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1. INTRODUCTION

Localised flexural vibrations propagating along sharp edges of elastic wedge-like structures are
characterised by low propagation velocities (generally much lower than that of Rayleigh waves),
and their elastic energy is concentrated in the area of about one wavelength from the edge. Such
localised vibrations, also known as wedge acoustic waves, have been investigated in a number of
papers (see, e.g. [1-14]) with regard to their possible applications to acoustic non-destructive
testing of special engrneering constructrons and for better understanding vibrations of propellers,
turbine blades and some civil engineering constructrons. They may be important also for the
explanation of many as yet poorly understood phenomena in related fields of structural dynamics,
physics, environmental acoustics and may result in many useful practical applications. ln particular,
it is expected that ihese waves may play an important role in the dynamics of wedge-shaped off-
shore structures (such as piers, dams, wave-breakers, etc.), and in the formation of vibration
patterns and resonance frequencies of propellers, turbine blades, disks, cutting tools and airfoils.
They may be responsible for specific mechanisms of helicopter noise, wind turbine noise and ship
propeller noise. Promising mechanical engineering applications of wedge elastic waves may
include measurements of cuttrng edge sharpness, environmentally friendly water pumps and

domestic ventilators utilising wave-generated flows. Another possible application earlier suggested
by one of the present authors [10] may be the use of wedge waves for in-water propulsion of ships

and submarines, the main principle of which being similar to that used in nature by fish of the ray

family.

lnitially these localised flexural waves have been investigated for wedges in contact with vacuum

t1- 61. Later on, the existence of localised flexural elastic waves on the edges of wedge-like
immersed structures has been predicted [7]. This was followed by the experimental investigations

of wedge waves in immersed structures which considered samples made of different materials and

having different values of wedge apex angle [8,9]. Recently, finite element calculations have been

carried out [10] for severaltypes of elastic wedges with the of apex angle varying in the range from

20 to 90 degrees. Also, the analytical theory based on geometrical-acoustics approach has been

developed for the same range of wedge apex angle [11]. ln the paper [12] deaiing with finite

element calculations of the velocities and amplitudes of wedge waves, among other results,

calculations have been carried out of the velocities of waves propagating along the edge of a

cylindrical wedge-like structure bounded by a circular cylinder and a conical cavity. ln the paper

tist different cylindrical and conical wedge-like structures have been investigated using

geometrical acoustics aPProach.
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ln the present paper, we report some new analylical resul:s i. the theory of localised flexuralvibrations propagating along edges of free and immersed sir-uciures of ,,n'on-linear,, 
shape (seeFig'1)' The results are described with the emphasis on 

.n ethodologicar aspects of usinggeometrical-acoustics approach for develo.ping th'e theory So::re of these results have beenrecently delivered in the review paper 1141. 
"uii"g th"'geirxerricar acoustics technique, thevelocities of localised wedge modes bre iatiutateo r,ir eog";,,i--" u 

"ro", 
,u"tioi oescribed by apower-law relationship between the local thickness d and"thl disrance from the eofe x: d = c{,where m is a positive rational number. lt is shown ihat l;;aijons of a wedge .iupe from thelinear geometry (m = 1 and c = o, where o is the wedge apex angle) result in frequencydispersion of wedge modes. lt is also shown that for m > 2 -ln iree wedges, and for m 2 s/3 - intmmersed wedges the velocities of localised waves teno tlero, uniess there is a truncation on thewedge tip' ln other words, localised waves do not prop"g"1u 

"icng 
free or immersed structureswith m > 2 and m > 5/3 respectively' This phenomenon clan ue expiained by trapping of frexuralwave energy near the curved edges considered which repre.u-n, u"orrtic .black 

holes, for flexuralwaves' The discussion is given on possible use of tnese pneno.""u for vibro-isolation.

2. GEOMETRICAL.ACOUSTICS APPROACH
2.1 Linear Wedges in Vacuum

The approximate anaryticar theory of rocarised erastic waves rn so ic wedges can begeometricai acoustics approach considering a srender wedge as a prate with athickness d(x),where x is the distance from the wedge tip meastrred in the middlecase of "linear,'wedge d(x) = y6S, where 6) is the wedge apex angle

The velocities c of the localsecj modes propagating aiong the wecge tip (in y-directron) can becalculated from the fo,owrng Bohr - Sommerieri tVpJ"qrriionl*_o;.

based on the
local variable
plane. ln the

is a local wavenumber of
from the wedge tip), p = ,ur,
is,the mode number, and x,

'd-t 
= nt

a quasr-piane plate flexural wave (as a function of the

(1)

rl-1

Jlr t'\- P'l'

Here k(x)
distance x
n = 1,2 3,.

rs yet unknown wavenum3er of a localised wedge mode,is the so called ray turnrng point being determined fromthe equation t(@ - {f = O.

ln the case of linear wedge in vacuum

where ko = cilco is the wavenumber of a symmetrical plate wave,. c" = 2c1 1I_c,z/c,z ),, irits phasevelocity' and c1 "?d c1 
"t" rong,t,;inal and ,n"ri u"rotitres in wedge materiar. Hencex;2fiky'ol12' and the. soiution or 

"q"nlil 
yields the extremety s;mpre anaryticar expression forweoge wave velocities [4_6]:

k(x) = 1 2tia ko'n 1 {41'"2

c = cOnUt3

(2)

(3)
The expression (3) agrees well with the other theoretical carcurations [1-3] and with theexperimental results [1]' Note that,-although the geometricat acoustics approach is not varid for the
i'"1"".:Hfi#:t::#..;Jil = 1) fsr, i; piactice-it provioes qr-ii" ,""urate resurrs ror wedse wave
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Fig. 1. Elastic wedge_like structure of non_linear shape

Fig' 2' Locarised wedge modes as successivery refrecting frexurarwaves.

,(x):F
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For the purpose of this paper, it is convenienl to consider changing the integration over x rn eqn (.1)

;?Ji",i:f3',X':"f"fiJi::;:i:tri"ly;;" 'n" "*i"I-;;i";;; iis horizoritar proleciion k,(x) = p

k(x) cos(t1t) = p,

k,(x) = p tan(p)

and expressing x from eqn (4) as function of the angleone can rewrite eqn (.1) in the form

0 l,,tun1p).f' (E, ryctp = mr,

y.|"T:r:{lfl ,="':lr;{::"":l:,':'J,,:1i::.::l::,1,."t,",,on,: ,:ufI if the dependence of k(x)such that there exists an explicit anatytical ,"Lti;;'.;;

(4)

(5)

co, with p being a parameter: x = f(p,p),

(6)

rs

2.2 lmmersed Linear Wedges

To apply the geometricai acoustics approach,for calcuiatrng the velocrties of localised modes rn awedge immersed in liquid one has 
-to- 

maxe use of trr-e expression for a prate wave rocaiwavenumber k(x) whichtakesrntoaccounttheeffectoiliquioloading[7,11]. 
Thestarlrngporntto

1""#:,"n1?,'r:T$i:"*te 
ls the werr-r<nown dispersion uqr"riJn'ro,. tr-e'rowest o,.o"i'ir"*r,.ar rnode

For shortness, we dwell in this pape;. only on the case p/1.t, = I typicalfor light solid materials inwater and limit our anarysis by a subson,Jr"gT: ot *ave prlcagation (k >orc1), where p, and i.>,
are respectively the mass densities of solid and liquid, unO ,, Jtne velocity of sound in liquid Forthe sake of simplicity' we impose even a more severe restriction on wave velocities considei.ingvery siow propagating ptate flexural modes. !k ,, ,li, l' "na using the approximation of;::#::il;?: 5i';,],n:?JTi'ff,:,.Jo''u' ior thin t;i";, ih" *"u"n, mber k(x) in the case

9"":::::l;lt;,;;i *"i#"i'i,i;;;ffi'J:iil1'il:: ?,X u=,{?(l.u',1,1 ,'":::':i'1v,1n1 3,'-"-ro'easy to check that for such a linear wedge
;;lJj,l ;:ilfl5l;$"""y,,iitr:J:i:::: ::j::G,j; ("j;"'nJH,l#:?:"': :Ji?il ::';:},i[Ji;"ff':,Xjilffiifl:::i,*jl;;l;;;;;;u*"Tn"-ill5iff'(Li;ff T"*,""':JJl,Hy.:essentially simplifying the derivatjon

substituting eqn (7) into (1).or (6) and performing some simpre transformations, one can derive thefollowing anarytrcar expression io;;";;; *"ve verocities c [11]:

c = c,A't2D'lr(*)"rdr,
(8)

r: 5t^l
,'l Pt Q I--.:--l
,lp, (t'o1r : i

)

I
r(x) = 

L*7, (7)

where A = 6"5(p/pJ'"{1- 
7,'rc,'y"t = 6"t(p/pJtru 121r-o11,r, is a nondimensionar parameter whrch

fenends 
on the reiation between tne mass densilres pip" riA-onthe poisson ratio o, and D =

Jtt-" - 
l;r :dr 

= 2'l02 comparison of eqns (3) and (8) shows that the effect of iiquid roading

""#::Jri5iff:l'""rffiu;: 
ot wedse wave velocities rn comparison with their vatues in vacuum,

zob
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3. WAVES IN WEDGES DESCRIBED BY A POWER LAW
ln what follows we generalise the above the,ory by introducing a power raw relationship between thelocal lhickness d and the distance from the tip x: a = u', Lnur" m is any positive rationar
il,l,T'ii'{; J-r",.kiill:"T}l JIf 

ersed wedges' eqns (t ;"; (7) shourJ 0""!iL'"0 bv the

k(x) = 1 21t't kr'a 1 r{y'z (e)

(10)

Sub.stituting eqns (9) and (10) into egn (6) and
relationships for wedge wave velocities of localised
and immersed wedges respectively:

using (4), (5), one can obtain the general
elastic modes propagating in non_line"ar fiee

(Ota-l) (n-]t pt (n-2) p n (m-2)

(2mtct ^ );1;:i-

(o1(n lr r'rzt-i' 
Bt,'^-ttG^rzr ria-ir

(2meI'n 13n 
('ia-5)

L" c'

(1 1)

(12)

II-ffi
Yt/ - Lt

( tJ]

(14)

and

'ttt: -lTg=-* 1!=Jo!
c n ^lP, 

ct
lr'_._
\ t's

F^ =(4hn; Jsin'gror,r-:^,,^ WIrp ,

?]

G,, =\10I3rn) Jsin'p"orrt-o^, 
r^ 

rrylrp

It is clearly seen from eqns (11) and (12)that deviation of a wedge shape from linear geometry (m
= 7 and s = o) results in dispersion of wedge wave velocities. For linear wedges, as expected, thevelocity c is independent of o at'td reduces to the earlier derived expressions (3)and (s).

(1 5)

(16)
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It is interesting to notice that for m > 2 (in the case of free wedges) and for m > S/3 (in the caseof immersed wedges)the integrals in frs)ano trojoe"oril iiu"rgent. The anarysis shows thar thecorrespondins wave verocnies determined bt:i"i t, ,l :;; i;;l i', ,; ;;,;Ji-; _+ 2 and m _+5/3 ' This is in agreement with the earlier.invesri'gation ;i *;;;" mgdes in a quadratic wedge (m =2) in contact with vacuum [16]' ln the latter 
""." tn" u"ro"itii, of air wedge modes are equar tozero, unless there is a truncation of the wedge tip. For i ,-'i,ZnO,^ > S/3 notonly the integrals in('15) and (16)' but also the exptessions i11i"r,o 1rzloi""rgl, indicating that they are not varid forthese cases' Nevertheless, it is quite rlJsonabie io i..rrJinu yrr-i;; il 7l'r* the wedgey*[;."'""'ties are zero as well' The reason for this wirr te crear from the anarysis in the next

4. ELASTIC WEDGES AS ACOUSTIC BLACK HOLES
Let us compare the above mentioned conclusions for localised wedge modes with the results forflexural wave propagation ln normal or:iection to*aros-ine-*lgo" tip. rn the case of quadraticwedge in vacuum (m = 2) such analysis rras been first purr*ruo by Mironor, [17J who notrced thatin this case the incident wave requir"t iniurinit" timoio La-cn t"ne tip and thus never refrects back.He has suggested to, use 

.such wedges as absorbers oi vibraiion rnurgy which are equlvalent toastronomical "black holes" As we"*itiru" berow, tni, prJp*rry. rerates not onry to quadraticwedges in vacuum' but to a wider class of wedges ln 
"ontaciLrith both vacuum ano irqu;o if theirprofiles satisfy the conditions rn ) 2 (for free wedges ) and m > Si3 (,tori;.n**rseJ*edges), i.eln::r""T#il:3""0 conditions 

"tto"i"i"o with 
-zero 

uJo.ii,u. of wedse modes rn free anc

lndeed' let us consider propagation of a plane flexural wave in normal direction towards the trp of awedge described by a power law and calcu^iate tne integrateo'waue phase dr resurting from thewave propagation from a certain point x to the wedge ,b (_ =;j.

o- i^1';.,,

Substituting the corresponding expressions_for k(x/ in the cases of free and immersed wedges(eqns (9) and (10) re-spectivel!1 inio eqn ltz;, oneJan pr'#li"t,rhe_inregrar in eqn (12) divergesfor m 2 2 and m > 5/3 for free and inimersed wedges respectivety. This means that the phase r/.,becomes infinite under these tit.rttt"n.es and the wave n"u"r, reaches rhe edge. This gives avery simple interpretation to the wedge wavg.velgcyties oeing e';uar to zero ror.u.-n"iudge profireslndeed' wedge waves in geometrici aloustics interpretatiJr,-lre pt"te nu*rr"i*"u" propagatrngfrom the ray turning point io tne weJf e tii anc reneciing bi;k t tne turning point. when the wavepropagating along the ray traiectorylpproactres tre eige,li ratts on the wedge tip armosr at theright angle' Then, if the power-la* pro?ii" or free or hn""rs"o *edges is charicteiised by m > 2and m > 5/3 respectively, the wave is being trapped n"u,. in" edge in the same way, as it was
9:,'#|}:3ilJ:i,""?::"above rn ine rishi orinis,'i;;;;;";'p,opasare arons the edse, and *s

ln practice' the use of non-linear wedges as vjbration energy absorbers is limited by technologicaldifflculties with manufacturing 
"f ;;;;;i non-rinear proriLJ.' iJat weoges arways have rruncatededges And this strongly .tr::!: ineii-jurrom"n""i. 

"",oirtiJn "ororbers. 
For idear non-rinearwedges' it follows from eqn (17) that *"n 

"n 
infinitety r*.ril,rt"riat damping characterised byimaginary part of k(x) is sunicieniroi"rlli" wave energy to be absorbed. However, for truncatedwedges the iower integration.limit in ;q; gl ru.t oJ'"ri"iieo rrom o ro a-ce.rain varue Xsdescribing the truncation' ln the case ll normar incidence oi a quasi-prane fiexurar wave thisresults in drastic reduction of wedge Jsorbing ptop;;;; th"at revears in the increase of the

(17)

268
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associated reflection coefficient from zero According to the

calculations made in l17l for a quadratic wedge in vacuum having realistic values of truncation x6and material quality factor Q, the corresponding value of R6 was about 0.7. This means thatrelatively little absorption actually took place.

The use of localised wedge modes can significantly improve the situation. Since, according to thegeometrical acoustics approach [4-6], wedge waves can be interpreted as quasi-plane flexural
waves propagating along a curvilinear trajectory and experiencing multiple reflections from the free
edge and ray turning points (see Fig. 2), the resulting wave ,eilection coefficient R taking into
account the integrated wave attenuation can be approximated as

R=(Rd*, (1e)

where N is the number of edge reflections on the distance from the source to the point of
observation. The realistic values of N can be up to 10. Therefore, the use of localised vibration
T?fr"s il [1"*3|ple descrrbed above may result in the reflection coefficient R being as tow as
0.7'" = 4 028. The absorbing properties of non-linear wedges can be even more enhanced by
covering their surfaces with highly absorbing materials. This problem, however, requires a speciat
consideration that goes beyond the scope of this paper.

5. CONCLUSIONS

Using the geometrical acoustics technique, the anallical expressions for phase velocities of
localised wedge modes have been derived for edges with a cross section described by a power-
law relationship between the local thickness d and the distance from the edge x: d = t>{, where
rn is a positive rational number.

It was shown that deviations of a wedge shape from the linear geom elry @ = 1 and e = o, where
@ is the wedge apex angle) result in frequency dispersion of wedge modes.

For profiles with m.'2 - in the case of free wedges, and with m > 5/3 - in the case of immersed
wedges the velocities of localised waves tend to zero, unless there is a truncation on the wedge tip.
This implies that localised waves do not propagate along free or immersed structures wilh m > 2
and m > 5/3 respectively. This phenomenon can be explained by trapping of flexural wave energy
near the curved edges considered which represent acoustic'black holes'for flexural waves.

The discussion was given on possible use of wedge waves propagating along edges of free and
immersed non-linear wedges with m > 2 and m > 5/3 respectively for isolation of flexural vibrations.
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