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Abstract [299]   The present paper describes the results of finite element analysis of structural
vibration modes, interior acoustic modes, and structural-acoustic modes in some simplified models of
road vehicles having different levels of complexity, in particular in the QUArter-Scale Interior Cavity
Acoustic Rig (QUASICAR) developed in Loughborough University. All the analysis has been carried
out using the original code that had been developed in Patran Command Language (PCL) specifically
for the purpose of this research. Resonant frequencies and spatial distributions of structural and
acoustic modes have been calculated initially separately and then taking into account structural-
acoustic interaction. The results have been compared with the experimental data obtained for
QUASICAR. The comparison has demonstrated good agreement between numerical calculations and
experimental results. The developed approach is reliable and efficient, and it can be extended to more
complex vehicle models, thus assisting in better understanding of vehicle interior noise.

1   INTRODUCTION

Vehicle interior noise is a very important issue for automotive industry [1-4]. The tendency to
lighten up a car body structure leads to the reduction of its natural frequencies of vibration and to
the rise of interior noise levels. On the other hand, passengers’ comfort and market demands
stimulate any annoying noise inside the vehicle compartment to be suppressed. These two
contradictory trends encourage researchers to develop new efficient methods of analysis of vehicle
interior noise that could be used on a design stage. As has been mentioned in [2], the main sources
of vehicle interior noise are engine and transmission system, road excitation, and aerodynamic
excitation. The resultant noise depends not only on the exciting forces, but also on vibration
characteristics of the car body structure and on acoustic properties of the passenger compartment.
     Because of the energy exchange between the air and the structure in a vehicle compartment, the
dynamic behavior of each of these sub-systems is influenced by the other. In other words, the
interaction, or coupling, between air and structure alters their dynamic characteristics, and this
determines the complexity of vehicle interior noise analysis. Fluid-structure interaction has always
been a major research topic in acoustics [5-8].  The existing analytical solutions for cavities with
simple geometries provide a great opportunity for an explicit physical interpretation and
understanding of fluid-structure interaction. However, analysis of irregular cavities, such as car
compartments, still challenges researchers and requires new investigations. In this case the inability
of deriving analytical solutions leads to alternative, either experimental or numerical approaches in
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treatment of the problem. In this regard, finite element analysis combined with experimental
validation represents a very powerful tool, as can be seen in [1,9,10]. Studying fluid-structure
interaction by finite element analysis enables many engineering problems to be solved and reveals
new areas for further examination of the subject.
     The use of simplified and reduced scale vehicle models for theoretical and experimental
investigations of structure-borne interior noise has been described in [3,4]. Such models are useful
for understanding the physics of the problem and for simulation of the main features of roal
vehicles. In particular, the QAUSICAR (QUArter Scale Interior Cavity Acoustic Rig) has been
designed in Loughborough University to replicate a 1/4 scale massively simplified model of a
passenger car compartment and to verify the analytical approach developed in [3]. Investigations in
[4] included separate experimental measurements of acoustic, structural, and structural-acoustic
responses due to an external dynamic force imitating the effect of road irregularities.
     The aim of the present paper is to present the results of finite element analysis of structural-
acoustic phenomena in the above-mentioned reduced-scale model (QUASICAR) and its
modifications and to compare the obtained numerical results with the analytical and experimental
ones. The analysis reported in the present paper has been carried out using a new code
MSC.NASTRAN-Acoustic that has been developed in Patran Command Language (PCL)
specifically for the purposes of this research.

2   STRUCTURAL MODES

The first stage of the investigation included finite-element analysis of the basic structural element of
QUASICAR which represents a single curved steel plate of 1.2 mm thickness simulating vehicle
compartment. The above-mentioned curved plate was attached to massive wooden side walls of
QUASICAR implementing simply supported boundary conditions. For more detailed information
see [4]. The numerical structural analysis of QUASICAR included determination of the spatial
patterns and natural frequencies of free vibrations of the structure.  As a result of structural
symmetry of the curved plate under consideration, all normal modes are divided into two groups:
symmetric and anti-symmetric modes.

3   ACOUSTIC MODES

The acoustic modal characteristics of an arbitrary cavity can be obtained by solving Helmholtz
equation. It is well known that normal modes of simple cavities, such as rectangular or cylindrical
enclosures, can be derived analytically. However, for arbitrary cavities the only way of solving
Helmholtz equation is by using numerical methods. In the FEM, a normal mode analysis of this
problem can employ standard structural equation of motion but in this case mass and stiffness
matrices are denoted as acoustic mass matrix [Ma] and acoustic stiffness matrix [Ka]. More details
are available in [10]. It is interesting to make a comparison between numerically derived natural
frequencies of the irregular cavity and natural frequencies calculated using the well-known
analytical formulae for a rectangular enclosure having the same volume and close linear
dimensions: Lx, Ly, Lz  (see [4]).

4   COMPARISON BETWEEN ANALYTICAL, NUMERICAL AND EXPERIMENTAL
RESULTS

QUASICAR structure can be considered as a combination of simple structures: plates and shells.
Table 1 shows natural frequencies of the simply supported rectangular plate (Columns 1, 2) and of
the QUASICAR model (Columns 4, 5).  The corresponding spatial patterns are shown on Figure 1.
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Figure 1: Structural (left) and acoustic (right) normal modes of the QUASICAR model

The two flat plates of the QUASICAR have the lowest stiffness and consequently the lowest
fundamental frequency in this combination. The analysis of the individual sections shows that the
first resonance peak of the two plates is at 67.035 Hz (67.039 Hz– for anti-symmetric mode), the
half of a circular shell - 906.04 Hz, and the two quarters of a circular shell – 1271.40 Hz. Bearing in
mind the low-frequency range of interest for this research (up to 1000 Hz - corresponding to 250 Hz
for a real vehicle) and noticing that resonant frequencies of curved parts are above 900 Hz, it is
reasonable to approximate the normal modes of QUASICAR by the normal modes of a simply
supported rectangular plate having the dimensions of the QUASICAR flat sides (see Figure 1).
Resonance frequencies of the curved plate (a coupled structure) and of the uncoupled flat plates
agree well in the frequency range considered. These results demonstrate that in the frequency range
below 900 Hz, the predominant influence of the flat plates makes it possible to approximate the
modal characteristics of QUASICAR by those for a simply supported flat plate.

Simply supported plate,
natural freq., Hz

FE
struct.
natural
freq.,
Hz

Exp.
struct.
natural
freq.,
Hz

Acoust. natural freq.
of a  rectang., Hz

FE
acoust.
natural
freq.,
Hz

Exp.
acoust.
natural
freq.,
Hz

1 2
Analytical FE

3 4 5 6 7

(1,1) 59.04 59.18 67.035 - (1,0,0) 345.88 338.26 360.00
- - - 67.039 - (0,1,0) 571.86 574.02 582.00

(1,3) 276.36 277.12 264.51 265.00 (1,1,1) 957.90 985.49 -
- - - 264.52 270.00 (2,0,1) 974.39 1017.10 980.00

(1,4) 466.51 467.81 415.13 451.00 (3,1,1) 1369.17 1318.20 -
- - - 415.13 - (0,0,2) 1372.46 1340.90 -

(3,3) 531.40 531.95 521.45 523.00 (1,2,1) 1377.91 1366.60 -
- - - 521.45 - (4,0,0) 1383.53 1403.20 1407.00

(3,4) 721.55 721.99 691.67 700.00 (5,0,1) 1860.58 1593.30 -
- - - 691.68 - (1,3,1) 1879.82 1626.10 1872.00

Table 1: Natural frequencies of QUASICAR and of a rectangular plate

The analysis of the experimental data (Table 1, Column 4) shows some disagreement with the
numerical results (Table 1, Column 3). First of all, it was difficult to excite all natural frequencies.
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The experimental tests covered a frequency spectrum from 231 to 700 Hz. In the low-frequency
range, between 230 and 350 Hz, it can be noticed that there is a large number of natural frequencies
that do not correspond to those obtained from the numerical and analytical calculations. This can be
explained by the presence of symmetric and anti-symmetric natural modes which correspond to
different but relatively close natural frequencies. Note that these normal modes were excited by a
non-symmetric load (one shaker acting on the bottom plate of QUASICAR). In this way the
experimental tests could not simulate the symmetric and anti-symmetric modes in a proper way. In
the region between 350 and 700 Hz the measured natural frequencies correspond to one of the
groups: symmetric or anti-symmetric natural modes. As a reason for disagreement between
experimental and numerical data in the whole range of frequencies one can point out also the
differences between the FE model and the real test rig, e.g. the unaccounted influence of masses of
the accelerometers, imperfections in the boundary conditions, etc.  In spite of these disagreements,
the experimental analysis validates to some extent the numerical and analytical results and brings
new ideas for further improvements of the experimental tests.
     The analysis of the acoustic data (Table 1, Columns 5, 6, 7) shows a good agreement between
analytical, numerical and experimental results in the range up to 1000 Hz. Above this range the
precision of the numerically determined natural frequencies is deteriorated, which is due to a
smaller number of finite elements per wavelength. The differences between measured and
numerically calculated acoustic natural frequencies may be partly explained by the unaccounted
rectangular gap in the left curved part of QUASICAR.

5   MODIFIED MODELS OF QUASICAR

The initial QUASICAR model has been designed as a massively simplified model of a road vehicle.
One of the reasons for such a simplification was the possibility to estimate the interior sound
pressure in QUASICAR by approximate analytical formulae. The modified models of QUASICAR
have been developed and analysed by means of numerical techniques to eliminate some weaknesses
of the original model and to simulate more accurately the main characteristics of road vehicles. Two
modified models have been considered: the first (model M1) has a different thickness of the bottom
plate, and the second (model M2) employs different boundary conditions.

Figure 2: Structural normal modes of the modified models (M1-left and M2-right)

The geometry and the boundary conditions of the model M1 are the same as the original
QUASICAR model. The only difference is the dimensions of the bottom plate that was modeled as
having 6.0 mm thickness. In this way the symmetry in respect of the bottom and top parts of
QUASICAR has been broken, which corresponds more realistically to the case of real road
vehicles. Comparing some of the normal modes (Figure 2) and natural frequencies (Table 2,
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Column 1 and 3) of the modified model M1 with those of QUASICAR, one can notice some
interesting facts. First of all, the predominant normal modes belong to one of the main parts of the
model: the bottom plate, the top plate or the curved part, and only in certain modes, in the
considered frequency range from 0 to 1000 Hz, all three panels are involved. The distinct normal
modes are associated with the different stiffness of the panels, while their geometrical forms remain
the same. Thereby the simplification of complex structures is possible on the base of the material
and geometrical characteristics of their main parts. Secondly, in spite of the change of the model
(increase in weight), the fundamental natural frequencies remain the same. They are defined by the
top plate, which has the lowest stiffness and was unchanged after the modification. Suppressing the
participation of the bottom plate in the formation of normal modes is another important feature
demonstrated here. In the frequency range between 0 to 1000 Hz the bottom plate takes part only in
the five normal modes, whereas in QUASICAR model the bottom plate plays the same role as the
top one. The Modified model M1,  which is closer to real road vehicles, demonstrates some useful
ideas for controlling the vibration behavior of the panels and in the same time keeps the calculations
simple.
     The changes incorporated into the model M2 have been determined with a view of a proper
representation of a typical car body construction. The simply supported boundary conditions of
QUASICAR model were replaced by beams with a circular cross section of radius 10R =  mm. The
bottom plate was stiffened by means of two beams in transverse and longitudinal directions, which
represents the platform of a car. The only boundary conditions were imposed at the ends of the
longitudinal beams: the constraints in X, Y and Z directions were applied at the relevant nodes.
These simulated higher stiffness of the bottom part and of the edges of a car body, as well as a fully
stiff suspension. Some of the results of the normal modes analysis are shown in Fig. 2 and Table 2,
Column 2. The first natural frequencies correspond to displacements of the modified model which
are due to longitudinal beams (the lowest stiffness in the model). The first normal mode, which
corresponds to the fundamental frequency of QUASICAR model, appears at a higher frequency,
93.019 Hz. The analysis of this model outlines the complexity of structural simplification of a car
body. From Figure 2 it can be seen that the spatial patterns of vibrations are a mixture of spatial
patterns due to a simply supported rectangular plate and spatial patterns caused by a greater degree
of freedom of the model. However, the main location of structural vibrations remains the same - the
panel with the lowest stiffness, namely the top plate of the modified model M2.

Model M1,
structural
natural

frequencies, Hz

Model M2,
structural
natural

frequencies, Hz

QUASICAR,
structural
natural

frequencies, Hz

Structural-
acoustic

interaction
models, natural
frequencies, Hz

QUASICAR,
acoustic natural
frequencies, Hz

1 2 3 4 5 6

67.242 15.310 67.035
67.039

67.909
76.488 72.313

265.50 138.92 315.33
315.33

311.98
312.25 270.23

338.59 338.09 (1,0,0) 338.26

393.81 174.53 394.69
394.69

386.57
386.83 396.25

416.25 192.33 415.13
415.13

421.29
421.90 421.58

Table 2: Natural frequencies of modified models and structural-acoustic coupling
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6   STRUCTURAL-ACOUSTIC COUPLING IN QUASICAR
AND MODIFIED MODEL M1

Interaction, or coupling, between an enclosed fluid (air) and a structure means their mutual
influence on the dynamic behavior of each other. The fluid acts via its pressure on the structural
surface, and in the same time it is influenced by the normal displacements of the structure [11,12].
Thus, fluid pressure on the surface is considered as a disturbing force in the governing equations of
motion of the structure, and the normal accelerations of the structural surface enter into the
Helmholtz equation via ‘flexible wall’ boundary conditions. Coupling of these equations leads to a
single governing matrix equation for the whole system ‘structure-fluid’:
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where [Ms] and [Ks] are the nxn structural mass and stiffness matrices; [Ma] and [Ka] are the mxm
acoustic mass and stiffness matrices; {p} is the vector of the m nodal sound pressure at each fluid
point; {u} is the vector of the n structural displacements; [Mas]=ρc2[S]T , [Ksa]= - [S], [S] is a sparse
nxm structural-acoustic coupling matrix which elements are determined from the surface area Sij for
the boundary grid point corresponding to the structural displacement ui and the associated sound
pressure at that point pj;  ρ is the mass density of air and  c is the speed of sound.

Figure 3: Structural-acoustic coupling in QUASICAR (left) and in modified model M1(right)

In the structural-acoustic coupling analysis we have considered in detail the coupling of the first
rigid-wall acoustic mode at 338.26 Hz with different structural modes ‘in vacuo’. The vibration
energy of the coupled mode is divided between structural and fluid vibrations. In this respect, from
the results shown in Table 2, one can distinguish predominantly “acoustic” and “structural” modes
of the coupled QUASICAR model (Column 4) and of the coupled modified model M1 (Column 5).
Usually the coupling between acoustic and structural modes depends on their spatial similarity and
frequency closeness. The spatial patterns of QUASICAR structure and modified model M1 are two-
dimensional; this means that structural modes will correspond best to the acoustic modes in the area
of the relevant two-dimensional acoustic spatial patterns. Figure 3 shows the normal modes of the
coupled models affected by the first rigid-wall acoustic mode. The acoustic uncoupled mode at
338.26 Hz and with (1,0,0) spatial pattern influences some QUASICAR structural modes with
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spatial patterns (2,3) at 394.69 Hz, and (4,1) at 415.33 Hz and some structural modes of modified
model M1 with spatial patterns (2,1) at 396.25 Hz, and (4,1) at 421.58 Hz. Comparing the coupled
QUASICAR modes at 394.69 Hz and at 421.90 Hz, one can notice that the better matching of the
structural and acoustic spatial patterns in the latter mode, in spite of its remoteness from the rigid-
wall frequency, leads to a more distinctive picture of the coupling rather than for the previous
normal mode.
     Another interesting point is a great alteration of the fundamental frequency of the coupled
models. As was pointed out in [12], this phenomenon is due to a strong coupling of the first
structural mode with the zero-order acoustic mode (0,0,0) having zero natural frequency. Usually,
the first cavity resonance frequency is above the fundamental structural frequency and coupling
effects occur at frequencies above the first acoustic resonance, except for the case when the
coupling occurs at frequency lower than the first acoustic peak. In this connection, we recall that
QUASICAR model has two groups of natural frequencies: symmetric and anti-symmetric. Finite
element analysis shows that only symmetric modes can couple efficiently with the acoustic modes.
This might be because in anti-symmetric structural modes the fluid inside the cavity moves as a
rigid body and does not exhibit vibration behavior. The influence of fluid on structural vibrations in
anti-symmetric modes is also less pronounced than in the case of symmetric modes. This is why
natural frequencies of symmetric and anti-symmetric structural modes in a coupled model have
greater differences than in the case of the same structural modes in an uncoupled model, particularly
for the fundamental modes.

7   FORCED VIBRATIONS OF THE COUPLED MODELS

In the previous section we have considered the vibrations of the coupled QUASICAR model and
determined its modal parameters. However, to estimate generation of interior noise due to external
or internal disturbing forces is necessary to carry out a forced-vibration analysis. In this case the
governing equation of motion can be written as follow:

                                     (2)

where {Fs} is the vector of the external disturbing forces applied to the structure. Solving Eqn. (2),
one can derive the structural displacements and the interior sound pressure due to a certain
disturbanse in a coupled structural-acoustic model.

Figure 4: FRF of QUASICAR model (left) and modified model M1 (right)
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In the FEM a frequency response analysis was performed in the range from 0 to 500 Hz. A
frequency-dependent exciting force was applied to the bottom plates of the QUASICAR and of the
modified model M1. The interior sound pressure response was calculated at the driver’s ear location
(acoustic node 400) and at the rear seat behind the driver’s position (acoustic node 409). Only
structural damping was included in these computations. Figure 4 illustrates the results for
magnitude and phase of the frequency response function (FRF) of the QUASICAR model (left) and
of the modified model M1 (right). The solution looks typical for forced dynamic systems with
multiple resonances. The resonant peaks correspond to natural frequencies of the coupled models.
Phase curves of FRF have regions of positive and negative response corresponding to in phase and
out of phase situations between interior sound pressure and the exiting force. Comparing the result
for generated interior noise for these two models, one can notice the reduction of the interior sound
pressure levels due to the additional thickness of the bottom plate in the modified model M1.

8 CONCLUSIONS

In the present paper we have reported the results of the FEM structural-acoustic analysis of the
simplified vehicle model QUASICAR and its modifications. Initially, the structural and acoustic
calculations were carried out separately, and then a fully coupled model was studied. In the
uncoupled model, the normal modes of the structure and acoustic modes of the enclosure have been
calculated. It has been found that in the low frequency range structural vibrations of QUASICAR
can be approximated by those of simply supported plates corresponding to the flat parts of the
structure. The proposed modified models of QUASICAR have given an additional point of view on
understanding the complex structural behaviour of the car body. In the coupled models of
QUASICAR and modified model M1 the interaction between structure and air has been studied. It
was found that spatial similarity between structural and acoustic normal modes is a prerequisite for
a better coupling even if the structural and acoustic natural frequencies do not match well. Finally,
the structural-acoustic response due to a harmonic force excitation has been considered in the
coupled models of QUASICAR and the modified model M1.
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