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Abstract:  

Mechanical ventilation with heat recovery (MVHR) is increasingly being promoted in 

the UK as a means of reducing the CO2 emissions from dwellings, and installers report 

growing activity in the retrofit market. In parallel with a survey of householder 

preferences and practices, the behaviour of a whole-house MVHR system installed in 

an experimental house, purpose built to typical 1930s standards, has been simulated. 

The range of air permeability values corresponded to those achieved in a retrofit 

upgrading process carried out on the house. In the house considered, air permeability, 

as measured in a 50 Pa pressurisation test, must be reduced below 5 m
3
/m

2
.h for 

MVHR to make an overall energy and CO2 saving. This required a level of disruption 

that would be unlikely to be tolerated by owners of solid wall dwellings. 
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1 Introduction 

The UK has the oldest housing stock in the developed world (Energy Saving Trust, 

2003). Of 25 million dwellings in the UK, 34% have solid walls and are responsible for 

50% of the total UK domestic sector CO2 emissions. In a typical unimproved UK solid 

wall dwelling the ventilation heat loss rate is approximately equal to the heat loss rate 

through the fabric (walls, roof and ground floor) so, in the context of Government 

targets of reducing CO2 emissions from buildings, reducing this ventilation heat loss is 

attractive and the Energy Saving Trust (2005) emphasises the importance of improving 

the airtightness of dwellings. Since mechanical ventilation with heat recovery (MVHR) 

is an established contributor to achieving the zero carbon homes standard required by 

UK legislation for all new homes by 2016, including those reaching Passivhaus 

standards, there is an emerging market for MVHR in retrofit installations. However, it 

is much more difficult to achieve the required low levels of air permeability by 

retrofitting an existing dwelling than when building a new one, and it is not clear to 

what extent users and specifiers of retrofit MVHR systems realise how important the 

building’s airtightness is in achieving the anticipated savings. Understanding the 

technical implications and the user perspectives on airtightness is therefore necessary to 

prevent inappropriate advice, potentially leading to undesirable disruption and 

expensive mistakes, being given. 
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This paper describes some of the work in progress as part of a consortium project 

entitled Consumer appealing low energy technologies for building retrofitting 

(CALEBRE - www.calebre.org.uk), which aims to establish a validated, 

comprehensive refurbishment package for reducing UK domestic carbon emissions, 

that is acceptable and appealing to householders, and specifically targeted at UK owner 

occupied solid wall properties (classified as ‘hard-to-treat’). It is investigating a 

selection of technologies, informed by the reality of the user perspective, addressing 

such questions as the degree of disturbance that householders are prepared to tolerate 

during a refurbishment programme. Some of the retrofit solutions have been installed 

and are being evaluated in a newly-constructed test house (the E.ON 2016 House, 

Figure 1), specially built in 2008 to 1930s standards at Nottingham University. This 

house has cavity walls which are assumed to have similar performance, when the cavity 

is filled, to solid walls with external insulation, and there is no reason to expect the air 

permeability to be different in the two cases. This paper describes results in two main 

areas, (i) the importance (and difficulty) of achieving airtightness in reducing heat 

losses and CO2 emissions from dwellings and (ii) homeowners’ perspectives on this 

aspect of the retrofitting of their homes.  

2 Indoor air quality, ventilation and airtightness 

2.1 Technical background 

Ventilation is needed to dilute and remove pollutants produced indoors, such as 

moisture, body odours, cooking smells and volatile organic compounds, as well as to 

supply fresh outdoor air (Awbi, 2003). If moist air comes into contact with a cool 

surface, the local relative humidity increases, and when it exceeds 80% the risk of 

mould growth increases rapidly (Roulet, 2001). Any surfaces below the dew-point 

temperature will permit condensation to form, a serious problem with uninsulated 

external walls. The development of damp, mould and fungi can result in health and 

comfort issues for occupants, therefore it is important for the ventilation strategy to 

maintain RH levels between 30-70% (Carrer et al, 2001). This means that in general the 

ventilation rate is greater than that required merely to supply fresh air (Energy Saving 

Trust, 2003). For dwelling renovation, therefore, it is important to consider the 

ventilation strategy when implementing measures to improve the building airtightness 

to ensure there is no detrimental effect on occupant comfort or the building fabric. 

The UK’s relatively mild climate means dwellings predominantly rely on uncontrolled 

natural ventilation. This does not guarantee a sufficient air change rate to maintain 

indoor air quality all year round, but allows excessive ventilation and heat loss in windy 

conditions. Until the recent drive towards low carbon housing, the airtightness of UK 

dwellings showed little improvement. In a survey of 471 dwellings (Stephen, 1998) 

those constructed between 1900-1930 had a mean air permeability just over 10 air 

changes per hour (ach
-1
)
 
at 50 Pa, measured by the pressure test (CIBSE, 2000). For a 

sample of houses built 1930-1960, it exceeded 15 ach
-1
, while in the most recently 

constructed properties it had returned to 10 ach
-1
. In other parts of Europe dwellings are 

much more airtight and mechanical ventilation (with or without heat recovery) is 

universal. It should be noted that the 50 Pa value, specified in standards, is different 

from the unpressurised infiltration rate that should be used in thermal energy 

calculations. Kronvall (1978) derived a ‘rule of thumb’ method in which the natural 
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infiltration rate is 0.05 times the tested air change rate. In this paper, all measured air 

change rates and permeabilities are 50 Pa pressure test values. 

Passivhaus standards (2011) specify 0.6 ach
-1
 at 50 Pa and were developed to enable 

the design and construction of dwellings with annual heating or cooling energy 

consumption below 15 kWh/m
2
 treated floor area. At this level, the ventilation system 

can address the space heating needs and a whole house MVHR system is an essential 

component of this strategy. Although strictly these standards apply only to new 

buildings, they are increasingly being implemented in refurbishment projects, and the 

first certified Passivhaus retrofit in the UK was recently achieved for a terraced 

Victorian property (Octavia Housing, 2011). 

The heat recovered from the ventilation air by MVHR offers a modest contribution to 

CO2 emissions savings. As a result the market for MVHR systems in the UK has been 

stimulated and in 2009 was estimated at 15000 units annually, worth £30million. Of 

this the retrofit sector accounts for a small but growing share of about 5% (Waddell, 

2010). Since the effectiveness of an MVHR system depends on the correct balance 

between heat recovery efficiency, fan efficiency, air flow rate and building airtightness 

there is a technical challenge in using MVHR for retrofit. Since there was no prior 

information on this, the technical objective of this investigation was to establish the 

airtightness level that must be achieved in order for MVHR to have a significant effect 

on the CO2 emissions, using both modelling and monitoring. 

Macintosh and Steemers (2005) found differences between the expectations and reality 

for an MVHR system in housing in four areas: 

• Noise – disturbance from external noise and pollution should be improved, but 

residents in the study reported noise from inlet vents which was unwanted. 

• Perceived freshness – ventilated air may not be perceived as fresh as it is not at 

external temperature and no direct connection to the outside (for example via a 

window) was made by residents.    

• Perceived control – residents opened/closed windows much more frequently 

than they made adjustments to the MVHR controls. 

• Misunderstanding – residents misunderstood what the ventilation was for and 

when it should be used. 

In light of this, the behavioural objective of the investigation in this paper was to 

compare the technical findings with user perspectives in order to identify acceptable 

ways forward. 

2.2 User centred design background  

For any new technology to be successful, it must be accepted by the end users and meet 

their needs. These needs include their social, emotional, practical and economic needs. 

For a technology such as MVHR, it is critical that it is considered in context of the built 

environment and the end users, that is householders. By taking a user centred design 

approach, it should be possible to explore the existing ventilation practices of 

householders and identify requirements for the technology that will meet these 

requirements in context.  The principles of user centred design are generally accepted 

to be an early focus on users and tasks, empirical measurement and iterative design 

(Gould and Lewis 1985), leading to the design of useful, useable and desirable 
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products. Preece et al. (2002) propose that providing “an easily accessible collection of 

gathered data” will help designers remain focused on user needs. Clear communication 

of requirements to designers and technologists in a way that is meaningful and relevant 

is therefore a crucial component of user centred design.  To this end, CALEBRE is 

taking a user led approach to understanding householders with the intention of ensuring 

that the resulting technologies are designed to be acceptable and appealing.   

3 Research Methodology 

3.1 Summary of the CALEBRE project  

The CALEBRE project aims to develop a number of technologies suitable for 

retrofitting to solid wall dwellings. These are at various stages of completion and will 

be tested either in the laboratory or in service in the E.ON 2016 house. In addition to 

the work described in this paper, there are a number of technological workpackages, 

which can be summarised as follows: 

• Develop an electric air-source heat pump, able to deliver hot enough water to 

make it suitable for replacing the boiler in an existing central heating system. 

• Develop a gas-fired air-source heat pump, able to deliver hot enough water to 

make it suitable for replacing the boiler in an existing central heating system. 

• Develop vacuum double and triple glazing units, able to achieve U-values of 

0.33 W/m
2
.Kor less, suitable for use in conventional windows. 

• Develop advanced surface treatments for internal walls, with hygrothermal 

properties able to smooth the changes in air temperature and relative humidity. 

In addition, the project will explore the market development issues associated with 

mass production of these novel technologies and develop a prototype selection tool, 

informed by the identified needs of homeowners. The project has a strong consumer 

focus and a group of householders has been recruited to participate in the evaluation of 

the technologies and their implications for user behaviour and performance in service. 

3.2 Airtightness measures 

Air permeability tests using the 50 Pa fan pressurisation technique (CIBSE, 2000) were 

carried out on the E.ON 2016 house in its initial state and following each stage of the 

application of a series of retrofit solutions (Table 1), installed over several months with 

the aim of reducing the level of uncontrolled ventilation. This provided a series of 

measured permeability values which could inform the infiltration value used in a 

dynamic thermal model of the house to assess the impact on the annual energy 

consumption and CO2 emissions. Some of the upgrades to the external fabric and 

glazing have multiple benefits in that they contribute to reduced infiltration rates as 

well as conduction losses. Measuring the changes in the building’s air permeability 

allows the combined effect of these improvements to be assessed as a series of retrofit 

measures by updating these properties simultaneously in the thermal model. 

3.3 Dynamic Thermal Modelling 

Dynamic thermal modelling software (IES Virtual Environment) was used to build a 

model of the E.ON 2016 house (Figure 1) to simulate a year’s operation and calculate 

the annual energy consumption and CO2 emissions. Details of the building geometry 

and orientation were input using the architectural drawings to create zones 
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corresponding to each room and represent the building. The Nottingham Test 

Reference Year weather file (CIBSE, 2008) was used to simulate local climatic data. 

  

Figure 1 E.ON 2016 house at The University of Nottingham and the IES VE Dynamic Thermal Model  

 

The operational parameters for each room type were derived from the National 

Calculation Methodology database (NCM, 2010) to develop a set of templates 

representing the occupied house, specifying heating set-points, domestic hot water 

consumption and internal gains (lighting, equipment and occupancy), as well as 

diversity profiles set up to represent daily and weekly variations in these values.  

These parameters were consistent for all the analyses so that the variations in energy 

performance would be attributable to the ventilation strategy and the thermal properties 

of the building. The thermal modelling assumes that there are no changes in the internal 

conditions before or after the application of the retrofit measures, and that occupants do 

not take the benefit of higher living temperatures. This may be wrong, as research into 

this ‘rebound effect’ shows (e.g. Sorrell, 2009), but will not be considered further here. 

Construction templates were created defining both the internal and external 

constructions, and performance characteristics. This allowed the changes in U-value 

between the initial base case house, as built to 1930s construction standards, and the 

thermally upgraded construction, as per the improvement work carried out as part of 

the retrofit process, to be replicated in the E.ON 2016 dynamic thermal model. This 

would simulate the differences in conduction losses associated with the improved 

glazing and building fabric. 

3.4 Understanding of User Requirements 

To understand the requirements of the users in context, twenty households (with 66 

permanent occupants) were recruited to take part in a series of data collection activities. 

Each household lived in an owner occupied, solid wall house in the East Midlands 

region of the UK. A purposive sampling approach was taken, to ensure inclusion of a 

range of house types (detached, semi-detached, link, mid and end terraced), household 

types (single, couples, families with young, older and grown up children), participant 

age ranges (28 – 80 years old), income bands (under £10,000pa – over £70,000pa) and 
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location (urban, suburban, rural).  While not intended to be a statistically representative 

sample, it allowed detailed exploration of a snapshot of different domestic situations.   

Two in-depth interviews were undertaken with all adult household members wherever 

possible to ensure a whole household perspective. The first interview explored reasons 

for buying the property, improvements made to the house and issues relating to these 

(who did the work, levels of disruption, approximate cost, etc). These were drawn up 

with the householders using an innovative ‘timeline tool’, reported in more detail in 

Haines et al (2010). Issues relating to comfort and home improvement aspirations were 

also covered. In the second interview, attitudes towards energy saving were explored, 

the CALEBRE technologies were described to the householders and initial responses 

obtained. Questions were then asked about the householders’ various practices in the 

home that related to the design of the technologies. These were intentionally focused on 

the householders and their home lives to ensure a relevant and engaging conversation, 

rather than a more formal question and answer session. Finally a tour was made of the 

home to see in detail aspects of the house that had been mentioned in the discussions, as 

well as to take a photographic record of the various features. Digital audio recordings 

from these interviews were transcribed and analysed using NVivo 9. Conversational 

extracts relating to ventilation and related practices were analysed in detail and the key 

findings are presented in this paper. 

4 Results and Discussion 

4.1 Air permeability 

Each set of improvement measures applied to the E.ON 2016 house contributed to a 

reduction in the building’s air permeability, but with variable success (Table 1). In its 

original state the house was very leaky and the extensive stage 1 improvements were 

expected to significantly reduce the measured air permeability but succeeded in 

reducing it only from 15.57 to 14.31 m
3
/m

2
.h. The relationship between permeability in 

m
3
/m

2
.h and air change rate is specific to the geometry of the building: in this case 

15.57 m
3
/m

2
.h = 14.85 ach

-1
. Noting the inconsistency with air change rates mentioned 

earlier, we report permeability values here because they are familiar to UK 

professionals. Inspection revealed that the draught-proofing had been poorly applied to 

the windows and doors, often with an incomplete seal around the perimeter of the 

component, and installing the MVHR system had created new gaps in the building 

envelope and duct connections to the rooms, permitting uncontrolled airflow. In stage 2 

the draught-proofing was re-done and extended to the remaining doors and windows, 

reaching 9.84 m
3
/m

2
.h. The building air permeability was further reduced by the two 

remaining stages, culminating in the final measure of sealing and insulating the ground 

floor, which achieved the final building air permeability value of 5 m
3
/m

2
.h at 50 Pa. 

Much effort and cost was needed to reduce the air permeability and the research team 

were surprised at how poor was the workmanship in the initial stages of draught-

proofing, undertaken professionally to current industry standards. Gaps were left 

around doors and previously installed insulation disturbed by later work. The final 

stage was especially disruptive and involved lifting floor coverings and furniture before 

installing a membrane over the timber floor. The total cost of draught-proofing 
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exceeded £12000, and with the MVHR installation costing £6000 this is unlikely to be 

economic. 

While sealing a house is perceived as a simple task, it is in fact much more challenging 

because of the care and attention to detail needed by the workforce. Air permeability is 

made up of a myriad of entry points in the fabric, which can be created by oversize 

holes for pipes and wiring, irregular gaps between new windows and brickwork 

openings, gaps between walls / floors and walls / ceilings, etc (Energy Saving Trust, 

2005). Suspended timber ground floors can be a particular problem and in this case 

success was achieved by installing a membrane across the boarding, which was dressed 

up behind the skirting boards. 

Table 1. E.ON 2016 house measured air permeability values 

Stage 
Air permeability 

at 50Pa (m
3
/m

2
.h) 

Description of work 

As built 15.57 

Single glazed windows 

Uninsulated walls, floor and roof space 

No draught-proofing 

1 14.31 

Double glazing installed 

Insulation applied to walls and loft 

Draught-proofing applied to windows (excluding kitchen, bathroom 

and WC) and doors 

Installation of whole house MVHR system 

2 9.84 

Kitchen, bathroom, WC windows and under croft trap-door draught-

proofed 

Draught-proofing throughout house re-installed 

Window trickle vents blocked up 

3 8.60 

Service risers sealed 

Pipework penetrations sealed (radiators, water pipes etc.) 

Sealing around boiler flue 

Covers fitted to door locks 

Kitchen fan removed and bricked up 

4 5 Suspended timber ground floor insulated and sealed 

4.2 Heat losses, energy consumption and CO2 emissions 

Full details of the dynamic thermal simulation and energy modelling have been 

reported elsewhere (Banfill et al, 2011) and are summarised here. Figure 2 details the 

disaggregated loads on the heating system at the time the peak space heating load 

occurs in the dynamic analyses.  Note that, as the final retrofit measure is applied the 

peak load occurs at a different time of year. The results show the expected significant 

reduction in energy consumption as a result of the work, but since the focus of this 

paper is on airtightness, these will not be considered further. Note that measured 

thermal energy data is not yet available, since performance monitoring is still in 

progress. Comparing the performance of the building after stage 4 with the base case as 

built shows an overall 71% reduction in total annual building energy consumption from 
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the base case. This takes into account the energy associated with the space heating, 

domestic hot water, auxiliary (fans and pumps), lighting and equipment. 

To investigate the effect of MVHR alone (i.e. separate from the other measures listed in 

table 1), a modelling study starting from a naturally ventilated base case of 10 m
3
/m

2
.h 

(based on the recommended ventilation rate as advised by BRE Digest 398, where 

Kronvall’s rule of thumb has been used to determine an equivalent air permeability 

value), simulated its effect on energy and CO2 emissions at successively reduced air 

change rates, culminating in the Passivhaus standard of 0.63 m
3
/m

2
.h (0.6 ach

-1
) and the 

results are given in table 2. 

 

Figure 2 E.ON 2016 House: breakdown of heat loss at peak space heating load 

 

It may be recalled that stage 4 of the retrofitting measures achieved a 50 Pa air 

permeability of 5 m
3
/m

2
.h. At this level the annual energy consumption is barely 

reduced and the CO2 emissions are still above the unimproved house. Further 

improvements in air permeability would be necessary to effect a significant reduction 

in energy and CO2 but even at 0.63 m
3
/m

2
.h, the Passivhaus level, annual energy 

consumption is only 11.7% lower and CO2 emissions are only 5.3% lower. 

The carbon intensity of the electricity used to operate the MVHR system is about three 

times that of the gas used for heating and this means that achieving an overall reduction 

in the building’s CO2 emissions requires the space heating demand to be reduced by 

three times the electricity consumption of the MVHR system. 

4.3 Householder preferences and practices  

Achieving an airtight house may be a desirable approach from the perspective of saving 

heat loss and hence CO2 but any system, particularly one that will be retrofitted, must 

meet the householders’ requirements or else it will not be appealing nor acceptable. 
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The practices and preferences obtained from the householder interviews uncovered a 

range of issues that may result in an unappealing system, or one that works sub-

optimally. These are discussed below. Whilst many of the homes had some double 

glazing and loft insulation, none had more advanced energy efficiency measures 

installed. None had attempted to actively reduce the air permeability of their home 

(although attempts to reduce draughts had been made through fitting double or 

secondary glazing, by using carpets and soft furnishings and by blocking up chimneys). 

None of the houses had an MVHR system. 

Table 2. Impact of airtightness on modelled annual energy consumption and CO2 emissions of the thermally 

upgraded E.ON 2016 house using an MVHR system specified to best practice standards. 

Study 

Annual space 

heating 

energy 

(kWh/m
2
) 

Annual 

auxiliary 

energy 

(kWh/m
2
) 

Total building 

annual energy 

consumption 

(kWh/m
2
) 

% 

change 

(energy) 

Total building 

annual 

emissions 

(kg.CO2/m
2
) 

% 

change 

(CO2) 

10 m
3
/m

2
.h 

naturally 

ventilated 

65.7 9.6 126.9 0 44.6 0 

10 m
3
/m

2
.h 

with MVHR 
76.4 10.8 138.8 +9.4% 47.4 +6.2% 

7 m
3
/m

2
.h 

with MVHR 
66.3 10.8 128.8 +1.5% 45.4 +1.7% 

5 m
3
/m

2
.h 

with MVHR 
62.9 11.4 125.9 -0.8% 45.0 +0.9% 

3 m
3
/m

2
.h 

with MVHR 
56.5 11.4 119.5 -5.9% 43.8 -2.0% 

1.05 m
3
/m

2
.h 

with MVHR 
50.3 11.4 113.3 -10.7% 42.6 -4.7% 

0.63 m
3
/m

2
.h 

with MVHR 
49.0 11.4 112.0 -11.7% 42.3 -5.3% 

Air flow and freshness 

Many householders were keen to maintain air flow within their homes, even if it meant 

obvious heat loss. Current approaches to controlling air flow included opening and 

closing doors, windows or vents, or closing curtains to block off draughts. One 

participant spoke of the more refreshing “natural feeling of a breeze” (Male, age 29) 

and airtightness was seen as a negative issue: “I like to be able to breathe fresh air. I 

don’t know if I’d really want an airtight house” (Female, age 61). Associations were 

made with the environment within an aeroplane, with words such as “recycled”, “stale” 

and “manky” being used to describe their expectations of a mechanical ventilation 

system.  When an MVHR system was explained to householders in more detail, the 

idea was more positively received (particularly in relation to some of the other 

technologies presented) and so there is clearly potential for successful systems once the 

initial preconceptions are overcome.   
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Open fireplaces  

Of the 20 houses surveyed as part of the project, 15 had some form of open chimney or 

vent for a wood burning stove. Of these houses, 9 of the householders said they would 

not be prepared to consider losing the functionality of all their fireplaces (even if they 

were able to keep the fireplace aesthetics). Some were prepared to lose the functionality 

of some of the fireplaces, but not all. The majority of households viewed the fireplace 

as an occasional ‘treat’ rather than the standard method of heating the home. Its use 

was described by one householder as “High days and holidays – not very often” 

(Female, age 51). However there were households in the sample that used their 

fireplaces every day during winter.  Although householders may be aware that the 

fireplace inhibits the airtightness and increases draughts, they were still unwilling to 

remove its functionality and instead prefer to use temporary blocks for the chimney 

when it is not in use, as illustrated by this comment: “The only thing that would not be 

airtight...would be the fire place because there is no balloon in or cap or anything like 

that, so that can be quite draughty in winter, but we stick a black bag full of newspaper 

up there don’t we, when we’re not using it” (Male, age 29). Those householders that 

would be happy to lose the functionality of their chimney expressed a desire to keep the 

aesthetics of the traditional fireplace in order to maintain the period features of their 

home. Although some of the houses had fireplaces in upstairs rooms, none were used; 

when questioned, this was due to safety, and so could easily be made airtight. 

Door opening practices 

A retrofitted MVHR system is likely to require a good circulation of air within the 

home (as a more limited venting system will be easier and less disruptive to install) and 

so internal door opening practices were explored. Householders reported strong 

habitual practices, for example always closing certain doors at night time, or leaving 

doors ajar at certain times of the day. Reasons for habitually closing internal doors 

included to reduce internal noise (from other members of the household, or a striking 

clock), to stop dust circulating through the house, to keep pets and young children in 

particular areas of the house, for privacy or to keep light out, or to shut off part of the 

house, either when a child has grown up and moved away, or when only certain rooms 

are heated. This final practice was common in houses where householders did not heat 

their whole house every day (perhaps only doing so when guests were visiting) or to 

keep the heat from an open fire within a room for the “cosy family stuff” (Female, age 

51). Internal doors were sometimes left open by householders as a regular practice, or 

were so poorly fitting that air would circulate past them easily even if closed: “When 

they do shut they have got gaps haven’t they” (Female, age 43). 

Damp 

Many of the householders had damp areas in their homes and used ventilation as a 

means to control humidity. This may be as a short term measure (e.g. after a shower) or 

longer term, with the regular use of a de-humidifier. Whilst many householders 

recognised they had a draughty house, there was a feeling that the draughts kept the 

house adequately ventilated and healthy. The need for a system to replace what 

occurred naturally was not recognised. Communicating the benefits of an airtight house 

with MVHR system is critical to win over these householders.   
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4.4 General discussion  

Achieving airtightness is clearly important for reducing heat losses and CO2 emissions 

and MVHR can contribute to savings but levels sufficiently low for MVHR to be 

effective are very difficult to achieve in older properties, as demonstrated by the 

number of stages needed for sealing the E.ON 2016 house. In addition, people have 

features in their older homes that mean airtightness is difficult to achieve, in particular 

open fireplaces that are used regularly in the winter. They may be willing to block these 

(using a balloon or similar) in the summer but this is not the time when it is needed. 

Retrofitting an MVHR system will probably mean a reduced number of vents, because 

the likely whole house disruption that will be caused by a more integrated system is 

unwelcome to householders unless they are doing total renovations. However, our 

study of 20 households suggest that whole house renovation is uncommon other than at 

the time of purchase (and even then not all householders did this). 

Attitudes towards an MVHR system are initially negative: people like fresh air in their 

home, which they feel is necessary to deal with issues like damp and condensation, as 

well as a perceived negative effect on health through germs being recirculated. When it 

was explained to them, householders were more positive about MVHR, appreciating 

that it could help their damp problems and that the same air was not recirculated, and so 

the benefits would need to be clearly communicated. However, people have habitual 

internal door opening / closing practices that mean that air flow within the house may 

be limited (closing doors for privacy, keeping pets or children contained, etc), which 

could limit the effectiveness of an MVHR system. 

5 Conclusion and Further Research 

Airtightness is a crucial factor in achieving energy and CO2 emissions reductions in 

dwellings and it is easy to over-estimate the reductions achievable by retrofitting 

MVHR. Even with equipment specified to best practice standards the air permeability 

measured at 50 Pa must be reduced to less than 5 m
3
/m

2
.h to reduce annual building 

energy. We expect to be able to compare these modelled predictions with measured 

data in a future paper. 

That even competent installers of draughtproofing find it challenging to achieve low air 

permeability in existing dwellings, because of the high level of care and attention to 

detail required, is an important and worrying finding. In the case of the E.ON 2016 

house it was necessary to rigorously seal the entire ground floor, as well as the various 

penetrations of the building envelope, in order to reduce the permeability to 5 m
3
/m

2
.h. 

The disruption involved in this process is unlikely to be tolerated by the occupants, 

who additionally value the very features in their homes that make achieving 

airtightness difficult. Other approaches to energy efficiency may be easier to implement 

in existing dwellings than MVHR. 
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