

3.3 Feature Selection and Intrusion Detection

In local monitoring, signature detection is used as an effective way of generating

very high classification rates, with low false positive results. The strength of

signature detection rests on the consistency and the accuracy of the definition of

the signature. Developing signatures can be a time consuming tasks, even for the

most skilled network analysts. This problem has been addressed by the authors

in[48] through the use of honeypot data and associated processing, to generate

accurate signatures without interaction from network administrators.

K. Wang et al. use the probabilities of specific payloads occurring for a given

application to derive an effective measure for detecting network abuse [49]. They

show impressive detection rates when applied to the DARPA IDS evaluation data

set.

The theme of feature reduction is taken up by the authors in [50] where vari-

ous statistical methods are used to determine which features should be used for

classification.

T. Lekie et al. have examined the use of metadata to detect misuse in an

encrypted environment [51]. This shows the possibility of using abstract data to

infer misuse in a network. It is primarily aimed at detection on a local network

level. Similarly, Seong Soo Kim et al. have described the use of wavelet ana-

lysis as a tool for the detection of denial of service activity from aggregate packet

headers [52]. This research again shows the potential for using non-traditional

algorithms, dependent on higher level information to detect misuse. Recently sig-

nificant research has made use of PCA (principle component analysis) to detect

anomalies in network traffic statistics. This has been applied to NetFlow statist-

ics to detect various types of anomalies including DoS, Flash crowds and worm

activity [53].

CHAPTER 3. RELATED WORK 30

In 2008 the authors of [54] discussed the issues with using traditional Netflow

for the detection of events such as DoS. They propose changes to the Netflow soft-

ware to allow the graceful degradation of sampling levels to mitigate the increasing

flow rates associated with such events.

S. Zanero et al. develop a system using clustering purely based on unsupervised

learning. This is unusual as it considers the payload [55]. Related to this research

is an overview of feature selection given by I. Guyion, where she discusses the

problems and solutions for handling data mining in fields where the number of

variables is very large [56].

Seong Soo Kim et al. present a system analysing egress traffic on a network.

They use develop several metrics which indicate the presence of DoS traffic. They

use destination IP address and port numbers as potential indicators, and discuss

the possibility of using other header variables [52].

A significant problem for network analysts is dealing with the potentially large

set of alarms generated by IDS systems deployed on the network. Some of these

alarms require action, others do not. The authors in [57] use data mining principles

applied to the alarms generated by IDS systems from previous investigations to

determine the appropriate actions needed for new ones. This was primarily used

to filter false positive results.

The authors in [58] use Kolmogorov complexity as a metric for DoS detection.

They conclude that metrics such as this are favourable to packet counting as they

are insensitive to background legitimate traffic.

G. Carl et al examine the effectiveness of several methods for DoS detection

in [59]. They evaluate common methods, but of most interest to us here, they look

at wavelet-based signal analysis. They conclude that the methods in isolation are

insufficient to completely address the issues.

3.4 Intrusion Prevention

Maintaining service during a DoS attack is still a challenge; many approach the

problem from the receiver end, filtering the traffic from legitimate requests. This

allows the host to sustain availability providing the bandwidth is available to

prevent excessive loss of legitimate traffic. In the case of [60], this is done via

identifying legitimate traffic via an http redirect and authentication code (formed

from the client IP) and then providing a QoS system implemented upstream of

the victim firewalls.

A method for determining the source of spoofed DoS traffic was suggested by

S. Savage et al [61]. In this system packets are statistically marked by routers.

Over time spoofed traffic can be traced back to the nearest router to the source.

CHAPTER 3. RELATED WORK 31

This is useful as it allows the offending traffic to be blocked closer to the source,

meaning less legitimate traffic would be affected.

Jelena Mirkovic et al. present a system to filter DoS at the source, via informing

router policies to drop DoS before it reaches the target host [62]. In [63] the authors

take a similar approach using a congestion policing feedback mechanism to flow

the filtering of traffic to access routers.

A example of a concept is employed by R. Mahajan [64] where routers may

detect offending traffic and limit its flow. The routers may inform upstream routers

of this, and those routers can then apply a similar rule, leading to the traffic being

dropped closer to source, and therefore with less impact on the target.

Some researchers have used overlay networking principles to help filter denial

of service attacks as with [65] and more recently [66]. In this research the authors

use an overlay to abstract the location of the victim, such that the attacker cannot

directly access it. Instead they must go through one of several entry points onto

the network. These entry points filter traffic by validating the incoming messages.

Due to the distributed nature of the access points onto the overlay, an effective

DoS attack would either need to locate the actual IP address of the victim, or

flood all access points onto the network, a potentially difficult undertaking.

Some researchers have advocated an approach using micro payment topologies

as a defence for DoS [67]. In this paper they describe the use of Client Brokers

and Server Brokers sitting between Attacker and Victim. These brokers pass a

micro payment transaction when the attacker wishes to connect with the victim,

effectively acting as an authentication proxy. The aim of this research was more

social engineering than software, in that the aim would be to give the owners a

vested interest in ensuring their machines are not taking part in DoS or other

unwanted activity by linking all use to a financial cost.

3.5 Summary

This chapter has presented a selection of research connected with network attacks,

the processing and capture of data at high bandwidths, the application of intrusion

detection to network traffic and the mitigation of attacks on a network. The

research related to traffic capture and processing covers the challenges associated

with memory and processor consumption along with potential ways to address

these problems such as FPGA based hardware and traffic coalescence.

The research presented in this thesis takes the concept of traffic summerisation,

and attempts to provide a mechanism for determining appropriate summerisation

metrics. The next chapter will describe the architecture deployed for the purposes

of this research, and discuss the various choices made in order to address the

CHAPTER 3. RELATED WORK 32

significant and varied problems encountered.

Chapter 4

An Infrastructure for Data

Capture

As discussed in Chapter 2, gathering data in high bandwidth environments is

a challenge. In order to provide statistics in a distributed, scalable manner an

architecture needed to be developed. This system would need to capture up to

12Gbit of data per second, across 6 remote points of presence. There would also

need to be a mechanism for grouping and analysing data from disparate sites.

In this section the hardware, software and system implementation used to

capture and process data is described. The system has been implemented within

the core of a National network and began operating in June 2005. This thesis

considers data in the period from September 2005 and April 2006.

4.1 System Design

4.1.1 Introduction

This work presents a novel approach to detecting significant network anomalies

using summarised data gathered from the header portions of packets. There are

two distinct difficulties when monitoring network traffic in the core. The first

relates to the hardware and system structure required to monitor at the high data

rates found in Wide Area Networks. This issue has been discussed in chapters 2

and 3, and there are many approaches to addressing the issue of high data rates.

The second concerns legal issues that may be encountered when monitoring

communications. This area of law is largely untested in the courts and is a complex

issue because of the international nature of the Internet. A discussion of these

issues can be found in [68]. The guidelines followed by the researcher for the

purposes of this work, suggested that privacy laws may preclude the use of the

data portion of packets,

33

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 34

”The United Kingdom, however, took a more restrained view and ex-

amined whether the data user could actually link the information to a

specific person.”

[68]

4.1.2 Architecture Overview

Figure 4.1: System Topology

Figure 4.1 shows an abstract topological view of the system. It can be split

into two major components; gatherers and a central processor. The gatherers are

spread throughout the network, while the central processor sits at a single site.

The system data gathering is distributed to access the data in its natural path.

This is to avoid unnecessary network load in re-routing the data elsewhere.

The physical locations of these devices (as shown in Figure 4.2) were

• Bromley

• Brighton

• Colchester

• Northampton

• Oxford

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 35

• Southampton

Figure 4.2: Geographic System Topology

To effectively monitor in a core network the traffic needs to be directed to the

interface where the capture will take place. In some cases this can be non-trivial,

especially when dealing with optical links1.

The capture of traffic for the purposes of this project was achieved via port

spanning mechanisms. Specific VLANs were spanned to a switch port which our

gatherers monitored. This allowed us some control over the level of traffic observed

in the early stages of the project. Once the gatherers had been fully established,

all non-management traffic VLANs were spanned.

1When splitting an optical line, there is an inherent loss of signal strength (this can be
compensated for by boosting the signal), which may, or may not be significant for a specific
path. Any optical splitting would also require a link to be unavailable for a time.

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 36

The software on the gatherers’ pipes summarised statistical data back to the

central processor where it was stored in a database and classified. It was essential

that the summerisation be carried out on the local gatherers, as the load of trans-

ferring traffic, and the load of processing it, is an unrealistic overhead for both the

network, and the central processor.

4.1.3 Data Rate

The research described in this thesis involved monitoring at significant data rates,

incorporating a large numbers of hosts. At the inception of the project, monitoring

at 1Gbit rates was a technical challenge in itself. Therefore careful consideration

was necessary to determine what hardware and software was necessary to monitor

potentially up to 12Gbit/s distributed across a network2.

4.1.4 Data Availability and Permissibility

While it was technically possible to capture the entire contents of a packet within

the core a wide area network3, there were restrictions that needed to be taken into

account. A key consideration was the legality of capturing the data portion of the

packet. The data contained in the packets traversing the network are subject to

UK data protection and privacy laws. Although this is a relatively grey area as no

case law exists on the use of this data, advice given by the ISP involved was that

for third party monitoring, only the fields of a packet required by the network

to route it are legally acceptable for inspection by a third party. In this case,

the third party refers to a body who is not the user, the recipient or the network

operator. The information this describes would include all IP header information,

TCP header information, and for instance the SMTP ‘RCPT TO’ field, but not

the SMTP ‘Subject field’4. This is enough information to allow the various devices

involved in routing the messages to deliver them to the intended service on the

intended host. Due to obvious sensitivity in monitoring a commercial network,

it was perceived as necessary to store the minimum information possible, while

still meeting the requirements of the research. This minimum was taken to be the

headers at layers 2, 3 and 4 (OSI). The metrics chosen are covered in detail in

Chapter 5.

2There were 6 sites, each with two gigabit links, leading to a maximum rate of 12GBit/s
3Disk space may require this to be stored only for short periods of time.
4Interestingly it is currently considered acceptable to store the ‘Mail From’ field even though

technically it is not needed to deliver the mail.

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 37

4.2 Hardware Design and Testing

In this section we look at the requirements and solutions found in dealing with

the potentially high data rates, and their effect on the hardware used. This re-

search was based on a relationship with a major UK ISP, and a modest budget

(considering the scale of the task). With this in mind the architecture was based

on standard server PC hardware.

4.2.1 Network Context

There were 6 points of presence (PoPs) within the monitored network, with data

rates ranging from 500Mbits/s per second to 1.4Gbits/s with around 20-30 TB,

and 100,000,000 connection attempts being processed per site daily. When the

project began these data rates were considerably lower; some sites had peak rates

of 200Mbit/s. It is a testament to the changing landscape of network monitoring

that the data rates have increase by as much as a factor of 3 within a 2 year period.

The network monitored was a commercial home broadband network with

around 30,000 hosts per site visible on the network at any one time. Under DoS

conditions the number of concurrent5 separate IP addresses reached hundreds of

thousands.

4.2.2 Data Rates

Monitoring at rates of a Gigabit per second can require specialised hardware, as

with many of the systems described in section 3.2. Given that the focus of this

research was to use lightweight summarisation, the hardware requirements needed

to be examined. The main problems for hardware involves bus transfer rates

and interrupt coalescence. The software problems lay in handling memory and

processing requirements in a feasible way. Data rates of one Gigabit per second

equate to approximately 160,000 packets per second, assuming an average size

of 750 bytes6. Consequently, any inline per packet processing must be carefully

considered. One of the first activities undertaken was to determine the capture

rates that could be achieved with off-the-shelf server PC architectures. Some

simple testing was done in the laboratory using a number of 3GHz Intel Xeon

servers with Intel Pro 1000 network interface cards. To discover what packet rates

the system would be capable of dealing with, a machine was set up to generate

5In this context concurrent is taken to mean within the current summary window, which is
usually 2 to 3 seconds.

6A poor assumption given the operation of TCP, however, for the purposes of ‘ball park’
calculations, not unreasonable.

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 38

UDP packets of a fixed size while another machine ran the libpcap based pro-

gram TCPDump to capture the packets. TCPDump had been compiled with the

PCAP FRAMES = max option to give it the maximum buffer available in the

kernel, this had been found to give the optimal results in previous tests. The IP

packet sizes ranged from 1500 Bytes (1472 Bytes of UDP Data, with 28 Bytes

between UDP and IP headers, this does not include the Ethernet Header) to 2507

Bytes, and the number sent and received were counted.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000 1200 1400 1600

U
ti
lis

a
ti
o
n
 (

G
b
it
/s

)

Packet Size (Bytes)

Send Rate
Receive Rate

Figure 4.3: Data rate against packet size

As can be seen from figure 4.3, at higher packet sizes the send and receive rates

are close to the one Gigabit mark, and are equal. When the packet sizes reduce,

and therefore the number of packets increases, the sending and receiving machines

struggle to maintain the high traffic rates (Figures 4.3 and 4.4).

Further tests were done using equal numbers of smaller and larger packets,

averaging to defined rates. These tests showed favourable results when compared

with the single packet size ones, a brief table of these is shown below.

The issues on the network card are clearly caused by packet rate, rather than

data rate. Each time a packet enters the network card an interrupt message is

generated, requiring the processor to spend time copying the packet from memory

7Smaller packet sizes were produced, but lead to much lower data transmission rates (I.e.,
the machine generating the traffic could not produce packets quickly enough) and therefore were
excluded from further analysis.

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 39

 60

 80

 100

 120

 140

 160

 180

 200

 200 400 600 800 1000 1200 1400 1600

P
a
c
k
e
ts

 (
T

h
o
u
s
a
n

d
 P

a
c
k
e
ts

 p
e
r

S
e
c
o
n
d
)

Packet Size (Bytes)

Send Rate
Receive Rate

Figure 4.4: Packet count against packet size

Table 4.1: Data Transmit and Receive Rate

Average Packet Size Sent Received Send Rate Receive Rate

850 1460395 1460395 0.993069 0.993069
600 1678911 1678855 0.805877 0.80585
450 1797681 1782958 0.647165 0.641865

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 40

on the card into kernel space. In situations where there are many packets ar-

riving per second, the processor can enter a state sometimes known as interrupt

thrashing.

Figure 4.5: Interrupt Thrashing

Figure 4.5 shows the concept of interrupt thrashing pictorially. In the first

situation the packet inter arrival time is sufficiently great that the processor has

time to make the memory copy before the next packet arrives. In the second

scenario the packet inter arrival time is too small to make this copy, and therefore

the processor does not complete the handling of the first packet before the second

arrives. If this packet rate continues the processor never has the time to recover

and process any packets at all.

It is possible to mitigate this type of scenario. Many network card drivers

utilise coalescence of packets on the network card when packet rates pass certain

thresholds. This allows single interrupts to be generated for several packets, giving

a single copy operation. For the purposes of this research, the latency between a

packet’s arrival and processing was not as critical as in most applications. Modify-

ing the RxInt parameter provided as part of the Intel e1000g driver family allowed

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 41

for the tuning of the interrupts to reduce the context switches required to move

the packets from the network card into user space.

Since the release of the 2.4.20 Linux kernel, the network subsystem now uses

NAPI - a system where data is handled per device, rather than per packet.

Through the use of this and the open source pf ring library it is now possible

to use direct NIC memory mapping to bypass kernel intervention. These recent

developments allow for considerable performance increases over the technology

available at the time this research was instigated.

There is a clear plateau region in both Figures 4.3 and 4.4. This appears to

be due to automatic interrupt coalescence present in the card driver. In the live

implementation of this system, the values for interrupt coalescence were adjusted

to match the live data rate. As latency was not an issue here, the values in the

live system for the maximum wait time, and buffer values were matched to the

data rates.

It is important to match the packet inter arrival time, and the size of the

network interface card buffer so as to avoid unnecessary packet loss.

It was believed from the above simple experimentation that standard PC hard-

ware would be capable of providing the processing that was needed, and therefore

a more expensive solution would be unnecessary.

The system implemented was based on 6 Dual 3GHz Xeon servers with 1GB of

RAM 300GB IDE hard drives, with 1 dual 3GHz Xeon server with 6GB of RAM

and dual raid 0 configured 360GB SCSI hard drive. Each machine had two one

gigabit streams spanned from an ISP router, giving a potential two gigabits per

second data rate per machine.

These machines generated statistical summaries of all the header information

collected within each summary period, and transmitted these to a centralised

database where it was classified and stored.

4.3 Software Design

In this final section of the design analysis, the software capture implementation is

described, including the issues faced by it and the solutions found. The research

made use of the Clementine data mining package (now IBM SPSS Modeller) as

both a tool for investigating data relationships and as a run-time classifier. For

more information about Clementine, see [69].

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 42

4.3.1 Proprietary Software

As previously mentioned, discussions with the ISP and the potential legal issues

associated with data portions of packets preclude the use of standard signature

based packet analysis to signature detect misuse. Instead summaries are built

using meta-data from the packets and misuse is detected by variances in these

summaries. This is an anomaly based approach, which has the advantages and

limitations described in section 2.6.1.2.

The use of summaries is advantageous for several reasons. Firstly, the per

packet processing involved in generating summaries is trivial when compared with

that of pattern matching techniques. Secondly, by definition, large scale network

events will affect the network at large, and should therefore result in statistical

variances in the summary data, provided the summaries are of appropriate in-

formation.

The architecture chosen relies on fast packet statistic gathering with a pseudo

real time summary generator. These two processes run independently, allowing

the program to cope with high load by the manual adjustment of the size of the

summaries gathered. The process works as follows:

The gatherer has a set of counters, which are incremented in relation to incom-

ing packet variables. This is a memory intensive, processor trivial task, allowing

the system to cope with significant numbers of packets in real time. The summary

generator uses the counters from the gatherer to create the statistical measures

needed to detect misuse. The design, while heavy on memory usage, has statically

assigned volumes. This prevents the system from becoming bound by available

memory.

Taking port usage as an example of this; in memory there are two arrays of

216 elements each, corresponding to source and destination port numbers. When

a TCP or UDP packet is received, the array elements corresponding to the source

and destination ports are incremented. Periodically the array is processed into a

summarised form, and reset.

This array counter approach was applied to packet length, IP ID, IP Flags, IP

TTL, IP Protocol, IP addresses, transport layer port amongst others.

It is worth mentioning that while this same concept is applied to the IP ad-

dresses, only the 24 least significant bits are monitored due to the memory de-

mands of a 232 element array. This could potentially lead to a loss in accuracy, as

two separate IP addresses may appear identical within a summary period. How-

ever, this will rarely occur, having a negligible effect on the summary statistics.

This may be calculated as

Let pA be the probability that at least one incorrect IP address collision

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 43

occurs

Let pB be the probability that a collision would not occur for a 2 given IP

addresses

Let nIP be the number of available IP addresses in our reduction

Let nS be the number of packets observed

pB = 1 − 1

nIP

Therefore the probability of having at least one collision for nS observations is

pA = (1 − pB)nS

Substituting in the appropriate values gives

0.5 =

(
1 −

(
1

224

)nS
)

Which resolves to around 11 million packets. That is to say, if we had 11 million

packets with random addresses passing through the system, there is a 50% chance

of having at least one collision.

The primary alternative of matching IP addresses without using indexes leads

to, for a binary search style algorithm, at most a log2 n [70] relationship between

the number of stored IP addresses and the number of necessary comparison oper-

ations, assuming a sorted list.

It is conceivable that a partial hashing algorithm could be to trade off memory

for processing efficiency. However, in our case the memory was not a significant

limit, and therefore the minimum processing solution was the most appropriate.

As the arrays used by the gatherer are of fixed size, the increase in the pro-

cessing required by the summary generator is not noticeable, increasing by negli-

gible amounts compared with the increase in packets processed. This means that

with an increase in data rate the summary generator, which may be processor

bound, can include more packets in a summary to compensate.

A side effect of this method, is that a summary period is not a fixed amount

of time, but rather a fixed number of packets. The means that during periods of

high data rate, the summary periods may be shorter. It also means, that during

a period of complete outage, a summary may not be generated.

The packet capture mechanism itself is achieved via the libpcap library with

some minor modifications; the software is compiled with the PCAP FRAMES

option set to its maximum size. The code itself is written in C, compiled under

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 44

GCC with compiler optimisations applied, including processor specific options.

For a full listing of the gatherer C code, please see appendix B.

Figure 4.6: Software Block Diagram

The software pipes data from the summary generator to a remote database

as shown in 4.6. The main block on the left shows the 3 tasks of the gatherer

processes running as part of the gatherer machine software, a pointer to the data

is the passed to the summary generator, before the summaries are transmitted.

The piping of data to the remote database is achieved via a TCP socket connection.

From experience the major issues when dealing with high data rates are en-

countered on the capture interface, and may be overcome either through the use

of specialist cards or through tuning options in the loadable driver modules.

Experience also tells us that while architectures based in on BSD perform

quicker8 than those based on older 2.4.x Linux kernels, the support for Linux

solutions is stronger in many packages. Linux machines were therefore used for

the gatherer machines.

The final part of the software is a centralised data processor. As each summary

on each site is generated it is sent via a TCP socket9 to a central machine. This

machine uses the Clementine run-time engine to classify the data before storing

it in a database. The run-time engine provided by the Clementine package is, in

effect, a compiled neural classifier, which may be run on specified data files. This

run-time engine is retrained periodically from new data to ensure that it is match-

ing accurately, even in a constantly changing environment. Human interaction is

necessary in the re-training process.

The server software at the central processor is written in Perl, which is per-

haps a less than optimal performance choice. Perl is however extremely strong

at text based processing, and as the data rates seen at the central processor are

8The memory copy from Kernel space to user space is more efficient
9On an independent management interface

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 45

comparably low, Perl’s performance inefficiencies were not a considered to be a

problem. The requirement to use Windows over a Unix solution comes from the

use of the Clementine data mining package.

4.3.2 A Novel Signature Detector

In this section we describe a novel signature detection mechanism developed to

allow certain payloads to be identified without recording the actual payload itself.

Signature detection is a common method for detecting security threats. It is

employed by Intrusion Detection Systems to identify known threats with fixed

payloads. While this is an effective approach it becomes difficult to utilise within

the core of an ISP network for the reasons presented previously, namely hardware

limitations and legal restraints.

While the focus of this work has been to use light weight statistical summaries

as inputs to a detection system, some signature detection is beneficial for the

accurate classification of individual packets and for the filtering of known attacks.

To circumvent the legal restrictions in the UK preventing examination of the

data portion of the packet, the checksum field in the header is used to determine

whether the contents of the packet match a given signature.

4.3.2.1 Operation

The TCP checksum field is included in the protocol to allow for detection of

transmission or reception errors in the data. The checksum field is given by taking

the 16-bit one’s complement of the one’s complement sum of the 16-bit words in

the TCP header and TCP data. As the checksum field is part of the data that is

used to calculate the checksum, it is set to zero at the point of calculation. In the

case of an uneven number of octets, the information is padded with zeros.

In this implementation, the checksum is calculated using header information

from the packet which is being tested, but using the data portion of the signature

that is to be matched for, which has been stored on the gatherer. Should this

checksum match the original checksum of the incoming packet, it would indicate

with a high probability that the data portion matches the signature.

For example, given a payload for a Code-red IIS overflow packet [71], we can

filter all packets of appropriate size (from the IP length field in the header) and

communicating on port 80 (from the port fields in the TCP header), and recal-

culate the TCP checksum. If the original checksum matches the new one, there

is a high probability the packet is an overflow attempt. This is not possible for

all worms. An infamous worm named ‘Slammer’ targeted MS SQL servers using

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 46

Figure 4.7: Signature Detection Mechanism

a UDP 420 byte payload to perform a buffer overflow [72]. The lack of reliable

checksum would prevent this technique from detecting the attack.

To verify this technique, packets with known payloads were generated (sequen-

tial numbering as data fields). Their payloads had been entered into the detector,

and were then detected with one hundred percent accuracy. For the technique to

be more fully tested the number of false positives should be observed on an op-

erational network. Unfortunately the only way to verify whether or not a packet

has been correctly identified would mean inspecting the packet contents, break-

ing UK data privacy laws. It is however possible to approach the problem from a

mathematical point of view by making some approximations about network traffic.

Assuming that the packets have an even distribution across ports and packet

sizes, and that the checksum is evenly random in its mapping10, the probability of

a packet incorrectly matching the signature packet can simply be represented by

pFailure =
1

MSS
× 1

PortV ariance
× 1

ChecksumEntropy

In the case of a TCP packet running over Ethernet this comes to approximately

1.5 × 10−13, or one in six and a half million million packets. On the operational

network monitored, depending on the time of day, there are around three hun-

dred thousand packets per second seen on average. It would therefore observe

approximately one incorrect labelling per year across all sites.

10All are favourable assumptions

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 47

The system has however not been used extensively in the live system, as there

is a significant performance degradation when a large number of signatures are

added. This could be somewhat alleviated by the calculation of the checksum on

the interface card.

4.3.2.2 Limitations

For this mechanism to be effective, the exact packet signature must be available.

This is a problem, particularly for TCP. It is not always possible to guarantee

particular a packet will be present. Many TCP algorithms will alter which parts

of payloads are present in which packets 11, based on a range of factors, such as

packet loss and round trip times.

This indeterminacy will mean that either several definitions would need to

be created for each potential TCP payload, or there will be a probabilistic miss-

classification of data. In some cases (where the payload we are interested in is the

first after the TCP handshake for instance) the data will be unaffected by TCP

algorithms.

The behaviour of the TCP algorithms are consistent for given network condi-

tions and the number of potential signatures is bounded, and in most cases very

small.

Checksum reliability is, for uniform data, proportional to 1/216, however on

non-uniform data the reliability drops off very rapidly. Some estimates for the

collision rate are as high as 1/210 [73].

4.4 Summary

Coping with the high volume of data present in core networks is a significant

research challenge. In this chapter a discussion of the architecture designed has

been presented. Data rates present on the monitored network have been discussed

and the legality of using this data described.

A novel signature detection mechanism has been presented which identifies

known payloads in the absence of the payload data.

The architecture based on distributed summary gatherers with a central pro-

cessor has been shown to be effective at dealing with high data rates. The signature

detection mechanism has been shown to be capable of detecting payloads in the

absence of payload data. This mechanism was not widely deployed in the system

developed because of performance concerns.

11These algorithms include Nagle which will potentially coalesce multiple messages and MTU
path discovery which may limit the size of the payload

CHAPTER 4. AN INFRASTRUCTURE FOR DATA CAPTURE 48

The next chapter will introduce the concept of data mining, the various tools

it encompasses and its application to this research.

Chapter 5

Applying Data Mining

This research was not intended to further the field of data mining itself. Instead

existing data mining techniques were applied to the field of network monitoring.

This thesis presents a novel combination of the use of traffic summaries at high

data rates, with data mining techniques for feature selection and classification.

This chapter introduces the concept of data mining, the tools used to perform

data mining functions and the simulations used to determine appropriate features

for the live system. Data mining was chosen as an appropriate set of tools for this

research because the relationship between the measurements taken, and the classi-

fication of those measurements as representative of illegitimacy, is a complex one.

Data mining tools are explicitly focussed on exploring complex data relationships

making them an obvious choice for this type of analysis.

5.1 Detection Theory

The system described in this research was primarily anomaly based. The concept

behind anomaly detection is that in some variable space, illegitimate traffic would

be separate from legitimate traffic. However, it is not possible to gather all data

associated with any traffic, for instance it is most likely to be impossible to know

the sender’s intention when creating traffic. With this in mind, an important

part of the research was to investigate to what degree it is possible to separate

legitimate and illegitimate traffic with the practically available variable space.

Figure 5.1 shows this concept, with the box representing multi-dimensional

variable space, the triangle shape representing legitimate traffic, the square shape

representing anomalous but legitimate traffic, and the circle shape representing

illegitimate traffic.

It is worth noting at this point that while it may be that illegitimate traffic

may be separate in a single axis, it is perhaps more likely that illegitimate traffic

49

CHAPTER 5. APPLYING DATA MINING 50

Figure 5.1: Anomaly Variable Space

will be separated from legitimate traffic through a more complex multidimensional

function.

5.2 Data Mining Tools

Many differing techniques were used to analyse the data from both test and live

networks. We describe their functionality and purpose here.

5.2.1 Clustering / Self Organising Maps

Clustering and Self Organising Map (SOM) algorithms are a subset of artificial

neural networks. A SOM organises its output in a grid, the goal of the training is

to associate similar areas of the grid with similar input patterns. The learning in a

SOM is unsupervised learning meaning there is no defined output for the network

to match.

This kind of algorithm is often used to find ‘natural’ groups in data. This type

of algorithm is particularly useful for finding relationships between data. There are

three separate algorithms used in this research for producing SOMs and Clusters.

• Kohoenen

The Kohonen network is a SOM algorithm named after its inventor, Teuvo

Kohonen. It simply arranges similar input patterns on similar areas of a

grid [74].

• K-means Clustering

This algorithm works through iterative refinement, and requires that the

CHAPTER 5. APPLYING DATA MINING 51

number of desired output clusters is defined. This can be useful if the inten-

tion is to find a particular number of subsets within a data set [74].

• Two-step

This algorithm is a SPSS (Clementine) proprietary one, which first determ-

ines the number of ‘natural’ clusters and then assigns data points to them.

This can be informative as it does not require prior knowledge of the group-

ing present in the data.

5.2.2 Artificial Neural Networks (ANN)

Artificial neural networks are commonly called simply neural networks (which

traditionally referred to biological neurons). These networks are a series of neurons

interconnected via mathematical functions with weightings associated with them.

Most neural networks require training of some type; this is supervised learning.

The goal of the training algorithm is to minimise the error in the output neurons

given a corresponding set of inputs. Over time the weights applied to the various

paths in the network are adjusted to minimise the output error. Some networks

also adjust their topology including any number of layers comprising of any number

neurons. There are in practice various topologies which are more effective than

others [75], and therefore the search space is considerably smaller than it can

appear.

Neural networks are often used to model complex relationships in an abstract

manner where a formal representation is difficult.

5.2.3 Artificial Neural Networks & Weighting

Varying forms of machine learning were used to directly classify data, such things

as decision trees, sequential models and logistical models [76] were all experimented

with, if only briefly. ANNs on the whole provided the most accurate classification,

therefore in order to discover which metrics were important, it was necessary to

determine how the networks were reaching their classification.

The Clementine software package used for much of the data mining activity

includes the functionality to extract the weights from an ANN and thereby cal-

culate the relative importance of the inputs. This is useful as it allows us to see

which variables are contributing most significantly to classifications.

As described above, neural networks have topologies made up of nodes, con-

nected by a mathematical function. The network adjusts weights on these nodes

to minimise the error on the output nodes for a given set of expected output data.

Once trained, these weightings may be extracted for each input node by examining

CHAPTER 5. APPLYING DATA MINING 52

the influence the input nodes have across the entire topology. This gives a nu-

merical representation of the input importance which is invaluable to the research

performed.

5.2.4 Graphing and Displaying the Data

Perhaps an overlooked method of mining data is to display it in various formats.

One of the simplest methods for displaying data within this research was a two

dimensional time axis graph.

Figure 5.2: Monthly Data Rate

In Figure 5.2 a complex time of day based variation in the variable plotted can

be seen (here one month’s data is plotted onto a single 24 hour x-axis). This type

of visual exploration of data can aid in the general understanding of how the data

interrelate. This type of analysis is essential in the early stages of exploring a data

set, as it provides the operator the ability to visualise large amounts of data in a

simple manner.

5.2.5 Data Preparation

This section describes the principles with which data was prepared for use in ANN

training. It is included here as it greatly influences the quality of the resultant

model.

CHAPTER 5. APPLYING DATA MINING 53

“In computing this idea is expressed in the familiar acronym GIGO-

Garbage in, Garbage Out” [76]p45

All data sets for training and testing were separate. This helps to prevent the

machine learning techniques from latching on to specific, insignificant items in the

test data, and preserves a more general model. Handling of data sets for neural

training is notoriously difficult. The goal of the network is simply to minimise the

error in the output, not to do this is a way that the operator considers sensible. If,

for example, the classification could be made through the use of an ID field (i.e.,

all of classification X falls between ID Y and Z), then this is likely to be the input

nodes most heavily used by the network, regardless of it’s applicability to other

data sets. By maintaining a separate training and testing data set, this type of

scenario may be partially mitigated against.

All data were balanced in terms of number of examples of desired outcomes. If

we imagine a situation where the data provided to the machine learning algorithm

had a 99% positive output field, the machine learning algorithm can simply give

a positive result for every prediction and gain a 99% prediction accuracy without

actually finding any other relationships in the matrix.

For simplicity, all data used for training was kept in a matrix form schema.

This means that for each measurement there are a set of variables, which can be

expressed as a table. This data was stored in a MYSQL database present on the

central processing machine.

5.2.6 Laboratory Emulation

As previously discussed, one of the research difficulties with classifying misuse on

a network where the data field is not available, is determining the accuracy of the

results.

As the detection mechanism eventually to be implemented would be working on

a live network, with no control over the traffic, nor any method to independently

label some classes of traffic, it was necessary to create an artificial environment to

demonstrate the principles of the detection mechanisms, and the types of variation

to later be observed in a live environment. This environment would allow for the

simulation of DDoS attacks on a controlled network, where all DDoS traffic could

be appropriately labelled and used for accurate training data.

5.2.6.1 Traffic Emulation

The purpose of the laboratory emulation activity was to provide a controlled

environment with which to generate specific data to measure. The emulation was

CHAPTER 5. APPLYING DATA MINING 54

built using sampled Netflow [11] measurements taken from a national network.

The experiment emulated port numbers, size, IP address ranges and protocols

found in the Netflow data. The traffic simulation was crude in the sense that

application layer flows were not emulated. This was seen to be unnecessary as the

system being proposed would not be performing flow reconstruction, and would

therefore not be aware of interaction at that level of detail. The accuracy of the

emulation directly impacts the validity of the modelling performed on the resulting

data.

A proprietary network traffic emulator was used to create the appropriate

traffic types and rates. The mix of traffic is shown in table 5.1, the network

carrying 84% TCP traffic.

Table 5.1: Emulation Traffic Mix

Protocol Percentage Port Size

TCP 25 Random 40
TCP 40 Random MSS
TCP 11 80 40
TCP 11 80 MSS
UDP 12 Random 20-300
ICMP 1 N/A 64

As networks vary significantly in traffic profile, it was difficult to acquire an

accurate picture of the commercial network without recording traffic from it, and

therefore there were several areas in which the emulation was inaccurate. The

exact operation of TCP was only loosely modelled (in terms of flags and options).

Average packet sizes were modelled, but distributions were unknown, and therefore

estimated 1.

The emulation assumes that TCP mainly operates in bulk mode, which holds

given that statistically bulk connections handle more packets than interactive

mode ones.

The packet headers were captured and entered into the Clementine data mining

package. This data was analysed using a mixture of prior knowledge and Clem-

entine’s built in machine learning templates to derive some relationships between

the packets.

Denial of service attack tools were then run with increasing traffic rates over

the network in addition to the existing traffic. An infamous DoS tool at the time of

the emulation was named ‘Stacheldraht’ [43]. The normal topology (represented

1This only applied to the UDP traffic, which was modelled as being normally distributed
between 20 and 300 bytes in length.

CHAPTER 5. APPLYING DATA MINING 55

in an abstract topological manner) is shown in Figure 5.3. The tool works in

a 3-tier manner. A master-server is set-up, and several zombie2 machines are

controlled from it. The attacker logs into, and gives commands, to the master-

server via an encrypted telnet like tool. The master-server communicates with

the zombies through ICMP echo (ping) replies, which are not usually blocked by

simple firewalls.

Figure 5.3: Stacheldraht Topology

The tool was configured with one controller, one handler and one zombie. The

headers were then analysed to find relationships which would identify the DoS

traffic and not the background.

It is clear that this experiment makes several key simplifications. Firstly the

Netflow data is not a complete description of the normal network traffic. Whilst

2This term refers to a machine which has been previously compromised by an attacker and
often, as in this case, forms part of a botnet.

CHAPTER 5. APPLYING DATA MINING 56

clearly not representative of a live network, if the only data being analysed is that

which has been given by the Netflow source or its derivatives, valid conclusions

may still be reached.

Secondly, the traffic generation in this experiment is unaffected by the denial

of service traffic added to the network. This is of course, a gross and incorrect

assumption. However, for the purposes of initial investigation, given that the

effects on a live network were to be later studied, it was taken to be acceptable.

ICMP, UDP and TCP attacks were added at one, ten, one hundred, one thou-

sand and ten thousand packets per second. Stacheldraht allows for configuration

of packet sizes (in the case of ICMP and UDP attacks), port ranges (in the case of

SYN and UDP attacks), destination address(s), attack duration and a toggle for

spoofing. Attacks in various forms were generated for each class, and the testing

data used on the network. The traffic generators were run at a constant 40Mbits/s

and had varying amounts of denial of service traffic added to them (see Table 5.2).

This set of DoS attacks is clearly limited in scope. No emulation of reflector

attacks, or more advanced CPU or memory resource based attacks was attempted,

nor were other DoS tools used at this point in the research. While this limits the

applicability of the resultant data to a live national environment, the range and

scope of potential attacks was considered too large to be evaluated exhaustively.

The attacks which were selected give a strong subset of the possible attacks present

on a live network, and were considered to be enough to provide solid data on which

to evaluate attack features.

Table 5.2: Laboratory DoS Traffic Mixes

Experiment Number Background Traffic DoS Type DoS Traffic
Rate (MBit/s) Rate (MBit/s)

1 40 UDP 0.0056
2 40 UDP 0.056
3 40 UDP 0.56
4 40 UDP 5.6
5 40 UDP 56
6 40 TCP 0.0056
7 40 TCP 0.056
8 40 TCP 0.56
9 40 TCP 5.6
10 40 TCP 56
11 40 ICMP 0.0056
12 40 ICMP 0.056
13 40 ICMP 0.56
14 40 ICMP 5.6
15 40 ICMP 56

CHAPTER 5. APPLYING DATA MINING 57

The resulting packet traces were converted into records with entries for header

variables. The variable names can be found in Table 5.3.

These fields were used as inputs for ANN based investigations into the data.

Table 5.3: Packet Fields

Field Name

Time of packet Capture
IP Header Length
IP Type of Service
IP Total Length
IP Identification

IP Flags
IP Fragment offset

IP Time to live
IP Protocol
IP Source IP

IP Destination IP
UDP Source Port

UDP Destination Port
UDP length

TCP Source Port
TCP Destination Port
TCP Sequence Number

TCP Acknowledgement Number
TCP Header length

TCP Type
TCP Window Size

TCP Urgent Pointer
ICMP Type
ICMP Code

ICMP Checksum

The initial investigation of the laboratory data was achieved via Self organising

maps.

Figure 5.4 and figure 5.5 show Kohonen networks of the data, with the differing

shapes representing differing DoS states. Encouragingly there is some ‘natural’

differentiation between DoS and non-DoS traffic, this is particularly evident in

ICMP and UDP based DoS (figure 5.5). The term natural is used here as this is

unsupervised learning, and therefore any resultant patterning is purely a product

of the algorithm. For these figures, and many others presented in this section,

random noise was applied to the X-axis to provide some separate for the data

points. As the clusters are discrete, this does not affect the reading of the charts.

Figure 5.6 shows another SOM algorithm output, in this case K-Means clus-

CHAPTER 5. APPLYING DATA MINING 58

Figure 5.4: Laboratory DoS - Kohonen Network

Figure 5.5: Laboratory DoS - Kohonen Network (2)

CHAPTER 5. APPLYING DATA MINING 59

tering. The cluster is represented on the X-axis with the distance from the cluster

centroid (mean) on the Y-axis. This algorithm requires the number of clusters

as an input and was given 4, one for UDP, TCP, ICMP and normal traffic which

were known to be present in the data. Cluster 3 contains exclusively UDP traffic,

Cluster 4 contains ICMP traffic close to its centroid and Normal traffic at distance.

The TCP DoS traffic is mainly present at the outer edges of Cluster 2.

Figure 5.6: Laboratory DoS - K-Means Cluster

The K-means algorithm was then fed only clean traffic samples, and configured

to form a single cluster. All records were then fed into the algorithm and the

distances from the cluster calculated, this can be seen in Figure 5.7. Of note is

that all DoS traffic appears on the outskirts of the cluster, again strengthening

our confidence that the header values, and meta data derived from them could be

a strong indicator of DoS.

We created summaries in various forms of header fields, and used these as

inputs to a neural training algorithm.

Figure 5.8 shows the amount of bandwidth taken up by attack traffic, against

the accuracy of labelling. ICMP DoS proved to be the easiest to detect, possibly

due to the small amount of ICMP traffic naturally in the data. This separation

of the ICMP traffic was also visible in the SoM outputs, where the ICMP based

DoS traffic was generally speaking well separated from the background samples.

The network weightings were then analysed to determine the more useful met-

CHAPTER 5. APPLYING DATA MINING 60

Figure 5.7: Laboratory DoS - K-Means Single Cluster

 0

 20

 40

 60

 80

 100

0
 (0

 P
P

S
)

0
.0

1
4
 (1

 P
P

S
)

0
.1

4
 (1

0
 P

P
S

)

1
.4

 (1
0
0
 P

P
S

)

1
2
.8

 (1
0
0
0
 P

P
S

)

5
9
.5

 (1
0
0
0
0
 P

P
S

)

A
c
c
u
ra

c
y
 o

f
D

e
te

c
ti
o
n
 (

%
)

Proportion of total traffic represented by DoS (%)

ICMP
UDP
TCP

Figure 5.8: Detection Rates

CHAPTER 5. APPLYING DATA MINING 61

rics. Table 5.4 shows the relative importance of the most significant input values

to the ANN. These values are calculated by the weightings analysis described in

section 5.2.3.

Table 5.4: DoS Relative Importance of Detection Metrics

Field Name Relative Importance

Packet Sizes 0.3093
Transport Layer Flags 0.2739

Protocol Counts 0.1822
Transport Layer Ports 0.1235

IP Address Counts 0.1109
Data Rate 0.0002

Development of statistical triggers allowed the summaries containing DoS traffic

to be detected at only 0.1% of the total traffic rate, and detected with no false

positives at 1%.

The primary conclusion from this emulation was that there was enough vari-

ance in simple network measurements with increasing volumes of denial of service

traffic to effectively detect its presence under simplified conditions. The emulation

also pointed out which fields may be useful in the analysis of the live data which

was to follow it.

It is worth noting that while TTL was ignored in this simulation 3 the denial

of service attacks were identifiable from it successfully. The use of the TTL field

is discussed in section 8.1.2.

5.2.7 Worm Traffic

To this point, there has been very little discussion of direct worm network threats.

Direct worm activity can have an extremely detrimental effect on a network’s

performance. In January 2003 networks were flooded with traffic attributed to a

worm exploiting vulnerabilities in Microsoft’s SQL Server database, the worm was

given the name Slammer [72].

Shortly after this in the summer of the same year a worm exploiting the DCOM

RPC service on Windows 2000 and Windows XP hit many users. This worm was

commonly referred to as blaster.

After a brief respite a worm named Sasser hit in May 2004, abusing vulnerab-

ilities in the Local Security Authority Subsystem Service (LSSAS, hence ‘Sasser’).

3No network data for this was available at the time; therefore any analysis would have been
purely speculative.

CHAPTER 5. APPLYING DATA MINING 62

In August 2004 Microsoft released their Service pack 2 for windows XP. Cru-

cially this was the first service pack to enable the firewall by default on the home

user’s machines. Our system was placed in a core network for the first time in

June 2005.

Since this date there has been a distinct lack of direct worms using new vulner-

abilities or services targeting these systems, in fact, Trojans were out numbering

worms and viruses five to one in June of 2006 [27]. A worm named ‘Zotob’ was

released targeting Windows 2000 machines, but as it functioned over port 445

(a port blocked on the monitored network) it did not appear significantly in the

traffic monitored. The data presented in this research does not include anything

more recent than April 2006, within this period of time, no significant direct worm

threats were observed.

Instead many worms now use secondary communication methods such as email,

peer-to-peer software, browser vulnerabilities and messenger clients.

This change in worm profiles has a significant impact on the network effect;

events which are inherently dependent on users have significantly slower propaga-

tion times, lack synchronisation and generally have lower numbers of compromised

hosts. Therefore they do not constitute as much of a threat to the network itself

as direct worms.

During course of this research, no major worms were released to affect the

network. Therefore to investigate their effects, test bed simulation was the only

option.

From [77] we can discuss the general characteristics of large scale worm traffic.

In this analysis the authors describe the target discovery as falling into one of

three categories; Scanning, Target List and Passive. Of interest to this project are

the scanning and target list variants, as they are most likely to cause significant

disruption to a network.

In the case that a worm actively scans for potential targets, we should expect to

see a significant increase in the number of packets of a particular size, potentially

accompanied by an increase in the number of packets on a particular transport

layer port.

Once the worm has compromised its target it may spread in one of two ways;

as part of the exploit or through a secondary channel, such as FTP. At this stage

we would expect to see an increase in the number of packets on a particular

application layer port associated with the worm transfer.

To give some validation to these predictions traffic generators were set up,

as with the DoS investigation, to generate a roughly representative background

traffic sample. A machine was set up to reply 4 on all transport layer ports for the

4The machine replies with a SYN/ACK, and does not emulate services further

CHAPTER 5. APPLYING DATA MINING 63

network 192.0.0.1/8 5. A machine was infected with the ‘sasser’ worm and allowed

to generate traffic on the network, which was recorded by a fourth machine, which

was running our summarisation software. This topology is shown in Figure 5.9.

Figure 5.9: Worm infection topology

In this topology there are no hosts available for exploitation. This is inten-

tional as modelling the speed of propagation and infection success rates would

be arbitrary. These parameters are variable, depending on the specific worm in

question, the network configuration (in terms of ratio of local an wide area host

availability), and a large number of other factors [23].

As can be seen in Figure 5.10 the worm scanning technique is simply a sequen-

tial search through the IP sub-network it inhabits. Scanning the network locally is

an effective strategy for worm target discovery [23], though it can limit the speed

of Internet propagation.

The scanning and infection mechanism is in this case flooding the network.

This type of activity leads to a significant change in port distribution. This stage

allows the worm to build a list of susceptible hosts. In our simulation, there are

5Ideally the whole IPv4 address space would have been emulated, however the number of
IP addresses emulated is a limitation of the software and associated PC hardware used to in
providing the services.

CHAPTER 5. APPLYING DATA MINING 64

Figure 5.10: Arp Packets

no vulnerable hosts, therefore a target list taken from a genuine infected machine

was used and a honeypot configured to respond to that range6.

The worm connects to machines on port 445, with the intention of comprom-

ising them. The honeypot does not respond, as it is not programmed to emulate

TCP connections past the ‘synchronise and acknowledge’ phase.

The worm steps through its pre-generated list of machines, attempting to com-

promise each machine in order.

Of note is that the connections are identical in terms of packet sizes, port

number and source address.

In the live system, wide spread worms of this type would lead to a change

in the variance of IP address counts, Port usage distributions and packet size

distributions. Though the transfer of the worm was not recorded, it may be safe

to assume that it would also take place over a fixed port 7, and would therefore

effect the relevant distributions, leading to detection.

Chapter 8 shows the effects of DoS on some of these distributions. In many

ways the effect of a mass worm on a network is similar to that of a bandwidth

based DoS attack. The worm traffic however, is distributed across the address

space, where as most DoS attacks target a small set of hosts.

6In this case the list refers to the Loughborough University Campus network
7This has historically been the case, as the services the worms have exploited have been

hosted on static ports in line with the IANA assignment

CHAPTER 5. APPLYING DATA MINING 65

While there were no worms observed on the live system, the laboratory re-

cording of worm activity has allowed speculation that the traffic profiles of mass

worm traffic will be similar to that of DoS traffic, but with an more even spread

destination IP addresses.

5.3 Summary

Separating legitimate and illegitimate traffic is a significant challenge. Determ-

ining appropriate metrics for the purposes of detecting malicious activities tradi-

tionally requires expert domain knowledge.

In this chapter the various data mining methods utilised in the research were

discussed, its application in a laboratory environment has been described, and the

theoretical effect of a worm on the live implementation shown.

The exploration of data through various clustering algorithms has been presen-

ted, and shown to be an effective method of separating laboratory controlled DoS

traffic from simulated legitimate network background. The use of ANN weight-

ings as a metric of the importance of input has been introduced, and shown to be

useful for evaluating the relative strengths of particular statistics in the detection

of illegitimate traffic. An example of worm behaviour has been examined and

allowed speculation of the expected effects on the distribution of key metrics in a

live environment.

The next chapter will cover the data and analysis from the live network.

Chapter 6

Operation of the System

This research relies on relationships between certain metrics in the data being

present. In order to understand the models and data relationships presented later

in the thesis, this chapter presents some of the patterns and characteristics of the

network being monitored. The work relies of a baseline network state, which while

it may contain a level of illegitimate traffic, this is not believed to be of concern.

An analogous situation may be that of human health. People encounter germs

on a constant basis, without significant illness. Only if the system becomes signi-

ficantly ill are we made aware of a specific infection through the immune system’s

response. In the context of a network, there is an ongoing level of illegitimate

traffic which may be present at any given time. This level of traffic is not of

concern unless it poses a threat to the network itself. That is to say, a degree of

illegitimate traffic may be considered to be part of the normal state of the network.

The system described in Chapter 4 was operation between September 2005

and April 2006. During this period, over 140 separate events were detected and

classified ranging from routing changes to DoS. The data was collected from 6

sites distributed across the UK.

Sites were set to generate summaries from 1,000,000 packets, which in most

sites was around 5 seconds, depending on the time of day 1. All data presented in

this chapter is taken from the live national network.

6.1 Data Rate

The data rates of national sites were of different magnitudes, however, all followed

a broadly similar pattern of variance in line with the time of day. This is to be

expected as the network utilisation is a result of the user’s routine.

Figure 6.1 shows one week of data rates plotted against time of day. The peak

1see figure 6.1 for a graph showing time of day variation on data rate

66

CHAPTER 6. OPERATION OF THE SYSTEM 67

utilisation occurs around 19:00 with the lowest utilisation occurring at 04:00. The

plateau seen in the figure occurs at 13:00.

Figure 6.1: Data Rate Variation

This would suggest that the user’s usage of the network closely mirrors their

sleep patterns, but that there is a substantial amount of network traffic that is

unaffected by this pattern. The data rate remains elevated during traditional

working hours, but peaks at 19:00 when we may reasonably expect users to be

returning from work2.

6.2 Protocols

When considering protocols, we examine the application layer only. All traffic

which concerns us in this research was spanned to our monitors over 1Gbit Eth-

ernet. The spanned traffic is almost entirely IP at layer 3. In this section, only

TCP, UDP and ICMP are examined; between them they constitute over 99% of

the total traffic.

2The monitored network was UK based and therefore is dominated by a UK time of day
variation

CHAPTER 6. OPERATION OF THE SYSTEM 68

Figure 6.2: Protocol Variation

CHAPTER 6. OPERATION OF THE SYSTEM 69

Figure 6.2 shows a similar pattern for protocol usage. The proportion of total

traffic for each stays relatively constant, with a slightly higher proportion of TCP

traffic in the early hours of the morning (see figure 6.3).

Figure 6.3: Protocol Variation as a Proportion of Overall Traffic

6.3 TTL

The Time to Live field is a header variable in the IP header which indicates the

number of hosts3 that may transmit the packet before it should be discarded.

Differing operating systems have differing starting values for this field, the full

range is 0-255. Chapter 8 contains a description of the TTL values and their

significance. In this section the most common values for the monitored network

are evaluated, these values are 125 and 61, which correspond to Microsoft Windows

and most Unix variants respectively. Windows defaults to a TTL of 128, meaning

125 is 3 ‘hops’ away from the monitor, Unix defaults to 64 which again, is 3 hops

away from the monitor.

3Such as a router

CHAPTER 6. OPERATION OF THE SYSTEM 70

Figure 6.4: TTL Packets Per Second against Hour of the Day

Figure 6.5: TTL Proportion against Hour of the Day

CHAPTER 6. OPERATION OF THE SYSTEM 71

Figure 6.4 shows the number of packets per second against hour of the day.

Of note, is that the TTL 125 (Windows) data appears to show a more patterned

variation than the TTL 61 (Unix) data. However, inspection of figure 6.5 shows

that the two TTL values have a fairly flat relationship compared with the time

of day. This would suggest that there is no major variation in the times that the

users of these systems are active.

6.4 Packet Sizes

In figure 6.6 the packet sizes are shown by protocol. ICMP and UDP packet sizes

show no direct relationship with time of day. TCP packet sizes however appear

to be higher during periods which are dominated by file sharing applications (see

above). This is a result of TCP bulk transfer mode, where larger quantities of

data are being transmitted, TCP will use MSS packets. On arrival of the data,

the recipient will acknowledge this data. Over Ethernet a MSS packet is 1500

bytes 4, and an acknowledgement packet (no options) will be 40 bytes. Therefore,

if all traffic were TCP bulk-mode traffic, the average packet size would be 770

bytes.

6.5 Port Usage

One of the most heavily utilised ports on many of the PoPs on the network mon-

itored was port 80. This is commonly associated with HTTP traffic. Figure 6.7

shows the count of port 80 packets plotted for several days against the hour of the

day5.

As might be expected the volume of HTTP traffic drops off rapidly in the

early morning, and peaks between 6 and 11pm. Figure 6.8 shows a similar plot

for port 4662, which is commonly associated with eMule, a popular 6 peer-to-

peer file sharing application. In contrast to port 80 traffic, this shows very little

time-of-day variation. It could be speculated that this is because the peer-to-

peer applications do not require user interaction, and therefore traffic generated

by them is somewhat independent of user activity patterns. It may be common

practice to leave computers downloading or uploading content with these tools

while the user is asleep.

Another interesting view of the data is shown in figure 6.9 which shows the

4including IP / TCP headers
5This graph shows packets which were either sent to, or came from port 80, this differs from

the data shown in Chapter 8.
6In 2005

CHAPTER 6. OPERATION OF THE SYSTEM 72

Figure 6.6: Protocol Variation as a Proportion of Overall Traffic

CHAPTER 6. OPERATION OF THE SYSTEM 73

Figure 6.7: Port 80 Packets Per Second against Hour of the Day

Figure 6.8: Port 4662 Packets Per Second against Hour of the Day

CHAPTER 6. OPERATION OF THE SYSTEM 74

contribution to overall traffic made by several of the highest utilised ports. There

is a trend which shows the use of the network becoming more diverse (smaller

contribution from the major ports), and dramatic drop off in use for particular

applications. The cause in this case does not appear to be the application falling

into disuse (Gnutella was reputedly the highest used file sharing software in 2007).

We can only suppose the application protocol changed behaviour, and stopped

relying on TCP port 6346 as heavily7.

Figure 6.9: Proportion of Overall Traffic from Major Ports

6.6 SMTP Monitoring

During the period in which the system described in this thesis was operating,

the issues of unsolicited email was raised. There was at the time an unknown

volume of unsolicited email being sent over the monitored network, and a desire

to understand the impact which this traffic had on the overall operation of the

network.

It was thought that it should be possible to determine differences between cer-

tain categories of SMTP generators through the use of summary statistics. To

differentiate between potential categories of SMTP generator, statistical summar-

ies of the network traffic were recorded over a 24 hour period. A total of 89,748

7Gnutella introduced UDP support and other changes during its lifespan

CHAPTER 6. OPERATION OF THE SYSTEM 75

hosts were observed sending SMTP traffic. Of those senders, 46 hosts were re-

sponsible for over 10,000 SMTP connections. The distribution of source addresses,

destination addresses and connection numbers varied significantly between groups

of senders. These groups were categorised theoretically as follows.

• Mail Server

Mail servers are simply agents which receive and send email messages on

behalf of users. They do not represent illegitimate use of the network. This

group was characterised by a time of day variation in the number of email

transfers alongside a relatively even distribution of sources and destinations.

• Mail Client

A mail client is a program which will send and receive email from a mail

server. Mail clients are a legitimate use of the network. This group was

characterised by a time of day variation in the number of email transfers, a

single source and a single destination.

• Open Mail Relay

An open mail relay is a device which will forward email from any source to

any destination. This is distinct from a closed mail relay in its indifference

to the sender’s identity. Open relays do not in and of themselves represent

illegitimate use of the network, however they have been abused by users

wishing to send unsolicited email [78]. This group was characterised by a

time of day variation in the number of email transfers, a small number of

sources and a large number of destinations.

• Bot

A ”Bot” is a machine which has been compromised by an attacker, with the

potential to be used for various purposes. One potential use is to generate

unsolicited email. Bot generated emails potentially represent illegitimate

use of the network. This group was characterised by a constant number

of connections throughout the day, a single source, and a large number of

destinations.

This work was published, and a more complete discussion of the findings can be

found in the paper attached to appendix A. It further demonstrates the potential

for summarised data to provide insight into complex problems.

CHAPTER 6. OPERATION OF THE SYSTEM 76

6.7 Summary

This chapter has described some of the characteristics of the monitored network

under periods of relative normality. The time of day variation in data rates, port

usage, protocols, TTL and packet sizes have all be examined and discussed.

Of particular note is the strong patterns in all parameters described. Each

metric follows a tight distribution for a given time of day, allowing them to be

modelled and predicted with some accuracy. This is encouraging as it suggests

that deviation from these distributions should be marked.

The next chapter will present data taken from the live national network, the

analysis of this data, and some examples of DoS attacks observed.

Chapter 7

Live Data

In the previous chapters various data mining techniques were discussed. In this

chapter they are applied to live network data and used to classify live network

events.

Once the laboratory based investigations into the statistical variances caused

by malicious activity were complete, the focus moved onto recording and analysing

a live data set.

The system described in chapter 4 was implemented in the core of a national

network. The system recorded summarised statistics derived from packet headers

continuously for a 6 month period. All summaries were stored in a MYSQL based

database. The schema for the database was simply a flat table with rows inserted

for each summary on each site. This was deemed adequate for the purposes of

this research as the volume of data produced in the summaries, even over a large

period of time, was small in database terms and quickly searched as desired.

The summaries recorded were investigated using the Clementine data mining

package, with an emphasis placed on periods of significant deviation. This devi-

ation was initially classified manually, informed by the laboratory experiences and,

in specific examples, corroborated by the ISP’s network team. The mechanism for

achieving this was to use laboratory generated neural networks to help highlight

periods of anomaly, then to visually inspect via graphs of particular fields. Later

in the research as the neural classifiers became more sophisticated the system re-

quired less manual intervention, and could be used to classify most of the data in

a semi-autonomous manner. As part of the research, reports were generated on a

monthly basis, describing the activity on the network.

77

CHAPTER 7. LIVE DATA 78

7.1 Gathering the data

Over a period of 6 months, a database was created with examples of anomaly, with

classifications ranging from large DoS attacks to network routing changes. The

data set contained over 140 non-contiguous events chosen to be representative of

the differing types of activity observed. The DoS attacks in the database included

both spoofed and non-spoofed examples of TCP-SYN flood based attacks, UDP

flood attacks, from within and outside the monitored network. Several attacks

were composite attacks, containing more than one type of traffic. The attacks

were taken from all 6 monitored sites, which had mildly different data rates, host

variance and general usage patterns. Along with the DoS samples, the surrounding

‘normal’ summaries were also included in the database.

In order to provide suitable training data, the normal samples were chosen to

be of a similar duration and number to that of the DoS attack they surrounded.

This ensured an evenly weighted data set with which to train automated models.

Different sections of this database, as well as the data in its entirety were used

as inputs for different data mining models. These models were compared using

the input weighting technique described in section 5.2.3.

7.2 Training

Initial investigation was done via self organising maps (SOMs). Two types of

SOM were used, the first is a standard SOM based on the Kohonen algorithm.

The output of this is shown in Figure 7.1. The X and Y axis represent the grid

coordinates of the output matrix; the colour indicated the presence of DoS.

As can be seen, there is a clear divide between the regions containing DoS and

Non-DoS samples. This is encouraging as it suggests there is significant variance

in the two sets.

Further investigation was done with a sub-type of SOM in which the data

passes through two phases. In the first phase, the algorithm determines the ap-

propriate number of ‘groups’ (i.e., the X,Y pairs in the standard SOM model),

and in the second phase it defines these groups.

In Figure 7.2 the Y axis shows the second of the day when the sample is taken,

this is to provide a method to separate the points. As can be seen, firstly the

algorithm selects that there should be two groups in the data, meaning that there

are two clusters in variable space. Secondly these groups appear to be divided by

DoS activity.

The research moved its focus from SOMs and Clustering algorithms to look

for which variables in the summaries were providing accurate classification. This

CHAPTER 7. LIVE DATA 79

Figure 7.1: Self Organising Map

Figure 7.2: Clustering Algorithm

CHAPTER 7. LIVE DATA 80

was achieved by analysing different classes of DoS for the highest weighted input

nodes.

We applied this technique to individual DoS attacks, DoS attacks grouped by

type and to the whole data set.

7.3 UDP DoS Example

To better illustrate the variances in the data under DoS conditions, two examples

will be discussed. The two examples chosen are an IP address spoofed, bandwidth

based UDP flood attack which existed sporadically over a one day period, and a

non-spoofed TCP SYN flood based DoS attack, which lasted for seven minutes.

The first example we examine is the UDP based attack

In the DoS database, the UDP denial of service attacks observed were exclus-

ively bandwidth attacks. Mostly they are short lived1, and of a smaller scale than

those generally reported in the media.

Discussion with the network operator and with external information assurance

bodies indicates that short lived DoS attacks are much more common than longer,

sustained attacks on this type of network.

In this example there are a short series of UDP floods. Figure 7.3 shows the

number of packets per second received overlaid with DoS Classification. As can

been seen, there is a general level variation in packets per second over the 24

hour period, This is due to the fluctuating levels of load observed on the network

based on consumer usage. The time of day variations seen are predictable, and

consistent between sites. Under the periods of DoS the packet rate increases in a

manner not consistent with the daily variation.

In this attack, IP address spoofing was used to hide the identity of the attack-

ing hosts. Figure 7.4 Shows the variation in the number of IP subnets seen per

packet sample overlaid with DoS classification. The DoS generator in this case was

sending each packet with its own unique source IP address, leading to an almost

one to one mapping of additional source addresses to additional packets.

7.4 TCP DoS Example

In this analysis an overview of the changes in the monitored summary statistics

during a SYN attack is presented. The SYN attack is a well known DoS attack

that aims to exhaust all the available connections at a particular server (see 2.3.3).

1It is possible to speculate on why this is; a home user network will have few attractive targets
for the usual extortion type DoS activities, and often is subject to petty DoS vandalism between
disgruntled users.

CHAPTER 7. LIVE DATA 81

Figure 7.3: UDP DoS - Packets Per Second

Figure 7.4: UDP DoS - IP Subnets Per Sample

CHAPTER 7. LIVE DATA 82

Figure 7.5 shows a huge increase in the number of packets per second with the

SYN flag set. This attack was relatively short lived, lasting only 7 minutes.

Figure 7.5: TCP DoS - SYN Flags Per Second

As should be expected, Figure 7.6 shows the corresponding reduction in the

average packet size observed 2.

The IP Source addresses, per second and per sample, are shown in Figure 7.7

and Figure 7.8.

While there is an increase in source addresses per second, indicating that a

larger number of hosts are sending traffic, there is a decrease in source addresses

per sample, indicating that the majority of packets are being sent from a smaller

set of hosts.

7.5 Feature Selection

This work sets out a methodology for recording lightweight statistics to detect

network anomalies, and for determining which statistical measures should be used

within a constantly changing environment.

2Syn Packets are around 40 bytes long (0 TCP data bytes), depending on which TCP options
are selected

CHAPTER 7. LIVE DATA 83

Figure 7.6: TCP DoS - Average Packet Size

With this in mind this section describes how data mining was used, not only to

determine periods of anomaly, but also to identify which features were significant

in this classification.

Using the DoS examples from the previous section, this analysis calculates the

relative importance of the inputs to the data mining engine. This technique works

by evaluating the ANN weightings for each input along the decision path.

Table 7.1 shows the relative importance of the inputs to the ANN used to

classify data. In the UDP flood example, the most important input into the ANN

was the IP address counts. This is no doubt due to the spoofed nature of this

attack. UDP traffic under normal conditions has a low representation on the

network (see figure 6.3), and therefore when large quantities of UDP traffic is

observed it strongly affects the distribution of protocols. Finally of note is the

variance in TTL. In the earlier laboratory based experiments, TTL had not been

a significant contributor to detection 3. However, in the live data examples TTL

becomes a strong indicator of the presence of DoS. This is discussed in chapter 7.

Moving to the TCP SYN flood example, the analysis suggests that the value

of the most commonly seen packet size is a highly significant factor in determining

3Due to the limitations of the accuracy of the experiment

CHAPTER 7. LIVE DATA 84

Figure 7.7: TCP DoS - Source Subnets Per Sample

Table 7.1: UDP DoS Relative Importance of Detection Metrics

Field Name Relative Importance

IP Address Counts 0.571429
Packet Sizes 0.165713

Protocol Counts 0.148571
TTL Field 0.142857
ID Ratio 0.028571

CHAPTER 7. LIVE DATA 85

Figure 7.8: TCP DoS - Source Subnets Per Second

the presence of this type of attack. Perhaps surprisingly, TCP flag counts were

considered only the 4th most significant input.

Since at the onset of the attack the number of packets with the SYN flag set

was still relatively small, it may be that the changes in fields such as the ID header

field, or the packet size, were more reliable indicators.

IP source address and destination address counts were also significant factors,

which was corroborated in Figure 7.7 and Figure 7.8.

Table 7.2: TCP DoS Relative Importance of Detection Metrics

Field Name Relative Importance

Packet Sizes 0.4375
ID Ratio 0.265625

TTL Field 0.140625
TCP Flags 0.09375

IP Address Counts 0.0625

The TTL field is again a prominent factor in the decision matrix here.

Figure 7.9 shows the relative importance of the inputs from the TCP, UDP and

combination Laboratory emulated DoS. TTL is insignificant in the laboratory as it

CHAPTER 7. LIVE DATA 86

was excluded from the analysis due to the lack of nTop data available to properly

model it in the traffic generators.

The spoofing of traffic makes the IP Address Counts the primary factor in the

UDP analysis, where as the fixed small packet sizes dominate the TCP analysis.

 0

 0.2

 0.4

 0.6

 0.8

 1

P
a
c
k
e
t S

iz
e
s

ID
 R

a
tio

T
T

L
 F

ie
ld

T
C

P
 F

la
g
s

IP
 A

d
d
re

s
s
 C

o
u
n
ts

P
ro

to
c
o
l C

o
u
n
t

T
ra

n
s
p
o
rt L

a
y
e
r P

o
rts

R
e
la

ti
v
e
 I
m

p
o
rt

a
n
c
e
 o

f
In

p
u
t

Metric

TCP
UDP

Mixed Laboratory

Figure 7.9: Comparison of Input Weightings

7.6 Malicious Attack Summary

The data used in this thesis was gathered between September 2005 and March

2006. A summary of the attacks analysed as part of this thesis is shown in 7.3.

Of the sites monitored, Oxford shows the most activity, particularly in Novem-

ber, December and January. It is unclear whether this is because of botnets present

on this site, or whether there are hosts being targeted within it. In some periods,

several similar attacks were observed per day for extended periods (as with Oxford

in February 06). However, a more common picture for the system as a whole was

for a small number of attacks to be observed in any given week.

CHAPTER 7. LIVE DATA 87

Table 7.3: Network Attacks Observed, Grouped by Month

Date Site Attack Type Count

September 05 Northampton UDP Flood 3
Oxford UDP Flood 2

October 05 Brighton UDP Flood 2
Northampton SYN Flood 1

Oxford UDP Flood 2

November 05 Colchester UDP Flood 2
Northampton UDP Flood 3

Oxford UDP Flood 25
Southampton SYN Flood 1

December 05 Colchester UDP Flood 2
Northampton UDP Flood 2

Oxford SYN Flood 10
UDP Flood 22

January 06 Colchester UDP Flood 1
Oxford SYN Flood 2

February 06 Colchester UDP Flood 2
Oxford SYN Flood 52

March 06 Brighton UDP Flood 3
Northampton UDP Flood 5

CHAPTER 7. LIVE DATA 88

7.7 Summary

In this chapter the effect of attacks on the network were investigated using data

mining techniques. Clustering techniques were shown to useful in organising the

data into legitimate and illegitimate categories. A UDP based flood DoS attack,

and a TCP based SYN flood DoS attack were examined and analysed using an

ANN. Many of the attacks observed during the research show characteristics which

are in common with attacks observed in [22] and [35]. The weightings of the inputs

were calculated to give a relative importance value to the associated input fields.

This chapter has shown that separating DoS traffic from legitimate traffic is

possible using a statistical metric based approach and a neural classifier. Further

more, it has shown that analysis of the neural classifier allows for the evaluation

of the relative importance of metrics.

In the next chapter the significant variables as selected by the data mining

algorithms are examined to determine why they are considered significant, and to

validate their selection.

Chapter 8

Discussion of the Data Mining

Parameters

In the previous chapter the methodology for investigating the ‘normal’ network

state was discussed, and the features for detecting DoS discovered. In this chapter

the features discovered are discussed and their behaviours under anomalous con-

ditions are examined. The events described in this chapter are all taken from the

live national network.

8.1 Defining Normality (Feature Selection)

The research group at HSN Loughborough had previously shown how statistical

measures for detecting change in distributions could be combined with a neural

classifier to detect and classify changes in delay data [79]. The technique had

been used to detect routing changes, network outages and time of day patterned

changes. This concept was applied to the network in a much broader sense here.

The assumption made was that the persistent state of the network was normal.

This is a matter of semantics; one could define normal as the activity which is

non-malicious. This precludes the possible normal malicious traffic; an example of

which would be worms such as ‘Code Red’ which has been present in network traffic

for many years, and is now largely benign1. Instead we define a certain amount

of illegal or malicious activity to be normal, and look for abnormal abnormalities.

This is a key definition, as instead of trying to classify what is happening on

the network at all times, instead, we attempt to classify changes in the network

state which are indicative of network based malicious activity.

It is clear that care must be taken in selecting which features of a data set to

monitor. Which features, or fields, are selected directly affects which events and

1This virus attacks unpatched IIS servers, of which there are now very few uninfected

89

CHAPTER 8. DISCUSSION OF THE DATA MINING PARAMETERS 90

with what accuracy, are detected.

Taking the technique used on laboratory data in section 5.2.3, we took pre-

classified live samples to train ANNs. Each for each event, the relative weightings

of the inputs was analysed.

8.1.1 A Note on Distributions

Many of the distributions under DoS conditions presented in this chapter are

samples of the overall distribution. For instance, in the case of the TTL field,

only the predominant five peaks of the distribution were recorded. This is to save

space in storage and does not prevent useful analysis of the data.

8.1.2 TTL Field Analysis

From the early analysis of the anomaly database, using the techniques described

in the previous chapter, it was clear that certain fields were good indicators of

general anomaly. The first example of this is the time to live field. To analyse this

field in more detail a per-packet distribution was built over time and can be seen

in figure 8.1.

Figure 8.1: TTL Distribution Under Non-Attack Conditions

CHAPTER 8. DISCUSSION OF THE DATA MINING PARAMETERS 91

There are several observations and points of discussion to note from this graph.

Most common operating systems have default TTL values set at the transmission

of a packet. This value is often a configurable OS wide parameter, but is rarely

changed from default settings. Table 8.1 shows common operating systems and

the default TTL values associated with them.

Table 8.1: Operating System Default TTL Values

Operating System Name Default TTL Value

Windows 128
Linux (2.4 Kernels) 64

OpenBSD 64
SOLARIS 8/10 64

AIX 64

When an IP packet leaves a machine, it will have the default time to live. Each

hop2 it passes will decrement the TTL. The TTL distribution of a monitoring point

will depend on it’s distance in hops from all hosts which it monitors.

The predominant peak seen in figure 8.1 is at 126 which would be consistent

with representing all outgoing traffic from the ISP local POP from Windows based

machines. We can also see a trail of IP addresses below this which are likely to

represent incoming traffic from Windows based systems. This pattern is repeated

around TTL 62 and below, representing the Unix hosts. There are also a scattering

of maximum TTL packets (255 and a small trail) which can be associated with

less common OSs such as Cisco IOS.

This distribution is a useful one as it describes the probability of packets ori-

ginating from specific numbers of hops away from our monitor. This distribution

is disturbed by some abnormalities in the network, such as routing changes or DoS.

Should an additional router be placed between the local POP and the monitor,

we would expect to see the peak at 126 move to 125 and so on.

Figure 8.2 shows the same distribution overlayed with the distribution from

taken from a period of DoS. As can be seen, there is a new peak formed by packets

with a TTL of 40. The fact that this is a single peak suggest that the majority

of packets during this period originated either from a single host, or hosts on a

single network.

From this, and the ANN weighting analysis, it is clear that not only is the

TTL field a good indicator of the presence of DoS, but also that it is a potentially

difficult metric to obscure. For an attacker to effectively match the distribution

present on the network, they would need to have an in depth knowledge of the

2A hop in this context meaning a layer 3 device such as a router

CHAPTER 8. DISCUSSION OF THE DATA MINING PARAMETERS 92

Figure 8.2: TTL Distribution Under DoS Attack Conditions

target network, the monitor’s position in relation to the attacking machines and

the position of the monitor in relation to the network it observes.

The combination of these factors make TTL not only an accurate indicator of

DoS traffic, but also an extremely resilient one. This type of analysis is however,

only effective for specific types of DoS or Worm attacks. In the case reflector style

attacks minimal change in distribution would be observed. Assuming that the

reflector attack used many well known web hosts, the TTL distribution entering

the network will be very similar to its natural state.

8.1.3 Packet Size Analysis

The next metric we will examine will be IP packet size. Packet sizes are an inter-

esting subject in and of themselves. The HSN research group at Loughborough

have published work on how packets sizes may be used to perform application

detection [80], and it follows that the packet size distribution on a network should

have some correlation with the applications which are running over it. As a wider

part of this work, packets size distributions were effectively used to create a snap-

shot of the applications present on the network at high data rate.

Figures 8.3 and 8.4 show the packet size distribution of the network under

CHAPTER 8. DISCUSSION OF THE DATA MINING PARAMETERS 93

Figure 8.3: Packet Size Distribution Under Non-Attack Conditions(full scale)

Figure 8.4: Packet Size Distribution Under Non-Attack Conditions(small scale)

CHAPTER 8. DISCUSSION OF THE DATA MINING PARAMETERS 94

normal conditions. As can be seen, there are significant points around 40-60 bytes

and at 1500 bytes. The maximum transmission unit (MTU) of the network is 1500

as the network is using Ethernet v2.

TCP traffic makes up the majority of traffic on the network monitored, and

is therefore the prime contributor to this distribution. At the smaller end of the

distribution, we see peaks at 40, 44, 48, 52 and so on. The smallest TCP packet

size is 40 bytes 3, this size would typically be seen on ACK, RST type packets.

TCP also has a range of options such as Window size scaling, or time stamps.

These options all 4 have a length of 4 bytes, which explains the 4 byte intervals in

our packet size distribution.

Figure 8.5: Packet Size Distribution Under DoS Attack Conditions(small scale)

Figure 8.5 shows the same packet size distribution, overlaid with one taken

under a DoS attack. The major feature change here is a new peak at 29 bytes.

In this example, the new peak was entirely made up of UDP packets, which were

flooding the network.

Packet size distributions are determined by the types of traffic present on the

network. As discussed earlier, the traffic has a predictable distribution, which may

make it relatively simple for a potential attacker to replicate a similar distribution

at the traffic generators, making this type of detection difficult. This would be

more difficult in the case of a SYN style flood as the nature of the attack limits

3IP Length field of 40.
4With the exceptions of ‘End of Option List’ and ‘No-Operation’.

CHAPTER 8. DISCUSSION OF THE DATA MINING PARAMETERS 95

the packet size distribution.

8.1.4 TCP Port Analysis

The final metric analysed in this section is the TCP port number. As with the

other metrics, this distribution will be strongly related to the types of traffic

present on the network. Networked applications have defined, or at least default,

ports on which they are hosted 5. The most obvious example of this would be

TCP port 80, which is most commonly associated with HTTP traffic. As can be

seen in figure 8.6 the most significant peak occurs at TCP port 80, which given

the nature of the network in question, is predictable6.

Figure 8.6: TCP Port Distribution Under Non-Attack Conditions

Table 8.2 shows the most common TCP port usage in order of significance.

This distribution shows a time-of-day variation with HTTP usage showing a large

decline in the later evening, with the ports associated with file sharing show less

deterioration. It is perhaps worth emphasising that this data shows which TCP

ports were in use, and that this is not a direct correlation to application usage.

5There are some exceptions to this.
6This is an analysis of TCP destination port at a specific point in time. For a description

of source and destination port usage over time, see Port Usage in the Operation of the System
chapter

CHAPTER 8. DISCUSSION OF THE DATA MINING PARAMETERS 96

Table 8.2: Highest TCP Port Usage and Associated Applications

TCP Port Percentage of Total Traffic Associated Application

80 34.57 HTTP
4662 3.22 eMule (P2P File Sharing)
445 3.16 Microsoft Directory Services
6346 2.33 Gnutella (P2P File Sharing)
135 1.57 Microsoft DCOM
139 1.55 NetBios
6881 1.37 BitTorrent (P2P File Sharing)
8080 1.08 HTTP (Alternative)
6348 0.67 Gnutella (P2P File Sharing)
25 0.44 SMTP
443 0.42 HTTPS

It is reasonable to assume however that the majority of the traffic on a particular

TCP port will be attributable to the associated TCP application.

Figure 8.7 shows the distribution of ports under a SYN based DoS. The flood

was not significant enough to appear in its own right in the statistics, however,

there is a significant drop in the proportion of total traffic contributed by the well

known ports.

Figure 8.7: TCP Port Distribution Under DoS Attack Conditions

CHAPTER 8. DISCUSSION OF THE DATA MINING PARAMETERS 97

8.1.5 IP Address Counts and IP Identification

The majority of IP traffic is bidirectional. That is to say that a client would both

send, and receive data. TCP requires that this be the case to allow data to be

acknowledged. The network monitored in this research primarily contains TCP

traffic (as can be seen in section 6.2. That nature means that we should expect

to see a similar number of source IP addresses as destination addresses. This is

because a packet travelling from a client to a server will have the client source

address, and the server destination address. In the reverse path, those addresses

would also be reversed (shown in figure 8.8), leading to 2 individual source and

destination addresses being observed on the monitor.

Figure 8.8: Bidirection Traffic

If this ratio between source and destination is not one, it means that the

monitor is not seeing traffic in one direction, or that it is not being replied to. As

can been seen in figure 8.9, the ratio between sources and destinations moves from

being centred around 1:1, to a more spread distribution, centred around 1.5:1.

Spoofed DoS attacks move this ratio significantly away from 1:1, as does large

scale network scanning. Spoofing source addresses will lead to a ratio between

sources and destinations significantly higher than 1:1, and scanning a network is

likely to lead to a ratio significantly smaller than 1:1.

IP identification numbers are used to allow fragmentation of IP packets if

necessary on the path. It is valid, though not recommended to set this number to

0. In many of the attacks observed on the ISP network, an identification number

of 0 was selected for the attack traffic, wildly moving the standard distribution of

this parameter. In some cases, the IP ID for an attack was fixed to a non-zero

number.

As can be seen in figure 8.10, the IP ID changes from the normal state where

the most commonly seen ID is 0, to 256 under DoS conditions for this attack. This

is because all of the packets which are part of the DoS attack have the IP ID set

CHAPTER 8. DISCUSSION OF THE DATA MINING PARAMETERS 98

Figure 8.9: IP Source:Destination Ratio Under DoS Attack Conditions

to 256.

Figure 8.10: Most Common IP Identification Number Under DoS Attack Condi-
tions

CHAPTER 8. DISCUSSION OF THE DATA MINING PARAMETERS 99

8.2 Summary

In this chapter we have examined variables which the neural network had selected

as good indicators of the presence of DoS. For each example, an explanation for

the type of change observed during DoS has been presented. This goes some

way to demonstrating that not only are neural classifiers a potential tool for the

identification of metrics, but also that the metrics selected here are robust. It

has been demonstrated that models developed in a laboratory environment apply

successfully in a live network. New metrics, such as TTL distribution, have been

shown to be useful in the detection of malicious events which were not observed

in the laboratory7.

The next chapter will summarise the research presented throughout this thesis,

draw conclusions from the data and present possibilities for future work in this

area.

7Due to limitations in the emulation.

Chapter 9

Conclusion

In Chapter 3 some of the approaches used to address the difficulties involved with

detecting malicious anomalies on large scale networks were introduced. These

issues are largely based around processing the huge quantity of data in an efficient

manner, dealing with the changing nature of network threats and providing a

mechanism to protect the network against such attacks.

Chapter 4 described the network context for this research, the system that

was implemented and the rational behind many of the design decisions made. It

was demonstrated that simple PC based architectures could potentially deal with

high speed network monitoring through the trading of memory for simplicity of

processing. A signature detector based on the TCP checksum was devised and

demonstrated to be effective in a controlled environment, this work was not taken

extensively into the live network because of performance concerns and the lack of

independent verification of its classifications. The signature detection mechanism

did however provide a method for the detection of payloads in an environment

where the payload was not available for examination.

Chapter 5 demonstrated that data mining techniques could be successfully

applied to a laboratory emulation to detect the presence of DoS in traffic samples

when the DoS traffic represented as little as 1% of the total bandwidth of the

data. The concept of calculating relative importance of input fields through the

comparative importance of their weightings within an ANN was introduced and

applied to laboratory data.

Chapter 6 presented a summary the operational data recorded by the system.

It was shown that the network monitored had strong time of day variation in

metrics such as data rate and port usage. This cements the concept that the

network behaviour should be predictable, and therefore possible to model.

Chapter 7 showed that data mining techniques could be applied to network

data to successfully distinguish malicious network traffic from non-malicious data.

Further more, it was demonstrated that these techniques could identify which

100

CHAPTER 9. CONCLUSION 101

characteristics were the most significant in terms of divergence between the groups

of data. Of particular interest was the selection of fields such as the IP TTL

field distribution, IP Identification distribution and IP address counts as a strong

indicators of the presence of DoS.

Chapter 8 examined the parameters selected through the ANN weighting ana-

lysis and evaluated them to demonstrate their suitability as detection metrics. It

was shown that the data mining approaches selected extremely effective metrics,

and further, metrics which may have been non-obvious to a casual observer. This

is a particular strength of the research, as not only was a system developed for the

detection of illegitimate traffic, a process by which the system could be trained

and adapted to new threats has been proven. The IP TTL field in particular may

prove a difficult metric to mask for a potential attacker due to the requirement

for a large amount of information specific to the relative locations of the intended

victim and monitoring station.

The internet forms an integral part of much of modern life. As people are

becoming increasingly dependent on the Internet, the underlying infrastructure

needs to becoming increasingly resilient to attack. DoS has consistently been a

problem over an extended period of time, showing that the mitigation of this type

of attack is a non-trivial problem.

Analysis network traffic at core network data rates is a significant challenge.

This research has shown that meta data in the form of statistical summaries is a

powerful tool for the detection of network attacks such as DoS and direct Worm

propagation. These events, due to the level of traffic required for them to be

effective, have an impact on the statistical landscape of a network. Leveraging

this has been shown to be an efficient way of detecting their presence. The system

developed detected the presence of DoS constituting as little as 0.1% of the total

traffic volume in traffic emulations.

Feature selection for network security has traditionally relied on expert domain

knowledge. This work has implemented data mining techniques for the classifica-

tion of malicious network events. Further more, it has shown that these techniques

can be used to identify the key features in the summarised data. Features such as

TTL distribution and the ratio of source and destination IP addresses have been

shown to be effective indicators of the presence of DoS.

Validating laboratory work is often a difficult endeavour; this research took

data mining from a laboratory environment into a multi-gigabit national network,

where it detected many network security events. Areas of similarity and areas

of divergence between the controlled emulation and the live network were shown.

Several ‘real-world’ attacks were analysed, and their impact on the summaries

shown to be consistent with the neural classifier’s relative importance.

CHAPTER 9. CONCLUSION 102

The system developed as part of this research operated in a live national con-

sumer network for an extended period of time, monitoring data rates of up to

5Gbit/s across 6 sites, with hundreds of millions of connections being processed

daily on standard PC architectures. The system adapted to the increasing traffic

volume observed through the increasing of summary periods, demonstrating the

power of summary statistics in providing scalable detection. The system developed

was also flexible enough to be applied to high-speed application detection of VoIP

traffic and to the detection of unsolicited SMTP generators.

9.1 Further Work

The ultimate aim of this type of research was to mitigate against the impact of

malicious activity on the network. It is the author’s view that filtering traffic local

to the target is only effective against certain types of attack. To fully protect

a target the filtering of traffic should be done as close to the source as possible.

With this in mind, when a system like the one described here detected DoS on the

network, research into automatically identifying parameters of the traffic in ques-

tion would allow a more advanced use of push-back[64] or equivalent techniques.

This is advantageous as, while push-back can control the traffic upstream, it is

still necessary to drop a proportion of legitimate traffic.

If it were possible to provide a DoS filter with a more specific description

of the features of a specific DoS, it would allow more a targeted throttling of the

upstream data. For instance, metrics such as UDP port, or IP address are likely to

be subject to a large number of false positives, leading to a degraded performance

for legitimate users. If that specification were to be extended to be throttling UDP

packets of size 1500 bytes heading for a specific IP address with a TTL of 58, the

number of false positives and therefore the amount of performance degradation

for legitimate users would be reduced.

This avenue of research was not explored as part of this thesis; the research was

carried out on a live commercial national network, and therefore any experimental

mitigation techniques would have had to be laboratory based. It should be possible

to demonstrate this type of filtering in a test-bed environment.

References

[1] BBC report on Internet shopping. 2006. At time of writing, this article can

be found at http://news.bbc.co.uk/1/hi/business/4630472.stm.

[2] LulzSec hackers claim CIA website shutdown. 2011. At time of

writing, this article can be found at http://www.bbc.co.uk/news/

technology-13787229.

[3] P.J. Sandford, J.M. Sandford, and D.J. Parish. Analysis of SMTP connection

characteristics for detecting spam relays. 2006.

[4] O. Arkin. Tracing hackers: Part 1. Computer Fraud & Security, 2002(4):12–

17, 2002.

[5] International Organization for Standardization. Information Technology Se-

curity Techniques. Code of practice for information security management.

iso/iec 17799:2005(e).

[6] R. Bragg, M. Rhodes-Ousley, and K. Strassberg. Network security: the com-

plete reference. Osborne, 2004.

[7] How does Sony breach affect customers? . 2011. At time of writing, this article

can be found at http://www.bbc.co.uk/news/technology-13206687.

[8] ISO/IEC 10040 Information technology – Open Systems Interconnection –

Systems management overview. 1998.

[9] TCPDump. More information at http://www.tcpdump.org/.

[10] Ethereal Protocol analyser. More information at http://www.ethereal.

com/.

[11] Netflow. More information at http://www.cisco.com/warp/public/732/

Tech/nmp/netflow/index.shtml.

[12] Wikipedia Ping article. At time of writing, this article can be found at

http://en.wikipedia.org/wiki/Ping.

103

http://news.bbc.co.uk/1/hi/business/4630472.stm
http://www.bbc.co.uk/news/technology-13787229
http://www.bbc.co.uk/news/technology-13787229
http://www.bbc.co.uk/news/technology-13206687
http://www.tcpdump.org/
http://www.ethereal.com/
http://www.ethereal.com/
http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml
http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml
http://en.wikipedia.org/wiki/Ping

REFERENCES 104

[13] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Operational exper-

iences with high-volume network intrusion detection. In Proceedings of the

11th ACM conference on Computer and communications security, pages 2–11.

ACM, 2004.

[14] R.G. Clegg, M.S. Withall, A.W. Moore, I.W. Phillips, D.J. Parish, M. Rio,

R. Landa, H. Haddadi, K. Kyriakopoulos, J. Augé, et al. Challenges in

the capture and dissemination of measurements from high-speed networks.

Communications, IET, 3(6):957–966, 2009.

[15] Napatech network capture. More information at http://www.napatech.

com/.

[16] Endace network capture. More information at http://www.endace.com/.

[17] M. Kaeo. Designing network security. Cisco Systems, 2003.

[18] Wikipedia load balancing entry. Note: at time of writing, this art-

icle is available at: http://en.wikipedia.org/wiki/Load_balancing_

%28computing%29.

[19] S. Axelsson. Intrusion detection systems: A survey and taxonomy. 2000.

[20] Snort. More information at http://www.snort.org/.

[21] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generating

signatures for polymorphic worms. In Security and Privacy, 2005 IEEE Sym-

posium on, pages 226–241. IEEE, 2005.

[22] J. Mirkovic and P. Reiher. A taxonomy of ddos attack and ddos defense

mechanisms. ACM SIGCOMM Computer Communication Review, 34(2):39–

53, 2004.

[23] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxonomy of

computer worms. In Proceedings of the 2003 ACM workshop on Rapid Mal-

code, pages 11–18. ACM, 2003.

[24] J. Miller, B Kostanecki J. Gough, J Talkbot, and K Roculan. Microsoft dcom

rpc alert. 2003.

[25] A. Van Der Merwe, M. Loock, and M. Dabrowski. Characteristics and re-

sponsibilities involved in a phishing attack. In Proceedings of the 4th inter-

national symposium on Information and communication technologies, pages

249–254. Trinity College Dublin, 2005.

http://www.napatech.com/
http://www.napatech.com/
http://www.endace.com/
http://en.wikipedia.org/wiki/Load_balancing_%28computing%29
http://en.wikipedia.org/wiki/Load_balancing_%28computing%29
http://www.snort.org/

REFERENCES 105

[26] A. Hussain, J. Heidemann, and C. Papadopoulos. A framework for classifying

denial of service attacks. In Proceedings of the 2003 conference on Applica-

tions, technologies, architectures, and protocols for computer communications,

pages 99–110. ACM, 2003.

[27] Sophos Threat Management Report June 2006. At time of writing, this art-

icle can be found at http://www.sophos.com/sophos/docs/eng/papers/

sophos-security-report-jun06-srus.pdf.

[28] Breaking the butterfly botnet. Note: at time of writing, this article is available

at: http://www.bbc.co.uk/news/10240117.

[29] Microsoft’s foiling of botnet gets mixed response. Note: at time of writ-

ing, this article is available at: http://news.bbc.co.uk/1/hi/technology/

8537771.stm.

[30] Blackmailers target $1m website. 2006. At time of writing, this article can

be found at http://news.bbc.co.uk/1/hi/technology/4621158.stm.

[31] Network Ingress Filtering: Defeating Denial of Service Attacks which

employ IP Source Address Spoofing. At time of writing, this article

can be found at http://delivery.acm.org/10.1145/rfc_fulltext/

RFC2267/rfc2267.txt?key1=RFC2267&key2=1658621611&coll=GUIDE&dl=

GUIDE&CFID=3822917&CFTOKEN=94822887.

[32] Blaster (Worm). 2003. At time of writing, this article can be found at

http://en.wikipedia.org/wiki/Blaster_(computer_worm).

[33] L. Miller and P.H. Gregory. CISSP for Dummies. For Dummies, 2009.

[34] D. Moore, C. Shannon, D.J. Brown, G.M. Voelker, and S. Savage. Inferring

internet denial-of-service activity. ACM Transactions on Computer Systems

(TOCS), 24(2):115–139, 2006.

[35] V. Paxson. An analysis of using reflectors for distributed denial-of-service

attacks. ACM SIGCOMM Computer Communication Review, 31(3):38–47,

2001.

[36] K. Bicakci and B. Tavli. Denial-of-service attacks and countermeasures in ieee

802.11 wireless networks. Computer Standards & Interfaces, 31(5):931–941,

2009.

[37] A.D. Wood and J.A. Stankovic. Denial of service in sensor networks. Com-

puter, 35(10):54–62, 2002.

http://www.sophos.com/sophos/docs/eng/papers/sophos-security-report-jun06-srus.pdf
http://www.sophos.com/sophos/docs/eng/papers/sophos-security-report-jun06-srus.pdf
http://www.bbc.co.uk/news/10240117
http://news.bbc.co.uk/1/hi/technology/8537771.stm
http://news.bbc.co.uk/1/hi/technology/8537771.stm
http://news.bbc.co.uk/1/hi/technology/4621158.stm
http://delivery.acm.org/10.1145/rfc_fulltext/RFC2267/rfc2267.txt?key1=RFC2267&key2=1658621611&coll=GUIDE&dl=GUIDE&CFID=3822917&CFTOKEN=94822887
http://delivery.acm.org/10.1145/rfc_fulltext/RFC2267/rfc2267.txt?key1=RFC2267&key2=1658621611&coll=GUIDE&dl=GUIDE&CFID=3822917&CFTOKEN=94822887
http://delivery.acm.org/10.1145/rfc_fulltext/RFC2267/rfc2267.txt?key1=RFC2267&key2=1658621611&coll=GUIDE&dl=GUIDE&CFID=3822917&CFTOKEN=94822887
http://en.wikipedia.org/wiki/Blaster_(computer_worm)

REFERENCES 106

[38] D.R. Raymond and S.F. Midkiff. Denial-of-service in wireless sensor networks:

Attacks and defenses. Pervasive Computing, IEEE, 7(1):74–81, 2008.

[39] D. Sisalem, J. Kuthan, and S. Ehlert. Denial of service attacks targeting a sip

voip infrastructure: attack scenarios and prevention mechanisms. Network,

IEEE, 20(5):26–31, 2006.

[40] B. Zhao, C. Chi, W. Gao, S. Zhu, and G. Cao. A chain reaction dos attack

on 3g networks: analysis and defenses. In INFOCOM 2009, IEEE, pages

2455–2463. IEEE.

[41] S. Dietrich, N. Long, and D. Dittrich. Analyzing distributed denial of service

tools: The shaft case. In Proceedings of the 14th USENIX conference on

System administration, pages 329–340. USENIX Association, 2000.

[42] N. Smyth. Security+ Essentials. eBookFrenzy.

[43] D. Dittrich. The ”stacheldraht” distributed denial of service attack tool.

1999. Note: at time of writing, this article is available at: http://staff.

washington.edu/dittrich/misc/stacheldraht.analysis.

[44] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer. Stateful intrusion de-

tection for high-speed network’s. In Security and Privacy, 2002. Proceedings.

2002 IEEE Symposium on, pages 285–293. IEEE, 2002.

[45] H. Song and J.W. Lockwood. Efficient packet classification for network in-

trusion detection using fpga. In Proceedings of the 2005 ACM/SIGDA 13th

international symposium on Field-programmable gate arrays, pages 238–245.

ACM, 2005.

[46] F. Dressler and G. Carle. History-high speed network monitoring and ana-

lysis. In Proceedings of 24th IEEE Conference on Computer Communications

(IEEE INFOCOM 2005), Miami, FL, USA. Citeseer, 2005.

[47] Pf ring packet capture library. More information at http://www.ntop.org/.

[48] C. Kreibich and J. Crowcroft. Honeycomb: creating intrusion detection signa-

tures using honeypots. ACM SIGCOMM Computer Communication Review,

34(1):51–56, 2004.

[49] K. Wang and S.J. Stolfo. Anomalous payload-based network intrusion de-

tection. In Recent Advances in Intrusion Detection, pages 203–222. Springer,

2004.

http://staff.washington.edu/dittrich/misc/stacheldraht.analysis
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis
http://www.ntop.org/

REFERENCES 107

[50] S. Chebrolu, A. Abraham, and J.P. Thomas. Feature deduction and ensemble

design of intrusion detection systems. Computers & Security, 24(4):295–307,

2005.

[51] T. Leckie and A. Yasinsac. Metadata for anomaly-based security protocol

attack deduction. Knowledge and Data Engineering, IEEE Transactions on,

16(9):1157–1168, 2004.

[52] S.S. Kim, A.L.N. Reddy, and M. Vannucci. Detecting traffic anomalies

through aggregate analysis of packet header data. NETWORKING 2004,

Networking Technologies, Services, and Protocols; Performance of Computer

and Communication Networks; Mobile and Wireless Communications, pages

1047–1059, 2004.

[53] A. Lakhina, M. Crovella, and C. Diot. Characterization of network-wide an-

omalies in traffic flows. In Proceedings of the 4th ACM SIGCOMM conference

on Internet measurement, pages 201–206. ACM, 2004.

[54] W. Zhenqi and W. Xinyu. Netflow based intrusion detection system. In 2008

International Conference on MultiMedia and Information Technology, pages

825–828. IEEE, 2008.

[55] S. Zanero and S.M. Savaresi. Unsupervised learning techniques for an in-

trusion detection system. In Proceedings of the 2004 ACM symposium on

Applied computing, pages 412–419. ACM, 2004.

[56] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.

The Journal of Machine Learning Research, 3:1157–1182, 2003.

[57] K. Julisch and M. Dacier. Mining intrusion detection alarms for actionable

knowledge. In Proceedings of the eighth ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pages 366–375. ACM, 2002.

[58] A. Kulkarni and S. Bush. Detecting distributed denial-of-service attacks using

kolmogorov complexity metrics. Journal of Network and Systems Manage-

ment, 14(1):69–80, 2006.

[59] G. Carl, G. Kesidis, R.R. Brooks, and S. Rai. Denial-of-service attack-

detection techniques. Internet Computing, IEEE, 10(1):82–89, 2006.

[60] J. Xu and W. Lee. Sustaining availability of web services under distributed

denial of service attacks. IEEE Transactions on Computers, pages 195–208,

2003.

REFERENCES 108

[61] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network sup-

port for ip traceback. ACM SIGCOMM Computer Communication Review,

30(4):295–306, 2000.

[62] Jelena Mirkovic. D-WARD: Source-End Defense Against Dis-tributed Denial-

of-Service Attacks (Ph.D. thesis, University ofCalifornia Los Angeles). 2003.

[63] X. Liu, X. Yang, and Y. Xia. Netfence: preventing internet denial of ser-

vice from inside out. ACM SIGCOMM Computer Communication Review,

40(4):255–266, 2010.

[64] R. Mahajan, S.M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker.

Controlling high bandwidth aggregates in the network. ACM SIGCOMM

Computer Communication Review, 32(3):62–73, 2002.

[65] A.D. Keromytis, V. Misra, and D. Rubenstein. Sos: Secure overlay services.

ACM SIGCOMM Computer Communication Review, 32(4):61–72, 2002.

[66] A.D. Keromytis, V. Misra, and D. Rubenstein. Sos: An architecture for

mitigating ddos attacks. Selected Areas in Communications, IEEE Journal

on, 22(1):176–188, 2004.

[67] D. Mankins, R. Krishnan, C. Boyd, J. Zao, and M. Frentz. Mitigating dis-

tributed denial of service attacks with dynamic resource pricing. In Computer

Security Applications Conference, 2001. ACSAC 2001. Proceedings 17th An-

nual, pages 411–421. IEEE, 2001.

[68] J.R. Reidenberg. Resolving conflicting international data privacy rules in

cyberspace. Stan. L. Rev., 52:1315, 1999.

[69] Clementine data mining. Note: at time of writing, this article is available at:

http://www.spss.com/software/modeling/modeler/.

[70] B. Kaiser and K. Knight. Concrete abstractions: an introduction to computer

science using Scheme. Course Technology Ptr, 1999.

[71] D. Moore, C. Shannon, et al. Code-red: a case study on the spread and

victims of an internet worm. In Proceedings of the 2nd ACM SIGCOMM

Workshop on Internet measurment, pages 273–284. ACM, 2002.

[72] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver.

Inside the slammer worm. Security & Privacy, IEEE, 1(4):33–39, 2003.

http://www.spss.com/software/modeling/modeler/

REFERENCES 109

[73] J. Stone, M. Greenwald, C. Partridge, and J. Hughes. Performance of check-

sums and crcs over real data. Networking, IEEE/ACM Transactions on,

6(5):529–543, 1998.

[74] B.S. Everitt, S. Landau, M. Leese, and D.D. Stahl. Cluster analysis 5e (series:

wiley series in probability and statistics)(hardback). 2010.

[75] K.O. Stanley and R. Miikkulainen. Efficient reinforcement learning through

evolving neural network topologies. Network (Phenotype), 1(2):3.

[76] D.J. Hand, H. Mannila, and P. Smyth. Principles of data mining. The MIT

Press, 2001.

[77] S. Staniford, V. Paxson, and N. Weaver. How to own the internet in your

spare time. In Proceedings of the 11th USENIX Security symposium, volume 8,

pages 149–167, 2002.

[78] J. Jung and E. Sit. An empirical study of spam traffic and the use of dns

black lists. In Proceedings of the 4th ACM SIGCOMM conference on Internet

measurement, pages 370–375. ACM, 2004.

[79] M. Sandford, D. Parish, and I. Phillips. Neural approach to detecting com-

munication network events. In Communications, IEE Proceedings-, volume

149, pages 257–264. IET, 2002.

[80] D.J. Parish, K. Bharadia, A. Larkum, I.W. Phillips, and M.A. Oliver. Us-

ing packet size distributions to identify real-time networked applications. In

Communications, IEE Proceedings-, volume 150, pages 221–227. IET, 2003.

Appendix A

SMTP Investigations

110

Analysis of SMTP Connection Characteristics for Detecting Spam
Relays

PJ Sandford, JM Sandford, DJ Parish

Electronic and Electrical Engineering Department,
Loughborough University

UK
{p.j.sandford, j.m.sandford, d.j.parish}@lboro.ac.uk

Abstract

Research into preventing spam is an ongoing
concern. Much of the effort to date has focused on
filtering email at the receiving end using techniques
such as content filters. Techniques that could prevent
spam from initially being sent would be beneficial
and contribute to the preventative effort. In practice
much spam is sent from compromised hosts. These
can potentially be detected by ISPs using simple
monitoring techniques. This monitoring takes place
in the core of an ISP’s network and provides a
periodic summary of email activity. Relatively simple
post-capture analysis can then identify the most
significant spam relay machines.

Keywords

Spam, Spam Relays, Network Monitoring, Data
Summaries

Introduction
In January 2004 Bill Gates claimed that, “Spam

will soon be a thing of the past” [1]. Two years later
and unsolicited email continues to proliferate, clogging
up mailboxes and consuming bandwidth. The evils of
spam range simply from unwanted advertising to
propagating pornography or fraud attempts known as
phishing. The extent of the problem has led some
commentators to describe email as becoming ‘almost
unusable’ [3].

Various techniques have been developed and
deployed to try and prevent spam from being delivered.
These techniques include the use of content filters,
blacklists, whitelists and collaborative filters.
Predominantly these approaches focus on spam
mitigation at the receiving end. Pressure is growing

however for ISPs to mitigate against spam at the
sending end. This is difficult because senders can
continually re-register, establishing multiple identities
which make it difficult for ISPs to prevent users from
sending spam. A further problem exists due to the use
of spam relays. In addition to open relays, spam relays
may be established on compromised hosts enabling
spammers to continually change the IP address of the
spam source.

This paper proposes a traffic monitoring based
approach to identify hosts on an ISP network that are
being used as spam relays. Importantly, this approach
does not involve the capture or analysis of the email
content itself, only of the packet header information.
The technique involves recording the number of SMTP
connections established by each host on the monitored
network segment, and the number of mail servers each
host connects to. Although at an early stage of the
work, a prototype tool has been used to provide
information to network operators, informing them of
the hosts that are operating as spam relays. The
approach could however, be incorporated in to an
autonomous system that would prevent spam relays
sending unwanted email from the monitored network.

The paper is organized as follows. First an
overview of current spam prevention techniques is
given. Our spam relay detection technique is then
presented together with details of its experimental
implementation within a national ISP’s network. Some
results of its use on this network are then presented.

Preventing Spam
Various strategies are employed to try and filter

spam. Predominantly, these focus on identifying spam
at the receiving end. An overview of these strategies is
presented here. A more in depth treatment is available
in [6].

One simple technique that may be used to combat
spam functions by filtering email through the use of

0-7695-2629-2/06/$20.00 (c) 2006 IEEE

Proceedings of the International Multi-Conference on Computing in the Global Information Technology (ICCGI'06)
0-7695-2629-2/06 $20.00 © 2006

blacklists [11]. These are maintained either on a
commercial or voluntary basis and contain the IP
addresses of hosts that are known to have sent spam.
Mail clients can use DNS style queries to see if the
source IP address of incoming mail appears on the list.
Whilst this technique can help to filter spam it is both
limited and crude. Lists tend to go out of date very
quickly due to constant changes in the source IP
addresses of spam. A further limitation is that many
blacklists do not distinguish between hosts in the same
domain resulting in many legitimate emails being
filtered. The use of blacklists has contributed to
pressure on ISPs to prevent spam being sent from their
IP address space, as in one scenario 900,000 addresses
from a single ISP network were listed [2].

A related concept to blacklists is that of a whitelist.
As the name implies this works in exactly the opposite
way to a blacklist. Instead of listing hosts that are
known to send spam, a whitelist contains hosts that are
trusted. The obvious disadvantage of this approach is
that it presents greater complexity for the many
legitimate cases where an email is sent to a new
contact. A solution to this requires the sender to
confirm their address. This can lead to a number of
problems however as the scheme requires the
automatic generation of a reply to email from source
addresses not on the users whitelist (for a fuller
explanation of why this is bad practice see [6]).

The use of heuristic methods for identifying spam
is a mature research area. Various analysis techniques
have been proposed to evaluate the content of an email
(e.g. [5][8]). An advantage of this type of content
filtering is the potential for transparent deployment.
Unfortunately, while impressive accuracy rates have
been reported, too many false positives prevent email
from being discarded automatically after having been
flagged as spam. Furthermore, such a large quantity
of spam is propagated that even accuracy rates of
99.9% still miss a significant amount of spam.
SpamAssassin [10] is a widely used open source tool
that employs heuristic techniques to identify spam.
Like other solutions, while SpamAssassin has been
shown to effectively filter a high percentage of
unsolicited email, it is still far from perfect. Studies
have shown that not only does it miss a small
percentage of spam; it may also incorrectly filter
legitimate email [7].

A further technique that may be used in
conjunction with other systems is termed collaborative
filtering. This approach exploits the fact that multiple

spam emails are generally sent unchanged (or with
minor changes) to a large number of email addresses.
Through the use of ‘spam traps’ (unused email
addresses, deliberately placed on the internet to be
harvested by spam software), the content of spam
emails is recorded and then shared with participating
spam filters. A commercial example of this type of
approach is BrightMail [4].

The general consensus is that a single technical
solution that is able to prevent the propagation of spam
is unlikely to be found given the constraints of the
current Internet architecture [6]. A composite
approach, incorporating many of the techniques
described above, can and does help alleviate the
problem and reduce the amount of spam. Techniques
to date tend to focus on filtering spam at the receiving
end, although some of the techniques may be deployed
by mail servers to prevent spam from being sent. A
specific problem however, exists due to the presence of
spam relays installed on compromised hosts. These
allow the propagation of large quantities of spam from
constantly changing sources. The ability to reliably
identify machines that are acting as spam relays, often
as the result of being infected by a worm or virus, is
another approach with which to reduce the amount of
spam distributed over the network. This paper presents
such an approach which can be used by a network
operator such as an ISP.

Detecting Spam Relays
In the approach to be described spam relay

detection is conducted alongside other security tasks
and makes use of a shared monitoring system. This
system collects various network traffic statistics by
passively monitoring core network links. The system
consists of six gatherers (sometimes referred to as
monitors or sniffers) and a central processor located
within the ISP’s network. A further
analysis/development host is also located at a remote
site, in this case Loughborough University. The
gatherers are based on Dell Dual 3GHz Intel Xeon
servers with Intel Pro 1000 network interface cards to
allow monitoring at data rates of in excess of 1
Gigabit/second. The gatherers are located at six
distributed PoP (Points of Presence) sites and monitor
all network traffic either from or to the local broadband
network. The monitoring software gathers light weight
summary statistics that are used for further security
purposes [9].

0-7695-2629-2/06/$20.00 (c) 2006 IEEE

Proceedings of the International Multi-Conference on Computing in the Global Information Technology (ICCGI'06)
0-7695-2629-2/06 $20.00 © 2006

Figure 1: The Monitoring Architecture

To provide information regarding the

location of spam relays, the gatherers log TCP/IP
packet header summaries which have the SYN
flag set and a destination port value of 25 (this
indicates SMTP). These packets are closely
correlated to TCP connections with mail servers.
Home users on a commercial ISP network may
quite legitimately contact a number of mail
servers on which they have accounts, although
many home users access email through an HTTP
interface. The number of connections to mail
servers expected through legitimate usage is
however relatively small in comparison to the
number of connections established by spam
relays. Whereas a home user might connect to a
mail server a few times an hour, spam relays
send thousands of emails every hour to hundreds
of mail servers. This large disparity between
legitimate home users and machines that have
been compromised and are being used as spam
relays suggests simple traffic analysis may be a
means of identifying those machines that are
sending spam. The ISP can then take action to
either block SMTP traffic from these machines,
or, more realistically, ensure that the machines
are ‘cleaned up’ and reconfigured with
appropriate levels of security.

The marked difference in profile between
compromised hosts acting as spam relays and
legitimate users contacting mail servers is aided
by the absence of legitimate mail servers hosted
on the monitored network. Where customer
service agreements allow mail servers to be
present, the scenario does become more

complex. In this instance it is still possible to
distinguish between legitimate mail servers and
spam relays by examining the distribution of port
25 connections rather than simply the quantity.
For instance, legitimate mail servers would tend
to exhibit a daily pattern that reflects the habits
of the users of that mail server. Spam relays by
contrast, normally do not exhibit this profile.
Instead they may send at a constant rate 24 hours
a day, or may send many thousands of emails
over a short period of time and then nothing at
all. Examples of these profiles are given in the
following results section.

Of further note is that open relays are not
permitted on the monitored ISP’s network. In
the case where open relays were used
legitimately, distinguishing them from relays
installed on compromised hosts may prove
difficult. In this instance it may be necessary to
maintain a list of the legitimate relays to feed in
to the detection process. It should be noted
however, that legitimate open relays are still
used to send spam.

Results
Figures 2 – 7 provide examples of hosts

sending unusual numbers of SMTP packets. In
the current configuration logs show the number
of SMTP packets seen in a 24 hour period,
plotted in an hourly bar chart. This allows
network operators to quickly assimilate which
hosts have been acting as spam relays. The
target destinations for each spam relay may be
displayed by double clicking on the source

0-7695-2629-2/06/$20.00 (c) 2006 IEEE

Proceedings of the International Multi-Conference on Computing in the Global Information Technology (ICCGI'06)
0-7695-2629-2/06 $20.00 © 2006

address of interest (e.g. Figure 4). These appear
in order of frequency. Common targets typically
include popular mail providers such as hotmail
and yahoo.

All the examples shown come from a single
24 hour period during September 2005. Note
that for reasons of confidentiality, the actual IP
addresses have been obscured. Figure 2 shows a
host which has established in excess of 58,000
SMTP connections within the 24 hour period.
As can be seen from the plot, these have been
established at a constant rate of around 2500
thousand connections an hour. The particular
ISP network being monitored provides
broadband and dialup services to home users.

As this service does not provide a static IP
address, hosting mail servers is impractical. On
networks where mail servers are hosted it is clear
that both the quantity and the profile of SMTP
connections shown below would still distinguish
this host as a spam relay.

A mail server would show a variation in the
number of connections established per hour,
consistent with a daily usage pattern whereas this
host has sent at a consistent rate throughout the
24 hour monitoring period. A further
demarcating factor would be the host name,
which in this case, indicates that this host is a
home user.

Figure 2

In contrast to Figure 2, Figure 3 shows a

host that has established close to 25,000 SMTP
connections in a single hour but none at any
other time during the day. Although this host
exhibits quite different characteristics to the one
previously shown, it is again immediately
obvious that this profile does not fit that of a
legitimate mail server. Compromised hosts may,

in addition to being used as a spam relay, be
used to send ‘mail bombs’ or to scan for
vulnerable hosts. ‘Mail bombs’ occur where
very large quantities of email are sent to the
same address rendering the address unusable. In
this instance however, the plot is of a host being
used to scan multiple addresses.

0-7695-2629-2/06/$20.00 (c) 2006 IEEE

Proceedings of the International Multi-Conference on Computing in the Global Information Technology (ICCGI'06)
0-7695-2629-2/06 $20.00 © 2006

Figure 3

Figure 4 shows a section of a table which

relates the destination addresses to the source
address for the traffic displayed in Figure 3. As
in the other Figures, the IP addresses are
obfuscated but in this case sufficient text is left
to show the source has systematically scanned
hosts, possibly across a number of other ports.

Figure 4

0-7695-2629-2/06/$20.00 (c) 2006 IEEE

Proceedings of the International Multi-Conference on Computing in the Global Information Technology (ICCGI'06)
0-7695-2629-2/06 $20.00 © 2006

Figure 5

Figure 5 shows a host that has made over

3000 SMTP connections in a single hour but
none at any other point in the 24 hour period. A
profile of this type does not fit that expected of
either a mail client or a mail server.

Whereas a mail client might be expected to
make a few connections an hour to one or two
mail servers, this host has established a new

connection every second to over one thousand
mail servers. The profile is also clearly different
from that of a mail server. This host appears to
have been compromised and used to send spam.
A possible explanation for the host only sending
email during one hour of the day is that the host
may have been switched off at other times.

Figure 6

0-7695-2629-2/06/$20.00 (c) 2006 IEEE

Proceedings of the International Multi-Conference on Computing in the Global Information Technology (ICCGI'06)
0-7695-2629-2/06 $20.00 © 2006

In figures 6 & 7 hosts are shown that have
sent large quantities of email to multiple mail
servers. The distribution of SMTP connections
per hour is not constant, but is markedly
different to that which would be expected of a
mail server. In figure 7, high numbers of
connections are established throughout the 24
hour monitoring period. In figure 6, the host
appears to have been switched off for part of the
day although such a profile could also be
attributed to an IP address that is reassigned to a
spam relay. In both figures 6 & 7 the quantity of

connections established is very large. The
sending host shown in figure 7 established over
160,000 connections during the 24 hour period,
with almost 30,000 connections established in
one hour alone.

In total 89,748 hosts were observed sending
SMTP traffic on the monitored network segment.
46 hosts had established over 10,000 thousand
SMTP connections per host during the day. 4
hosts had each established over 50,000
connections.

Figure 7

Conclusions
It seems unlikely, given the restraints of the

current Internet architecture, that a single
approach or technology will be found that is able
to totally eliminate unsolicited email. Several
technologies exist that contribute to the reduction
of the quantity of spam that users receive. These
tend to focus on filtering mechanisms as the
email is received. The ability to prevent spam
from initially being sent from compromised
hosts used as spam relays would contribute to the
effort to reduce the quantity of spam seen in the
Internet. This paper has shown how spam relays
installed on compromised hosts could be
identified by the ISP networks on which they are
hosted. At present, the identification process is
achieved by visual inspection of the data.
However, given the large disparity between the

SMTP connection profiles of legitimate mail
clients and servers and spam relays, an
automated process could easily be developed to
detect spam relays based on the quantity and
profile of SMTP connections, and the destination
addresses.

References
1. BBC News Article, Published 24th

Jan 2004, available from
http://news.bbc.co.uk/go/pr/fr/-
/1/hi/business/3426367.stm

2. BBC News Article, Published 9th
May 2005, available from
http://news.bbc.co.uk/go/pr/fr/-
/1/hi/technology/4528927.stm

3. S.M. Bellovin, “Inside risks:
Spamming, phishing,
authentication, and privacy”,
Communications of the ACM,

0-7695-2629-2/06/$20.00 (c) 2006 IEEE

Proceedings of the International Multi-Conference on Computing in the Global Information Technology (ICCGI'06)
0-7695-2629-2/06 $20.00 © 2006

Volume 47, Number 12, Page 144,
2004

4. http://www.brightmail.com
5. H. Drucker, D. Wu, V.N. Vapnik,

“Support Vector Machines for
Spam Categorization”, IEEE
Transactions on Neural Networks,
Vol. 10, No. 5, September 1999

6. S. Hird, “Technical Solutions for
Controlling Spam”, in Proceedings
of AUUG2002, Melbourne,
September, 2002

7. C. O’Brien, C. Vogel, “Comparing
SpamAssassin with CBDF email
filtering”, In Proceedings of 7th
CLUK Research Colloquium,
2004

8. M. Sahami, S. Dumais, D.
Heckerman, E. Horvitz, “A
Bayesian Approach to Filtering
Junk E-Mail”, in AAAI’98
Wkshp. Learning for Text
Categorization, Madison, WI,
July, 1998

9. P.J. Sandford, D.J. Parish, J.M.
Sandford, “Identify Internet Abuse
in ISP Networks: Practical,
Technical and Legal Issues”,
Safety and Security in a
Networked World: Balancing
Cyber-Rights and Responsibilities,
September 2005

10. http://spamassassin.apache.org/
11. A comprehensive list of DNS

based blacklists is available from
http://www.declude.com/JunkMail
/Support/ip4r.htm

0-7695-2629-2/06/$20.00 (c) 2006 IEEE

Proceedings of the International Multi-Conference on Computing in the Global Information Technology (ICCGI'06)
0-7695-2629-2/06 $20.00 © 2006

Appendix B

Gatherer C Code

1 /∗ Etherne t header ∗/
2 struct s n i f f e t h e r n e t

3 {
4 u in t16 t packet type ; /∗ Packet Type : 0 (to us) , 1 (b r oad ca s t) , 2 (mu l t i c a s t

) , 3 (e l s e to e l s e) , 4 s en t by us ∗/
5 u in t16 t ARPHRD; /∗ Linux va l u e f o r t h e l a y e r d e v i c e t ype . ∗/
6 u in t16 t s l i n k l e n g t h ;

7 u in t16 t bytes [4] ;

8 u in t 16 t e the r type ; /∗ IP? ARP? RARP? e t c ∗/
9 } ;

10

11 /∗ IP header ∗/
12 struct s n i f f i p

13 {
14 #i f BYTE ORDER == LITTLE ENDIAN

15 u in t 8 t i p h l : 4 , /∗ header l e n g t h ∗/
16 ip v : 4 ; /∗ v e r s i o n ∗/
17 #i f BYTE ORDER == BIG ENDIAN

18 u in t 8 t ip v : 4 , /∗ v e r s i o n ∗/
19 i p h l : 4 ; /∗ header l e n g t h ∗/
20 #end i f

21 #end i f /∗ not IP VHL ∗/
22 u i n t 8 t i p t o s ; /∗ t ype o f s e r v i c e ∗/
23 u in t16 t i p l e n ; /∗ t o t a l l e n g t h ∗/
24 u in t16 t i p i d ; /∗ i d e n t i f i c a t i o n ∗/
25 u in t16 t i p o f f ; /∗ f ragment o f f s e t f i e l d ∗/
26 #de f i n e IP RF 0x8000 /∗ r e s e r v e d fragment f l a g ∗/
27 #de f i n e IP DF 0x4000 /∗ dont f ragment f l a g ∗/
28 #de f i n e IP MF 0x2000 /∗ more f ragment s f l a g ∗/
29 #de f i n e IP OFFMASK 0 x 1 f f f /∗ mask f o r f ragmen t ing b i t s ∗/
30 u i n t 8 t i p t t l ; /∗ t ime to l i v e ∗/
31 u i n t 8 t ip p ; /∗ p r o t o c o l ∗/
32 u in t16 t ip sum ; /∗ checksum ∗/
33 struct in addr i p s r c , i p d s t ; /∗ source and d e s t add re s s ∗/
34 } ;
35

36 /∗ TCP header ∗/
37 struct s n i f f t c p

38 {
39 u in t16 t th spo r t ; /∗ source po r t ∗/
40 u in t16 t th dport ; /∗ d e s t i n a t i o n po r t ∗/
41 u in t32 t th seq ; /∗ sequence number ∗/
42 u in t32 t th ack ; /∗ acknowledgement number ∗/
43 #i f BYTE ORDER == LITTLE ENDIAN

44 u in t 8 t th x2 : 4 , /∗ (unused) ∗/
45 t h o f f : 4 ; /∗ data o f f s e t ∗/
46 #end i f

47 #i f BYTE ORDER == BIG ENDIAN

48 u in t 8 t t h o f f : 4 , /∗ data o f f s e t ∗/
49 th x2 : 4 ; /∗ (unused) ∗/
50 #end i f

51 u i n t 8 t t h f l a g s ;

52 #de f i n e TH FIN 0x01

53 #de f i n e TH SYN 0x02

54 #de f i n e TH RST 0x04

55 #de f i n e TH PUSH 0x08

56 #de f i n e TH ACK 0x10

119

APPENDIX B. GATHERER C CODE 120

57 #de f i n e TH URG 0x20

58 #de f i n e TH ECE 0x40

59 #de f i n e THCWR 0x80

60 #de f i n e TH FLAGS (TH FIN |TH SYN |TH RST |TH ACK|TH URG|TH ECE |THCWR)

61 u in t16 t th win ; /∗ window ∗/
62 u in t16 t th sum ; /∗ checksum ∗/
63 u in t16 t th urp ; /∗ urgen t p o i n t e r ∗/
64 } ;
65

66 /∗ UDP header ∗/
67 struct s n i f f u dp

68 {
69 u in t16 t uh sport ; /∗ Source Port ∗/
70 u in t16 t uh dport ; /∗ Des t i n a t i on Port ∗/
71 u in t16 t uh len ; /∗ Udp l e n g t h ∗/
72 u in t16 t uh check ; /∗ Checksum ∗/
73 } ;
74

75

76 /∗ ””

77 Name : n e t h a c k d e t e c t

78 Vers ion : 2 .80 Beta

79 Author : Pete Sandford

80 Date : 26 th o f November 2003

81 Last Rev : 3 Feb 2006

82

83 Des c r i p t i on : This program i s d e s i gned to be run

84 on a s i n g l e machine u s ing l i n u x . The

85 program has 2 p r o c e s s e s .

86

87 One p ro c e s s works on the cap tu red packe t s ,

88 s t o r i n g data in r e a l t ime . The o t h e r p r o c e s s

89 works in a batch−s t y l e manner c r e a t i n g

90 s t a t i s c t i a l summaries in a quas i−r e a l t ime

91 manner .

92

93 The f i r s t p r o c e s s i s memory i n t e n s i v e , bu t

94 e f f o r t has been made to ensure t h e p r o c e s s i n g

95 per pack e t i s k e p t to a minimum .

96

97

98 ”” ∗/
99 #define LIBNET BIG ENDIAN 1

100

101 #include <pcap . h>

102 #include <s t d i o . h>

103 #include <s t d l i b . h>

104 #include <errno . h>

105

106 #include <sys / socket . h>

107 #include <ne t i n e t / in . h>

108 #include <arpa/ i n e t . h>

109 #include <s i g n a l . h>

110 #include <net / i f . h>

111 #include <ne t i n e t / i f e t h e r . h>

112 #include <ne t i n e t / tcp . h>

113 #include <math . h>

114 #include <time . h>

115 #include <sys /shm . h>

116 #include ” nethack types . h”

117 #include <sys / types . h>

118 #include <unis td . h>

119 #include <s t r i n g . h>

120 #include <getopt . h>

121 #include < l i b n e t . h>

122

123 #define BSD SOURCE 1

124 #define FILE SIZE 10000

125 #define SMTP FILE SIZE 10000000

126 /∗ Smtp t r i g g e r l e v e l (0−1000) ∗/
127 #define SMTP TRIGGER 600

128 /∗ I n t e r f a c e s ∗/
129 #define INTERFACE1 ” eth1 ”

130 #define INTERFACE2 ” eth2 ”

131 /∗ Def ine t h e header s i z e s ∗/
132 #define e t h s i z e 14

133 #define i p s i z e 20

134 /∗ IP RANGE i s t h e maximum number o f s u bn e t s (t h i s i s a l o o s e d e f i n i t i o n , s imp ly 2ˆ24 , xxx . xxx

. xxx . f i x e d) ∗/
135 #define IP RANGE 16777216

APPENDIX B. GATHERER C CODE 121

136

137 /∗ Funct ion d e f i n i t i o n s ∗/
138 void proce s s (u char ∗ us e l e s s , const struct pcap pkthdr∗ pkthdr , const u char∗ packet) ;

139 void u s e r e x i t (int) ;

140 void r epor t (void) ;

141 int a l e r t (void) ;

142 f loat ks (f loat ∗ , f loat ∗ , int , int) ;

143

144 /∗ A l e r t i n g Module L imi t s ∗/
145 f loat a l e r t i n g v a r s [3 0] ;

146

147 /∗ Sw i t ch e s to c o n t r o l which s e t o f memory i s b e i n g addre s s ed by t h e w r i t e / read p r o c e s s e s ∗/
148 int memswitchread=0;

149 int memswitchwrite=0;

150

151 /∗ s i t e number ∗/
152 int s i t e =1;

153

154 /∗ Shared memory i d ∗/
155 int shmid ;

156

157 /∗ F i l e ou t pu t s ∗/
158 FILE∗ smtp ;

159 FILE∗ a l e r t f i l e ;

160

161 /∗ Shared memory segment ∗/
162 struct shmid ds∗ shmid ds ;

163

164 /∗ The p ro c e s s ID o f t h e c h i l d p r o c e s s ∗/
165 int pid ;

166

167 /∗ The S i z e o f t h e sample o f p a c k e t s to t a k e b e f o r e r e p o r t i n g ∗/
168 u in t32 t packet sample = 0 ;

169

170 /∗ The t o t a l number o f p a c k e t s cap tu red by t he program ∗/
171 u in t32 t packet count = 0 ;

172

173 /∗ SMTP Counter ∗/
174 u in t32 t smtp f i l e c oun t =0;

175 u in t32 t smtp packet count=0;

176

177 /∗ The l o g number to s t a r t w i th ∗/
178 u in t32 t f i l e c o u n t =0;

179 /∗ S t r u c t u r e to ho l d t h e inpu t s i g n a t u r e s ∗/
180 struct s i g

181 {
182 /∗ L i s t o f p o r t s w i th s i g n a t u r e s on them (Maximum o f 10 on any 1 pack e t s i z e , cou l d be more

than 1 i n s t an c e on a po r t) ∗/
183 int p o r t l i s t [1 0] ;

184 /∗ L i s t o f t h e s i g n a t u r e s f o r each o f t h e po r t ’ s f i n g e r p r i n t s ∗/
185 char s i g l i s t [1 0] [1 6 0 0] ;

186 /∗ The number o f s i g n a t u r e s f o r t h i s po r t ∗/
187 short number ;

188 } ;
189

190 struct share mem

191 {
192 /∗ An array o f f l a g s , i n d i c a t i n g whether an IP has been seen by t h e a p p l i c a t i o n or not . ∗/
193 char i p s r c a r r a y [IP RANGE] ;

194 char i p d s t a r r a y [IP RANGE] ;

195

196 /∗ An array , w i th an e lement f o r each pack e t s i z e . ∗/
197 u in t16 t i p p a c k e t s i z e [1 5 3 8] ;

198 u in t16 t udp packe t s i z e [1 5 3 8] ;

199 u in t16 t t c p pa c k e t s i z e [1 5 3 8] ;

200 u in t16 t i cmp packe t s i z e [1 5 3 8] ;

201

202 /∗ An array wi th an e lement f o r each TCP por t number ∗/
203 u in t16 t t cp spo r t [6 5 5 3 5] ;

204 u in t16 t tcp dport [6 5 5 3 5] ;

205 u in t16 t i d e n t i f i c a t i o n [6 5 5 3 5] ;

206 u in t16 t checksum [6 5 5 3 5] ;

207

208 /∗ An array wi th an e lement f o r each TTL f i e l d ∗/
209 long t t l [2 5 6] ;

210 long udp t t l [2 5 6] ;

211 long t c p t t l [2 5 6] ;

212 long i cmp t t l [2 5 6] ;

213

214 /∗ SMTP v a r i a b l e s ∗/

APPENDIX B. GATHERER C CODE 122

215 long smtp count ;

216 long smtp t o t a l b i t s ;

217 long Non NTL smtp count ;

218 long Non NTL smtp total bits ;

219

220 /∗ Skype v a r i a b l e s ∗/
221 long skype count ;

222 long s k y p e t o t a l b i t s ;

223

224 /∗ An array wi th an e lement f o r each UDP por t number ∗/
225 u in t16 t udp sport [6 5 5 3 5] ;

226 u in t16 t udp dport [6 5 5 3 5] ;

227

228 /∗ Counters f o r t h e v a r i o u s p r o t o c o l s ∗/
229 long cTCP,cUDP, cTotalIP , cICMP, cUnknownIP ;

230

231 /∗ Counters f o r t h e TCP f l a g s ∗/
232 long FIN , SYN, RST, PUSH, ACK,URG;

233

234 /∗ Average pac k e t s i z e s f o r t h e v a r i o u s p r o t o c o l s ∗/
235 long saTotal , saTCP , saUDP, saICMP ;

236

237 /∗ Flag s to i n d i c a t e whether t h e shared memory has been w r i t t e n / read (0 f o r no , 1 f o r yes)

∗/
238 short wr i t t en ;

239 short read ;

240 } ;
241

242 /∗ A po i n t e r to t h e shared memory ∗/
243 struct share mem ∗ sharept r ;

244

245 /∗ Nasty Fudge:− There i s a bug somewhere in t h e program which cause s a f r e e () prob lem . This

workaround a l l ow s t h e memory a t t h e s h a r e p t r l o c a t i o n to be f r e e d . ∗/
246 struct share mem ∗ s h a r e p t r f r e e ;

247

248 /∗ A s e t o f S i gna tu re s , s t o r e d f o r each pack e t s i z e ∗/
249 struct s i g de tec t mat r ix [1 5 3 8] ;

250

251 /∗ S i gna tu r e i npu t and ou tpu t f i l e s ∗/
252 FILE∗ s i g ou tput ;

253 FILE∗ s i g i n pu t ;

254

255 /∗ Mode v a r i a b l e s ∗/
256 int l =0;

257 int a=0;

258 int p=0;

259 int s=0;

260 int f =0;

261 int c=0;

262 int v=0;

263 int h=0;

264 int n=0;

265

266 int main (int argc , char ∗∗argv)

267 {
268 /∗ Var i a b l e De c l a r a t i on s ∗/
269 char ∗dev ; /∗ Device to be l i s t e n e d on ∗/
270 char e r rbu f [PCAP ERRBUF SIZE] ;

271 pcap t∗ desc r ;

272 pcap t∗ descr1 ;

273 pcap t∗ descr2 ;

274 short pa c k e t s l o s t =0;

275 int i , r t rn ;

276 FILE∗ a l e r t i n ;

277 u in t32 t pa ck e t t o t a l ;

278 int opt ;

279 char c u r r e n t l i n e [1 0 0 0] ;

280 int pos ;

281

282 /∗ op t i on s

283 a − spam

284 f − f i l e

285 c − cap tu r e sample s i z e

286 v − v e r b o s e

287 p − pa c k e t s t o t a l t o cap tu r e

288 l − Log s t a r t number

289 h − h e l p

290 n − t r i g g e r

291 r − s i t e number ∗/
292 while ((opt = getopt (argc , argv , ” ads f : c : vihp : l : nr : ”)) !=EOF){

APPENDIX B. GATHERER C CODE 123

293 switch (opt){
294 case ’ a ’ :

295 a=1;

296 break ;

297 case ’ s ’ :

298 s=1;

299 break ;

300 case ’ f ’ :

301 f =1;

302 s i g i npu t = fopen (optarg , ” r ”) ;

303 break ;

304 case ’ c ’ :

305 c=1;

306 packet sample = a to i (optarg) ;

307 break ;

308 case ’ v ’ :

309 v=1;

310 break ;

311 case ’ h ’ :

312 p r i n t f (”Options :\n−n Enable A l e r t ing Module\n−f < f i l e > Enable Checksum module with

s p e c i f i e d f i l e \n−a Enable Spam Module\n−c <sample> Set sample S i z e \n−v Enable

Verbose output\n−p <packets> Set the number o f Packets to capture\n−a SMTP

logge r \n−r S i t e number\n−h Help − You ’ re l ook ing at me baby !\n”) ;

313 e x i t (0) ;

314 break ;

315 case ’ p ’ :

316 p=1;

317 pa ck e t t o t a l = a to l (optarg) ;

318 break ;

319 case ’ l ’ :

320 l =1;

321 f i l e c o u n t = a to l (optarg) ;

322 break ;

323 case ’ n ’ :

324 n=1;

325 break ;

326 case ’ r ’ :

327 s i t e = a to i (optarg) ;

328 break ;

329 }
330 }
331

332 /∗ Attempt to a l l o c a t e t h e memory f o r t h e shared memory array (˜80 MB) ∗/
333 i f ((sharept r = malloc (2∗ s izeof (struct share mem))) == NULL)

334 {
335 p r i n t f (”Error A l l o ca t i ng Memory\n”) ;

336 e x i t (1) ;

337 }
338

339 /∗ Copy the shared memory p o i n t e r to a l l ow us to fudge i t l a t e r ∗/
340 s h a r e p t r f r e e = sharept r ;

341

342 /∗ Create a shared memory segment ∗/
343 shmid = shmget ((key t) IPC PRIVATE, 2∗ s izeof (struct share mem) , IPC CREAT) ;

344 i f (shmid < 0)

345 {
346 per ro r (” shared memory a l l o c a t i o n f a i l u r e \n”) ;

347 e x i t (1) ;

348 }
349

350

351 /∗ Attach t he paren t p r o c e s s to t h e memory (c h i l d w i l l i n h e r i t) ∗/
352 i f ((sharept r = (struct share mem ∗) shmat (shmid , 0 , 0)) == (struct share mem ∗)−1)

353 per ro r (”Can ’ t attach to shared memory\n”) ;

354

355 /∗ Handle User Ex i t ∗/
356 s i g n a l (SIGINT , u s e r e x i t) ;

357

358 p r i n t f (”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n∗ Network T r a f f i c Analyser ∗\n∗
Vers ion : 3 .10 Beta ∗\n∗ Author : Peter Sandford ∗\n∗ Date :

March 2005 ∗\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n\n”) ;

359

360

361 /∗ Set t h e sample s i z e ∗/
362 i f (! c)

363 {
364 packet sample = 300000;

365 p r i n t f (”Defau l t packet sample s i z e used : %u\n” , packet sample) ;

366 }
367

APPENDIX B. GATHERER C CODE 124

368 /∗ I f we are in a l e r t i n g mode ∗/
369 i f (n){
370 i =0;

371 /∗ Open the f i l e s ∗/
372 a l e r t i n = fopen (” a l e r t v a r i a b l e s . txt ” , ” r ”) ;

373 /∗ I f we have an e r r o r opening ∗/
374 i f (a l e r t i n==NULL)

375 {
376 p r i n t f (”Error A l e r t ing f i l e \n”) ;

377 e x i t (1) ;

378 }
379 f g e t s (cu r r en t l i n e , 200 , a l e r t i n) ;

380 while (! f e o f (a l e r t i n))

381 {
382 a l e r t i n g v a r s [i]= a to f (s t r t ok (cu r r en t l i n e , ”\n”)) ;

383 f g e t s (cu r r en t l i n e , 200 , a l e r t i n) ;

384 i++;

385 }
386 }
387

388 /∗ I f we are comp i l i n g t h e Checksum ve r s i o n ∗/
389 i f (f){
390 /∗ Open the f i l e s ∗/
391 p r i n t f (”Opening output and input f i l e s \n”) ;

392 s i g ou tput = fopen (”Attacks . txt ” , ”w”) ;

393 f p r i n t f (s i g output , ”This i s the Attack Log\n”) ;

394 /∗ I f we have an e r r o r opening ∗/
395 i f (s i g i n pu t==NULL)

396 {
397 p r i n t f (”Error opening s i g i npu t f i l e \n”) ;

398 e x i t (1) ;

399 }
400 /∗ Get a l i n e ∗/
401 f g e t s (cu r r en t l i n e , 200 , s i g i n pu t) ;

402 /∗ Read in a l l v a r i a b l e s and s t o r e in t h e d e t e c t i o n matr ix ∗/
403 while (! f e o f (s i g i n pu t))

404 {
405 pos = a to i (s t r t ok (cu r r en t l i n e , ” \n”)) ;

406 p r i n t f (”%d\n” , pos) ;

407 de tec t mat r ix [pos] . p o r t l i s t [de t ec t mat r ix [pos] . number] = a to i (s t r t ok (NULL, ” \n”)) ;

408 s t rcpy (de tec t mat r ix [pos] . s i g l i s t [de t ec t mat r ix [pos] . number] , s t r t ok (NULL, ” \n”)) ;

409 p r i n t f (”Added ’%s ’ at %d to l i b r a r y at r e f e r e n c e %d\n” , de t ec t mat r ix [pos] . s i g l i s t [

de t ec t mat r ix [pos] . number] , pos , de t ec t mat r ix [pos] . number) ;

410 de tec t mat r ix [pos] . number++;

411 f g e t s (cu r r en t l i n e , 200 , s i g i n pu t) ;

412

413 }
414 }
415 dev=”any” ;

416 /∗ Check to see i f we found a d e v i c e ∗/
417 i f (dev == NULL)

418 {
419 p r i n t f (”%s\n” , e r rbu f) ; e x i t (1) ;

420 }
421

422 descr1 = pcap open l i v e (INTERFACE1,64 ,1 ,−1 , e r rbu f) ;

423 descr2 = pcap open l i v e (INTERFACE2,64 ,1 ,−1 , e r rbu f) ;

424 /∗ Open the d e v i c e ∗/
425 desc r = pcap open l i v e (”any” ,64 ,1 ,−1 , e r rbu f) ;

426 i f (desc r == NULL)

427 {
428 p r i n t f (” pcap open l i v e () : %s\n” , e r rbu f) ; e x i t (1) ;

429 }
430

431 p r i n t f (”Enter ing Capture , l i s t e n i n g on %s\n\n” , dev) ;

432

433 /∗ Allow the p ro c e s s to w r i t e to t h e shared memory ∗/
434 sharept r [0] . wr i t t en = 0 ; /∗ [0] i n d i c a t e s t h e f i r s t b l o c k o f memory 0 i n d i c a t e s NOT wr i t t e n

∗/
435 sharept r [0] . read = 1 ; /∗ [0] i n d i c a t e s t h e f i r s t b l o c k o f memory 1 i n d i c a t e s read p ro c e s s

has f i n i s h e d ∗/
436 sharept r [1] . wr i t t en = 0 ; /∗ [1] i n d i c a t e s t h e second b l o c k o f memory 0 i n d i c a t e s NOT

wr i t t e n ∗/
437 sharept r [1] . read = 1 ; /∗ [1] i n d i c a t e s t h e second b l o c k o f memory 1 i n d i c a t e s read p ro c e s s

has f i n i s h e d ∗/
438

439 /∗ Create a new pro c e s s ∗/
440 i f ((pid = fo rk ()) < 0)

441 {
442 per ro r (” fo rk ”) ;

APPENDIX B. GATHERER C CODE 125

443 ex i t (1) ;

444 }
445

446 /∗ I f we are t h e c h i l d ∗/
447 i f (pid == 0)

448 {
449 repor t () ;

450 }
451

452 i f (! p)

453 {
454 pa ck e t t o t a l=−1;

455 }
456 i f (a){
457

458 smtp=fopen (” smtp log000000 . csv ” , ”w”) ;

459 }
460 i f (v)

461 {
462 p r i n t f (”Sample s i z e :%d\n” , packet sample) ;

463 }
464 /∗ Main l oop . Ca l l s p r o c e s s (pac k e t) when a pa c k e t s i s i n t e r c e p t e d ∗/
465 i f (p a ck e t t o t a l != −1)

466 {
467 i f (v){
468 p r i n t f (”Capturing f o r %u packets\n” , pa ck e t t o t a l) ;

469 }
470 for (i =0; i <(pa ck e t t o t a l / packet sample)+1; i++)

471 {
472 /∗ I f t h e memory i s not c u r r e n t l y b e i n g read ∗/
473 i f (sharept r [memswitchwrite] . read == 1)

474 {
475 /∗ Set t h e w r i t i n g f l a g to p r e v en t t h e c h i l d r ead ing ∗/
476 sharept r [memswitchwrite] . wr i t t en =0;

477 /∗ Check f o r l o s t p a c k e t s ∗/
478 i f (p a c k e t s l o s t ==1)

479 {
480 p r i n t f (” Po t en t i a l l y dropped 1 or more Packets\n”) ;

481 p a c k e t s l o s t = 0 ;

482 }
483 /∗ Capture pa c k e t s ∗/
484 pcap loop (descr , packet sample , process ,NULL) ;

485 /∗ Fin i shed wr i t i n g , so a l l ow the c h i l d to read ∗/
486 sharept r [memswitchwrite] . wr i t t en =1;

487 /∗ Move to t h e second b l o c k o f memory ∗/
488 memswitchwrite = ! memswitchwrite ;

489 i f (v){ p r i n t f (”Memswitchwrite = %d\n” , memswitchwrite) ;}
490 }
491 else

492 {
493 /∗ I f we are unab l e to read c u r r e n t l y ∗/
494 pa c k e t s l o s t = 1 ;

495 i−−; /∗ Decrement to ensure t h e r e q u i r e d number o f p a c k e t s i s s t i l l c ap tu red ∗/
496 }
497 }
498 }
499 else

500 {
501 while (1)

502 {
503 i f (v){
504 p r i n t f (”Capturing Continuously\n”) ;

505 }
506

507 /∗ I f t h e memory i s not c u r r e n t l y b e i n g read ∗/
508 i f (sharept r [memswitchwrite] . read == 1)

509 {
510 /∗ Set t h e w r i t i n g f l a g to p r e v en t t h e c h i l d r ead ing ∗/
511 sharept r [memswitchwrite] . wr i t t en =0;

512 /∗ Check f o r l o s t p a c k e t s ∗/
513 i f (p a c k e t s l o s t ==1)

514 {
515 p r i n t f (” Po t en t i a l l y dropped 1 or more Packets\n”) ;

516 p a c k e t s l o s t = 0 ;

517 }
518 /∗ Capture pa c k e t s ∗/
519 pcap loop (descr , packet sample , process ,NULL) ;

520 /∗ Fin i shed wr i t i n g , so a l l ow the c h i l d to read ∗/
521 sharept r [memswitchwrite] . wr i t t en =1;

522 /∗ Move to t h e second b l o c k o f memory ∗/

APPENDIX B. GATHERER C CODE 126

523 memswitchwrite = ! memswitchwrite ;

524 i f (v){ p r i n t f (”Memswitchwrite = %d\n” , memswitchwrite) ;}
525 }
526 else

527 {
528 /∗ I f we are unab l e to read c u r r e n t l y ∗/
529 pa c k e t s l o s t = 1 ;

530 }
531 }
532 }
533

534 p r i n t f (”Leaving Capture\n”) ;

535

536 /∗ Close cap tu r e ∗/
537 pcap c l o s e (desc r) ;

538 pcap c l o s e (descr1) ;

539 pcap c l o s e (descr2) ;

540

541 /∗ Ensure t h e c h i l d r e c i e v e s t h e e x i t command ∗/
542 sharept r [1] . wr i t t en = −1;

543 sharept r [0] . wr i t t en = −1;

544 /∗ Ca l l f u n c t i o n to show a l l s t a t i s t i c s ∗/
545 i f (shmdt (sharept r)<0)

546 {
547 per ro r (”Detach Fa i l ed \n”) ;

548 }
549

550 p r i n t f (”Clos ing Capture\n\n”) ;

551 p r i n t f (” Exi t ing Normally\n\n”) ;

552 /∗ Wait f o r t h e c h i l d p r o c e s s to e x i t ∗/
553 s l e ep (10) ;

554 /∗ Free t h e memory us ing a s e pa r a t e p o i n t e r ∗/
555 p r i n t f (”Free Memory\n”) ;

556 f r e e (s h a r e p t r f r e e) ;

557 p r i n t f (”Memory Free\n”) ;

558 f c l o s e (s i g i n pu t) ;

559 f c l o s e (s i g ou tput) ;

560 /∗ Re lease t h e shared memory segment ∗/
561 i f ((r t rn = shmctl (shmid , IPC RMID , shmid ds)) == −1)

562 {
563 per ro r (” shmctl : shmctl f a i l e d ”) ;

564 e x i t (1) ;

565 }
566 else

567 {
568 p r i n t f (”Shared Memory Released\n”) ;

569 }
570

571

572

573 return 0 ;

574 }
575

576

577 void proce s s (u char ∗ us e l e s s , const struct pcap pkthdr∗ pkthdr , const u char∗ packet)

578 {
579 const struct s n i f f e t h e r n e t ∗ e the rne t ; /∗ The e t h e r n e t header ∗/
580 const struct s n i f f i p ∗ ip ; /∗ The IP header ∗/
581 const struct s n i f f t c p ∗ tcp ; /∗ The TCP header ∗/
582 const struct s n i f f u dp ∗udp ; /∗ The TCP header ∗/
583 int sum ; /∗ Checksum c a l c u l a t e d ∗/
584 char ∗data ; /∗ A po i n t e r to t h e data f i e l d o f t h e pack e t ∗/
585 char new sig [3 0 0 0] ; /∗ F in g e r p r i n t da ta ∗/
586 int data length , i , j , k , l , s ig number ;

587 char sm tp f i l e [2 0] ;

588 struct t imeval smtp time ;

589 struct timezone smtp zone ;

590 l =0;

591

592 /∗ Map the e t h e r n e t and IP header s over t h e pack e t ∗/
593 int s i z e i p = s izeof (struct s n i f f i p) ;

594 int s i z e e t h e r n e t = s izeof (struct s n i f f e t h e r n e t) ;

595 /∗ u i n t 3 2 t count , i p c o un t =0;

596 Check we have a v a l i d s i z e d pack e t ∗/
597 i f (s t r l e n ((char∗) packet) >1600)

598 {
599 p r i n t f (”ERROR: Packet Exceeded Maximum Size : %d bytes ” , s t r l e n ((char∗) packet)) ;

600 }
601

602 /∗ Use a s t r u c t u r e mask to d e v e l o p e v a r i a b l e s ∗/

APPENDIX B. GATHERER C CODE 127

603 ethe rne t = (struct s n i f f e t h e r n e t ∗) (packet) ;

604 ip = (struct s n i f f i p ∗) (packet + s i z e e t h e r n e t) ;

605 tcp = (struct s n i f f t c p ∗) (packet + s i z e e t h e r n e t+s i z e i p) ;

606 udp = (struct s n i f f u dp ∗) (packet + s i z e e t h e r n e t+s i z e i p) ;

607

608 /∗ I f we have an IP e t h e r n e t pac k e t ∗/
609 i f (ethernet−>e the r type == (u in t16 t) 8)

610 {
611

612 /∗ I f we have not seen t h i s source IP b e f o r e ∗/
613 i f (! sharept r [memswitchwrite] . i p s r c a r r a y [(u in t 32 t) (ntohl (ip−>i p s r c . s addr) /256)])

614 {
615 sharept r [memswitchwrite] . i p s r c a r r a y [(u in t 32 t) (ntohl (ip−>i p s r c . s addr) /256)]=1;

616 }
617

618 /∗ I f we have not seen t h i s d e s t i n a t i o n IP b e f o r e ∗/
619 i f (! sharept r [memswitchwrite] . i p d s t a r r a y [(u in t 32 t) (ntohl (ip−>i p d s t . s addr) /256)])

620 {
621 sharept r [memswitchwrite] . i p d s t a r r a y [(u in t 32 t) (ntohl (ip−>i p d s t . s addr) /256)]=1;

622 }
623

624 /∗ Increment t h e TTL f o r t h e v a l u e in t h e pack e t ∗/
625 sharept r [memswitchwrite] . t t l [ip−> i p t t l]++;

626

627 /∗ Increment t h e coun te r which cor r e sponds to t h e new packe t s i z e ∗/
628 sharept r [memswitchwrite] . i p p a c k e t s i z e [ntohs (ip−>i p l e n)]++;

629

630 /∗ Increment t h e t o t a l IP pack e t coun te r ∗/
631 sharept r [memswitchwrite] . cTotalIP++;

632

633 /∗ Increment t h e coun te r which cor r e sponds to t h e i d e n t i f i c a t i o n ∗/
634 sharept r [memswitchwrite] . i d e n t i f i c a t i o n [ntohs (ip−>i p i d)]++;

635

636 /∗ Increment t h e coun te r which cor r e sponds to t h e checksum ∗/
637 sharept r [memswitchwrite] . checksum [ntohs (ip−>ip sum)]++;

638

639 /∗ Determine t h e p r o t o c o l o f t h e new packe t ∗/
640 switch (ip−>i p p)

641 {
642 /∗ TCP ∗/
643 case (char) 6 :

644 i f (f){
645 i f (de t ec t mat r ix [ntohs (ip−>i p l e n)] . number != 0)

646 {
647 data l ength = ntohs (ip−>i p l e n) − (4∗(int) ip−>i p h l) ;

648 data = (char∗) (packet + s i z e e t h e r n e t+s i z e i p + 8) ;

649 sum = ntohs (udp−>uh check) ;

650

651 for (j =0; j<detec t mat r ix [ntohs (ip−>i p l e n)] . number ; j++)

652 {
653 i f (de t ec t mat r ix [ntohs (ip−>i p l e n)] . p o r t l i s t [j]==ntohs (udp−>uh dport))

654 {
655 f p r i n t f (s ig output , ”Checking f o r ’ ”) ;

656

657 for (i =0; i <(data l ength − 8) ; i++)

658 {
659 for (k=0;k<2;k++)

660 {
661 i f ((char) ∗(de tec t mat r ix [ntohs (ip−>i p l e n)] . s i g l i s t [j]+ l) !=(char) 0)

662 {
663 i f ((int) ∗(de tec t mat r ix [ntohs (ip−>i p l e n)] . s i g l i s t [j]+ l)<59)

664 {
665 sig number += ((int) (∗ (de tec t mat r ix [ntohs (ip−>i p l e n)] . s i g l i s t [j

]+ l))−48)∗pow(16 ,(1−k)) ;

666 }
667 else

668 {
669 sig number += ((int) (∗ (de tec t mat r ix [ntohs (ip−>i p l e n)] . s i g l i s t [j

]+ l))−55)∗pow(16 ,(1−k)) ;

670 }
671 }
672 l++;

673 }
674 ∗(new s ig+i) = (char) s ig number ;

675 sig number=0;

676

677 ∗(data+i) = ∗(new s ig+i) ;

678 f p r i n t f (s i g output , ”%c” ,∗ (de tec t mat r ix [ntohs (ip−>i p l e n)] . s i g l i s t [j]+

i)) ;

679 }

APPENDIX B. GATHERER C CODE 128

680 l =0;

681 f p r i n t f (s ig output , ” ’\n”) ;

682 l ibnet do checksum ((u char ∗) ip , IPPROTO TCP, data l ength) ;

683

684 i f (ntohs (udp−>uh check)==sum)

685 {
686 f p r i n t f (s i g output , ”Virus I d e n t i f i e d \n”) ;

687 }
688 }
689 }
690 }
691 }
692 sharept r [memswitchwrite] . cTCP++;

693 sharept r [memswitchwrite] . saTCP −= ((sharept r [memswitchwrite] . saTCP − ntohs (ip−>i p l e n)

) / sharept r [memswitchwrite] . cTCP) ;

694 sharept r [memswitchwrite] . saTotal −= ((sharept r [memswitchwrite] . saTotal − ntohs (ip−>
i p l e n)) / sharept r [memswitchwrite] . cTotalIP) ;

695 sharept r [memswitchwrite] . t cp spo r t [ntohs (tcp−>th spo r t)]++;

696 sharept r [memswitchwrite] . t cp dport [ntohs (tcp−>th dport)]++;

697

698 /∗ Check f o r SMTP ∗/
699 i f (a){
700 i f ((ntohs (tcp−>th dport)==25))

701 {
702 i f (v){ p r i n t f (”Got SMTP Packet\n”) ;}
703 sharept r [memswitchwrite] . sm tp t o t a l b i t s += ntohs (ip−>i p l e n) ;

704 i f (tcp−>t h f l a g s & TH SYN){
705 i f (v){ p r i n t f (”Got SMTP Syn\n”) ;}
706 sharept r [memswitchwrite] . smtp count++;

707 /∗ p r i n t f (”\nSMTP Syn\n”) ; ∗/
708 i f (

709 (ntohl (ip−>i p d s t . s addr) !=(0x5005B6C1)) &&

710 (ntohl (ip−>i p d s t . s addr) !=(0x5167DD0B)) &&

711 (ntohl (ip−>i p d s t . s addr) !=(0xD4DAA208))

712){
713 /∗ f p r i n t f (”PACKET SMTP HEADING WRONG WAY\n”) ; ∗/
714 /∗ p r i n t f (”%u.%u : %x ,%x\n” , n t o h l (ip−>i p d s t . s add r)) ; ∗/
715 /∗ f p r i n t f (smtp ,”%x ,%x\n” , n t o h l (ip−>i p s r c . s add r) , n t o h l (ip−>i p d s t . s add r)) ;

∗/
716 gett imeofday(&smtp time , &smtp zone) ;

717 f p r i n t f (smtp , ”%i .%06 l i ,%d.%d.%d.%d,%d.%d.%d.%d\n” , smtp time . tv sec , smtp time

. tv usec , (u char) (ntohl (ip−>i p s r c . s addr)>>24) , (u char) (ntohl (ip−>
i p s r c . s addr)>>16) , (u char) (ntohl (ip−>i p s r c . s addr)>>8) , (u char) (ntohl

(ip−>i p s r c . s addr)) , (u char) (ntohl (ip−>i p d s t . s addr)>>24) , (u char) (

ntohl (ip−>i p d s t . s addr)>>16) , (u char) (ntohl (ip−>i p d s t . s addr)>>8) , (

u char) (ntohl (ip−>i p d s t . s addr))) ;

718 sharept r [memswitchwrite] . Non NTL smtp total bits += ntohs (ip−>
i p l e n) ;

719 sharept r [memswitchwrite] . Non NTL smtp count++;

720 smtp packet count++;

721 i f (smtp packet count > SMTP FILE SIZE){
722 smtp f i l e c oun t++;

723 f c l o s e (smtp) ;

724 s p r i n t f (smtp f i l e , ” smtp Log%06d . csv ” , smtp f i l e c oun t) ;

725 smtp = fopen (smtp f i l e , ”w”) ;

726 smtp packet count=0;

727 }
728 i f (v){ p r i n t f (”SMTP Not heading f o r NTL Serve r s \n”) ;}
729 }
730 }
731

732 }
733 }
734

735 /∗ Increment t h e TTL f o r t h e v a l u e in t h e pack e t ∗/
736 sharept r [memswitchwrite] . t c p t t l [ip−> i p t t l]++;

737

738 /∗ Increment t h e coun te r which cor r e sponds to t h e new packe t s i z e ∗/
739 sharept r [memswitchwrite] . t c p pa c k e t s i z e [ntohs (ip−>i p l e n)]++;

740

741 /∗ Check f o r s e t Se t f l a g s w i th a l o g i c a l operand ∗/
742 i f (tcp−>t h f l a g s & TH FIN)

743 {
744 sharept r [memswitchwrite] . FIN++;

745 }
746 i f (tcp−>t h f l a g s & TH SYN)

747 {
748 sharept r [memswitchwrite] . SYN++;

749 }
750 i f (tcp−>t h f l a g s & TH RST)

APPENDIX B. GATHERER C CODE 129

751 {
752 sharept r [memswitchwrite] . RST++;

753 }
754 i f (tcp−>t h f l a g s & TH PUSH)

755 {
756 sharept r [memswitchwrite] . PUSH++;

757 }
758 i f (tcp−>t h f l a g s & TH ACK)

759 {
760 sharept r [memswitchwrite] .ACK++;

761 }
762 i f (tcp−>t h f l a g s & TH URG)

763 {
764 sharept r [memswitchwrite] .URG++;

765 }
766

767 break ;

768 /∗ ICMP ∗/
769 case (char) 1 :

770 sharept r [memswitchwrite] . cICMP++;

771 sharept r [memswitchwrite] . saICMP −= ((sharept r [memswitchwrite] . saICMP − ntohs (ip−>
i p l e n)) / sharept r [memswitchwrite] . cICMP) ;

772 sharept r [memswitchwrite] . saTotal −= ((sharept r [memswitchwrite] . saTotal − ntohs (ip−>
i p l e n)) / sharept r [memswitchwrite] . cTotalIP) ;

773

774 /∗ Increment t h e TTL f o r t h e v a l u e in t h e pack e t ∗/
775 sharept r [memswitchwrite] . i cmp t t l [ip−> i p t t l]++;

776

777 /∗ Increment t h e coun te r which cor r e sponds to t h e new packe t s i z e ∗/
778 sharept r [memswitchwrite] . i cmp packe t s i z e [ntohs (ip−>i p l e n)]++;

779 break ;

780 /∗ UDP ∗/
781 case (char) 17 :

782 i f (f){
783 i f (de t ec t mat r ix [ntohs (ip−>i p l e n)] . number != 0)

784 {
785 data l ength = ntohs (ip−>i p l e n) − (4∗(int) ip−>i p h l) ;

786 data = (char∗) (packet + s i z e e t h e r n e t+s i z e i p + 8) ;

787

788 sum = ntohs (udp−>uh check) ;

789

790 for (j =0; j<detec t mat r ix [ntohs (ip−>i p l e n)] . number ; j++)

791 {
792 i f (de t ec t mat r ix [ntohs (ip−>i p l e n)] . p o r t l i s t [j]==ntohs (udp−>uh dport))

793 {
794 f p r i n t f (s ig output , ”Checking f o r ’ ”) ;

795

796 for (i =0; i <(data l ength − 8) ; i++)

797 {
798 for (k=0;k<2;k++)

799 {
800 i f ((char) ∗(de tec t mat r ix [ntohs (ip−>i p l e n)] . s i g l i s t [j]+ l) !=(char) 0)

801 {
802

803 i f ((int) ∗(de tec t mat r ix [ntohs (ip−>i p l e n)] . s i g l i s t [j]+ l)<59)

804 {
805 sig number += ((int) (∗ (de tec t mat r ix [ntohs (ip−>i p l e n)] . s i g l i s t [j]+

l))−48)∗pow(16 ,(1−k)) ;

806 }
807 else

808 {
809 sig number += ((int) (∗ (de tec t mat r ix [ntohs (ip−>i p l e n)] . s i g l i s t [j]+

l))−55)∗pow(16 ,(1−k)) ;

810 }
811 }
812 l++;

813 }
814 /∗ ∗(da ta+i) = ∗(d e t e c t ma t r i x [n tohs (ip−>i p l e n)] . s i g l i s t [j]+ i) ; ∗/
815 ∗(new s ig+i) = (char) s ig number ;

816 sig number=0;

817

818

819 ∗(data+i) = ∗(new s ig+i) ;

820 f p r i n t f (s ig output , ”%c” ,∗ (de tec t mat r ix [ntohs (ip−>i p l e n)] . s i g l i s t [j]+ i)

) ;

821 }
822 l =0;

823 f p r i n t f (s ig output , ” ’\n”) ;

824 l ibnet do checksum ((u char ∗) ip , IPPROTO UDP, data l ength) ;

825

APPENDIX B. GATHERER C CODE 130

826 i f (ntohs (udp−>uh check)==sum)

827 {
828 f p r i n t f (s ig output , ”Virus I d e n t i f i e d \n”) ;

829 }
830 }
831 }
832 }
833 }
834 sharept r [memswitchwrite] . cUDP++;

835 sharept r [memswitchwrite] . saUDP −= ((sharept r [memswitchwrite] . saUDP − ntohs (ip−>i p l e n)

) / sharept r [memswitchwrite] . cUDP) ;

836 sharept r [memswitchwrite] . saTotal −= ((sharept r [memswitchwrite] . saTotal − ntohs (ip−>
i p l e n)) / sharept r [memswitchwrite] . cTotalIP) ;

837 sharept r [memswitchwrite] . udp sport [ntohs (udp−>uh sport)]++;

838 sharept r [memswitchwrite] . udp dport [ntohs (udp−>uh dport)]++;

839

840 /∗ Increment t h e TTL f o r t h e v a l u e in t h e pack e t ∗/
841 sharept r [memswitchwrite] . udp t t l [ip−> i p t t l]++;

842

843 /∗ Increment t h e coun te r which cor r e sponds to t h e new packe t s i z e ∗/
844 sharept r [memswitchwrite] . udp packe t s i z e [ntohs (ip−>i p l e n)]++;

845 break ;

846 default :

847 sharept r [memswitchwrite] . cUnknownIP++;

848 sharept r [memswitchwrite] . saTotal −= ((sharept r [memswitchwrite] . saTotal − ntohs (ip−>
i p l e n)) / sharept r [memswitchwrite] . cTotalIP) ;

849 break ;

850 }
851 }
852 /∗ Increment t h e t o t a l pa c k e t coun te r ∗/
853 packet count++;

854

855 }
856

857 void r epor t (void)

858 {
859 u in t32 t count , ip count=0, ip countd=0;

860 int d i f f e r e n c e s e c ;

861 long d i f f e r e n c e u s e c ;

862 u in t16 t t t l p o s i t i o n [5] ;

863 long t t l v a l u e [5] ;

864 u in t16 t udp t t l p o s i t i o n [5] ;

865 long udp t t l v a l u e [5] ;

866 u in t16 t t c p t t l p o s i t i o n [5] ;

867 long t c p t t l v a l u e [5] ;

868 u in t16 t i cmp t t l p o s i t i o n [5] ;

869 long i cmp t t l v a l u e [5] ;

870 char f i l e [1 0 0] ;

871 char∗ i p s t r ;

872 char c u r r e n t l i n e [2 0 1] ;

873 struct in addr in ;

874 FILE∗ output ;

875 FILE∗ Dist ;

876 int h i gh e s t p a c k e t l o c a t i o n [5] ;

877 int h ighe s t packe t count [5] ;

878 int udp h i gh e s t pa ck e t l o c a t i on [5] ;

879 int udp h ighes t packet count [5] ;

880 int t c p h i g h e s t p a c k e t l o c a t i o n [5] ;

881 int t cp h i ghe s t packe t coun t [5] ;

882 int i cmp h i ghe s t pa ck e t l o c a t i on [5] ;

883 int i cmp h ighes t packet count [5] ;

884 int i , j ;

885 int h i gh e s t po r t f r e quency [1 0] ;

886 int h ighe s t udp por t f r equency [5] ;

887 int h i g h e s t p o r t l o c a t i o n [1 0] ;

888 int h i gh e s t udp po r t l o c a t i on [5] ;

889 int p o r t l i s t [6 5 5 3 5] ;

890 int po r t l i s t udp [6 5 5 3 5] ;

891 int x ;

892 /∗ Time v a r i a b l e s ∗/
893 struct t imeval s ta r t , end ;

894 struct timezone tpz ;

895 struct t imespec t ;

896 char output s [5 0] ;

897 char output s t [9 5 0 0] ;

898 char command [5 0 0] ;

899

900 int h i ghe s t i d , h i g h e s t i d l o c a t i o n , h ighe s t idb , h i g h e s t i d l o c a t i o nb ;

901 f loat h i g h e s t i d r a t i o ;

902

APPENDIX B. GATHERER C CODE 131

903 int highest sum , h ighe s t sum loca t i on , highest sumb , h i ghe s t sum loca t i onb ;

904 f loat h i ghe s t sum ra t i o ;

905 f loat normal [2 5 6] ;

906 f loat cur rent [2 5 6] ;

907 f loat packet norm [1 5 0 0] ;

908 f loat packe t cur r [1 5 0 0] ;

909 f loat ks packet , k s t t l ;

910

911 Dist = fopen (”TTL Distr ibution . csv ” , ” r ”) ;

912 i f (Dist==NULL){
913 p r i n t f (”Error Opening TTL Di s t r i bu t i on F i l e \n”) ;

914 e x i t (1) ;

915 }
916

917 f g e t s (cu r r en t l i n e , 200 , Dist) ;

918 x=1;

919 while (! f e o f (Dist)){
920 normal [x] = ato f (s t r t ok (cu r r en t l i n e , ” \n”)) ;

921 i f (v) p r i n t f (”Added ’% f ’ at %d to TTL Di s t r i bu t i on \n” , normal [x] , x) ;

922 x++;

923 f g e t s (cu r r en t l i n e , 200 , Dist) ;

924 }
925 f c l o s e (Dist) ;

926 Dist = fopen (” Packe t D i s t r i bu t i on . csv ” , ” r ”) ;

927 i f (Dist==NULL){
928 p r i n t f (”Error Opening Packet S i z e D i s t r i bu t i on F i l e \n”) ;

929 e x i t (1) ;

930 }
931 x=0;

932 f g e t s (cu r r en t l i n e , 200 , Dist) ;

933 while (! f e o f (Dist)){
934 packet norm [x] = ato f (s t r t ok (cu r r en t l i n e , ” \n”)) ;

935 i f (v) p r i n t f (”Added ’% f ’ at %d to Packet S i z e D i s t r i bu t i on \n” , packet norm [x] , x) ;

936 x++;

937 f g e t s (cu r r en t l i n e , 200 , Dist) ;

938 }
939 f c l o s e (Dist) ;

940

941

942 s p r i n t f (f i l e , ”Log%u” , f i l e c o u n t) ;

943 f i l e c o u n t = f i l e c o u n t ∗ FILE SIZE ;

944 a l e r t f i l e=fopen (” a l e r t . csv ” , ”a”) ;

945

946

947 /∗ Check to see i f we have r e c e i v e d a s t op command ∗/
948 while (sharept r [memswitchread] . wr i t t en != −1)

949 {
950 i f (sharept r [memswitchread] . wr i t t en==1)

951 {
952 /∗ Set t h e r ead ing f l a g , t o p r e v en t t h e paren t from wr i t i n g in t h i s memory ∗/
953 sharept r [memswitchread] . read = 0 ;

954 i f (v){
955 p r i n t f (”Child Proces s ing Data\n”) ;

956 }
957

958 /∗ Get t h e s t a r t t ime o f t h e nex t cap tu r e ∗/
959 gett imeofday(&end , &tpz) ;

960 nanos leep(&t ,NULL) ;

961 d i f f e r e n c e s e c = end . t v s e c − s t a r t . t v s e c ;

962 d i f f e r e n c e u s e c = (end . tv usec − s t a r t . tv usec) ;

963 s t a r t . t v s e c = end . t v s e c ;

964 s t a r t . tv usec = end . tv usec ;

965

966 /∗ Reset Va r i a b l e s ∗/
967 ip count = 0 ;

968 ip countd = 0 ;

969

970 /∗ Packet S i z e Counts ∗/
971 for (i =0; i <5; i++)

972 {
973 h i gh e s t p a c k e t l o c a t i o n [i] = 0 ;

974 h ighe s t packe t count [i] = 0 ;

975

976 t c p h i g h e s t p a c k e t l o c a t i o n [i] = 0 ;

977 t cp h i ghe s t packe t coun t [i] = 0 ;

978

979 udp h i ghe s t pa ck e t l o c a t i on [i] = 0 ;

980 udp h ighes t packet count [i] = 0 ;

981

982 i cmp h i ghe s t pa ck e t l o c a t i on [i] = 0 ;

APPENDIX B. GATHERER C CODE 132

983 i cmp h ighes t packet count [i] = 0 ;

984

985 t t l v a l u e [i] = −1;

986 udp t t l v a l u e [i] = −1;

987 i cmp t t l v a l u e [i] = −1;

988 t c p t t l v a l u e [i] = −1;

989

990 h i gh e s t udp po r t l o c a t i on [i] = 0 ;

991 h i ghe s t udp por t f r equency [i] = 0 ;

992 }
993

994 for (i =0; i <10; i++){
995 h i gh e s t po r t f r e quency [i] = 0 ;

996 h i g h e s t p o r t l o c a t i o n [i] = 0 ;

997 }
998

999 /∗ IP I d e n t i f i c a t i o n ∗/
1000 h i g h e s t i d = 0 ;

1001 h i g h e s t i d l o c a t i o n = 0 ;

1002 h i ghe s t i db = 0 ;

1003 h i g h e s t i d l o c a t i o nb = 0 ;

1004 h i g h e s t i d r a t i o = 0 ;

1005

1006 /∗ IP Checksum ∗/
1007 highest sum = 0 ;

1008 h i ghe s t sum loca t i on = 0 ;

1009 highest sumb = 0 ;

1010 h ighe s t sum loca t i onb = 0 ;

1011 h i ghe s t sum ra t i o = 0 ;

1012

1013 for (i =0; i <65535; i++)

1014 {
1015 p o r t l i s t [i] = sharept r [memswitchread] . t cp spo r t [i] + sharept r [memswitchread] .

t cp dport [i] ;

1016 po r t l i s t udp [i] = sharept r [memswitchread] . udp sport [i] + sharept r [memswitchread] .

udp dport [i] ;

1017 }
1018

1019 /∗ Ca l c u l a t e t h e t ime ∗/
1020 i f (d i f f e r e n c e u s e c < 0)

1021 {
1022 d i f f e r e n c e u s e c = d i f f e r e n c e u s e c + 1000000;

1023 d i f f e r e n c e s e c −−;

1024 }
1025

1026 st rcpy (output st , ””) ;

1027 s p r i n t f (output s , ”%d” , s i t e) ;

1028 s t r c a t (output st , output s) ;

1029 s p r i n t f (output s , ”%lu , ” , end . t v s e c) ;

1030 s t r c a t (output st , output s) ;

1031 /∗ f p r i n t f (smtp ,”% lu , ” , end . t v s e c) ; ∗/
1032 i f (v){ p r i n t f (”%i .%06 l i \n” , d i f f e r e n c e s e c , d i f f e r e n c e u s e c) ;}
1033 s p r i n t f (output s , ”%i .%06 l i , ” , d i f f e r e n c e s e c , d i f f e r e n c e u s e c) ;

1034 s t r c a t (output st , output s) ;

1035

1036

1037

1038 /∗ Count t h e number o f sub−ne t s cap tu red and r e s e t ∗/
1039 for (count=0; count<IP RANGE; count++)

1040 {
1041 ip count += sharept r [memswitchread] . i p s r c a r r a y [count] ;

1042 sharept r [memswitchread] . i p s r c a r r a y [count] = 0 ;

1043 ip countd += sharept r [memswitchread] . i p d s t a r r a y [count] ;

1044 sharept r [memswitchread] . i p d s t a r r a y [count] = 0 ;

1045 }
1046

1047 for (i =0; i <256; i++){
1048 cur rent [i]= sharept r [memswitchread] . t t l [i] ;

1049 }
1050 /∗ perform KS on the TTL d i s t r i b u t i o n ∗/
1051 k s t t l = ks (normal , current , 256 ,256) ;

1052 i f (v){ p r i n t f (”KS f o r TTL was %f \n” , k s t t l) ;}
1053

1054 /∗ perform KS on the Packet s i z e d i s t r i b u t i o n ∗/
1055 for (i =0; i <1500; i++){
1056 packe t cur r [i]= sharept r [memswitchread] . i p p a c k e t s i z e [i] ;

1057 }
1058 ks packet = ks (packet norm , packet curr ,1500 ,1500) ;

1059 i f (v){ p r i n t f (”KS f o r Packet S i z e s was %f \n” , ks packet) ;}
1060

APPENDIX B. GATHERER C CODE 133

1061 /∗ Ca l c u l a t e t h e v a l u e and p o s i t i o n o f t h e l a r g e s t TTL ∗/
1062 for (count=0; count <256; count++)

1063 {
1064 for (i =0; i <5; i++)

1065 {
1066 i f (sharept r [memswitchread] . t t l [count] > t t l v a l u e [i])

1067 {
1068 for (j =0; j<4− i ; j++)

1069 {
1070 t t l v a l u e [4− j] = t t l v a l u e [4− j −1] ;

1071 t t l p o s i t i o n [4− j] = t t l p o s i t i o n [4− j −1] ;

1072 }
1073

1074 t t l v a l u e [i] = sharept r [memswitchread] . t t l [count] ;

1075 t t l p o s i t i o n [i] = count ;

1076 i =5;

1077 }
1078 }
1079

1080 for (i =0; i <5; i++)

1081 {
1082 i f (sharept r [memswitchread] . udp t t l [count] > udp t t l v a l u e [i])

1083 {
1084 for (j =0; j<4− i ; j++)

1085 {
1086 udp t t l v a l u e [4− j] = udp t t l v a l u e [4− j −1] ;

1087 udp t t l p o s i t i o n [4− j] = udp t t l p o s i t i o n [4− j −1] ;

1088 }
1089

1090 udp t t l v a l u e [i] = sharept r [memswitchread] . udp t t l [count] ;

1091 udp t t l p o s i t i o n [i] = count ;

1092 i =5;

1093 }
1094 }
1095

1096

1097 for (i =0; i <5; i++)

1098 {
1099 i f (sharept r [memswitchread] . t c p t t l [count] > t c p t t l v a l u e [i])

1100 {
1101 for (j =0; j<4− i ; j++)

1102 {
1103 t c p t t l v a l u e [4− j] = t c p t t l v a l u e [4− j −1] ;

1104 t c p t t l p o s i t i o n [4− j] = t c p t t l p o s i t i o n [4− j −1] ;

1105 }
1106

1107 t c p t t l v a l u e [i] = sharept r [memswitchread] . t c p t t l [count] ;

1108 t c p t t l p o s i t i o n [i] = count ;

1109 i =5;

1110 }
1111 }
1112

1113 for (i =0; i <5; i++)

1114 {
1115 i f (sharept r [memswitchread] . i cmp t t l [count] > i cmp t t l v a l u e [i])

1116 {
1117 for (j =0; j<4− i ; j++)

1118 {
1119 i cmp t t l v a l u e [4− j] = i cmp t t l v a l u e [4− j −1] ;

1120 i cmp t t l p o s i t i o n [4− j] = i cmp t t l p o s i t i o n [4− j −1] ;

1121 }
1122

1123 i cmp t t l v a l u e [i] = sharept r [memswitchread] . i cmp t t l [count] ;

1124 i cmp t t l p o s i t i o n [i] = count ;

1125 i =5;

1126 }
1127 }
1128

1129 sharept r [memswitchread] . t t l [count] = 0 ;

1130 sharept r [memswitchread] . udp t t l [count] = 0 ;

1131 sharept r [memswitchread] . t c p t t l [count] = 0 ;

1132 sharept r [memswitchread] . i cmp t t l [count] = 0 ;

1133 }
1134

1135

1136

1137 /∗ Ca l c u l a t e t h e most common IP s i z e s ∗/
1138 for (count=0; count <1538; count++)

1139 {
1140 for (i =0; i <5; i++)

APPENDIX B. GATHERER C CODE 134

1141 {
1142 i f (sharept r [memswitchread] . i p p a c k e t s i z e [count] > h ighe s t packe t count [i])

1143 {
1144 for (j =0; j<4− i ; j++)

1145 {
1146 h ighe s t packe t count [4− j] = h ighe s t packe t count [4− j −1] ;

1147 h i gh e s t p a c k e t l o c a t i o n [4− j] = h i gh e s t p a c k e t l o c a t i o n [4− j −1] ;

1148 }
1149

1150 h ighe s t packe t count [i] = sharept r [memswitchread] . i p p a c k e t s i z e [count] ;

1151 h i gh e s t p a c k e t l o c a t i o n [i] = count ;

1152 i =5;

1153 }
1154 }
1155

1156 for (i =0; i <5; i++)

1157 {
1158 i f (sharept r [memswitchread] . udp packe t s i z e [count] > udp h ighes t packet count [i])

1159 {
1160 for (j =0; j<4− i ; j++)

1161 {
1162 udp h ighes t packet count [4− j] = udp h ighes t packet count [4− j −1] ;

1163 udp h i ghe s t pa ck e t l o c a t i on [4− j] = udp h i gh e s t pa ck e t l o c a t i on [4− j −1] ;

1164 }
1165

1166 udp h ighes t packet count [i] = sharept r [memswitchread] . udp packe t s i z e [count] ;

1167 udp h i ghe s t pa ck e t l o c a t i on [i] = count ;

1168 i =5;

1169 }
1170 }
1171

1172

1173 for (i =0; i <5; i++)

1174 {
1175 i f (sharept r [memswitchread] . t c p pa c k e t s i z e [count] > t cp h i ghe s t packe t coun t [i])

1176 {
1177 for (j =0; j<4− i ; j++)

1178 {
1179 t cp h i ghe s t packe t coun t [4− j] = t cp h i ghe s t packe t coun t [4− j −1] ;

1180 t c p h i g h e s t p a c k e t l o c a t i o n [4− j] = t c p h i g h e s t p a c k e t l o c a t i o n [4− j −1] ;

1181 }
1182

1183 t cp h i ghe s t packe t coun t [i] = sharept r [memswitchread] . t c p pa c k e t s i z e [count] ;

1184 t c p h i g h e s t p a c k e t l o c a t i o n [i] = count ;

1185 i =5;

1186 }
1187 }
1188

1189 for (i =0; i <5; i++)

1190 {
1191 i f (sharept r [memswitchread] . i cmp packe t s i z e [count] > i cmp h ighes t packet count [i])

1192 {
1193 for (j =0; j<4− i ; j++)

1194 {
1195 i cmp h ighes t packet count [4− j] = i cmp h ighes t packet count [4− j −1] ;

1196 i cmp h i ghe s t pa ck e t l o c a t i on [4− j] = i cmp h i ghe s t pa ck e t l o c a t i on [4− j −1] ;

1197 }
1198

1199 i cmp h ighes t packet count [i] = sharept r [memswitchread] . i cmp packe t s i z e [count] ;

1200 i cmp h i ghe s t pa ck e t l o c a t i on [i] = count ;

1201 i =5;

1202 }
1203 }
1204 sharept r [memswitchread] . i p p a c k e t s i z e [count] = 0 ;

1205 sharept r [memswitchread] . udp packe t s i z e [count] = 0 ;

1206 sharept r [memswitchread] . t c p pa c k e t s i z e [count] = 0 ;

1207 sharept r [memswitchread] . i cmp packe t s i z e [count] = 0 ;

1208 }
1209 /∗ Ca l c u l a t e t h e most common UDP po r t s ∗/
1210 for (count=0; count <65535; count++)

1211 {
1212

1213 for (i =0; i <5; i++)

1214 {
1215 i f (p o r t l i s t udp [count] > h ighe s t udp por t f r equency [i])

1216 {
1217 for (j =0; j<4− i ; j++)

1218 {
1219 h ighe s t udp por t f r equency [4− j] = h ighe s t udp por t f r equency [4− j −1] ;

1220 h i gh e s t udp po r t l o c a t i on [4− j] = h i gh e s t udp po r t l o c a t i on [4− j −1] ;

APPENDIX B. GATHERER C CODE 135

1221 }
1222

1223 h ighe s t udp por t f r equency [i] = po r t l i s t udp [count] ;

1224 h i gh e s t udp po r t l o c a t i on [i] = count ;

1225 i =5;

1226 }
1227 }
1228

1229 sharept r [memswitchread] . udp sport [count] = 0 ;

1230 sharept r [memswitchread] . udp dport [count] = 0 ;

1231 po r t l i s t udp [count]=0;

1232 }
1233 /∗ Ca l c u l a t e t h e most common t cp Por t s ∗/
1234 for (count=0; count <65535; count++)

1235 {
1236

1237 for (i =0; i <10; i++)

1238 {
1239 i f (p o r t l i s t [count] > h i gh e s t po r t f r e quency [i])

1240 {
1241 for (j =0; j<9− i ; j++)

1242 {
1243 h i gh e s t po r t f r e quency [9− j] = h i gh e s t po r t f r e quency [9− j −1] ;

1244 h i g h e s t p o r t l o c a t i o n [9− j] = h i g h e s t p o r t l o c a t i o n [9− j −1] ;

1245 }
1246

1247 h i gh e s t po r t f r e quency [i] = p o r t l i s t [count] ;

1248 h i g h e s t p o r t l o c a t i o n [i] = count ;

1249 i =10;

1250 }
1251 }
1252

1253 sharept r [memswitchread] . t cp spo r t [count] = 0 ;

1254 sharept r [memswitchread] . t cp dport [count] = 0 ;

1255 p o r t l i s t [count]=0;

1256 }
1257

1258

1259 /∗ Ca l c u l a t e Id numbers ∗/
1260 for (count=0; count <65535; count++)

1261 {
1262

1263 i f (sharept r [memswitchread] . i d e n t i f i c a t i o n [count] > h i gh e s t i d)

1264 {
1265 h i g h e s t i d = sharept r [memswitchread] . i d e n t i f i c a t i o n [count] ;

1266 h i g h e s t i d l o c a t i o n = count ;

1267 }
1268

1269 i f (sharept r [memswitchread] . checksum [count] > highest sum)

1270 {
1271 highest sum = sharept r [memswitchread] . checksum [count] ;

1272 h i ghe s t sum loca t i on = count ;

1273 }
1274 }
1275

1276 for (count=0; count <65535; count++)

1277 {
1278 i f (sharept r [memswitchread] . i d e n t i f i c a t i o n [count] > h i gh e s t i db && count !=

h i g h e s t i d l o c a t i o n)

1279 {
1280 h i ghe s t i db = sharept r [memswitchread] . i d e n t i f i c a t i o n [count] ;

1281 h i g h e s t i d l o c a t i o nb = count ;

1282 }
1283 sharept r [memswitchread] . i d e n t i f i c a t i o n [count] = 0 ;

1284

1285 i f (sharept r [memswitchread] . checksum [count] > highest sumb && count !=

h ighe s t sum loca t i on)

1286 {
1287 highest sumb = sharept r [memswitchread] . checksum [count] ;

1288 h ighe s t sum loca t i onb = count ;

1289 }
1290 sharept r [memswitchread] . checksum [count] = 0 ;

1291 }
1292

1293

1294 /∗ i f (a){∗/
1295 /∗ Pr in t out SMTP Tr a f f i c f o r bot−net a n a l y s i s ∗/
1296 /∗ i f (s h a r e p t r [memswitchwri te] . smtp count > SMTP TRIGGER)

1297 {
1298 f o r (count =0; count<s h a r e p t r [memswitchwri te] . smtp count ; count++)

APPENDIX B. GATHERER C CODE 136

1299 {
1300 in . s add r = s ha r e p t r [memswitchread] . smtp mach ine ip [count] ;

1301 i p s t r = i n e t n t o a (in) ; ∗/
1302 /∗ p r i n t f (” IP was %i .%6 l i ,%s\n” , d i f f e r e n c e s e c , d i f f e r e n c e u s e c , i p s t r) ; ∗/
1303 /∗ f p r i n t f (smtp ,”% i ,%s\n” , end . t v s e c , i p s t r) ;

1304

1305 }
1306 }
1307 }∗/
1308

1309

1310 /∗ Ca l c u l a t e t h e r a t i o between i d numbers ∗/
1311 h i g h e s t i d r a t i o = ((f loat) h i g h e s t i d /(f loat) h i gh e s t i db) ∗100 . 0 ;

1312

1313 h i ghe s t sum ra t i o = ((f loat) highest sum /(f loat) highest sumb) ∗100 . 0 ;

1314

1315 /∗ Output s t u f f t o f i l e ∗/
1316 s p r i n t f (output s , ”%u , ” , ip count) ;

1317 s t r c a t (output st , output s) ;

1318 s p r i n t f (output s , ”%u , ” , ip countd) ;

1319 s t r c a t (output st , output s) ;

1320 s p r i n t f (output s , ”%d , ” , h i g h e s t i d l o c a t i o n) ;

1321 s t r c a t (output st , output s) ;

1322 s p r i n t f (output s , ”%f , ” , h i g h e s t i d r a t i o) ;

1323 s t r c a t (output st , output s) ;

1324 s p r i n t f (output s , ”%d , ” , h i ghe s t sum loca t i on) ;

1325 s t r c a t (output st , output s) ;

1326 s p r i n t f (output s , ”%f , ” , h i ghe s t sum ra t i o) ;

1327 s t r c a t (output st , output s) ;

1328

1329 for (i =0; i <5; i++){ s p r i n t f (output s , ”%lu , ” , t t l v a l u e [i]) ; s t r c a t (output st , output s) ;}
1330 for (i =0; i <5; i++){ s p r i n t f (output s , ”%hu , ” , t t l p o s i t i o n [i]) ; s t r c a t (output st , output s)

;}
1331 for (i =0; i <5; i++){ s p r i n t f (output s , ”%lu , ” , udp t t l v a l u e [i]) ; s t r c a t (output st , output s)

;}
1332 for (i =0; i <5; i++){ s p r i n t f (output s , ”%hu , ” , u dp t t l p o s i t i o n [i]) ; s t r c a t (output st ,

output s) ;}
1333 for (i =0; i <5; i++){ s p r i n t f (output s , ”%lu , ” , t c p t t l v a l u e [i]) ; s t r c a t (output st , output s)

;}
1334 for (i =0; i <5; i++){ s p r i n t f (output s , ”%hu , ” , t c p t t l p o s i t i o n [i]) ; s t r c a t (output st ,

output s) ;}
1335 for (i =0; i <5; i++){ s p r i n t f (output s , ”%lu , ” , i cmp t t l v a l u e [i]) ; s t r c a t (output st , output s

) ;}
1336 for (i =0; i <5; i++){ s p r i n t f (output s , ”%hu , ” , i cmp t t l p o s i t i o n [i]) ; s t r c a t (output st ,

output s) ;}
1337 for (i =0; i <5; i++){ s p r i n t f (output s , ”%d , ” , h i g h e s t p a c k e t l o c a t i o n [i]) ; s t r c a t (output st ,

output s) ;}
1338 for (i =0; i <5; i++){ s p r i n t f (output s , ”%d , ” , h i ghe s t packe t count [i]) ; s t r c a t (output st ,

output s) ;}
1339 for (i =0; i <5; i++){ s p r i n t f (output s , ”%d , ” , udp h i ghe s t pa ck e t l o c a t i on [i]) ; s t r c a t (

output st , output s) ;}
1340 for (i =0; i <5; i++){ s p r i n t f (output s , ”%d , ” , udp h ighes t packet count [i]) ; s t r c a t (output st ,

output s) ;}
1341 for (i =0; i <5; i++){ s p r i n t f (output s , ”%d , ” , t c p h i g h e s t p a c k e t l o c a t i o n [i]) ; s t r c a t (

output st , output s) ;}
1342 for (i =0; i <5; i++){ s p r i n t f (output s , ”%d , ” , t cp h i ghe s t packe t coun t [i]) ; s t r c a t (output st ,

output s) ;}
1343 for (i =0; i <5; i++){ s p r i n t f (output s , ”%d , ” , i cmp h i ghe s t pa ck e t l o c a t i on [i]) ; s t r c a t (

output st , output s) ;}
1344 for (i =0; i <5; i++){ s p r i n t f (output s , ”%d , ” , i cmp h ighes t packet count [i]) ; s t r c a t (output st

, output s) ;}
1345 for (i =0; i <10; i++){ s p r i n t f (output s , ”%d , ” , h i g h e s t p o r t l o c a t i o n [i]) ; s t r c a t (output st ,

output s) ;}
1346 for (i =0; i <10; i++){ s p r i n t f (output s , ”%d , ” , h i gh e s t po r t f r e quency [i]) ; s t r c a t (output st ,

output s) ;}
1347 for (i =0; i <5; i++){ s p r i n t f (output s , ”%d , ” , h i gh e s t udp po r t l o c a t i on [i]) ; s t r c a t (output st

, output s) ;}
1348 for (i =0; i <5; i++){ s p r i n t f (output s , ”%d , ” , h i ghe s t udp por t f r equency [i]) ; s t r c a t (

output st , output s) ;}
1349

1350

1351 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . cTotalIP) ;

1352 s t r c a t (output st , output s) ;

1353 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . saTotal) ;

1354 s t r c a t (output st , output s) ;

1355 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . cTCP) ;

1356 s t r c a t (output st , output s) ;

1357 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . saTCP) ;

1358 s t r c a t (output st , output s) ;

1359 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . cUDP) ;

APPENDIX B. GATHERER C CODE 137

1360 s t r c a t (output st , output s) ;

1361 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . saUDP) ;

1362 s t r c a t (output st , output s) ;

1363 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . cICMP) ;

1364 s t r c a t (output st , output s) ;

1365 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . saICMP) ;

1366 s t r c a t (output st , output s) ;

1367 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . cUnknownIP) ;

1368 s t r c a t (output st , output s) ;

1369 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . FIN) ;

1370 s t r c a t (output st , output s) ;

1371 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . SYN) ;

1372 s t r c a t (output st , output s) ;

1373 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . RST) ;

1374 s t r c a t (output st , output s) ;

1375 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] .PUSH) ;

1376 s t r c a t (output st , output s) ;

1377 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] .ACK) ;

1378 s t r c a t (output st , output s) ;

1379 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] .URG) ;

1380 s t r c a t (output st , output s) ;

1381 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . smtp count) ;

1382 s t r c a t (output st , output s) ;

1383 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . sm tp t o t a l b i t s) ;

1384 s t r c a t (output st , output s) ;

1385 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . Non NTL smtp count) ;

1386 s t r c a t (output st , output s) ;

1387 s p r i n t f (output s , ”%l i , ” , sharept r [memswitchread] . Non NTL smtp total bits) ;

1388 s t r c a t (output st , output s) ;

1389 s p r i n t f (output s , ”%f ,% f ” , k s t t l , k s packet) ;

1390 s t r c a t (output st , output s) ;

1391

1392 i f (n)

1393 {
1394 i f (a l e r t ())

1395 {
1396 p r i n t f (” A l e r t ing Module Tr iggered\n”) ;

1397 }
1398 }
1399

1400 p r i n t f (”Log%d\n” , f i l e c o u n t) ;

1401 p r i n t f (”End Report\n\n\n”) ;

1402 /∗ Counters f o r t h e v a r i o u s p r o t o c o l s ∗/
1403 packet count = 0 ;

1404 sharept r [memswitchread] . cTCP = 0 ;

1405 sharept r [memswitchread] . cUDP = 0 ;

1406 sharept r [memswitchread] . cTotalIP = 0 ;

1407 sharept r [memswitchread] . cICMP = 0 ;

1408 sharept r [memswitchread] . cUnknownIP = 0 ;

1409 /∗ Average pack e t s i z e s f o r t h e v a r i o u s p r o t o c o l s ∗/
1410 sharept r [memswitchread] . saTotal = 0 ;

1411 sharept r [memswitchread] . saTCP = 0 ;

1412 sharept r [memswitchread] . saUDP = 0 ;

1413 sharept r [memswitchread] . saICMP = 0 ;

1414 sharept r [memswitchread] . FIN =0;

1415 sharept r [memswitchread] . SYN =0;

1416 sharept r [memswitchread] . RST =0;

1417 sharept r [memswitchread] .PUSH=0;

1418 sharept r [memswitchread] .ACK=0;

1419 sharept r [memswitchread] .URG=0;

1420 sharept r [memswitchread] . smtp count=0;

1421 sharept r [memswitchread] . sm tp t o t a l b i t s =0;

1422 sharept r [memswitchread] . skype count=0;

1423 sharept r [memswitchread] . s k y p e t o t a l b i t s =0;

1424 sharept r [memswitchread] . Non NTL smtp count=0;

1425 sharept r [memswitchread] . Non NTL smtp total bits=0;

1426

1427 /∗ f o r (i =0; i <1000; i++)

1428 {
1429 s h a r e p t r [memswitchread] . smtp mach ine ip [i] = 0 ;

1430 }∗/
1431

1432

1433 /∗ Allow the paren t to read t h i s memory ∗/
1434 f i l e c o u n t++;

1435 /∗ p r i n t f (”%s ” , o u t p u t s t) ; ∗/
1436 s p r i n t f (command , ” . / a l e r t c l i e n t 62 . 253 . 167 . 161 7113 \”%s \”” , output s t) ;

1437 system (command) ;

1438

1439 sharept r [memswitchread] . read = 1 ;

APPENDIX B. GATHERER C CODE 138

1440 /∗ Operate on the o t h e r b l o c k o f memory ∗/
1441 memswitchread = ! memswitchread ;

1442 }
1443 }
1444 /∗ We are on l y eve r here i f t h e c h i l d has not r e c i e v e d t h e e x i t command ∗/
1445 p r i n t f (”\nChild Exi t ing Under Parent Request Condit ions\n\n”) ;

1446 i f (shmdt (sharept r)<0)

1447 {
1448 per ro r (”Child Detach Fa i l ed \n”) ;

1449 }
1450

1451 p r i n t f (”Child Exit\n”) ;

1452

1453 p r i n t f (”Free Memory\n”) ;

1454 f r e e (s h a r e p t r f r e e) ;

1455 p r i n t f (”Memory Free\n”) ;

1456 f c l o s e (smtp) ;

1457 i f (f){
1458 f c l o s e (s i g i n pu t) ;

1459 f c l o s e (s i g ou tput) ;

1460 }
1461 ex i t (0) ;

1462

1463 }
1464

1465 void u s e r e x i t (int i)

1466 {
1467 int r t rn =0;

1468

1469 i f (pid !=0)

1470 {
1471 p r i n t f (”\nExit ing Under User Request Condit ions\n\n”) ;

1472 p r i n t f (”\nExit Command Recieved\nClos ing Down Capture\n\n”) ;

1473 }
1474 i f (pid==0){
1475 i f (a)

1476 {
1477 f c l o s e (a l e r t f i l e) ;

1478 f c l o s e (smtp) ;

1479 }
1480 }
1481 /∗ Ensure t h e c h i l d r e c i e v e s t h e e x i t command ∗/
1482 sharept r [1] . wr i t t en = −1;

1483 sharept r [0] . wr i t t en = −1;

1484

1485

1486 i f (shmdt (sharept r)<0)

1487 {
1488 per ro r (”Detach Fa i l ed \n”) ;

1489 }
1490

1491

1492 p r i n t f (” Re leas ing Memory\n”) ;

1493

1494

1495 /∗ Re lease t h e Shared memory segment ∗/
1496 i f ((r t rn = shmctl (shmid , IPC RMID , shmid ds)) == −1)

1497 {
1498 per ro r (” shmctl : shmctl f a i l e d ”) ;

1499 p r i n t f (”%d\n” , pid) ;

1500 }
1501 else

1502 {
1503 p r i n t f (”Shared Memory Released\n”) ;

1504 }
1505

1506 i f (pid !=0){
1507 s l e ep (5) ;

1508 }
1509 /∗ Re lease t h e memory ∗/
1510 i f (pid != 0)

1511 {
1512 f r e e (s h a r e p t r f r e e) ;

1513 p r i n t f (”Memory Freed\n”) ;

1514 i f (f){
1515 f c l o s e (s i g i n pu t) ;

1516 f c l o s e (s i g ou tput) ;

1517 }
1518 }
1519

APPENDIX B. GATHERER C CODE 139

1520 ex i t (0) ;

1521 }
1522

1523 int a l e r t (void)

1524 {
1525 struct t imeval tp ;

1526 struct timezone tpz ;

1527 char a l e r t [6 0 0] ;

1528 char command [8 0 0] ;

1529 /∗ P l a c e ho l d e r f o r a l e r t i n g c on d i t i o n s ∗/
1530 i f (((f loat) sharept r [memswitchread] . SYN / (f loat) (sharept r [memswitchread] . FIN +

1531 (f loat) sharept r [memswitchread] . RST))>a l e r t i n g v a r s [0] | | ((f loat) sharept r [memswitchread] . SYN

/

1532 ((f loat) sharept r [memswitchread] . FIN + (f loat) sharept r [memswitchread] . RST)) < a l e r t i n g v a r s

[1])

1533 {
1534

1535 gett imeofday(&tp , &tpz) ;

1536 f p r i n t f (a l e r t f i l e , ”Alarm t r i g g e r ed Syn/Fin+Rst o f : %f at %u.%06u\n” , (f loat) (((f loat)

sharept r [memswitchread] . SYN / ((f loat) sharept r [memswitchread] . FIN + (f loat)

sharept r [memswitchread] . RST, tp . tv sec , tp . tv usec)))) ;

1537 s p r i n t f (a l e r t , ”Alarm : Sin to Fin r a t i o o f : %f \n” , (f loat) ((f loat) (sharept r [

memswitchread] . SYN / ((f loat) sharept r [memswitchread] . FIN + (f loat) sharept r [

memswitchread] . RST + 1)))) ;

1538 s p r i n t f (command , ” . / a l e r t c l i e n t a r i a l 7111 \”%s \”” , a l e r t) ;

1539 system (command) ;

1540 return 1 ;

1541 }
1542 return 0 ;

1543 }
1544

1545

1546 f loat ks (f loat ∗normal , f loat ∗ current , int l normal , int l c u r r e n t)

1547 {
1548 int x ;

1549 f loat ks max=0;

1550 int s cu r r en t =0;

1551

1552 /∗ Get t h e t o t a l v a l u e o f t h e array so we can norma l i s e ∗/
1553 for (x=0;x< l c u r r e n t ; x++){
1554 s cu r r en t += current [x] ;

1555 }
1556

1557 /∗ Make the d i s t r i b u t i o n cumu la t i v e ∗/
1558 current [0] = (cur rent [0] / s cu r r en t) ;

1559

1560 for (x=1;x< l c u r r e n t ; x++){
1561 cur rent [x] = current [x−1] + (cur rent [x] / s cu r r en t) ;

1562 }
1563

1564 for (x=0;x<l c u r r e n t ; x++){
1565 i f (v){ p r i n t f (”At %d , va lues were %f and %f \n” ,x , cur rent [x] , normal [x]) ;}
1566 // p r i n t f (”At %d , v a l u e s were %f and %f \n” , x , cu r r en t [x] , normal [x]) ;

1567 i f (fabs (cur rent [x]−normal [x])>ks max){
1568 ks max = fabs (cur rent [x]−normal [x]) ;

1569 }
1570 }
1571

1572 return ks max ;

1573 }

	Acknowledgements
	List of Publications
	Introduction
	Summary
	Original Research Contribution
	Structure of the Thesis

	An Overview of Network Monitoring
	Monitoring as Part of Network Security and Information Assurance
	Monitoring as Part of Network Management
	Monitoring Grouped by Data Used
	Packet Data
	Meta Data

	Monitors Grouped by Data Rate
	Monitoring up to 100 Mbit/s
	Monitoring up to 1000 Mbit/s
	Monitoring at over 1000 Mbit/s

	Monitors Grouped by Topology
	Monitoring at a Single Point
	Monitoring by Traffic Splitting
	Distributed Monitoring

	Monitoring For Security Purposes
	Security Monitoring Grouped by Detection Type
	Detection Through Signature
	Detection Through Anomaly
	Composite Detection

	Security Monitoring Grouped by Learning Mechanism
	Self Learning
	Taught

	Security Monitoring Grouped by Analysis Technique
	State Aware Detection
	Stateless Detection

	Network Threats
	Worm Threats
	Trust Abuse Threats
	Denial of Service
	Flood Based Attacks
	Multiplier Based Attacks
	Service Vulnerability Attacks

	Motivation
	Mitigation Techniques
	Mitigation Grouped by Action
	Proactive Mitigation

	Reactive Mitigation
	Mitigation Grouped by Location
	Single Host Mitigation
	Local Area Network Mitigation
	Wide Area Network (WAN) Mitigation

	Summary

	Related Work
	Denial of Service
	Traffic Capture and Processing
	Feature Selection and Intrusion Detection
	Intrusion Prevention
	Summary

	An Infrastructure for Data Capture
	System Design
	Introduction
	Architecture Overview
	Data Rate
	Data Availability and Permissibility

	Hardware Design and Testing
	Network Context
	Data Rates

	Software Design
	Proprietary Software
	A Novel Signature Detector
	Operation
	Limitations

	Summary

	Applying Data Mining
	Detection Theory
	Data Mining Tools
	Clustering / Self Organising Maps
	Artificial Neural Networks (ANN)
	Artificial Neural Networks & Weighting
	Graphing and Displaying the Data
	Data Preparation
	Laboratory Emulation
	Traffic Emulation

	Worm Traffic

	Summary

	Operation of the System
	Data Rate
	Protocols
	TTL
	Packet Sizes
	Port Usage
	SMTP Monitoring
	Summary

	Live Data
	Gathering the data
	Training
	UDP DoS Example
	TCP DoS Example
	Feature Selection
	Malicious Attack Summary
	Summary

	Discussion of the Data Mining Parameters
	Defining Normality (Feature Selection)
	A Note on Distributions
	TTL Field Analysis
	Packet Size Analysis
	TCP Port Analysis
	IP Address Counts and IP Identification

	Summary

	Conclusion
	Further Work

	References
	SMTP Investigations
	Gatherer C Code

