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Abstract
A new efficient method of reducing edge reflections of flexural waves in plates or
bars based on the 'acoustic black hole effect' has been recently proposed and
described theoretically by one of the present authors [1] (see also [2-4]). The method
utilises a gradual change in thickness of a plate or bar, partly covered by thin damping
layers, from the value corresponding to the thickness of the basic plate or bar (which
is to be damped) to almost zero.  The present paper describes the results of the
experimental investigation of the damping system consisting of a steel plate (wedge)
of quadratic shape covered on one side by a strip of absorbing layer. The results of
the measurements of point mobility in such a system show that for the wedge covered
by an absorbing layer there is a significant reduction of resonant peaks, in comparison
with the uncovered wedge or with the covered plate of constant thickness. Thus, the
measurements confirm the existence of the acoustic black hole effect for flexural
waves and demonstrate the possibility of its use in practice.

INTRODUCTION

This paper describes the results of the experimental investigation of the damping
system consisting of a steel wedge of quadratic shape covered on one side by a strip
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of absorbing layer located at the sharp edge. Such a system materialises the new
efficient method of reducing edge reflections of flexural waves in plates or bars
recently proposed and described theoretically by one of the present authors [1] (see
also [2-4]) and based on the 'acoustic black hole effect'.  It is well-known that
damping of resonant flexural vibrations of some engineering structures or their
components, such as finite plates or bars, can be achieved by reducing reflections of
flexural waves from free edges of the structures. This can be realised, for example, by
introducing graded impedance interfaces, such as combinations of finite plates of the
same thickness but made of different materials, along with placing damping material
at the edges [5]. The main difficulty in implementing this approach is to create
suitable impedance interfaces. In contrast to [5], the new method proposed in [1-4]
uses gradual change in plate or bar thickness, i.e. it employs elastic wedges of non-
linear shape as gradual impedance interfaces. The above-mentioned gradual change in
thickness of a plate or a bar has to be made according to the special laws that ideally
provide zero reflections even for negligibly small material attenuation – the so-called
‘acoustic black hole effect’. To make up for real manufactured wedges and to
improve the damping one should cover wedge surfaces near edges by thin absorbing
layers (films), e.g. by polymeric films. According to the theoretical calculations [1-4],
wedges of power-law profile covered by thin absorbing layers can be very efficient
damping systems, with flexural wave reflection coefficients as low as 1-3 %.
       The aim of this paper is to present the results of the experimental investigation of
the damping system consisting of a steel wedge of quadratic shape covered on one
side by a strip of absorbing layer located at the sharp edge. As will be demonstrated,
the results of these experiments show that in the wedge covered by an absorbing layer
a significant reduction of resonant peaks can be observed, in comparison with the
uncovered wedge or with the free and covered plates of constant thickness.

THEORETICAL BACKGROUND

The physics of the ‘acoustic black hole effect’ for flexural waves can be understood
using the theory of flexural wave propagation near edges of elastic plates of variable
thickness gradually decreasing to zero, i.e. near edges of thin elastic wedges of
arbitrary shape [6-11]. The phenomenon in question can take place in the special case
of wedges having cross sections described by a power law relationship between the
local thickness  h  and the distance from the edge x:  h(x)= εxm,  where  m  is a
positive rational number and  ε  is a constant [9-11].  In particular, for m ≥ 2 - in free
wedges [9-11], and for m ≥ 5/3 – in immersed wedges [9,10], the flexural waves
incident at an arbitrary angle upon a sharp edge can become trapped near the very
edge and therefore never reflect back.  Such wedges thus materialise acoustic ‘black
holes’ for flexural waves.  In the case of localised flexural waves propagating along
edges of such wedges (these waves are also known as wedge acoustic waves) the
phenomenon of acoustic ‘black holes’ implies that wedge acoustic wave velocities in
such structures become equal to zero [9,10].
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      The unusual effect of power-low profile on flexural wave propagation in wedges
has been first described by Mironov [11]. He pointed out that a flexural wave does
not reflect from the edge of a quadratically shaped wedge in vacuum (m = 2), so that
even a negligibly small material attenuation can cause all the wave energy to be
absorbed near the edge. Unfortunately, because of the deviations of real
manufactured wedges from the ideal power-law shapes, largely due to ever-present
truncations of the wedge edges, the reflection coefficients in such homogeneous
wedges are as high as 50-70 % [11], so that they can not be used as practical
vibration dampers. To improve the situation, one can consider covering the wedge
surfaces by thin damping layers (films) of thickness  δ ,  e.g. by polymeric films.
Note in this connection that the idea of applying absorbing layers for damping
flexural vibrations of plates has been used successfully since the 50-ies  (see, e.g.
[12]). The new aspect of this idea, which is used in the proposed approach, is to apply
such absorbing layers in combination with the specific power-law geometry of a plate
of variable thickness (a wedge) to achieve maximum damping.
       Two types of wedge geometry can be considered:  a symmetric wedge and a non-
symmetric wedge bounded by a plain surface at one of the sides.  For each of these
cases either two or only one of the sides can be covered by absorbing layers. Note
that non-symmetric wedges are easier to manufacture. They also have the advantage
in depositing absorbing layers: the latter can be deposited on a flat surface, which is
much easier. From the point of view of theoretical description, there is no difference
between symmetrical and non-symmetrical wedges as long as geometrical acoustics
approximation is concerned and the wedge local thickness  h(x) = εxm  is much less
than the flexural wavelength.
       To analyse the effect of thin absorbing films on flexural wave propagation in a
wedge in the framework of geometrical acoustics approximation one should consider
first the effect of such films on flexural wave propagation in plates of constant
thickness.  The simplest way to approach this problem is to use the already known
solutions for plates covered by damping layers (see e.g. [12]). Not specifying physical
mechanism of the material damping in the film material, we assume for simplicity
that it is linearly dependent on frequency, with non-dimensional constant  ν  being the
energy loss factor, or simply the loss factor.  Using this approach (see [3,4] for more
detail), one can derive the corresponding analytical expressions for the reflection
coefficients of flexural waves from the edges of truncated wedges covered by
absorbing layers. In particular, for a quadratic wedge covered by an absorbing layer
of arbitrary thickness on one side only one can derive the following expression for the
corresponding reflection coefficient  R0  [4]:
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Here  α2(x)= δ/h(x) = δ/εx2,  β2 = E2/E1,  wl ρρρ /~ = , where  ρw  and  ρl  are the mass
densities of the wedge material and of the absorbing layer respectively,  kp = ω/cp  is
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the wavenumber of a symmetrical plate wave,  cp = 2ct(1-ct
2/cl

2 )1/2  is its phase
velocity, and  cl  and  ct  are longitudinal and shear wave velocities in a wedge
material, and  ω =2πf  is circular frequency..  In deriving (1) the following conditions
have been used:  β2 = E2/E1  << 1,  η  << 1  and  ν << 1.  These conditions are valid
in the majority of practical situations. In the general case of layers of arbitrary
thickness the integration in (1) should be carried out numerically, with the exception
of thin absorbing layers, where it can be performed analytically.

Figure 1.  Reflection coefficient  R0  for the non-symmetric wedge covered
by the absorbing film on one surface as a function of the wedge
truncation length  x0:  solid curve corresponds to the calculations
according to equation (1), dotted curve corresponds to the
simplified analytical expression, and dashed curve shows the
reflection coefficient for the uncovered wedge [4].

Figure 1 shows typical results of calculations of the reflection coefficient  R0  for a
quadratic wedge [4]. The reflection coefficient has been calculated at frequency  f =
10 kHz  as a function of the wedge truncation length  x0  for the non-symmetric
wedge covered by the absorbing film on one surface only.  The parameters of the
wedge and film are:  ε = 0.05,  δ = 10 µm,  ν = 0.2,  η = 0.01,  x0 = 2 cm  and  E2/E1
= 0.3.  For comparison, the behaviour of the reflection coefficient for an uncovered
wedge is shown in Figure 1 as well. It is clearly seen that the curves calculated
according to the simplified equations and to the more precise formula (1) almost
coincide with each other everywhere except very small values of  x0,  where the
approximation of thin film becomes invalid.  One can see that the values of the
reflection coefficient are remarkably low for small values of  x0. Thus, the
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combination of wedges with power-law profiles and of thin damping layers can result
in very efficient damping systems for flexural vibrations. Note that almost all
absorption of the incident wave energy takes place in the vicinity of the sharp edge of
a wedge.

EXPERIMENTAL INVESTIGATION

In this section we present some of the results of the experimental investigation of the
damping system consisting of a steel wedge of quadratic shape covered on one side
by an adhesive strips of absorbing layer of various thickness  δ  that was located at
the sharp edge of the wedge (see Figure 2). The wedge dimensions were:  280 mm
(length) and 200 mm (width). Its thickness at the thick end was 4.5 mm, and the value
of the quadratic wedge parameter  ε  was 5x10-5 mm-1.  Measurements of point
mobility have been carried out in a wide frequency range (100-6500 Hz) for a free
wedge, for a wedge covered by an adhesive strip of absorbing layer, and for a free
and covered plates of constant thickness  h = 4.5 mm  having the same length and
width as the quadratic wedge.
       Experiments were performed within the Noise and Vibration Laboratory of the
Aeronautical and Automotive Engineering Department at Loughborough University.
All signal processing was performed using a HP 3566 FFT analyser. Other equipment
included a Ling Dynamic Systems 200 series electromagnetic shaker; a Bruel & Kjaer
Type 8200 force transducer; a Bruel & Kjaer Type 4374 accelerometer; and
ENDEVCO Model 27218 charge amplifier.

Figure 2.  Experimental set-up.



6

A shaker was providing the excitation input to the wedge (see Figure 2). The shaker
was attached to the bottom surface of the wedge using a steel ‘stinger’. A Bruel &
Kjaer Type 8200 force transducer was then attached to the end of the ‘stinger’ using a
studded fastener. The force transducer was attached to the plate surface via adhesive
to minimise mass loading and improve result validity. Support of the wedge and plate
examined in the study was provided by foam, as illustrated in Figure 2.  In the case of
the rectangular plate, the entire surface of the plate was supported by a foam block to
ensure a uniform reaction. The support of the quadratic wedge applied the same
approach but necessitated the partial removal of foam support in the proximity of the
thin edge to enable the free vibration of this section of the wedge.  A small aperture
was made in the foam to allow access of the force transducer and ‘stinger’ assembly.
A random signal was generated using the HP analyser. Frequency response analysis
was then performed on the force transducer and accelerometer measurements.
        The results of measurements of point mobility of the free plate are shown in
Figure 3.  Note that the attachment of adhesive strips of absorbing layers of various
thickness at any of the plate edges did not cause noticeable changes in the frequency
response functions, which therefore are not shown here.

Figure 3.  Point mobility of the free plate;  the position of the
shaker was at 100 mm from one of the shorter
edges  and at 100 mm from both longer edges.

The results of typical measurements of point mobilities of the free quadratic wedge
and of the same wedge covered by a strip of thin absorbing layer are shown in Figure
4.  As one can see from the above figures, in the wedge covered by an absorbing layer
there is a significant reduction of resonant peaks, in comparison with the uncovered
wedge. This can be attributed to the significant reduction of the reflection coefficient
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of flexural waves from the sharp edge of the wedge, in agreement with the theory
briefly discussed in the previous section.

Figure 4.  Point mobilities of the
same wedge covered a
strip (δ = 0.2 mm) of
the shaker was at 100 
and at 100 mm from b
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CONCLUSION

The reported results of the experimental measurements of point mobilities of the free
quadratic wedge and of the same wedge covered by adhesive strips of absorbing
layers demonstrate a significant suppression of resonant peaks.  This can be attributed
to the significant reduction of the reflection coefficient of flexural waves from the
sharp edge of the wedge, in agreement with the above-mentioned theory utilising the
acoustic black hole effect.
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