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1. INTRODUCTION

Localised flexural vibrations propagating along sharp edges of elastic wedge-like structures are
characterised by low propagation velocities (generally much lower than that of Rayleigh waves),
and their elastic energy is concentrated in the area of about one wavelength from the edge. Such
localised vibrations, also known as wedge acoustic waves, have been investigated in @ number of
papers (see, e.g. [1-14]) with regard to their possible applications to acoustic non-destructive
testing of special engineering constructions and for better understanding vibrations of propellers,
turbine blades and some civil engineering constructions. They may be important also for the
explanation of many as yet poorly understood phenomena in related fields of structural dynamics,
physics, environmental acoustics and may result in many useful practical applications. in particular,
it is expected that these waves may play an important role in the dynamics of wedge-shaped off-
shore structures (such as piers, dams, wave-breakers, etc.), and in the formation of vibration
patterns and resonance frequencies of propellers, turbine blades, disks, cutting tools and airfoils.
They may be responsible for specific mechanisms of helicopter noise, wind turbine noise and ship
propeller noise. Promising mechanical engineering applications of wedge elastic waves may
include measurements of cutting edge sharpness, environmentally friendly water pumps and
domestic ventilators utilising wave-generated flows. Another possible application earlier suggested
by one of the present authors [10] may be the use of wedge waves for in-water propulsion of ships
and submarines, the main principle of which being similar to that used in nature by fish of the ray
family.

Initially these localised flexural waves have been investigated for wedges in contact with vacuum
[1- 6]. Later on, the existence of localised flexural elastic waves on the edges of wedge-like
immersed structures has been predicted [7]. This was followed by the experimental investigations
of wedge waves in immersed structures which considered samples made of different materials and
having different values of wedge apex angle [8,9]. Recently, finite element calculations have been
carried out [10] for several types of elastic wedges with the of apex angle varying in the range from
20 to 90 degrees. Also, the analytical theory based on geometrical-acoustics approach has been
developed for the same range of wedge apex angle [11]. In the paper [12] dealing with finite
element calculations of the velocities and amplitudes of wedge waves, among other resulits,
calculations have been carried out of the velocities of waves propagating along the edge of a
cylindrical wedge-like structure bounded by a circular cylinder and a conical cavity. In the paper
[13] different cylindrical and conical wedge-like structures have been investigated using
geometrical acoustics approach.
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In the present paper, we repart some new analytical results i~ the theory of localised flexural
vibrations propagating along edges of free and immersed structures of “non-linear” shape (see
Fig.1). The results are described with the emphasis on methodological aspects of using
geometrical-acoustics approach for developing the theory. Some of these results have been
recently delivered in the review paper [14]. Using the geometrical acoustics technique, the
velocities of localised wedge modes are calculated for edges witn a cross section described by a
power-law relationship between the local thickness d and the distance from the edge x: d = o™,
where m is a positive rational number. It is shown that deviations of a wedge shape from the
linear geometry (m=1and ¢= © where @ is the wedge apex angle) result in frequency
dispersion of wedge modes. It is also shown that for m > 2 - in free wedges, and for m >5/3- in
immersed wedges the velocities of localised waves tend to zero, uniess there is a truncation on the
wedge tip. In other words, localised waves do not propagate along free or immersed structures
with m > 2 and m > 5/3 respectively. This ptienomenon can be expiained by trapping of flexural
wave energy near the curved edges considered which represent acoustic ‘black holes’ for flexural
waves. The discussion is given on possible use of these phenomena for vibro-isolation.

2. GEOMETRICAL-ACOUSTICS APPROACH

2.1 Linear Wedges in Vacuum

The approximate analytical theory of localised elastic waves in sc'id wedges can be based on the
geometrical acoustics approach considering a slender wedge as a plate with a local variable
thickness d(x), where x is the distance from the wedge tip measured in the middle plane. In the
case of “linear” wedge d(x) =x©, where @ is the wedge apex angle.

The velocities ¢ of the localised modes propagating along the wedge tip (in y-direction) can be
calcuiated from the following Bohr - Sommerfeld type equation [4-61:

T

ﬂk:(.\')*ﬂ:}: :drzfm. (1)

§

Here k(x) is a local wavenumber of a quasi-plane plate flexural wave (as a function of the
distance x from the wedge tip), £ = w/c is yet unknown wavenumber of a localised wedge mode,
n=123, .. isthe mode number, and x, is the so called ray turning point being determined from
the equation kz(x) - /)’2 =0

In the case of linear wedge in vacuum

k(x) =12" k"% (0x) "% 2)
where k, = @/c, is the wavenumber of a symmetrical plate wave, ¢, = 2¢, (7-c,z/c,2 )”7 is its phase
velocity, and ¢, and ¢: are longitudinal and shear velocities in wedge material. Hence

xt=2kap/(-)/}2, and the solution of egn (1) yields the extremely simple analytical expression for
wedge wave velocities [4-6):

- T8
C =CpnON3. (3)
The expression (3) agrees well with the other theoretical calculations [1-3] and with the
experimental results [1]. Note that, although the geometrical acoustics approach is not valid for the

lowest order wedge mode (n = 1) (5], in practice it provides quite accurate results for wedge wave
velocities in this case as well.
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Fig. 1. Elastic wedge-like structure of non-linear shape

ku(x)

Fig. 2. Localised wedge modes as Successively reflecting flexural waves.
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For the purpose of this paper, it is convenient to consider changing the integration over x in eqgn (1)
to the integration over the angle ¢ between the vector k(x) and its horizontal projection ki(x) = p
[15]. Using the obvious relationships (see Fig.2)

k(x) cos(¢) = B, (4)
kd(x) = ftan(¢p) ()

and expressing x from eqn (4) as function of the angle ¢, with g being a parameter: x = fle.B),
one can rewrite eqn (1) in the form

B[ @) (0. pdp =, ©)

where f(¢ p) = He.b)/p. This form of the velocity equation is useful if the dependence of k(x) is
such that there exists an explicit analytical relationship x = flo.f). This is obviously the case for
the above mentioned wedge of linear geometry. It is easy to check that for such a linear wedge
eqgn (6) combined with egns (4) and (5) gives the same result (3) that follows from eqgn (1). As we
will see below, for wedges of non-linear cross-section, the use of egn (6) brings more advantages,
essentially simplifying the derivation.

2.2 Immersed Linear Wedges

To apply the geometrical acoustics approach for calculating the velocities of localised modes in a
wedge immersed in liquid one has to make use of the expression for a plate wave local
wavenumber k(x) which takes into account the effect of liquid loading [7,11]. The starting point to
derive k(x) for this case is the well known dispersion equation for the lowest order flexural mode
in an immersed plate.

For shortness, we dwell in this paper only on the case prps = 1 typical for light solid materials in
water and limit our analysis by a subsonic regime of wave propagation (k >w/l,), where p: and py

the sake of simplicity, we impose even a more severe restriction on wave velocities considering
Very slow propagating plate flexural modes (k >> w/k, ) and using the approximation of
incompressible liquid. Then, for kd << 1 typical for thin plates, the wavenumber k(x) in the case
of linear wedge d = d(x) = x@ has the form '

- 25

k=G L VP o | :
=1V . = ] 32 | 8 ()
M

Substituting eqn (7) into (1) or (6) and performing some simple transformations, one can derive the
following analytical expression for wedge wave velocities ¢ [11]):

c= C'A-S’ZD-J?(W)J?Q??‘ (8)

where A = 6"(p/p)""(1- ¢ /cf) S = 6™ (pdps)" [2(1-6)]"" is a nondimensional parameter which
depends on the relation between the mass densities P¢ps and on the Poisson ratio g, and D=

1
J'(,\'_(’ ¥ e 1) dv = 2102 Comparison of egns (3) and (8) shows that the effect of liquid loading
0

results in significant decrease of wedge wave velocities in comparison with their values in vacuum,
especially for small angles @.
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3. WAVES IN WEDGES DESCRIBED BY A POWER LAW

In what follows we generalise the above theory by introducing a power law relationship between the
local thickness d and the distance from the tip x: o = ™, where m s any positive rational

number. Then, for free and immersed wedges, eqns (2) and (7) should be replaced by the
following expressions respectively:

k(x) =127 k" (ex™) 2 (9)

245
k(x) —"\/6 < S L. (10)
e s 3 ma32 '
l_ ¢, C/.—C[~ \ O, (‘E‘Y ) |
Substituting eqns (9) and (10) into egn (6) and using (4), (5), one can obtain the general

relationships for wedge wave velocities of localised elastic modes propagating in non-linear free
and immersed wedges respectively:

(U(m-l) (m—E)Pl (m—Z)me'" (m=-2) .
c= ~ Jomoam o (m=2) ' ( )
2me ™)

Hm=1)(Am=3) 2 (3m-3) Im(3m=-3)
@ B G,
C=

(12)

(2‘_[715: m)3m (3m=35)
Here
L l
p i J3EL e (13)
Cp € \/C/ -
p= 24 NP Y S L (14)
Cp ‘\//(75— Ct \/CIB—CIZ '\/—I[Z
and
F, =(4/m) jsin: ©cos® M gy (15)
0
G, =(10/3m) J'sinz Pcos® M " pdg (16)

Itis clearly seen from eqns (11) and (12) that deviation of a wedge shape from linear geometry (m
= 1and ¢ = O) results in dispersion of wedge wave velocities. For linear wedges, as expected, the
velocity cis independent of w and reduces to the earlier derived expressions (3) and (8).
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It is interesting to notice that for m 22 (in the case of free wedges) and for m > 5/3 (in the case
of immersed wedges) the integrals in (15) and (16) become divergent. The analysis shows that the
corresponding wave velocities determined by eqns (11) and (12) tend to zero for m —» 2and m —
5/3 . This is in agreement with the earlier investigation of wedge modes in a quadratic wedge (m =
2) in contact with vacuum [16]. In the latter case the velocities of all wedge modes are equal to
zero, unless there is a truncation of the wedge tip. For m > 2 and m > 5/3 not only the integrals in
(15) and (16), but also the expressions (11) and (12) diverge, indicating that they are not valid for
these cases. Nevertheless, it is quite reasonable to assume that for m > 2and m > 5/3 the wedge
wave velocities are zero as well. The reason for this will be clear from the analysis in the next
section.

4. ELASTIC WEDGES AS ACOUSTIC BLACK HOLES

Let us compare the above mentioned conclusions for localised wedge modes with the results for
flexural wave propagation in normal direction towards the wedge tip. In the case of quadratic
wedge in vacuum (m = 2) such analysis has been first performed by Mironov [17] who noticed that
in this case the incident wave requires indefinite time to reach the tip and thus never reflects back.
He has suggested to use such wedges as absorbers of vibration énergy which are equivalent to
astronomical “black holes”. As we will see below, this property relates not only to quadratic
wedges in vacuum, but to a wider class of wedges in contact with both vacuum and liquid if their
profiles satisfy the conditions m > 2 (for free wedges) and m > 5/3 (for immersed wedges), i.e.
the above mentioned conditions associated with zero velocities of wedge modes in free and
immersed wedges.

Indeed, let us consider propagation of a plane flexural wave in normal direction towards the tip of a
wedge described by a power law and calculate the integrated wave phase @ resulting from the
wave propagation from a certain point x to the wedge tip (x = 0):

O = j k(x)dx | (17)
€]

Substituting the corresponding expressions for k(x) in the cases of free and immersed wedges
(egns (9) and (10) respectively) into eqn (17), one can prove that the integral in eqn (17) diverges
for m>2 and m>5/3 for free and immersed wedges respectively. This means that the phase @
becomes infinite under these circumstances and the wave never reaches the edge. This gives a

propagating along the ray trajectory approaches the edge, it falls on the wedge tip almost at the
right angle. Then, if the power-law profile of free or immersed wedges is Characterised by m > 2
and m > 5/3 respectively, the wave is being trapped near the edge in the same way, as it was
described in the case above. In the light of this, it does not propagate along the edge, and its
velocity is equal to zero.

In practice, the use of non-linear wedges as vibration energy absorbers is limited by technological
difficulties with manufacturing of perfect non-linear profiles. Real wedges always have truncated
edges. And this strongly affects their performance as vibration absorbers. For ideal non-linear
wedges, it follows from eqn (17) that even an infinitely small material damping characterised by
imaginary part of k(x) is sufficient for all the wave energy to be absorbed. However, for truncated
wedges the lower integration limit in eqgn (17) must be changed from 0 to a certain value x,
describing the truncation. In the case of normal incidence of a quasi-plane flexural wave this
results in drastic reduction of wedge absorbing properties that reveals in the increase of the
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associated reflection coefficient from zero to R, =exp(-2 J.Im k(x)dx) [17]. According to the
calculations made in [17] for a quadratic wedge in vacuum having realistic values of truncation Xo

and material quality factor Q, the corresponding value of Ry was about 0.7. This means that
relatively little absorption actually took place.

The use of localised wedge modes can significantly improve the situation. Since, according to the
geometrical acoustics approach [4-6], wedge waves can be interpreted as quasi-plane flexural
waves propagating along a curvilinear trajectory and experiencing multiple reflections from the free
edge and ray turning points (see Fig. 2), the resulting wave reflection coefficient R taking into
account the integrated wave attenuation can be approximated as

R =(Ry", (19)

where N is the number of edge reflections on the distance from the source to the point of
observation. The realistic values of N can be up to 10. Therefore, the use of localised vibration
modes in the example described above may result in the reflection coefficient R being as low as
0.7° = 0.028. The absorbing properties of non-linear wedges can be even more enhanced by
covering their surfaces with highly absorbing materials. This problem, however, requires a special
consideration that goes beyond the scope of this paper.

5. CONCLUSIONS

Using the geometrical acoustics technique, the analytical expressions for phase velocities of
localised wedge modes have been derived for edges with a cross section described by a power-
law relationship between the local thickness d and the distance from the edge x: d =", where
m is a positive rational number.

It was shown that deviations of a wedge shape from the linear geometry (m=1and ¢ = @, where
© is the wedge apex angle) resuit in frequency dispersion of wedge modes.

For profiles with m > 2 - in the case of free wedges, and with m > 5/3 - in the case of immersed
wedges the velocities of localised waves tend to zero, unless there is a truncation on the wedge tip.
This implies that localised waves do not propagate along free or immersed structures with m > 2
and m > 5/3 respectively. This phenomenon can be explained by trapping of flexural wave energy
near the curved edges considered which represent acoustic ‘black holes’ for flexural waves.

The discussion was given on possible use of wedge waves propagating along edges of free and
immersed non-linear wedges with m > 2 and m > 5/3 respectively for isolation of flexural vibrations.
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