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Unified methodology for the prediction of the fatigue behaviour of
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Loughborough University, LE11, 3TU, UK.

b Department of Materials,
Loughborough University, LE11, 3TU, UK.

c Faculty of Engineering and Physical Sciences, University of Surrey, 

Guildford, Surrey, GU2 5XH, UK.

Abstract 

A unified model is proposed to predict the fatigue behaviour of adhesively bonded joints. The model is 

based on a damage mechanics approach, wherein the evolution of fatigue damage in the adhesive is 

defined as a power law function of the micro-plastic strain. The model is implemented as an external 

subroutine for commercial finite element analysis software. Three dimensional damage evolution and

crack propagation were simulated using this method and an element deletion technique was employed to 

represent crack propagation.  The model was able to predict the damage evolution, crack initiation and

propagation lives, strength and stiffness degradation and the backface strain during fatigue loading. Hence 

the model is able to unify previous approaches based on total life, strength or stiffness wearout, backface 

strain monitoring and crack initiation and propagation modelling. A comparison was made with 

experimental results for an epoxy bonded aluminium single lap joint and a good match was found.

Keywords: Damage mechanics, fatigue, strength degradation, backface strain, adhesive joint. 
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1. Introduction

Bonded joints are increasing replacing conventional joints in structural applications, notably in the

Aerospace, Automotive and Marine industries. This is mainly due to mechanistic advantages such as;

high strength and stiffness to weight ratio and reduced stress concentrations, however, cost savings can 

also be made. This has lead to challenges in the field of designing such joints, especially under fatigue 

loading, which is the typical loading type in most structural applications.  Lifetime prediction under 

fatigue loading is an important part of the design process and can be used to optimise the joint design and 

inform in-service monitoring procedures as well as indicating the safe life of the joint under various 

conditions. Many methods of predicting and characterising fatigue life in bonded joints have been 

proposed [1]; however, to date the various approaches have been limited in their functionality and 

applicability.

The methods of predicting fatigue lifetime can generally be classified as; total-life, Palmgren-Miner (PM) 

based, phenomenological based and progressive damage models.  Several reviews have been published

[2-3] regarding usage of these models for metals and for composite materials and more recently for 

bonded joints [1]. It can be concluded from these reviews that while total life based approaches are the 

simplest to apply; they have limited scope in the lifetime prediction of bonded joints, especially in the 

case of variable amplitude fatigue.

PM based models, as first proposed by Palmgren [4] and Miner [5], are also simple to apply and are used

to predict fatigue lifetime under variable amplitude fatigue loading through the assumption of linear 

damage accumulation.  However, they are generally not able to account for load interaction and load 

sequencing effects present in a variable amplitude fatigue loading spectrum. In addition, none of the 

approaches discussed so far (both total life and PM rule based) can be used to monitor the damage in the 

sample as only the final failure is characterised. This can be achieved through the application of

phenomenological models.
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3

Phenomenological models represent change in the strength or stiffness under fatigue loading and can 

incorporate factors to model variable amplitude fatigue. However, these models are highly dependent on

joint specific experimental results and in the case of strength wearout require destructive experimental 

testing. Recent work has demonstrated the effectiveness of the strength wearout approach to predict

fatigue lifetime under both constant and variable amplitude fatigue loadings [6-9]. However, a more 

flexible and direct method of representing fatigue degradation is through progressive damage modelling.

Progressive damage models can be either fracture mechanics (FM) or damage mechanics (DM) based. In 

the case of FM based models, the crack propagation phase is assumed to be dominant and is characterised 

by an empirical crack growth law. The most extensively used crack growth laws are based on the one

proposed by Paris and Erdogan [10]. In this model the crack growth rate is defined as a power law 

function of stress intensity factor in the crack tip region. In the case of bonded joints, strain energy 

release rate is usually used instead of stress intensity factor [11-15]. A FM based approach has also been 

proposed for variable amplitude fatigue where a damage shift factor was used to account for load 

interaction effects [16]. However, the main draw-back to the FM approach is that it does not account for 

crack initiation prior to macro-crack growth. For example, when bonded single lap joints (SLJ) are 

considered, the crack initiation was found to dominate the fatigue life at high cycles [17], and in such 

cases the Paris law method of lifetime prediction will under predict the fatigue lifetime. 

Using a DM based approach, the evolution of damage prior to macro-crack growth can be simulated. In 

these models the main requirement is to define a damage variable to represent the severity of material 

damage during fatigue loading. In the case of composite materials, models have been proposed to

simulate delamination and damage in the matrix [18, 19]. These models can be characterised based on the 

type of damage growth law and the parameters used to define them, which include matrix crack density in 

the case of glass fibre reinforced plastic composites [19] and a thermodynamic potential based strain 

energy density in the case of carbon fibre composites [18]. To date, little on the application of DM to the 

fatigue life of bonded joints can be found in the literature, however Abdel Wahab et al. [20] used a
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continuum damage mechanics (CDM) approach to predict the fatigue lifetime of bonded double lap joints 

and found this compared favourably with the FM based approach. However, no attempt was made to 

incorporate the CDM approach in a progressive damage model. 

It can be seen that, all of the models discussed can be useful in characterising or predicting fatigue 

behaviour under certain conditions but that all have limited applicability and functionality, and it appears 

that no attempt has yet been made to propose a methodology that is widely applicable and can be used to 

generate all the data from the methods discussed.  In this paper a unified fatigue methodology (UFM) is 

proposed, wherein a single damage evolution law is used to predict all the main parameters characterising 

the fatigue life of bonded joints. These consist of progressive damage evolution, crack initiation and 

propagation lives, backface strain (BFS) characterisation and strength and stiffness wearout. In this way a 

single damage evolution law is used to unify all previous approaches to characterising and predicting 

fatigue in bonded joints.

2. Unified fatigue methodology (UFM)

In this methodology a damage evolution law is used to predict the main parameters governing fatigue life. 

The model is described in Fig. 1. The inputs for the method are; material properties, joint geometry and 

boundary conditions. A small number of fatigue-life test results are required to determine the constants in 

the damage evolution law. Various algorithms are used to determine the different outputs as described in 

the following subsections. 

2.1 Progressive damage modelling

The rate of damage evolution was assumed to be a power law function of the equivalent micro plastic

strain, i.e.:

                                                                                                                                                                     (1)
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where, D is the damage variable, which is equal to 0 for undamaged material and 1 for completely 

damaged material. N is the number of fatigue cycles and hence dD/dN is the damage rate. m1 and m2 are 

experimentally determined constants and εp is the localised equivalent plastic strain. Plastic strain was 

used as the parameter for damage progression in this approach as this is a convenient method of 

introducing a level of strain below which, damage does not occur. Also, the region of high equivalent 

plastic strain matches well with the region of damage observed optically in sectioned and polished 

samples, as shown in Fig. 2. Note that the adherend is not shown in Fig. 2(b) to aid clarity and only half 

the sample width is shown owing to the use of symmetry in the model. Hence, the area of maximum 

equivalent plastic strain indicated in the figure is in the middle of the sample width.  The damage model 

can be implemented in commercial finite element software via an external subroutine. Eqn. 1 can be 

numerically integrated over each element in the model to simulate damage evolution followed by crack 

propagation for fully damaged elements (i.e. where D =1). Using this algorithm, the number of cycles to 

failure for different fatigue loads can be calculated. The constants m1 and m2 can be optimised based on 

fatigue life data for two or three different loads spanning the range to be considered.

2.2 Prediction of damage evolution and crack initiation and propagation 

The immediate results of the model described in the last section are 3D maps of damage evolution and 

crack propagation as a function of cycles for different fatigue loads. This data is conveniently represented 

as plots of damage and crack length vs. number of fatigue cycles. In terms of damage, this can be viewed

for individual elements or averaged over an area of interest. This information can be used to determine the 

location and extent of damage in the adhesive layer at any time in the fatigue life. The fatigue initiation 

life is defined as the number of cycles prior to complete damage of an element or the number of cycles to 

generate a crack of predetermined size. Once a crack has initiated, the damage in elements ahead of the 

crack can be used to study the size and shape of the process zone. Any overloads in the fatigue spectrum 

will increase damage in the elements ahead of the crack. Hence, the crack acceleration which has been 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6

observed in the variable amplitude fatigue testing of bonded joints [7, 9, 21] can potentially be modeled 

using this approach, without the need for any further empirical interaction factors, as in [9, 16].  It is also 

interesting to note that if a visco-elastic/ plastic constitutive model was used for the adhesive, then time 

dependent straining would occur under load that would increase damage. This, potentially, could be used 

to model the creep enhanced fatigue failure of bonded joints reported in previous work [15, 22]. Hence, 

UFM also has the potential to unify the methods used to characterise variable amplitude fatigue and creep 

fatigue in adhesively bonded joints. Once a macro-crack has formed, the size and shape of the crack as a 

function of cycles is generated, as in the FM based methods. 

2.3 Extended L-N curve prediction

Load-life (L-N) is often plotted instead of stress-life for bonded joints. This is because stress in bonded 

joints is extremely non-uniform and there is no simple relation between the easily measured average shear 

stress in a lap joint and the maximum stress. Hence, it is sensible to use load in the place of stress to 

define the fatigue life. The total fatigue life, Nf, can be divided into crack initiation and propagation lives 

as:

                                             Nf = Ni + Np        (2)

where, Ni is the number of cycles to macro-crack initiation and Np is the number of cycles associated with 

crack propagation prior to complete failure. It is possible to predict both Ni and NP in addition to Nf, from 

the data described in the previous section. These can be plotted as a function of fatigue load, as shown 

schematically in Fig. 3. The resultant plot shows the proportion of the fatigue life spent in crack initiation 

and propagation, in addition to total fatigue life, and has been termed an extended L-N diagram.

2.4 Strength and stiffness wearout and BFS prediction
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A reduction in the strength or stiffness of bonded joints on fatigue loading is associated with an increase 

in damage in the adhesive. As damage in the adhesive is simulated using eqn. (1), strength and stiffness

wearout can be expected. The decrease in strength of a joint owing to the modelled fatigue damage can be 

calculated by applying an increasing load to the joint until it fails. This can be done using an algorithm 

similar to the one described in section 2.1 for checking if Nf has been reached. Once the adhesive is 

damaged or cracked, a series of increasing loads can be applied until the model becomes unstable for the 

applied load. The instability in the model indicates that the joint cannot bear the applied load and thus an 

approximate value of the failure load (or residual strength) can be deduced. This method was found to 

work well in this case, however, alternative quasi-state failure criteria may also be used in a similar 

fashion.

In the case of stiffness wearout, at each damage increment in the model, the displacement at the loaded

end of the joint for the applied maximum fatigue load can be calculated. Using this displacement and the 

applied load, the stiffness of the joint can easily be calculated. BFS can be calculated by measuring strain 

under load at any location in the joint in the same algorithm. For every increment in the damage, the 

average elastic strain on the back-faces of the adherend at any desired location can be calculated. This 

stage can be extended to include practically any other useful means of characterising fatigue damage, 

such as internal stresses and strains or natural modes and frequencies of vibration.

3. Implementation and experimental validation of the unified fatigue methodology 

(UFM) 

The UFM was implemented using an external subroutine written in Python script language for the MSC 

Marc finite element analysis (FEA) software. The model was implemented for bonded SLJs manufactured 

according to British standards BS ISO (4587:2003). The adherends were 7075 T6 aluminium alloy and 

the adhesive used was Cytec FM 73M. The joint geometry is shown in Fig. 4. Fatigue testing was at 5 Hz 

with a load ratio of 0.1. Further details of the experimental work can be found in [8, 17].
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3.1 Finite element details

The commercial FEA package MSC Marc was used for all the simulations.  Eight noded hexahedral

elements (Element 7 in MSC Marc) were used for the finite element mesh. Both material and geometric 

non-linearity were accounted for in the analysis.  A typical mesh taken from a finite element model is

shown in Fig. 5. The joint was constrained in the vertical direction at the loaded end of the joint, as shown 

in Fig. 6. In addition symmetric conditions (both planar and rotational) were applied enabling only a

quarter of the joint to be modelled and thereby saving computation time. 

Non-linear material properties were used in all the models. The Young’s moduli for adhesive and

aluminium alloy were 2GPa and 70GPa respectively. The Mohr-Coulomb model [23] was used for the 

adhesive and linear elasticity was assumed for the aluminium alloy as no plastic deformation was 

observed in the adherends during the experiments. For the Mohr-Coulomb model, a tensile yield stress 

equal to 28.73 MPa with yield surface modifier equal to 0.001057 was used (Jumbo, [24]). An isotropic

hardening behaviour was assumed.

3.2 Progressive damage modelling 

The model described in section 2.1 was implemented using an external subroutine written in Python © 

(Python Software Foundation Inc., Hampton, USA) script with the FEA software. The algorithm used for 

this purpose is shown in Fig. 7. This can be described in following steps.

Step 1: a finite element model is built and the values for number of cycles, N, and damage, D, are set to 

zero.

Step 2: a non-linear static analysis is carried out and plastic strain is determined for all the elements in the 

adhesive layer.
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)D1(0 

)D1(EE 0 

)D1(0ypyp 

Step 3: check if the analysis converges, if yes then step 4, otherwise N = Nf and stop the program.

Step 4: the damage rate dD/dN is determined for each element in the adhesive using eqn. 1.

Step 5: the new value of damage in each element is calculated using the damage rate calculated in the 

previous step as:

                                  (3)

          where, dN is the increment to number of cycles.

Step 6: check if D=1, if yes then delete the element, and go to step 2. 

Step 7: if D ≠ 1 calculate new material properties as:

                                               (4)                                    

                    (5)

                                              (6)                                 

where, E0, σyp0 and β0 are Young’s modulus, yield stress and plastic surface modifier constant for the 

parabolic Mohr-Coulomb model respectively. 

Step 8: calculate new value of N; go to step 2 and repeat. 

The constants m1 and m2 were determined by repeating the procedure above for different values at two 

different fatigue loads and optimising. These constants were then kept constant to determine the life for 

other fatigue loads. In this way, m1 and m2 were used to completely characterise the fatigue damage and 

failure of the SLJs.
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3.3 Evolution of damage and crack propagation

The maximum equivalent plastic strain in the middle of the adhesive layer is plotted across the width of 

the SLJ in Fig. 8 (a), for a maximum fatigue load of 7.5kN and for zero cycles (i.e undamaged). This load 

was 63% of the quasi-static failure load (QSFL), which was 11.95 kN, with a standard deviation of 0.31

[8]. It can be seen that the maximum strain occurs in the middle of the joint width, which is at zero on the 

Z axis because of the symmetric boundary conditions applied during the analysis. The strain is constant in 

the central region but decreases rapidly at the sample edges. This is consistent with experimental 

observations that the first cracks always appear in the central region of the SLJ, in the fillet region [8]. In 

Fig. 8 (b) the plastic strain along the overlap length in the middle of the bondline is shown. It can be seen 

that the maximum strain is at the end of the overlap region, i.e. below the embedded adherend corner.

This is in agreement with the location of first signs of damage and cracking in the joints [8, 17]. 

Damage progression in an element close to the embedded corner is plotted against number of cycles for 

different fatigue loads in Fig. 9(b). Similar behaviour was also found in other elements during the 

simulation.  It can be seen that a non-linear increase in damage was found with an acceleration towards 

the onset of cracking (denoted by D=1). When damage equals unity the element is deleted, hence creating 

a crack in the adhesive. The damage plot in Fig. 9(b) is for the element E shown in the finite element 

mesh in Fig. 9(a).

The crack growth (in the central section) for two different fatigue loads is plotted against number of 

cycles in Fig. 10. Elements were progressively deleted after the first crack formation and varied across the 

sample width. The crack lengths plotted in this figure are the crack lengths determined at the central 

section of the adhesive width, however the crack, also travels across the adhesive width during the 

simulation. This is in agreement with the experimental observations, wherein different lengths of cracks 

were found at different points across the adhesive. The predicted crack growth calculated is compared 

with experimental results in the same figure. It can be seen that there is a good match between predicted 
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and experimental results. The experimental details regarding the measurements of crack lengths can be 

found in [8, 17]. 

3.4 Extended S-N curve prediction

The total fatigue life calculated using the UFM matches well with the experimental results as shown in 

Fig. 11 (a), where, the experimental results are taken from earlier work by the same authors [8, 17]. The 

total life can be divided into initiation and propagation phases, as explained in section 2.3. It can be seen

in Fig. 11 (a) that the predicted proportion of initiation life increases as the fatigue load decreases, as also

seen in experiments [17]. The crack propagation life predicted using UFM is compared with that 

predicted using a fracture mechanics (FM) approach in Fig. 11 (b). More details of the FM approach are 

given in [20]. It can be seen that there is a difference in the gradient of the predicted propagation life, with 

the UFM method showing less load dependency, however, the predicted number of cycles spent in 

propagation to failure agree fairly well.

3.5 Strength and stiffness wearout and BFS prediction

In order to determine the strength degradation, a series of quasi-static loads were applied at each damage 

increment until the finite element model became unstable. The highest load at which the model converged

was taken as an approximate value of the residual failure load of the joint. Stiffness degradation was 

calculated by applying the maximum fatigue load to the joint and using the deflection of the joint under 

load to calculate stiffness. 

In Fig. 12 strength wearout results are plotted against number of cycles for two different fatigue loads. It 

can be seen that strength decreases non-linearly with respect to number of cycles with an accelerated 

strength degradation towards the end of the fatigue life. The predicted values are compared with 

experimental results taken from [8] in the figure. Excellent agreement between the predicted and 
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experimental results can be seen. The UFM was also used to predict the stiffness wearout of the SLJs by 

periodically determining joint displacement throughout the fatigue life. The predicted stiffness wearout is 

compared with experimental results for a maximum fatigue load of 7.5kN in Fig. 13. Similar to the 

strength wearout, it can be seen that the stiffness wearout is non-linear with an accelerated degradation 

towards the end of the fatigue life. There is a reasonable agreement between experimental and predicted 

strength wearout, however, the experimental results show a sharper decrease. This may be because of a 

lack of sensitivity in the experimental displacement measurements.

An important method of monitoring fatigue degradation in adhesively bonded joints in-situ is through the 

measurement of BFS [17, 25-27]. Experimental values of BFS are compared with predicted values in Fig. 

14, where experimental values are taken from [17]. Similar values and trends can be seen in the 

experimental and predicted results. The difference in results can be attributed to the absence of an exact 

crack propagation scenario in the prediction. In the simulation, symmetric crack growth from both ends of 

the overlap was assumed, whereas asymmetric crack growth is often observed in practice. A more 

detailed explanation of these asymmetries is given in earlier work on BFS by the same authors [17].

3.6 Summary

In order to summarise the capabilities of the proposed UFM, the block diagram shown in Fig. 1 is 

redrawn in Fig. 15, with the results from the constant amplitude fatigue testing of an adhesively bonded 

SLJ. The hub of the method is the damage propagation law given in eqn. 1. The main input data are the 

material properties, joint geometry and boundary conditions. Two fatigue life data results were used to 

determine the constants in damage growth law for the particular joint. These were then used for all other

fatigue loads.

Output consists of, firstly, damage evolution and crack propagation predictions as functions of the number 

of cycles and the fatigue load. Secondly, the extended L-N (or S-N) curve can be plotted, which shows
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both initiation and propagation lives as a function of fatigue load. Finally, damage monitoring parameters 

such as strength wearout, stiffness wearout and BFS can also be determined as functions of the number of 

fatigue cycles and the fatigue load. Hence, it has been shown that a single damage evolution law can be 

an effective tool in unifying the prediction of all the important characterisation of fatigue in bonded joints.

6. Conclusions

It has been shown that a damage progression law governed by equivalent plastic strain can be used as a

unified method to predict all the major parameters associated with fatigue in bonded joints. Output from 

the method includes, BFS, strength and stiffness wearout, 3D damage evolution and crack propagation 

maps and fatigue initiation and propagation lives. The technique is versatile and potentially can be used to 

also predict variable amplitude fatigue and combined creep fatigue with little further adaptation.
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Fig. 1. Schematic representation of Unified Fatigue Methodology.
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Fig. 2. Comparison between (a) damaged region observed in polished cross section and (b) the 
location of maximum equivalent plastic strain shown in finite element mesh of adhesive layer.
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Fig. 3. Schematic representation of extended L-N diagram.
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Symmetric planes

Fig. 6. Schematic sketch showing boundary conditions used for the analysis

Fig. 5. Typical mesh used for 3D crack propagation.



Fig. 7. Algorithm for DM based fatigue prediction.
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Fig. 15. UFM summarised with inputs and outputs for SLJ under constant amplitude fatigue loading. 
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