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Abstract

Computer network systems are constantly under attack or have to deal with attack

attempts. The first step in any network’s ability to fight against intrusive attacks

is to be able to detect intrusions when they are occurring. Intrusion Detection

Systems (IDS) are therefore vital in any kind of network, just as antivirus is a

vital part of a computer system. With the increasing computer network intrusion

sophistication and complexity, most of the victim systems are compromised by

sophisticated multi-step attacks. In order to provide advanced intrusion detection

capability against the multi-step attacks, it makes sense to adopt a rigorous and

generalising view to tackling intrusion attacks. One direction towards achieving

this goal is via modelling and consequently, modelling based detection.

An IDS is required that has good quality of detection capability, not only to

be able to detect higher-level attacks and describe the state of ongoing multi-step

attacks, but also to be able to determine the achievement of high-level attack

detection even if any of the modelled low-level attacks are missed by the detector,

because no alert being generated may represent that the corresponding low-level

attack is either not being conducted by the adversary or being conducted by the

adversary but evades the detection.

This thesis presents an attack tree based intrusion detection to detect multi-

step attacks. An advanced attack tree modelling technique, Attack Detection Tree,

is proposed to model the multi-step attacks and facilitate intrusion detection. In

addition, the notion of Quality of Detectability is proposed to describe the ongoing

states of both intrusion and intrusion detection. Moreover, a detection uncertainty

assessment mechanism is proposed to apply the measured evidence to deal with

the uncertainty issues during the assessment process to determine the achievement

of high-level attacks even if any modelled low-level incidents may be missing.
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Chapter 1

Introduction

With the advances of computer network systems, it is crucial to ensure the secur-

ity properties such as confidentiality, integrity and availability [12, 73] in com-

puter networks. However, since the computer network system becomes more

complex [76], the security properties are threatened by the increasing computer

network intrusions, not only the intrusion number but also the intrusion soph-

istication. The sophisticated intrusions are conducted by applying multiple in-

trusion tools or approaches in order to achieve an attack goal. Typically, they

are composed of multiple attacks as steps and even each step may further be

composed of multiple low-level actions. Both malicious adversaries and network

security researchers are continually investigating new ways for launching or detect-

ing multi-step attacks. The former mainly concentrates on the system compromise

by exploiting various vulnerabilities with such multi-step attacks. While the lat-

ter focuses on the system protection by modelling and detection to mitigate such

multi-step attacks.

Intrusion detection remains a vital task for current as well as emerging net-

works as the threat of adversarial intrusions is ever present, often irrespective of

the underlying technology or architecture. Since the number and types of intrusion

methods increase over time, it makes sense to adopt a more rigorous and gener-

alizing view to tackling those intrusion threats. One direction towards achieving

this goal is via modelling. The purpose of modelling is not only to provide details

on how each sophisticated attack has been carried out, but also to facilitate the

attack detection process itself.

In order to carry out the modelling against the sophisticated attacks, there

is a need to identify any detailed information, for example, the attack step, the

connections between attack steps. While it is good to be able to detect low-

level attacks as these are fundamental to any ultimate attack, it is also necessary

for an Intrusion Detection System (IDS) to detect and generate high-level attack

alerts because otherwise it may be prone to (low-level) alert flooding and false

1
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alerts [68]. Thus, one major challenge is how to model the whole operation of

multi-step attacks to assist the detection process. Once we obtain the model, the

next key challenge is how to conduct the intrusion detection process according to

the generated model.

Within the intrusion detection on any real networks, it is possible that any low-

level attacks may evade the detection from IDS. Therefore, an additional challenge

is how we could deal with any missed or unachieved low-level attack detection

when performing the high-level attack detection. Moreover, the last challenge is

that how the system administrator could quickly know the progress of the ongoing

multi-step attack detection process based on the generated attack model and the

conducted intrusion detection process.

1.1 Research Contributions

In this thesis, the proposed advanced attack tree based intrusion detection is based

on two main research fields: attack tree modelling and intrusion detection. Thus,

the research contributions can be classified into two groups: (1) contributions to

the attack tree modelling research; and (2) contributions to the intrusion detection

research.

Our research contributions and their linkages with the relevance to the related

research field are illustrated in Figure 1.1. As shown in Figure 1.1, our research

and our contributions are drawn as a block diagram within the big box. An inner

rectangle represents a major contribution, while an inner olive represents a minor

contribution. Several minor contributions contribute the achievement of a major

contribution. In addition, a cloud outside of the box represents an independent

research field. Each of our minor contribution relates to a research field. The top

left clouds are about the attack tree modelling research, while the bottom clouds

are about the intrusion detection research. These research fields will be described

in the background part as the following Chapter 2 and Chapter 3. Our research

contributions will be presented after Chapter 3.

Our first major contribution is the Attack Detection Tree (ADtT) and concerns

the multi-step attack modelling. It is shown as the middle inner rectangle with

“ADtT (Advanced attack tree)”. To the best of our knowledge, it is the

first advanced attack tree specialised for intrusion detection and with uncertainty

assessment.

The tree based Quality of Detectability (QoD) metrics (that is, the first left

bottom olive inside the big box) and Detection Uncertainty Assessment (DUA)

(that is, the middle bottom olive inside the big box) are specialised for Attack

Detection Tree. The first mechanism is able to conduct the realtime monitoring
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Figure 1.1: Research Contributions and their Relevance

on the ongoing intrusion detection progress based on the tree framework for the

system administrator. So, the system administrator can quickly know the status

of the intrusion detection progress. The second mechanism is able to conduct the

evidence assessment to deal with the detection uncertainty issues during the tree

based intrusion detection process.

Besides the aforementioned QoD and DUA, two further minor research contri-

butions: (1) the Unified Parametrisable Attack Tree (UPAT) (that is, the first top

left olive inside the big box), and (2) the attack resistance metrics aggregations

(that is, the second top left olive inside the big box) are also contribute to our first

major contribution. Both of them provide generic but essential theoretical work

on attack tree research. The first one modelles the attack tree into the generic

framework and defines three configurable parameters to set the possible attack

tree extensions. While the second one provides the attack resistance aggregation

approaches in the attack tree and analyses the weakest links of security systems.

Our second major contribution is about the attack tree based intrusion de-

tection, which is shown as the first right inner rectangle with “ATIDS (IDS

with attack tree algorithm based on ADtT)”, and concerns in particular

the high-level attack detection instead of the low-level detection on any single
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malicious network packet. We propose two different attack tree based intrusion

detection algorithms (that is, the right bottom olive inside the big box), called

Augmented Attack Tree based intrusion detection and Attack Detection Tree based

intrusion detection. The first one is able to detect the high-level attacks accord-

ing to the Augmented Attack Tree. This is a crucial result, because being able

to detect the modelled high-level attacks not only demonstrates the applicability

of this approach, but also provides the prototype for the second more advanced

one. The second detection algorithm is based on our first major contribution.

More precisely, our second intrusion detection algorithm conducts the additional

Quality of Detectability measurement and the detection uncertainty assessment to

assist the high-level attack detection. The experimental results show that both

the sequential based approach and the combination based approach can deal with

the detection uncertainty issue, but the combination one has better detection per-

formance with more high-level attacks detection.

1.2 Research Assumptions

The main research scope of this research is to propose an intrusion detection ap-

proach based on the modelled attack tree. However, there are some research issues

outside the research scope of this research. Therefore, we define three assumptions

used in this research to focus on the research scope.

Assumption 1: The applied low-level detector and the proposed intrusion detec-

tion system are vulnerability free.

Any software systems may have vulnerabilities. If any of the vulnerabilities

been exploited, the adversary may maliciously control the compromised software

system and cause any unpredictable damage. Our applied low-level detector Snort

and our developed Attack Tree based IDS (ATIDS) are software systems. It

is possible that both of them may have vulnerabilities due to poor design or

implementation. Once the adversary compromises any applied software, ATIDS

may conduct the misbehavior, such as, stop the detection process, evade any

particular intrusions.

Therefore, there is a need for us to assume that Snort and ATIDS are vulner-

ability free. Thus, the attack traffic from the adversary can neither compromise

ATIDS nor intentionally evade the detection.

Assumption 2: The generated attack detection tree represents the modelled multi-

step attacks precisely.

Though there are some free and commercial tools to generate attack tree model,
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no existing tool can assist us to construct our proposed attack detection tree

against any multi-step attacks. Thus, we model the attack detection tree manu-

ally by analysing the data and documentations about the applied attack data sets.

Because design and development of an automatic attack detection tree generation

tool does not fall in the scope of our research, we assume that our manually gener-

ated attack detection tree can precisely represent the modelled multi-step attacks.

Assumption 3: The adversary can conduct a high-level attack step within a short

time period.

The way to generate the multi-step attack is not our research goal. Thus, we

adopt the attack traffic generation within our experiments by replaying the attack

traffic captures, which are provided by the third party. In order to facilitate the

conducted detection experiments, the corresponding traffic capture of each attack

step is replayed based on the speed of the replaying software. Therefore, we assume

that the adversary can conduct a high-level attack step within a short time period.

1.3 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 2 provides a background of intrusion detection including preliminary

concepts and current state of the subject.

Chapter 3 reviews the relevant literature on attack graph and attack tree mod-

elling approaches as the foundation of this research.

Chapter 4 describes our Unified Parametrisable Attack Tree to provide the

scope to various attack tree extensions. In addition, this chapter presents our

proposed attack resistance aggregation approaches within the attack tree.

Chapter 5 describes our proposed Attack Detection Tree with two additional

mechanisms: the Quality of Detectability mechanism and the detection uncertainty

assessment.

Chapter 6 presents our two proposed tree based intrusion detection mechanisms

based on the original Augmented Attack Tree and Attack Detection Tree.

Chapter 7 presents the experimental setup and the achieved results.

Finally, Chapter 8 concludes the thesis and presents some future research that

can extend our work.

Parts of this research have been published in international journals and confer-

ence proceedings to demonstrate the novelty of this research. To date, six papers

have been published including two journal articles. An additional journal paper

has been accepted and in press. Moreover, another journal paper will be submitted

soon on the outcome of the attack detection tree based intrusion detection.
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The model of Unified Parametrisable Attack Tree described in Chapter 4 has

been published in part in [117], while the fourth section “Attack Resistance Ag-

gregation” has been published in [124]. In Chapter 5, the first described “Quality

of Detectability Metrics” has been published in part in [116]. In Chapter 6, the

second section “Augmented Attack Tree Based Intrusion Detection” has been pub-

lished in [115].



Chapter 2

Intrusion Detection

Intrusions are defined to be “unauthorised uses, misuses, or abuses of computer

systems by either internal authorized users or external adversaries” [76]. Accord-

ing to the National Security Telecommunications Advisory Committee (NSTAC)

of U.S. Government [84], intrusion detection is “the process of identifying that an

intrusion has been attempted, is occurring, or has occurred”.

Since Denning [28] methodised and systemised intrusion detection into IDS,

IDS had attracted numerous research in the last two decades and became one

of the important computer network infrastructure components. Figure 2.1 illus-

trates a typical abstracted network topology with IDS. The left Internet cloud

communicates with the right local area network (LAN) cloud through an IDS,

which is located on the physical link between two network clouds. Note that it

is possible to place IDS either outside or inside the firewall of LAN according to

the usage. The Internet is usually the root source of intrusion, whereas the LAN

is usually the ultimate target of intrusion. Take a coordinated attack, Distrib-

uted Denial-of-Service (DDoS) attack, for example, the adversary-compromised

secondary victims (also known as bots) consist of the botnet, which may be a

part of Internet cloud, generate and transmit the DDoS traffic into the primary

victim server in the LAN cloud through IDS to congest the LAN and overload

the primary victim server. As another example, a Web application attack, such

as SQL injection attack injects the malicious SQL statement into the victim Web

server within the LAN cloud to bypass the authorization and obtain confidential

information. Besides the network physical link located IDS, it is also possible to

install and employ IDS on any hosts with LAN to monitor the intrusion to the

corresponding hosts. Hence, the appropriate IDS can detect the aforementioned

computer network attacks and generate alarms to warn the network administrator

of the LAN.

This chapter reviews various intrusion detection related research from the basic

foundation to the additional augmentations. Section 2.1 describes the classification

7
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LANInternet

IDS

Figure 2.1: Abstracted Network Topology of Intrusion Detection System

of intrusion detection based on detection principles and data types. Section 2.2

introduces the typical research of intrusion detection. Then, the research diffi-

culties and existing limitations are described in Section 2.3. Intrusion detection

extensions like intrusion prevention and intrusion response are discussed in Sec-

tion 2.4. Section 2.5 describes the intrusion analysis including situation awareness

and uncertainty analysis of intrusion detection. Finally, Section 2.6 summaries

this chapter.

2.1 Classification of Intrusion Detection

2.1.1 Classification Based on Detection Principles

Currently known detection techniques can be categorized into two main principles:

signature based intrusion detection (SID) and anomaly based intrusion detection

(AID). Note that signature based intrusion detection is also known as misuse

intrusion detection, knowledge based intrusion detection or rule based intrusion

detection. Likewise, anomaly based intrusion detection is also known as behaviour

based intrusion detection.

• Signature based intrusion detection. The principle of SID is that the intru-

sion detection mechanism contains a number of known attacks description

or ‘signatures’ in the internal database. The stored signatures can be imme-

diately recognized when the intrusion pattern is matched.

The main advantage of SID is that it concentrates on audit data analysis

with less false alerts generation [47, 50]. However, the significant drawback of

SID is that it only detects the known intrusion patterns. Hence, SID cannot

identify novel intrusions which lack defined signatures. In addition, SID

suffers the bottleneck problem of signature updating [62], since the signatures

only can be defined and updated once any intrusions been achieved by the

adversary and been identified by the security researchers.
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The intrusion detection system which applies the SID principle is known

as Signature Based IDS (SBIDS). The most well-known and widely-used

SBIDS in intrusion detection research field appears to be Snort [2, 94], which

examines the security of each single network packet according to signatures

(rules).

• Anomaly based intrusion detection. The principle of AID is that the intrusion

detection mechanism detects any anomalous activities that run differently

from the acceptable normal profiles. AID relies on the models of the in-

tended normal behaviour of the computer network system and legitimate

user. The typical AID approach is characterise the normal network and user

behaviors with statistical profiles. AID interprets deviations from normal

behaviour as evidence of malicious behaviour [28]. Hence, the differences

between the normal behaviour and the anomaly behaviour can be presented

quantitatively and qualitatively [51].

The key advantage of AID is that it can detect not only AID known in-

trusions but also AID unknown intrusions. The main limitation of AID

is that it suffers from the difficulty of building robust models [47]. In or-

der to provide the detection precision, the professional expertise is typically

needed for the security analyst to tune the detection threshold of the stat-

istical files [111]. However, the imprecise detection leads the large number

of false alarms generation. These numerous alarms sending from IDS to the

system administrator are known as the alarm flooding, which may cause IDS

to be unusable and decrease the alarm sensitivity presented to the system

administrator [50].

The intrusion detection system which applies the AID principle is known

as Anomaly Based IDS (ABIDS). The widely-applied ABIDSs in intrusion

detection research field appear to be PHAD [69], PAYL [118] and Bro [3].

2.1.2 Classification Based on Type of Data

The data analysed by intrusion detection are generally classified into two categor-

ies: the network traffic, and the log information (including both the operating

system’s audit trails and the application’s logging information [73]). Accordingly,

there are two general groups of intrusion detection mechanisms on computer net-

work systems, namely, network based intrusion detection (NID) and host based

intrusion detection (HID).

• Network based intrusion detection. NID is normally applied at the gateway

of a network to monitor the real-time traffic which are transmitting across
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the network. NID examines the raw network packet and identifies the intru-

sion patterns from the packet header and the packet payload. The intrusion

patterns can be as simple as an attempt to access a specific port or as com-

plex as sequences of operations directed at multiple hosts over an arbitrary

period of time.

NID has the following three strengths [8]: (1) NID monitors the network

traffic for multiple hosts within local network at the same time; (2) NID

correlates attacks against multiple hosts; (3) NID does not affect host per-

formance.

However, NID has the following three major limitations [73]: (1) NID lacks

the capability to analyse the encrypted network traffic; (2) NID faces chal-

lenges to exhaustively capture and examine the network traffic since the

traffic bandwidth is continually increasing; and (3) NID conducts the de-

tections based on the directly extracted traffic information without high

reliability as the traffic information may be masqueraded or insufficient.

The intrusion detection system which applies NID is known as Network

Based IDS (NBIDS). The widely-used NBIDS in the intrusion detection

research field is Snort [2].

• Host based intrusion detection. HID is typically applied at the single host

within computer network systems to monitor the events which are generated

by both applications and users on the host. HID examines the host operating

system audit data from host logs, especially the system log, event log and

security log. When any of these log files change, HID makes a comparison

between the new log entry and attack pattern to detect the intrusion.

HID has the following three advantages [8]: (1) HID detects attacks that do

not involve the network; (2) HID can analyse what an application is doing;

(3) HID does not require additional hardware.

Nevertheless, HID suffers from the following two main limitations [73]: (1)

HID decreases the system performance due to the system resource and time

consumed to capture the event; and (2) HID examines the intrusion activ-

ities on the single host, which means multiple detectors are required in the

network to achieve efficient monitoring.

The intrusion detection system which applies HID is known as Host Based

IDS (HBIDS). HBIDS started in the early 1980s when networks were not

prevalent, comprehensive and heterogeneous as today. However, in the cur-

rent intrusion detection research field, there are only very limited research

that still focus on HID (for example, [109, 130]) in comparison with NID.
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In addition, the development of HBIDS has not been as successful as for

NBIDS in the security industry [73].

2.1.3 Distributed Intrusion Detection

Irrespective of the categories described in Section 2.1.1 and Section 2.1.2, an IDS

could be such that the detections of the intrusion are performed on a number of

detectors proportional on the network that is being monitored. This is called a

Distributed IDS (DIDS) [10, 123].

2.2 Typical Research of Intrusion Detection

2.2.1 Detection Techniques

In terms of detection accuracy, the ideal intrusion detection can instantaneously

detect all of the intrusions with 100% detection rate and 0% false rate. Unfortu-

nately, there are several practical problems, which will be presented in Section 2.3

in this chapter, that handicapped the satisfaction of this ideal detection accuracy.

In order to get close to this goal, the typical computer network intrusion detection

research focus on the proposal and implementation of new detection techniques

to detect either known or novel attacks with high detection rate and low false

rate [23, 37].

Many of the proposed detection techniques (for example, Bayesian network [42,

50], data mining [57, 58, 59], neural network [102]) are summarised in the liter-

ature [70, 86]. There are also several recently proposed detection techniques (for

example, self-organizing map [14], support vector machines [15], maximum en-

tropy estimation [38]). Note that normally the applied detection techniques are

falling under the aforementioned main principles and classification.

2.2.2 Fundamental Theoretical Research

Besides the aforementioned typical intrusion detection research that focus on de-

tection techniques, there are few but substantial research [23, 37, 62] that examine

the fundamental theory of intrusion detection (system) to fill in the gap between

practice and theory.

• Modelling of Intrusion Detection Process. The theoretical formalisation of

intrusion detection process has been given in [23]. The modelled intrusion de-

tection is defined as a set of algorithms, including: representation algorithm
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Figure 2.2: Modelling of an Intrusion Detection Process

R, data structure algorithm S and classification algorithm C. The repres-

entation algorithm R contains any functions relating to how to represent

data within the detection process, such as data filtering, feature selection,

formatting, etc. The data structure algorithm S contains any functions re-

lating to how to manipulate data during the detection process, such as data

collection, aggregation, knowledge creation, etc. The classification algorithm

C includes any detection principles.

Figure 2.2 illustrates the general intrusion detection process with the provided

intrusion detection modelling from [23]. The constructed model divides the

implementation of the intrusion detection into two phases: initialization and

detection, which are shown as two bottom solid line boxes. Meanwhile the

three modelled algorithms are represented as the top boxes. In the typical

intrusion detection process, the detector analyses and extracts the relevant

information from the coming traffic into the appropriate format, then, the

detector classifies the generated data into either the normal or malicious.

Therefore, S runs in the initialization phase and C applies in the detection

phase, while R assists the process in both S and C. Specifically, in the ini-

tialization phase, S uses R to process the input; in the detection phase, C
uses R to process towards the detection output.

• Modelling of Intrusion Detection System. The theoretical model of IDS has

been presented in [37] as an eight-tuple (D,
∑

, F, K, S, R, P , C). This IDS
modelling considers three different procedures of the IDS from the system

development till the system deployment, namely feature selection proced-

ure; training procedure; and detection procedure. Figure 2.3 illustrates the

modelled IDS procedures.
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Figure 2.3: Procedure for the Modelling of Intrusion Detection Systems

In the eight-tuple, the first four elements represent a set of data structures,

while, the last four elements represent a set of algorithms. For the four

data structure elements, D represents the data source (for example, network

traffic, system log) for IDS examination;
∑

represents a finite set of data

states indicating whether the data unit is normal or anomalous; F repres-

ents the data characteristics (for example, network protocol, port number);

and K represents the knowledge profile (for example, signatures, rules, stat-

istical profiles). For the four algorithms, S represents the feature selection

algorithm to either manually or automatically select and generate the fea-

tures of the data during the developing process of IDS; R represents the

data reduction and representation algorithm to automatically map the data

source D to data features F; P represents the profiling algorithm to gener-

ate the profile knowledge base K; C represents the classification algorithm

to map the features of given data to normal or anomalous data state.

Figure 2.3(a) shows the modelling of the feature selection procedure. The

typical feature selection procedure extracts the relevant data characteristics

from D and generates F by applying S. Figure 2.3(b) displays the modelling

of the profiling procedure. The typical training procedure generates K from

D by applying R and P . The modelling of the detection procedure is shown

in Figure 2.3(c). The typical detection procedure is to extract F from D by

first R, then, C conducts the detection and outputs
∑

according to K.
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• The detection principles of intrusion detection have been examined in [62]

to analyse the intrusion detection problems of model inaccuracy and model

incompleteness as well as lack of the distinguishabilily in the features utilised.

Figure 2.4 [62, 73] illustrates the theoretical activity space models for both

signature based intrusion detection and anomaly based intrusion detection.

It is clear that SID consists of illegal activities modelling as Figure 2.4(a),

whereas AID consists of legal activities modelling as Figure 2.4(b).

Legal Activities Space Illegal Activities Space

* TN * FP

* TP

* FN

Signature-based

Model

(a) Signature-based Model

Legal Activities Space Illegal Activities Space

* TN

* FP

* TP* FN

Anomaly-based

Model

(b) Anomaly-based Model

Figure 2.4: Theoretical Activity Spaces Models

According to Figure 2.4, the intrusion detection faced challenges are com-

pleteness (the intrusion detection can detect all illegal activities) and accur-

acy (the intrusion detection can only detect illegal activities) in both SID

and AID [62, 73]. The correctly detected activities within either signature

based model or anomaly based model, that is, the detected illegal activity

in signature based model and the detected legal activity in anomaly based

model are known as True Positive (TP). While, the incorrectly detected

activities within either signature based model or anomaly based model, that

is, the detected legal activity in signature based model and the undetected

illegal activity in anomaly based model are known as false detection. In SID,

the incompleteness leads to FN, whereas inaccuracy leads to False Positive

(FP). In AID, the incompleteness leads to FP, whereas inaccuracy leads to

FN.

2.2.3 Intrusion Detection Evaluation

The utilisation of good evaluation approaches is crucial to attain an accurate

and reliable evaluation of an IDS’s detection capabilities and performance. From

the view of intrusion detection evaluation, the IDS can be typically modelled as a

black box, which receives data (for example, network packets, log file entries) from

a certain source and has to determine if the input is an intrusion or not [8]. Gen-

erally, there are two main methods to evaluate intrusion detection performance:
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(1) Metrics Based Evaluation; and (2) Graphical Based Analysis.

• Metrics Based Evaluation. Metrics based evaluation mechanism is funda-

mental but essential in evaluating an IDS. It assesses how many intrusions

are detected correctly and how many are not. Note that, the ground truth,

which is the reality of the examined data with the intrusion information,

must be known in order to conduct the evaluation. Table 2.1 shows the

classification of such evaluation metrics. Normally, the class of generated

alarms is regarded as the positive class, and the class without alarm genera-

tion is regarded as the negative class. The definitions of common evaluation

metrics [34] are given as follows.

Table 2.1: Attack Detection Classifications

Attack Data Normal Data

Alarm Generated True Positive (TP) False Positive (FP)
No Alarm Generated False Negative (FN) True Negative (TN)

Definition 1 True Positive. A True Positive (TP) is an instance of the

positive class which is labelled as positive. A TP indicates a piece of attack

data which is correctly detected by the IDS.

Definition 2 False Positive. False Positive (FP) is an instance of the

negative class which is labelled as positive. A FP indicates a piece of normal

data which is wrongly labelled as an attack by the IDS.

Definition 3 True Negative. True Negative (TN) is an instance of the

negative class which is labelled as negative. A TN indicates a piece of normal

data which is correctly labelled as normal by the IDS.

Definition 4 False Negative. False Negative (FN) is an instance of the

positive class which is labelled as negative. A FN indicates a piece of attack

data which is not detected by the IDS and consequently evades it.

Based on these four common metrics, an IDS can be evaluated in terms of

Detection Rate (DR) [62], also called True Positive Rate or Recall ; False

Alarm Rate (FAR) [62], also called False Positive Rate; Precision [34]; and

Accuracy [34]. Note that True Positive Rate and False Positive Rate are

different from the TP and FP common metrics. “|.|” denotes the frequency



CHAPTER 2. INTRUSION DETECTION 16

of the metrics, for example, |TP| represents the number of TP been classified

within detection process.

DR is defined as

DR =
|TP|

|TP|+ |FN|
(2.1)

and measures the ratio between the number of correctly classified attacks

(detected alarms) and the total number of attacks.

FAR is defined as

FAR =
|FP|

|TP|+ |FP|
(2.2)

and measures the ratio between the number of incorrectly classified normal

data and the total number of alarms.

Precision is defined as

Precision = 1− FAR

=
|TP|

|TP|+ |FP|
(2.3)

and measures the ratio between the number of correctly classified normal

data and the total number of alarms.

Accuracy is defined as

Accuracy =
|TP|+ |TN|

|TP|+ |FP|+ |TN|+ |FN|
(2.4)

and measures the ratio between the total correctly classified data, which

includes both the attack data and normal data, against the summation of

the positive class and the negative class.

In addition to the metrics mentioned above, there are other evaluation

metrics used to investigate the intrusion detection’s detection performance.

Some of the metrics (for example, F-Score [105] in Equation (2.5)) can be

directly measured by applying the four common metrics. Some metrics need
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extra information (for example, Bayesian detection rate [9] requires the Base

Rate value) to assist the evaluation. While, some metrics require different

information instead of the common metrics, for example intrusion detection

capability [36], which is simply the ratio of the mutual information between

IDS input and output to the entropy of the input. Furthermore, some met-

rics are proposed to measure other aspects of intrusion detection, for ex-

ample, fuzzy comprehensive evaluation based entropy weight coefficient [106]

considers fuzzy logic to examine IDS in functionality, expansibility, practic-

ability and security aspects by measuring the truth degree of each aspect;

expected cost [35] assesses the monetary investment of an IDS in a given IT

security infrastructure.

F-Score =
2

1
Precision

+ 1
Recall

(2.5)

• Graphical Based Analysis . This offers the graphical evaluation capability to

intrusion detection according to the plotted curves. Instead of the detection

accuracy evaluation, the evaluation curves (for example, Receiver Operating

Characteristic Curves (ROC) [34, 35], Intrusion Detection Operating Char-

acteristic (IDOC) [20]) focus on the provision of additional evaluation tasks

by applying some of the aforementioned metrics.

ROC represents the detection probability at a given false alarm rate. By

illustrating multiple ROC curves, it is easy to identify the total detection

performance of intrusion detection approaches when curves do not cross.

However, the limitation of ROC is that it cannot make comparison if the

curves cross.

Since some of the metrics (like Bayesian detection rate) require priori inform-

ation to measure the performance with uncertainties such as the likelihood of

an attack and the operational costs of intrusion detection, IDOC is proposed

to represent detection probability at a Bayesian detection rate, also known

as Positive Predictive Value (PPV). Hence, IDOC can evaluate intrusion

detection with the model of adversary information.

2.3 Problems of Intrusion Detection

An ideal intrusion detection should be free of false alerts and thus detect attacks

with 100% precision. It should avoid excessive response times and have minimal

computational cost [127]. Though intrusion detection being globally studied for
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more than two decades since Denning’s intrusion detection prototype [28], there

are unsolved difficulties and limitations that handicap the achievement of perfect

intrusion detection.

2.3.1 Difficulties

Many novel intrusion detection techniques have been proposed and employed for

better performance in terms of high detection rate and low false alarm rate, which

are closer to the ideal conditions, in the experimental environments. However, no

perfect intrusion detection practically exists due to the following known difficulties.

• Rapid augmentation of computer network systems. Current computer net-

works are becoming more comprehensive, as various emerging digital devices

(for example, laptop, iPad, smart phone) are connected into a heterogeneous

system. Thus, it is difficult for a single IDS to precisely detect all kinds of

known vulnerabilities and known intrusions (as well as deviations of any

intrusions) for different IDS-deployed digital devices. Any imprecisely de-

veloped detection signatures or statistical profiles will lead to inaccurate

detection with FP and FN.

• Rapid emergence of new vulnerabilities and intrusions. Within the hetero-

geneous networks, there may exist unknown vulnerabilities on either recent

devices or old products. Vendor unidentified security flaws, which are new

vulnerabilities and intrusions (that is, zero-day attack, which compromises

publicly unreported vulnerabilities that are exploited by the adversary.), may

exist on the latest computer network products within either hardware drivers

or application software. Normally, the IDS updates the intrusion knowledge

after adversaries compromise or security analysts identify the flaws. Thus,

intrusion detection lacks the capability to detect new vulnerabilities and

unknown intrusions leading to inaccurate detection with FN.

2.3.2 Limitations

The limitations of intrusion detection could be solved by the researchers compared

with the difficulties of intrusion detection. Usually, the limitations are weaknesses

of intrusion detection mechanisms or deployed systems. Some of the known limit-

ations are as follows.

• Low-level detection with independent intrusion reporting [79, 81]. No matter

what detection principle has been applied and what audit data has been ex-

amined in intrusion detection, the deployed intrusion detection mechanism
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or IDS normally detects the intrusion entirely from low-level raw informa-

tion (for example, raw network traffic, host log file record). Though low-level

information contains the potential implications for intrusion possibilities, it

is difficult for the intrusion detector to directly report the high-level alarm

abstraction (that is, the system has been compromised). Typically, IDS

implements the detection by ignoring the context of the overall computer

network system and its most critical resources, like the actual network con-

figuration and vulnerabilities. Take Snort for example, it only examines

every single raw network packet’s header and payload information to de-

termine the intrusion.

In addition, the current computer network intrusions are not only increasing

in numbers, but have also become more sophisticated. Instead of the single

step intrusion, the adversary proposes a detailed and systematic plan be-

fore conduct the intrusion, then, compromises the system by implementing

multi-step intrusions logically. However, current intrusion detection lacks

the capability to distinguish the hidden logic and relation (that is, causal

relation, which represents that the achievement of one intrusion step causes

the occurrence of another intrusion step) from the various detected low-level

intrusions.

Hence, an additional problem is independent intrusion reporting. As one

low-level detected intrusion causes one alarm, IDS may generate repetit-

ive alarms within one specified period, since the adversary may continually

implement the same type of intrusion for information gathering or other

intrusion purposes. For example, DDoS attacks contain huge numbers of

malicious packets within attack traffic. Snort raises alarms against every

malicious packet, though most of the generated alarms may be quite re-

dundant. Also, Snort generated alarms can not tell the precise progress of

multi-step intrusions. Meanwhile, the system administrator is overwhelmed

by the flood of redundant alarms.

• Self-existed vulnerabilities on implemented IDS. Since IDS is usually a set of

computer programs, there are some possibly existed security flaws or vul-

nerabilities on the IDS due to the poor system design and implementation.

Hence, if an adversary can somehow prevent or terminate an IDS by com-

promising the explored vulnerabilities, the whole IDS-monitored computer

network system is left without protection.
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2.4 Extensions of Intrusion Detection

Since intrusion detection (system) only deals with discovery of intrusions on com-

puter networks, there are several additional intrusion detection based extensions.

2.4.1 Intrusion Prevention

The process of intrusion detection stops with generating alarms and relies on

manual responses by the administrator. The resulting delays between the detec-

tion and response may range from minutes to months. Therefore, there is a need

to respond to intrusion automatically.

The system that applies the intrusion prevention mechanism is known as an

Intrusion Prevention System (IPS). An IPS provides the intrusion detection cap-

abilities additionally reacting in real-time to stop or prevent undesired access,

malicious content and inappropriate transactions [16]. IPS can also be divided

into network based IPS (NBIPS) and host based IPS (HBIPS) according to the

audit data type [16, 125, 128]. NBIPS operates inside the network to monitor

all network traffic for malicious code or attacks. The main prevention functions

are traffic blockage of potential intrusion and traffic termination of current intru-

sion [7]. When an intrusion has been detected, NBIPS drops the malicious traffic

while continually allowing legal traffic to pass. HBIPS operates on the individual

host where system and user actions are inspected for intrusions.

2.4.2 Intrusion Response

Intrusion response is a further extension to intrusion detection and intrusion pre-

vention. Intrusion response provides the response functions with further analysis

to minimize impact from the intrusion [7]. The response process can be typically

classified into two categories: active response and passive response. According

to [7], an active response fights against an intrusion in order to minimize the

impact from intrusion to a victim, whereas a passive response informed the occur-

rence of an intrusion to other parties and relies upon them to take further action.

Active response can be further subdivided into a proactive response, which controls

the potential intrusion before it happens, and a reactive response, which reports

and responses after an intrusion.

2.5 Intrusion Analysis

Intrusion analysis refers to the analysis of intrusion detection and forensics to

identify attack traces from possibly large number of audit data [85]. In this thesis,
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the intrusion analysis has only been applied for the intrusion detection aspect.

Typically, intrusion detection concentrates on the detection processing of any ad-

versary intended and executed intrusions. However, there is a need to analyse the

intrusion detection for the additional information beyond the low-level detection

before and during, even after the detection process. The intrusion analysis process

can be classified into two main categories according to the time of analysis: (1) in-

trusion threat and situation analysis, which take place before the end of intrusion

detection; and (2) intrusion detection uncertainty analysis, which is conducted

during intrusion detection process.

2.5.1 Intrusion Threat and Situation Analysis

Intrusion threat analysis and intrusion situation analysis investigate any additional

intrusion information (for example, adversary’s prerequisite intrusion conditions,

intrusion progress within the multi-step intrusion) before and during the intrusion

detection process.

• Intrusion threat analysis. Intrusion threat analysis mainly investigates the

preconditions of intrusions by taking the standpoint of the adversary before

intrusion detection takes place. In order to implement a successful intrusion,

the adversary usually needs to achieve the following three aspects [39]: (1)

capability (the ability to execute an intrusion); (2) opportunity (the envir-

onment permits the intrusion to happen); and (3) intension (the adversary

must have a reason for the intrusion).

An adversary’s capability depends not only on the types of intrusions that

he/she can implement, but also the ability to execute these intrusions ef-

ficiently [30]. The sophisticated adversary, who has high level of intrusion

capability, usually has a detailed intrusion plan before the intrusion and

adapted methodology to treat problems identified during the intrusion pro-

cess, even tricking the intrusion countermeasures (for example, botnet usage,

malicious intrusion packet masquerade) and cleaning the intrusion trials to

prevent the potential forensic analysis. An adversary’s opportunity implies

the vulnerable and exposed entities on the computer network system that

can be accessed given the current progress of attack [30]. The opportunity

information contains the physical connection between the explored vulner-

abilities within entities of the network system. These compromised entities

sometimes are simply the stepping stones to the ultimate victim or intrusion

goals. An adversary’s intentions are the desired effects that the adversary

wants to achieve [87]. Some typical intrusion goals are the satisfaction of

curiosity, confidential information theft and hostile intrusion.
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Intrusion threat analysis may partially provide intrusion detection with the

adversary’s opportunity information. However, as per the previously men-

tioned limitations of existing intrusion detection in Section 2.3.2, the detec-

tion mechanisms usually concentrate on low-level detection of the adversary

launched intrusions. They seldom combine the potential opportunity inform-

ation into the detection process. Besides the opportunity information, it is

extremely difficult for intrusion detection to identify capability and inten-

tion information due to both capability and intention cannot be objectively

measured or identified.

• Intrusion situation analysis. Intrusion situation analysis analyses the pro-

gress of intrusion from the point of detection during the intrusion detection

process. This analysis usually needs the assistance of the priori construc-

ted model, which constructs the formal model of intrusion situation meas-

urement and supports the general process of using and analysing intrusion

alerts collected from intrusion detection detectors. Attack graph [6, 40, 41,

43, 99, 103] and attack tree [25, 56, 107, 108] are main stream graph-based

modelling approaches that provide the security analysis to computer network

systems. Either attack graph or attack tree illustrates possible multi-stage

intrusions for the targeted network, typically by presenting the logical caus-

ality relations between intrusion steps and physical configuration settings.

More information about attack graph and attack tree will be described in

Chapter 3.

Through the run time intrusion situation analysis against the model, the

derived information from on-going situation may be additionally used to

determine appropriate actions for proactive defense [39]. In addition, the

casual relations between intrusion steps allow pinpointing where the cur-

rent intrusion situation is located within the sophisticated multi-step attack

process.

The generation of network security situation [33] can be divided into three

steps: (1) to obtain attack patterns from the sample data set by apply-

ing knowledge discovery methods; (2) to transform the measured patterns

into the correlation rules; and (3) to conduct the network security situation

assessment with real-time data set. However, there are several main diffi-

culties [33] that handicap the implementation of intrusion situation analysis:

(1) there are lots of detection uncertainties because the false detection rate

may be high from the applied IDS; (2) the relations between the alerts, which

are generated from the large scale network attacks, are complex and difficult

to be determined.
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Figure 2.5: Uncertainties within Intrusion Detection

Therefore, one could conclude that the modelling of intrusion opportunity in-

formation and the multi-step intrusion with hidden logical relation can enable the

analysis function before and during the intrusion detection process to overcome

the limitation of low-level detection.

2.5.2 Intrusion Detection Uncertainty Analysis

Uncertainty is an innate feature of intrusion analysis due to the limited informa-

tion obtained by system security monitoring tools (that is, IDS, firewall, system

logs) [85]. Within the scope of intrusion detection, the possible uncertainty ana-

lysis deals with any uncertain intrusion logical relations and uncertain intrusion

information, such as, trustworthiness of the detection result and trustworthiness

of the intrusion source, during the intrusion detection process.

Figure 2.5 shows three uncertainties during the whole intrusion detection pro-

cess: input observation uncertainty, detection process uncertainty, and output ob-

servation uncertainty.

• Input observation uncertainty. This uncertainty issue is related to the ob-

served input data by the detector. Normally, the intrusion detector simply

extracts the relevant information from the requested fields of the observed

audit data. However, the professional adversary may fake the audit data.

The typical process is to masquerade the source IP address of malicious net-

work packet. In addition, they remotely control the compromised bots to

conduct further intrusions on the primary victim without revealing his/her

real location.

Thus, the typical input observation uncertainty means the uncertainty of

whether the incoming audit data is generated by the claimed source or not,

where the adversaries are, and what intrusion options he/she has made to

carrying out the intrusion [61].

• Detection process uncertainty. This uncertainty represents uncertainty issues

during the detection process by the IDS. There are two possible uncertainties:
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(1) classification uncertainty ; and (2) alert correlation uncertainty.

∗ Classification uncertainty is related to how the IDS can ascertain that

the observed symptoms can correctly lead to the alarm generation. IDS

typically conducts the detection process by matching the captured or

partial predefined signatures or statistical profiles. Thus, the obtained

information has varying levels of certainty to raise the alarm. In Snort,

a rule defines a set of malicious information as a specified attack sig-

nature. Some rules have specific information (for example, specified

port number in port field, unique malicious packet payload content in

content field) on every rule field, while, some rules have less specific

information (for example, any in IP address field, any in port field)

instead of fixed malicious information on some rule fields. But, it is

possible for a single malicious packet to be matched with several dif-

ferent Snort rules. In that case, it is difficult to ascertain that the

generated Snort alerts are correct.

∗ Alert correlation uncertainty. In the alert correlation process [24, 74,

105, 112, 113], the uncertainty is related to how to explicitly model

or determine the certainty level in the correlation process [85]. The

typical scenario of alert correlation uncertainty is within DIDS. Since

the multiple intrusion detectors may generate different detection results

on the same piece of audit data, the question is how the analyser can

deal with different detection results and fuse them into the a single

output. Dempster-Shafer theory [21, 123] has been applied to deal

with this issue.

• Output observation uncertainty. This uncertainty can be regarded as IDS

detection performance analysis in terms of detection accuracy. Once the

detector obtains any results, it lacks an automatic capability to verify the

generated results as being a true positive alarm. It is difficult even for the

human security expert to identify the detection accuracy without the ground

truth of the examined traffic.

2.6 Summary

This chapter has described the background of intrusion detection, which is a mech-

anism to identify unauthorized use, misuse and abuse of computer network sys-

tems. Firstly, the intrusion detection classifications was described according to

different detection principles and different data types. Next, the typical intrusion
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detection research were presented including detection techniques, fundamental the-

oretical research and the evaluation approaches as the concrete research results in

recent years. Then, the difficulties and the limitations to intrusion detection re-

search were discussed to motivate why intrusion detection is a challenging but still

attractive research area. After that, intrusion prevention and intrusion response

were briefly described as subsequent stages after the intrusion detection. Finally,

the existing intrusion analysis approaches were identified and reviewed.

The following chapter reviews attack graph and attack tree modelling tech-

niques as our research’s second background part.



Chapter 3

Attack Modelling Approaches

This chapter reviews the recent attack modelling research. As we need to build

an attack model to facilitate the corresponding intrusion detection process, it is

necessary for us to propose a specialised attack modelling approach by identifying

and extending the current and known attack modelling approaches. In addition,

it is essential for us to examine the known node connectors, node metrics and ag-

gregations for the relevant modelling and computation. Moreover, since the attack

graph modelling technique has been applied to conduct any intrusion detection

related research already, we additionally investigate the attack graph modelling

technique. The presented information in this chapter provides the foundation for

our attack tree modelling research. Thus, we may propose our attack tree model-

ling technique by applying or extending the selected node connectors, node metrics

and aggregations to generate attack tree model for the intrusion detection in the

following chapters of this thesis.

In the multi-step intrusion process, the adversary usually uses a compromised

victim machine as a stepping stone to launch another exploit on a new victim ma-

chine and then, repeats the process until an ultimate goal has been achieved. This

style is normally known as a chain style [6]. Attack chaining is an iterative pro-

cess that supports automated vulnerability analysis by enumerating vulnerability

interactions [26].

In order to modelling these multi-step attacks, security researchers often organ-

ise the chains of exploits into graphs or trees by applying attack graph modelling

techniques or attack tree modelling techniques. Although the precise definitions

of attack graph or attack tree vary by the researcher, it is useful to think of an

attack tree as a structure in which each possible attack chain ends in either a leaf

node or a root node that satisfies the intrusion goal, and an attack graph as a

consolidation of the attack tree in which some or all common states are merged

[6].

The attack graph modelling technique has usually been applied to model and

26
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analyse the given computer network system security with system information (for

example, specific vulnerabilities on various hosts, connectivity between hosts, ad-

versary access privileges on various hosts) in conjunction with the intrusion pro-

cess. While attack tree modelling technique, which is a specialised attack graph

with a tree structure, typically has been applied to model and analyse system

security without additional hybrid system information.

An attack path in either attack graph or attack tree represents a series of

intrusions (also known as atomic attacks) corresponding to a sequence of state

transitions culminating in the adversary achieving his/her goal. The entire attack

graph or attack tree is thus a representation of all the known ways that the ad-

versary can succeed to compromise the target victim [99]. Hence, the resulting set

of all possible attack paths is a predictive attack roadmap [82].

In this chapter, Section 3.1 and Section 3.2 describe the attack graph and the

attack tree with the following aspects: representations, generation approaches, and

the combination with intrusion detection, respectively. Section 3.3 investigates the

node connector extensions besides the conventional conjunctive and disjunctive.

Section 3.4 classifies and describes the metrics and attributes on the modelled

graph/tree nodes. Then, the possible metric aggregation approaches and the at-

tack resistance aggregation are represented in Section 3.5. Finally, the summary

of this chapter is given in Section 3.6.

3.1 Attack Graph Modelling Approach

The attack graph modelling technique provides capabilities for the network se-

curity researcher or the system analyst to model, analyse and assess the security

among any particularly given networks. Based on the constructed graph model,

both the analyst already known and the analyst unexplored attack information

may be explicitly illustrated. This attack information usually includes the rela-

tionship between network components and potential attacks and also their con-

sequences in a particular context. Such a context typically considers the physical

or logical connectivity between network devices, vulnerabilities on each single net-

work device. Thus, attack graphs allow the network security researcher or the

system analyst to assess the true vulnerability of critical network resource, and

to understand how vulnerabilities in individual network components contribute to

the overall vulnerability [77, 121].

Since attack graphs try to model various possible intrusion paths on the tar-

geted system, the constructed attack graph is termed as exhaustive if it covers all

possible attacks, and is termed as succinct if it contains only those network states

from which the adversary can achieve his/her intrusion goal [99].
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3.1.1 Representations of Attack Graph

There are many different attack graph literature and many representations [43, 89,

99, 119, 120, 121]. However, the core idea of attack graph [40] remains the same: an

attack graph shows the ways an adversary could compromise a network or host. In

addition, the fundamental elements of an attack graph remain the same: the node

usually represents the possible state and the edge usually represents the possible

state transition. Several typical representations of attack graph are now discussed.

Common Attack Graph Representations

The usual attack graphs [43, 89, 99] apply a geometrical shape to represent the

node. Within the node, there is various information, such as, intrusion information

to describe node state, which can be filled in according the modelling requirements.

The node in the attack graph [89] represents the state as the combination of

a physical host, the corresponding user access level, and effects of the attack so

far. An edge is a change of state caused by a single malicious attack or legitimate

action taken by the adversary, or a single action taken by an unwitting victim from

a piece of malicious code. Figure 3.1(a) illustrates a sample attack graph diagram

from [89]. The top node is the ultimate intrusion goal on the primary victim

machine. While the two connecting branches are the attack paths from another

two machines which are physically linking to the primary victim machine. Each

node contains any of the following node attributes information: user level as the

possible user privilege; host machine ID; vulnerability that represents the changes

to the original configuration caused by the intrusion; capability that represents

the physically possible intrusion behaviors.

The node in attack graph [43, 99] contains the state information with several

attack information (that is, pre-defined attack ID, the detectable flag of IDS, and

attack source and target hosts). An edge corresponds to an atomic attack whose

preconditions are satisfied in the source node and postconditions in the destination

node. Figure 3.1(b) shows the generated example attack graph from [99]. The

first left node on the top row “att 0” represents the researcher defined attack

index number, which corresponds to the intrusion step to be attempted next;

“S” indicates the detection capability of IDS to the corresponding attack, which

is detectable or stealthy; “0 −> 1” represents the intrusion source “0” to the

intrusion destination “1”, where “0” and “1” are defined host numbers.

Though Figure 3.1(a) and Figure 3.1(b) look dissimilar (that is, node shape

(circle in Figure 3.1(a) and square in Figure 3.1(b)), graph structure (Figure 3.1(a)

had modelled the graph from the standpoint of host with physical connection,
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Figure 3.1: Two examples of a Common Attack Graph Representations

whereas Figure 3.1(b) had built the graph from the standpoint of attack process),

node attribute types), both of them have applied the single node type to represent

the state in addition with the defined node attributes.

Jajodia’s Attack Graph Representation

Besides the above mentioned representations with geometrical shapes, Jajodia,

who is the world leading attack graph researcher, had proposed his unique attack

graph representation approach [119, 120, 121] compared with the common ap-

proaches [43, 89, 99].

In Jajodia’s attack graphs [119, 120, 121], the system states have been defined

as conditions in plaintext instead of any geometrical notations. Additionally, the

commonly represented edge transition splits into two edge sections by an additional

oval in the middle. The ovals are shown as exploits, which are adversary utilised

vulnerabilities between connected host machines. Moreover, the split directed

edge represents the relation and connects conditions with exploits. An edge from

a condition to an exploit denotes the required relation, which means the exploit

cannot be executed unless the condition is satisfied; whereas an edge from an

exploit to a condition denotes the implication relation, which means that the

adversary executes the exploit to achieve the condition.

Figure 3.2 illustrates an attack graph example from [119]. The top node user(0)

indicates the root node and the bottom node root(2) indicates the leaf node. Com-

pared with the aforementioned attack graphs, the condition node within this rep-

resentation provides less state information. The only depicted information are
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Figure 3.2: An example of Jajodia’s Attack Graph Representation

the user level at any particular machine (for example user(0) represents the user

level at host machine 0, root(2) represents the root level at host machine 2) and

trust relationship between two physical hosts (for example trust(0, 1) represents

the established trust relationship from host machine 0 to host machine 1). How-

ever, the additional exploit oval on the state transition shows the vulnerability

between two host machines (for example rsh(0, 1) represents a remote shell login

from host machine 0 to host machine 1). Furthermore, the probability attributes

are assigned to the condition and the exploit to analyse the likelihood of successful

intrusion from the adversary.

Generally, no matter what kind of attack graph representation had been pro-

posed or applied, the core idea of attack graphs is essentially the same, that is,

for the graphical illustrations of how an adversary can compromise a network or

host step by step.

3.1.2 Generation of Attack Graph

Specialised Attack Graph Generation

The old fashioned attack graph generation method was that security experts

(like Red Team [100]) manually drew the graph, which is tedious, error-prone and
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impractical for large network [99]. In recent years, there have been several ad-

vanced attack graph generation approaches [41, 89, 99, 100, 103] been proposed

to generate attack graph automatically. The automated generation process can

be mainly classified into following two steps: (1) model the target network; and

(2) produce an attack graph for the target network. In the former step, the ana-

lyst identifies and collects the fundamental information of a targeted network (for

example, network topology, host vulnerability) as the input source for the auto-

mated attack graph generation. In the latter step, the developed graph generator

processes the input source and displays the constructed graph on a graphical user

interface (GUI).

Since the incomplete information or the wrong information may lead to inac-

curate description of the target network, the fundamental information identific-

ation and collection is the critical process in attack graph generation. In order

to build a complete and correct attack graph, the analyst tries to collect various

information from the network. The common information contains the following

aspects: network information, host information, vulnerability and attack library.

Different researchers also have their own extra focuse (adversary attack capabil-

ity (novice or expert) [89], IDS detection capability (detectable attack or stealthy

attack) [99, 100], adversary privilege level on host (none, user, root) [99, 100]).

Network information usually includes the physical network topology, the network

connectivity between hosts and ports, whereas host information usually includes

the host type, operating system version of host, enabled service on the host. Vul-

nerability lists the measured vulnerabilities on host. Attack library stores the

knowledge of known attacks. The abstracted attack graph generation process is

illustrated as Figure 3.3.

The way to obtain this input information is another problem that affects the

quality of attack graph generation. As the analyst may manually specify all of

the necessary information, there is no guarantee about the correctness and com-

pleteness during the manually analysis, especially with large and comprehensive

networks. One direction to address this problem is to apply an automatical in-

formation gathering tools, such as Nessus vulnerability scanner [80, 82]. With the

assistance of Nessus, which generates the vulnerability report for each host and

the host connectivity in network, the Topological Vulnerability Analysis (TVA)

tool [41] can automatically generate attack graphs for the large network. Simil-

arly, Network Security and Planning Architecture [65] provides the attack graph

generation capability with up to 50,000 hosts with the assistance of Nessus. Be-

sides Nessus, more scanning tools (like Nmap [22]) obtain the detailed system

information about host and vulnerabilities, then integrate the scan outputs from

the multiple scanners into the merged information with the unified format to fa-
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Figure 3.3: Abstracted Attack Graph Generation Process

cilitate the attack graph generation.

In terms of automatically gathering information, vulnerability analysis [6, 41,

65, 89, 104] is one of the foundations of attack graph modelling. This topic is

beyond the scope of my research.

Other Attack Graph Generations

Besides the above specialised attack graph generation approaches and tools,

some security researchers have applied other methods (for example, data min-

ing [60, 63]) to generate the attach graph. However, since the goals of attack

graph generation may be different, the differences between graph representations

do occur.

In the data mining approach [60, 63], instead of vulnerability analysis against

the targeted network, the researchers target on the generation and the probability

computation of attack scenarios in the attack graph, and apply the constructed

attack graph to predict the next attack step. Through the data mining approach,
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the researchers mine the associations between the attack classes according to the

off-line IDS analysis of captured dataset, which is the only attack graph generation

input source. Hence, in contrast with the generated attack graphs by the special-

ised aforementioned attack graph tools, the representation of generated nodes lack

detailed host information and network information.

3.1.3 Attack Graph with Intrusion Detection (System)

The main goal of attack graphs is to analyse the security of a target network,

whereas the main goal of intrusion detection is to identify the intrusion by the

adversary to a target network. Since intrusion detection by IDS typically explores

the attacks according to the known vulnerability signatures or attack rules from

the vulnerability analysis, thus, attack graph can serve as the basis of intrusion

detection for the analyst and IDS.

Refer to IDS, two following principles [43] have been pointed out about IDS

based on attack graph: (1) the generated alerts from an IDS can match individual

alerts to attack edges in the graph; and (2) the successive matched alerts to in-

dividual paths in the attack graphs dramatically increases the likelihood that the

network is under attack. Hence, attack graph allows the IDS to predict attacker

goals, aggregate alarms to reduce the volume of alert information to be analysed,

and reduce the false alarm rates [43].

Fundamental Intrusion Detection Analysis

A generated attack graph describes all likely attacks and possible attack paths

against the targeted network. As mentioned in the above paragraphs, the at-

tack graph has been generated based on network and host information together

with the vulnerabilities in the network or hosts. Thus, the attack graph analyses

the vulnerabilities and potential intrusions by the analyst for intrusion detection.

Usually, the attack graph assists the analysis of intrusion detection to examine

the intrusion behaviour from the adversary within a given network, instead of

providing the foundation for detection process from IDS on the given network.

Security analysts [43, 99] use attack graphs for intrusion detection analysis,

which has targeted on the generation of all attack paths and demonstration of how

the adversary can compromise the target without detection by the IDS. According

to the provided network example, an attack graph model with finite states has

been constructed. A state in the constructed model represents the state of the

system between atomic attacks, whereas a state transition corresponds to a single

atomic attack by the adversary. The main analysis steps including: (1) State
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Identification; (2) Connectivity Determination; and (3) Transition Analysis.

The State Identification step identifies the finite states of the model. Each

state contains the following three components: the fact of network; the privilege

of intruder; and the detection capability of IDS. For the fact of network, the ana-

lyst determines host services, host vulnerabilities, connectivity and remote login

trust relation between hosts. For the privilege of intruder, the analyst determines

the level of privilege that the intruder has on each host. For the detection cap-

ability of IDS, the analyst determines the stealthy or detectable attack for IDS.

The Connectivity Determination step determines the connection availability and

trust relation between hosts. The Transition Analysis step models the atomic

attack with the four following fields: adversary preconditions; network precondi-

tions; intruder effects; and network effects. Referring to the adversary’s threat

assessment, the first two conditions define the adversary’s opportunity, whereas

the third condition represents the adversary’s intention.

In the constructed attack graph, the node contains four elements: attack type;

source host; target host; and attack strain indicator. The root nodes represent the

initial intrusion states from the adversary’s source host. While the leaf nodes rep-

resent the achieved intrusion states on the compromised victim host. Any path in

the graph from a root node to a leaf node illustrates a sequence of atomic attacks

that the intruder can employ to achieve the ultimate goal.

Advanced Implementation for Intrusion Detection

Besides the intrusion detection analysis of the targeted network, the attack

graph had been applied to assist other intrusion detection related research.

In [82], the attack graph assists the optimal placement of IDS on the network

to cover all critical paths with minimal cost. In [95], the attack graph has been

integrated into the IDS management system to improve the alert and correlation

quality. In [60, 63], the attack graph assists the analyst to predict the next attack

step from the adversary.

Intrusion Uncertainty Analysis in Attack Graph

In the typical security analysis with attack graph modelling technique, the

logical relations are usually regarded as deterministic: the successful intrusions by

adversary will certainly happen in their worst forms as long as all the prerequisites

are satisfied, and no intrusions will happen if such conditions do not hold [61].

However, such logical causalities encoded in a deterministic attack graph do not

precisely describe the process of real-time security events and nor do that exactly
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identify the nature of real-time security events. Usually, the implemented cyber

intrusions are not 100% guaranteed to exactly obey the modelled intrusion paths

on the attack graph due to the incompleteness of attack graph construction with

missed known vulnerabilities or any unknown vulnerabilities compromised by the

adversary. Thus, there may be any uncertainties from the nature of exploits [61].

Incorporating probabilistic behaviour into attack graphs [43] may assist to

address the uncertainty of attack graph. The Bayesian network had been suggested

to encode the uncertain nature into the conditional probability table on graph

nodes [61]. However, since it is difficult to examine the ground truths of real

attack traces, the unaddressed problem is how to set and maintain the statistical

parameters in the practical security analysis.

3.2 Attack Tree Modelling Approach

The attack tree research area has seen relatively moderate developed in the past 10

years since Schneier’s work [97]. Therefore, there is still much potential research

to forge attack tree into new discoveries and developments [32]. In the computer

network security, the attack tree modelling technique was informally introduced to

model intrusions against computer network systems in [97]. Generally, the attack

tree provides a formal, methodical way to describe the security of a system [97].

From the view of intrusion by the adversary, an attack tree shows the progression

of exploits to the top-level goal [26]. An alternative formalisation [71] is given

in a denotational semantical way to study not only the equivalence of attack

tree transformation, but also the attribute and the projection of an attack tree.

Generally, the attack tree modelling technique has a more generic and structured

manner [71, 110]. Construction of an attack tree depends on the expertise of

the analyst. Any designing errors result in a flawed attack tree that can lead to

incorrect analysis.

3.2.1 Differences Between Attack Tree and Attack Graph

Though both attack tree and attack graph are graph-based security modelling and

analysis techniques, and attack tree can be seen as a special case of attack graph

with tree like structure, there are several main differences in terms of root-leaf

relation, standpoint of modelling, and functional application.

• Root-leaf relation. The root-leaf relation describes the relationships between

the root and the leaf in terms of quantity by borrowing the concept of entity

relations from relational database.
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In a typical attack graph without tree-like structure, there are usually multi-

root nodes and multi-leaf nodes. Any of the root nodes within the attack

graph usually have more than one attack paths which are leading to different

leaf nodes. It is possible to conclude that one root node has 1 : n relation

to multi-leaf nodes. Hence, an attack graph typically has n : n relations

between multi-root nodes and multi-leaf nodes.

In a typical attack tree, there is only one single root node and multi-leaf

nodes, whereas all of the leaf nodes have their own attack path with the

root node. Thus, the attack tree typically has 1 : n relation between the

single root node and multi-leaf nodes.

• Standpoint of modelling. Attack graph and attack tree have significant

modelling differences in terms of standpoint. In attack graph, the mod-

elling is conducted by considering the possible intrusions, and especially

with host and system information. Some attack graphs [89] apply the

physical machine connectivity as the fundamental structure. Other attack

graphs [43, 99, 119, 120, 121] embed the communication between source and

destination as node attribute. However, attack tree ignores any additional

system information by purely concentrating on the modelling of intrusion

techniques and the process.

• Functional utilisations. The main functionalities of both attack graph and

attack tree modelling techniques are model and analyse the security of a

given computer network system.

In terms of intrusion detection, the attack graph is more suitable to im-

plement the intrusion analysis of the security vulnerabilities on the given

network before the intrusion detection process. The main reason is because

the generated attack graph is often unique and only representable according

to the current configuration of the given network. Even if the generated

graph can facilitate the intrusion detection, it is workable specific to that

given network.

However, although attack tree has similar modelling and analysing functions

as attack graph, attack tree is not only available to conduct the intrusion

analysis before the intrusion detection process, but can also assist the intru-

sion detection process as we will show later in this thesis. As the generated

attack tree model is generic by focusing on the conducted intrusion tech-

niques from the adversary, the constructed attack tree can be applied to

represent multi network environments. Therefore, intrusion detection can

execute the high-level detection against the multi-step intrusion in different
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Figure 3.4: An example Attack Tree

networks by applying the attack tree model as the intrusion roadmap.

Besides the aforementioned functional disadvantage for intrusion detection,

the attack graph modelling technique has several additional limitations compared

with the attack tree technique. Since the generated network attack graphs can be

both large and exhibit very dense connectivity, it is a serious challenge for humans

to understand [78]. In addition, it is a complex and time-consuming modelling

process to generate and analyse attack graphs if there are many hosts, even with

automatic generation approaches [66].

3.2.2 Representation of Attack Tree

In the attack tree, the tree structure is utilised to represent attacks against a

system, with the root node representing the ultimate attack goal (for example,

bypass authentication, obtain confidential, system compromise) and the branches

representing the ways to achieve the goal. Two connection types, OR and AND,

are used to connect multiple child nodes with their parent node. OR means that

the goal can be reached if any one of the subgoals is reached, whereas AND means

that the goal can be reached only if all subgoals are reached. Some attributes (for

example, descriptive intrusion information [6], boolean value [97]) can be assigned

on the node. In this thesis, we will term such a basic attack tree as conventional

attack tree (CAT) to differentiate it from further extensions. Figure 3.4 displays an

example conventional attack tree. The example abstracted CAT has 5 leaf nodes,

3 intermediate subgoals and 1 root node, but, does not a particular computer

network intrusion and assigning any node attributes.

3.2.3 Extensions of Attack Tree

As one of the critical security analysis and modelling tools, CAT has been built on

to produce extensions in order to provide flexibility and adaptability with more
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precise information. Generally, these extensions can be classified into three main

categories: (1) functional extension; (2) computational extension; and (3) hybrid.

The main purpose of the first category is to enlarge the modelling capability and

augment the modelling functionality with extra information for CAT. The key

goal of the second category is to compute and measure the relevant attack de-

cision making from the view of the adversary. In the last category, CAT had been

combined with other modelling methods together as a hybrid method. Part of our

discussion here has appeared in [117].

Functional Extensions

The functional extensions proposed in the literature for the forensic analysis

and the intrusion countermeasure analysis.

Augmented Attack Tree (AAT) [91, 92] modelling technique was originally

proposed for the computer attack forensic purpose with top-down investigation.

It extends CAT with extra attack modelling capability on the tree edges by asso-

ciating the tree branches with a sequence of malicious operations that could have

been implemented in the attack.

Besides CAT and AAT, there are several extensions specialised to provide cor-

responding countermeasures against attacks into the modelled tree structure in

order to protect the system. Defence Tree (DT) [13] provides a set of attack

countermeasures on each leaf node. The provided countermeasures represent the

possible threat mitigation of the specific vulnerability scenario. Attack Counter-

measure Tree (ACT) [96] provides a similar attack countermeasure mechanism as

Defence Tree does, but ACT offers countermeasures at every tree nodes instead

of only the leaf nodes. There are three distinct types of nodes in ACT: attack

event node, detection event node and mitigation event node. Attack-Response

Tree (ART) [131] defines and analyses the possible vulnerabilities to compromise

a system and the possible response actions against attacks. In ART, every leaf

node represents a specific vulnerability exploitation attempt by the attacker, while

the root node represents the security property. The consequence nodes in ART

are tagged by the response box that represents countermeasure actions. Attack-

Defense Tree (ADTree) [49] describes the attack actions an attacker can take to

compromise the system and the defense actions that a defender can employ to

protect the system. A node in ADTree could be an attack node or a defense node.

Each node may also have one additional child node representing a countermeas-

ure. The node of Protection Tree (PT) [31] contains four metrics: probability,

cost, impact and risk. With the run-time obtained metrics value, PT ensures the

limited resources are consumed to achieve the highest probability to stop an attack
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successfully.

Computational Extensions

Most attack tree research applies the essential modelling nature of attack tree

to model different security scenario, and additionally with the aforementioned in-

trusion countermeasures to analyse the security of system. Few pay attention to

the comprehensive computation studies for the whole generated attack tree ana-

lysis, but simply apply conjunctive and disjunctive decompositions or any possible

metrics aggregation approaches, which will be discussed in Section 3.5.

The substantial computational based extensions for the entire tree analysis

are given in [18, 44, 45, 46]. Generally, the modelled attack tree investigates

the possible attack option combinations from the view of the adversary to study

the adversary’s decision making process in order to predict and execute the most

profitable intrusion. The analysis process particularly considers the cost-and-gain

relation in terms of the monetary cost of intrusion, the monetary gain of intrusion

and the monetary penalty once caught, and further with any probabilities like

the likelihood of successful intrusion, the probability of being detected and the

probability of being caught.

The basic Multi-Parameter Attack Tree (MPAT) computation [18] has intro-

duced the idea of game-theoretic modelling associated with the aforementioned

parameters. Then, the proposed basic computation had been expanded by provid-

ing estimated parameter values [44] and exact parameter values [45]. Moreover,

the Serial Attack Tree (SAT) model [46] extends the classic parallel attack tree

model with the temporal order of the elementary attacks. The main advantage

of serial attack tree model is to provide the flexibility to model the adversary’s

behaviour more accurately and reality, for example, the skipping of elementary

intrusions. In addition, SAT computes the better expected outcomes of the ad-

versary.

Hybrid

In order to enrich the attack modelling capability, some additional modelling

techniques have been combined with the attack tree into a more comprehensive

modelling mechanism.

Misuse cases, derived from Unified Modelling Language (UML) use cases, de-

scribe the actions that may harm the system. In [110], misuse cases are applied

together with the attack tree and linked to model the detailed security activity

and analyse the system security requirements to achieve threat mitigation during
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the software development lifecycle.

3.2.4 Attack Tree and Intrusion Detection

Besides the modelling capability, attack tree modelling technique had been applied

to assist the process of intrusion detection in both indirect and direct forms.

In the former, the intrusion detection related analyses are conducted to provide

intrusion information and detection information to facilitate the intrusion detec-

tion process. Usually, the attack tree modelling technique generates the attack

pattern or attack process information (for example, automatic attack pattern gen-

eration [126], causal attack plan [90], and threat damage evaluation [93]) for in-

trusion detection.

In the latter form, the constructed attack tree provides the intrusion detection

roadmap, which enables the detector to detect the high-level intrusions according

to the modelled attack tree. However, to the best of our knowledge, there is little

work that applies the attack tree technique to directly implement the intrusion

detection process based on the constructed framework of an attack tree. [19] is the

only work relating to that direction. In [19], enhanced attack tree (EAT) had been

utilised to perform the intrusion detection of complex attacks for 802.11 WLAN

with the Nondeterministic Finite Enhanced Tree Automaton (NFETA) technique

and tree automaton to achieve the tree structure update.

3.3 Node Connectors

In the attack tree modelling technique, the nodes are usually connected with con-

necters based on logical relations such as conjunctive (also known as AND) and

disjunctive (also known as OR). Besides the typical AND and OR connectors,

there are some advanced node connectors. We summarise and classify these ad-

vanced node connectors into the following two categories: Order Based Connector

and Threshold Based Connector, respectively.

3.3.1 Order Based Connectors

The Order Based Connectors (OBC) are subdivided into Priority Based Order

Connector and Time Based Order Connector according to the specified sequences.

Usually, the order based connectors are implemented based on the conjunctive

decomposition.

• Priority Based Order Connector (PBOC). PBOC represents that the parent

node can be achieved only if all the child nodes are accomplished in a priority
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order, from the highest priority one to the lowest priority one.

Figure 3.5(a) shows a sample PBOC connector with one parent node PN

(attack goal) and three child nodes (sub-goals) CN1, CN2 and CN3. The

corresponding priority level on these child nodes are P3 (the lowest priority),

P1 (the highest priority) and P2 (the medium priority), respectively. Since

the priority levels are P1 → P2 → P3, the child nodes must be accomplished

in the sequence of CN2 → CN3 → CN1 by following exactly that priority

levels. Priority-AND (PAND) [17, 48] obeys this kind of order.

Note that, it is possible that multiple child nodes are attributed with the

same priority level. In that case, it is suggested to apply the first come, first

achieve principle on those equal-priority nodes.

PN

CN1 CN2 CN3

PBOC

P1 P2P3

(a) Priority Based Order Connector

PN

CN1 CN2 CN3

TBOC

T3 T1T2

(b) Time Based Order Connector

Figure 3.5: Sample Attack Trees with Order based Connectors

• Time Based Order Connector (TBOC). TBOC represents that the parent

node can be achieved only if all the child nodes are accomplished in a pre-

defined time sequence manner.

Figure 3.5(b) illustrates a sample TBOC connector with one parent node

PN (attack goal) and three child nodes (sub-goals) CN1, CN2 and CN3.

The corresponding timed achievement sequence on three child nodes are T2

(timed second achievement), T3 (timed last achievement) and T1 (timed first

achievement), respectively. According to the time order T1 → T2 → T3,

the child nodes are accomplished with the CN3 → CN1 → CN2 sequence.

Ordered-AND (O-AND) [19] and Sequence Enforcing (SEQ) [48] are known

extended connectors applying this time based order mechanism.

Practically, POBC and TOBC share some similarities since both of them follow

the defined sequences. In POBC, the priority sequence requests that the highest

priority level child node be achieved first, whereas the lowest priority level child

node be achieved last. It is possible to view that the timed first achieved child

node has the top priority, whereas the timed last achieved child node has the least
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priority as in TOBC. Therefore, it is possible to conclude that POBC and TOBC

are similar connectors but focus on different views.

3.3.2 Threshold Based Connectors

Threshold Based Connector (TBC) determines the number of accomplished child

nodes for the successful accomplishment of the parent node according to the pre-

defined threshold. However, TBC concentrates on the threshold satisfaction of the

number of achieved child nodes without the determination on which nodes need to

be achieved. The threshold can be further classified into amount based threshold

and weight based threshold.

PN

CN1 CN2 CN3

TBC2/3

(a) Amount Based Threshold

PN

CN1 CN2 CN3

TBC

W1 W2 W3

W=0.6

(b) Weight Based Threshold

Figure 3.6: Sample Attack Trees with Threshold based Connectors

Table 3.1: Truth Table of Sample Attack Trees with Threshold Based Connector

Child1 Child2 Child3
Amount Based Threshold Weight Based Threshold

TA Parent TW Parent

F F F 2 F 0.6 F
F F T 2 F 0.6 F
F T F 2 F 0.6 F
T F F 2 F 0.6 F
F T T 2 T 0.6 T
T F T 2 T 0.6 T
T T F 2 T 0.6 F
T T T 2 T 0.6 T

• Amount based threshold. Amount based threshold makes the connector de-

termine the minimum quantity of achieved child nodes to accomplish the

parent node. The amount based threshold connector is also known as K-out-

of-N (K/N) [48]. Figure 3.6(a) displays a sample attack tree with three child
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nodes (CN1, CN2 and CN3) and one parent node (PN), where the node de-

composition is a 2-out-of-3 threshold connector. In this model, the amount

of child nodes is 3 and the threshold value is 2. Typically, the parent node

can be achieved if more than 2 child nodes have been accomplished. The

truth table of the sampled 2-out-of-3 threshold based connector is given in

Table 3.1 with three child node columns (Child1, Child2 and Child3), one

threshold value column TA and one parent node column Parent within the

Amount Based Threshold column set. The symbol T indicates the achieved

node, whereas the symbol F indicates the unachieved node.

Note that K/N has two special cases. K/N is equivalent to OR decompos-

ition if the defined threshold value is one. Meanwhile, K/N is equivalent to

AND decomposition if the defined threshold value equals to the amount of

all child nodes.

• Weight based threshold. Weight based threshold determines the probabilistic

threshold as the number of child nodes that need be satisfied for the parent

node accomplishment. For this weight based connector, weight components

Wi (i is the index of child nodes) must satisfy the following two conditions:

(1) 0≤Wi≤1 and (2)
∑n

i=1Wi=1, where n is the total number of child nodes.

As each child node had been individually assigned one weight probability,

the number of child nodes is determined by accumulating the achieved child

nodes’ weights together. Once the accumulated value exceeds the threshold,

the number of accomplished child nodes is determined.

Figure 3.6(b) illustrates a WBC connected sample attack tree with one par-

ent node (PN) and three child nodes (CN1, CN2 and CN3). Each child node

has been assigned with their own weight, W1 of CN1 is 0.2, W2 of CN2 is

0.3 and W3 of CN3 is 0.5. The threshold value is set as 0.6. The Weight

Based Threshold column set with TW and Parent on Table 3.1 shows the

truth values of this sample.

3.4 Node Metrics

Metrics are a good way to assess the security risk of a computer network. In

the attack graph and attack tree modelling techniques, metrics have been widely

applied to measure the real-time security status and the on-going intrusion process

of the node. In order to appropriately define metrics in an attack graph and an

attack tree, five principles [121] have been suggested as follows: (1) the metric

value assignment should be based on specific, unambiguous interpretations rather
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than abstract and meaningless rules ; (2) the metrics should take into consideration

all the information that may be relevant to its potential application; (3) the metrics

should at the same time leave to users the decisions that cannot be automated with

unambiguous rules ; (4) measuring hosts as collections of vulnerabilities, instead

of as the combination of hardware/software configurations ; (5) the outcome of the

metrics should enable its application to make an immediate decision.

No matter what principles have been suggested, generally, there are two main

approaches to apply metrics in attack graph and attack tree: (1) a global metric

concludes the general security for the overview; (2) multiple metrics elaborate the

relevant aspects for the detail.

The first group assesses the risk by the only metric directly. The Attack Like-

lihood [83] metric quantifies the risk probability with the initial uncertain input

values by the consistent computing based on the node of the attack graph. The

k-Zero Day Safety [122] metric assesses the network security risk against the un-

known attacks by counting the number of needed unknown vulnerabilities on the

attack graph to compromise a network asset. Attack Probability [91] is defined as

the probability to measure how far the adversary has progressed towards achiev-

ing the ultimate goal in terms of the least effort along the attack path in AAT by

counting the number of achieved nodes as well.

In the second group, the obtained metrics represent the particularly defined

information, and, these metrics need to be further processed by extra aggregation

or fusion manipulations, for example the IDS alert-based metrics were fused by

Dempster-Shafer theory to assess the risk of intrusion scenarios [75].

In the attack graph and the attack tree, most of the proposed node metrics

can be summarised into two groups: (1) the generically defined metrics and (2)

the specifically defined metrics.

3.4.1 Generically Defined Node Metrics

The generically defined metrics are generic without the explicit representations to

any specified aspects. They are usually applied to examine the overall security of

the system. There are two main kinds of metrics to assist the analysis execution,

namely, attack resistance metric and attack probability metric.

Attack Resistance Metrics

Attack resistance metrics on attack graph or attack tree have abstractly been

defined as conditions to represent different concepts and issues to achieve the

attack and quantify potential attacks [120]. Attack resistance metrics are intuitive
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properties derived from common sense. In addition, they assess and compare the

security of different network configurations according to the constructed attack

graph and attack tree.

Attack resistance metrics have been applied to study the metric aggrega-

tion [120], which will be discussed in Section 3.5, and [124].

Attack Probability Metrics

Attack probability metrics on attack graph or attack tree have been defined

to represent the likelihood that all the required conditions are accomplished to

achieve the parent node, and the probability of any node transitions (intrusions)

being executed.

Attack probability metrics have been applied to investigate the probability

aggregation to determine the probability of the root node achievement [119]. The

aggregation is described in Section 3.5.

3.4.2 Specifically Defined Node Metrics

The explicitly defined node metrics have specified any particular meanings for

each metric. With the specific state information within attack graph or attack

tree, these node metrics are usually known as node attributes.

Attack graph and attack tree can not only capture the steps of attack on

the constructed attack roadmap, but also represent and calculate risks, cost or

weighting [101]. In CAT, Schneier [97] had defined that node metrics can be as-

signed with either boolean or continuous values. The raw value of those explicitly

defined node metrics are assigned at the leaf nodes. The metrics of upper nodes

are obtained through the propagation of pre-defined mathematical calculation.

With the assistance of metrics, attack tree provides the ability to describe the full

complexity of the attacker’s decision-making process. Besides those original node

attributes, there are several extra node metrics applied in attack tree modelling.

In the terms of usage, we classify those attributes into two main categories, attack

metrics and victim system metrics. Meanwhile, the attack metrics are subdivided

into two sub-categories, attack accomplishment metrics and attack evaluation met-

rics. The general metrics in each group are stated as follows.

Attack Accomplishment Metrics

Attack accomplishment metrics examine the real-time attack procedure in-

formation on the current node. They describe the temporal dependencies between
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attack graph/tree nodes, expiration of an attack, and the attack success probab-

ility.

• Time-To-Live (TTL). TTL [19] defines the lifetime for attack actions at

attack tree nodes. With the regulation of TTL, the adversary needs to

finalize the attack within the TTL specified period. If more than TTL time

has elapsed since the node accomplished, the intrusion must be expired and

be implemented again.

• Attack Level (AL) and Attack Probability (AP). AL and AP [19] define the

level and the percentage of whole constructed attack paths on the attack

roadmap when any particular nodes have been accomplished. As attack

graph/tree usually models the multi-step attack process, AL and AP as-

sist in the measurement of the distance between the current node and the

ultimate root node by examining the latest accomplished node. AL calcu-

lation assumes each attack action has equal difficulty and weight, whereas

AP calculation defines each attack action with different difficulty and weight

according to the statistical analysis. Through the statistical analysis, the ac-

tions generated more often are assumed as easier to be accomplished. From

the standpoint of security analyst, AL and AP reveal the on-going progress

against the predefined intrusion roadmap to any particular ultimate goals,

and both AL and AP can be used to establish an early warning system

against intrusions.

• Attack Success Probability (ASP). ASP [18, 31, 44, 45] indicates the likeli-

hood to successfully execute an attack action and accomplish one particular

node. From the standpoint of the adversary [44, 45], ASP represents the

intrusion capability and the confidence of the adversary in terms of probab-

ility.

Attack Evaluation Metrics

Attack evaluation metrics are associated with each of the nodes in the attack

tree to analyse and evaluate attacks.

• Monetary Cost (MC ). MC [18, 31, 44, 114] indicates the money cost of man-

hour to achieve the subgoal during the whole attack procedure. Besides the

basic cost to conduct the intrusion, monetary based penalty [44, 45] had

been considered to pay the fine once the intrusion had been caught by the

defender.
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• Impact (I ). I [31] indicates how serious the damage is, that is caused by the

intrusion to the system. The impact has been defined as the numeric set

I ∈ [1,2, . . . , 10] [31] to represent the harmful level of the intrusion to the

system.

• Risk (R). R [31] indicates how risky the intrusion is. The exploitability,

the dependency and the potential damage [11] have been utilised to assess

the risk. The exploitability is associated to each vulnerability to measure

the likelihood that the vulnerability may be successfully used against the

security of the system. The dependency is identified between the enabling

vulnerabilities of the former and the latter attacks. The damage potential

measures the ability to damage as the number of the affected users times

the average number of days the affected service is unavailable.

Victim System Metrics

Victim system metrics describe the attack information relating to the victim

system on the attack tree node. It is possible that different properties of computer

network system may affect different ways for an adversary to compromise the

victim [29].

Several network properties such as System Vulnerability (SV), Network Con-

figuration (NC), System Configuration (SC) and Access Privilege (APr) have been

applied as the attack tree node attributes. SVs are already reported vulnerabilit-

ies from some well-known security databases (like Common Vulnerability Scoring

System (CVSS)). NC is the related network information (for example, open port,

unsafe firewall configuration). SC may include any information about data ac-

cessibility, unsafe default configuration, or read-write permission in file structures.

AP includes user account, guest account and root account.

3.5 Metric Aggregation Approaches

Relevant to the computational aspects on the attack graph and attack tree, the ag-

gregation approaches provide the relevant mechanisms to aggregate metric values

from different nodes on the attack graph and attack tree.

Compared with the node connectors of attack tree, the metric aggregater shares

similar background principle, as both of them fuse the provided multiple element-

ary values into the single one.
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3.5.1 Possible Aggregaters

The fundamental possible approaches include Min, Max, Multiply, Weighted−
sum and Average [88], which are some common logical computations. In order

to formalize these aggregation approaches, the following definitions are given to

assist the sematic representations of metric aggregations by borrowing the ideas

from [88] and [92].

Definition 5 Elementary Node. An elementary node E is an attack graph/tree

node, which attributes with n different metrics Mi (i ∈ [1, 2, . . ., n]) to signify one

set of arguments to the aggregater.

Definition 6 Observed Node. An observed node O is an attack graph/tree

node, which is under the processing of aggregation with at least two elementary

nodes Es.

Definition 7 Aggregation. An aggregation is a process to combine the same

kind of metric values MEi
from multiple Eis (i ∈ [1, 2, . . ., n]) into O as MO with

the selected aggregater.

The formalisations of fundamental aggregation approaches are stated as fol-

lows.

• Min. The Min aggregater provides the function to select the single minimal

metric value from the number of n nodes as the aggregation result.

MO = min(ME1 ,ME2 , . . . ,MEn) (3.1)

• Max. The Max aggregater provides the function to select the single max-

imal metric value from the number of n nodes as the aggregation result.

MO = max(ME1 ,ME2 , . . . ,MEn) (3.2)

• Addition. The Addition aggregater provides the function to aggregate the

same type of metrics from all number of n nodes by summing each single

metric on all n nodes.

MO = ME1 +ME2 + . . .+MEn (3.3)
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• Multiplication. The Multiplication aggregater provides the function to

aggregate the same type of metrics from all number of n nodes by multiplying

each single metric on all n nodes.

MO = ME1 ×ME2 × . . .×MEn (3.4)

• Weighted-Sum. The Weighted−Sum aggregater provides the function to

aggregate the same type of metrics from all number of n nodes with different

node weight value into the single one. Note that the summation of weight

on all Es equals to 1.

MO =
n∑

i=1

(wi ×MEi
), where

n∑
i=1

wi = 1 (3.5)

• Average. The Average aggregater provides the function to aggregate the

same type of metrics from all number of n nodes into the single mean one.

MO =
ME1 +ME2 + . . .+MEn

n
(3.6)

3.5.2 Cumulative Aggregations

Besides the aforementioned fundamental aggregaters, there are several advanced

aggregation approaches [119, 120] particularly proposed based on attack graph

by cumulating either the real number or the probability from the attack graph

elements.

Attack Resistance Aggregation

In the attack graph [120], the attack resistance has been presented to assess

the security of network configurations, especially on the graph exploits (nodes E

and O). The resistance of an attack is interpreted as the effort that an adversary

requires to put in until the target is compromised. In order to aggregate the

attack resistance metrics, two types of aggregaters, denoted as ∨ and ∧, represent
disjunctive and conjunctive dependency relationships between exploits with the

ideas of series and parallel circuits theory.

Generally, there are two possible scenarios how node relates with another: (1)

the parent node has only one child node; and (2) the parent node has more than

two child nodes. For the first scenario, the aggregation principle is based on the

series circuits theory by adding each attack resistance metric together in sequence.
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For the second, the aggregation principle is based on the parallel circuits theory

by adding the reciprocals of the attack resistance metrics.

r represents the individual resistance of an exploit, whereas R represents the

cumulative resistance of an exploit from the corresponding exploits. The main

task of R in aggregating attack resistance metrics is to aggregate the individual

resistance r on both E and O by applying either ∨ or ∧. The cumulative resistance

of each attack goal provides a quantitative measure as how likely that attack goal

can be achieved, or equivalently, how vulnerable the corresponding resource is

under a given network configuration.

The aggregater ∧ is simply the summation of metric values. Equation (3.7)

represents the aggregation of conjunctive with both E and O. The aggregater ∨
represents the reciprocal of the sum of the reciprocal of individual metric values.

Equation (3.8) illustrates the disjunctive aggregation with E and O.

RO(rE1 ∧ rE2 ∧ . . . ∧ rEn) =
n∑

i=1

rEi
+ rO (3.7)

RO(rE1 ∨ rE2 ∨ . . . ∨ rEn) =
1

rE1

+
1

rE2

+ . . .+
1

rEn

+ rO (3.8)

Attack Probabilistic Aggregation

The cumulative attack probabilistic score of a given goal condition thus indic-

ates the likelihood that a corresponding resource will be compromised during an

attack, or equivalently, among all adversaries attacking the given network over a

given time period, the average fraction of adversaries who will successfully com-

promise the resource [119].

Two probabilities have been associated with exploit e and condition c: indi-

vidual score p(e) and p(c); and cumulative score P (e) and P (c). The individual

score p(e) stands for the intrinsic likelihood of an exploit e being executed, given

that all the conditions required for executing e in the given attack graph are

already satisfied. The cumulative scores P (e) and P (c) measure the overall likeli-

hood that an adversary can successfully either reach and execute the exploit e or

satisfy the condition c in the given attack graph.

In addition, the cumulative attack probabilistic aggregation takes into ac-

count the causal relationships between exploits e and conditions c in the attack

graph [119]. Rr indicates the relation which represents condition c causing exploit

e, whereas Ri indicates the relation which represents exploit e causing condition c.

Equation (3.9) and Equation (3.10) show the cumulative probabilistic aggregations
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on exploit e and condition c in the attack graph.

P (e) = p(e)×
∏

c∈Rr(e)

P (c) (3.9)

P (c) =

p(c) if Ri(c) = ∅

p(e1) + p(e2)− p(e1)× p(e2) if Ri(c) ̸= ∅
(3.10)

3.6 Summary

In this chapter, the states of the art in attack graph and attack tree modelling

techniques are summarised. The attack graph has seen a fair amount of research

but it had been limited for the security analysis on large network systems due

to the computational complexity. The attack tree, which is a subset of attack

graph, has been developed with the moderate amount on the theoretically security

analysis, but lacks of practical applications or concrete results. Then, the known

node connectors, node metrics, possible metric aggregation approaches and their

extensions have been investigated and discussed.

With many different extensions having been proposed based on attack trees, it

is important to summarise these extensions into a unified attack tree framework

and locate the potential extension points for a new attack tree in Chapter 5. In the

next chapter, the Unified Parametrisable Attack Tree and the attack resistance

metrics aggregation within attack tree are presented.



Chapter 4

Unified Parametrisable Attack

Tree

This chapter presents the unification of different ways in which parameters of an

attack tree may be extended, notably: node attribute, edge augmentation and

connector type. In formally describing the elements of the tree, a better overview

of the relationship between the tree elements can be appreciated.

This generic attack tree structure is termed as Unified Parametrisable Attack

Tree (UPAT). With UPAT, any of the CAT based extensions (such as tree struc-

ture extensions and computational extensions) can generally fall in the scope of

parameter settings.

The remainder of this chapter is written as follows. Firstly, section 4.1 presents

the formalisation of the conventional attack tree with elementary components.

Then, Section 4.2 describes the definitions of unified parameters for conventional

attack tree in order to extend it into a unified parametrisable attack tree formalized

in Section 4.3. Next, Section 4.4 presents the attack resistance aggregation in

attack tree. Finally, the summary of this chapter is given in Section 4.5.

4.1 Formalisation of Conventional Attack Tree

Although the attack tree has been studied for over a decade, few results formally

propose a solid and complete attack tree formalisation with a theoretical found-

ation analysis. Although aimed to extend Schneier’s informally described attack

tree [97], Mauw and Oostdijk’s proposed attack tree formalisation [71] is unable

to represent the essence of a conventional attack tree.

The formalisation [71] defines a parent node connecting to a multi-set of child

nodes viewed as a bundle, which ignores the internal structure within the attack

tree. But in CAT, it is important not only to identify the conjunctive and dis-

52
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junctive connections between multiple nodes, but also to determine the amount

of connected child nodes to each parent node. In addition, the formalisation [71]

defines that one child node can connect to more than one parent node causing dir-

ected cycles, which is more analogues to attack graphs rather than attack trees.

In order to provide a general and complete attack tree formalisation, we pro-

pose a formalisation to represent CAT with all of the possible attack tree com-

ponents, namely, nodes, edges, connectors and attributes.

Definition 8 Conventional Attack Tree. A Conventional Attack Tree (CAT)

is a rooted tree denoted by AT = ⟨N , E , C,A⟩, where

• N is the set of nodes in the tree representing the different states of partial

compromise or sub-goals that an adversary needs to move through in order

to fully compromise a system, such that for the two subsets leafNodes ⊂ N
and internalNodes ⊂ N , we have

∗ leafNodes ∪ internalNodes = N and,

∗ leafNodes ∩ internalNodes = ∅ and,

∗ v0 ∈ N is the root and represents the ultimate intrusion goal of ad-

versary.

• E ⊆ N × N is the set of edges in the attack tree. An edge ⟨u, v⟩ ∈ E
represents the state transition (emergent) from a child node v (and incident)

to a parent node u, where u, v ∈ N .

• C is a set of tuples of the form ⟨u, nodeConnector⟩ where

∗ u ∈ internalNodes and,

∗ nodeConnector ∈ {AND,OR}, where the definitions are given in Defin-

ition 9 and Definition 10.

• A is a set of tuples of the form ⟨u, nodeAttribute⟩ where

∗ u ∈ N and,

∗ nodeAttribute ∈ {booleanvalueAttribute, continuousvalueAttribute}, where
the definitions are given in Definition 11 and Definition 12.

Definition 9 AND Connector. A node u ∈ internalNodes has an AND connector

if all linked child nodes vi incident to the parent node are connected by the AND

connector, or there is exactly one edge incident to the node.
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Definition 10 OR Connector. A node u ∈ internalNodes has an OR connector

if all linked child nodes vi incident to the parent node are connected by the OR

connector.

Definition 11 booleanvalueAttribute Attribute. A node u ∈ internalNodes has

a booleanvalueAttribute attribute if it is a boolean value.

Definition 12 continuousvalueAttribute Attribute. A node u ∈ internalNodes

has a continuousvalueAttribute attribute if it is a continuous value.

4.2 Unified Parameters

As already described in Section 3.2.3, Section 3.3 and Section 3.4, it is known that

most attack tree extensions focus on the structural expansions such as adding

advanced connectors into the attack tree, or appending additional attributes on

nodes within the attack tree. Hence, three parameters are defined to generally rep-

resent the types of extension parameters, namely, edge, connector and attribute,

respectively, as the unified attack tree inputs.

Past literature [91, 92] has considered edge extensions to the conventional

attack tree. For this purpose, we have the following definitions.

Definition 13 Edge Parameter. eParam is assigned a boolean value, i.e. eParam ∈
{0, 1} to determine whether to augment the edge within the attack tree. eParam = 0

denotes that the edge is devoid of augmentation, while eParam = 1 denotes that

the edge is augmented with tuples ⟨Label, SIGu,v⟩ as per Definition 16.

The connector parameter cParam denotes different types of connectors includ-

ing both classic AND and OR decompositions or any advanced connectors (that is,

order based connector, threshold based connector) on any particular nodes within

the attack tree.

Definition 14 Connector Parameter. cParam is assigned with an integer

value, i.e. cParam ∈ {1, 2, . . . , p} where: each integer denotes an index to a par-

ticular connector type, and p is the maximum index number of connectors to select

a particular connector on one parent node. The possible connectors may be the

ones aforementioned in Section 3.3.

The node attribute parameter nParam indicates possible attributes assigned to

any particular nodes within the attack tree.

Definition 15 Node Attribute Parameter. nParam is assigned with the tuples

⟨n,AttrID⟩, where: n denotes the number of desired node attributes and AttrID

denotes the index of a particular attribute type. The possible attributes may be the

metrics aforementioned in Section 3.4.
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4.3 Formalisation of Unified Parametrisable

Attack Tree

The main purpose of UPAT is to serve as a general framework for attack tree based

extensions. As modern computer network intrusions increase in the sophistication,

UPAT could capture tree extensions to CAT that split an attack into multiple

fractions as denoted incidents [91, 92]. In addition, the formalisation of UPAT

can be expressed by expanding the formalisation of CAT with three parameters

eParam, cParam and nParam on the corresponding tree components.

Definition 16 Unified Parametrisable Attack Tree. A unified parametris-

able attack tree (UPAT) is a rooted labelled tree given by UPAT = ⟨N , E , C,A⟩,
where

• N is a finite set of nodes in the tree representing the different states of

partial compromise or sub-goals that an attacker needs to move through in

order to fully compromise a system. ν ∈ N is a special node, distinguished

from others, that forms the root of the tree. It represents the ultimate goal

of the attacker, namely system compromise. The set N can be partitioned

into two subsets, leafNodes and internalNodes, such that

∗ leafNodes
∪

internalNodes=N and,

∗ leafNodes
∩

internalNodes=∅ and,

∗ ν ∈ internalNodes.

• E is the set of edges in the attack tree. An edge ⟨u, v, eParam⟩ ∈ E defines

an atomic attack, as per Definition 17, and represents the state transition

(emergent) from a child node v (and incident) to a parent node u, where

u, v ∈ N . While, eParam determines the edge augmentation as defined in

Definition 13.

• C is a set of node connector tuples of the form ⟨u, cParam, nodeConnector⟩
such that

∗ u ∈ internalNodes and,

∗ cParam, as Definition 14, determines the particular connector choice of

one node, and,

∗ nodeConnector ∈ {OBC, TBC, OR}, where OBC and TBC are given

in Definitions 19 and 20.
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• A is a set of node attribute tuples of the form ⟨u, nParam, nodeAttribute⟩,
where

∗ u ∈ N and,

∗ nParam, as Definition 15, determines the node attributes information,

and,

∗ nodeAttribute ∈ {booleanvalueAttribute, continuousvalueAttribute}.

Definition 17 Atomic Attack. An atomic attack is a combination of n (n ≥
1) incidents (incident1, incident2, . . ., incidentn) with a particular order. The

occurrence of an atomic attack contributes towards the state transition in the attack

tree.

Definition 18 Incident. An incident is a basic benign or malicious action per-

formed by the adversary. The occurrence of a single incident may not contribute

to an attack but taken together leads to an atomic attack.

Definition 19 Order Based Connector. Given a node u of a unified para-

metrisable attack tree such that u ∈ internalNodes, the node has an Order Based

Connector (OBC) if all edges incident to the node are connected by the AND

operation but with either the priority based order or the time based order.

Definition 20 Threshold Based Connector. Given a node u of a unified

parametrisable attack tree such that u ∈ internalNodes, the node is a Threshold

Based Connector (TBC) if all edges incident to the node are connected by the AND

operation and the parent node is reached by either the amount based threshold or

the weight based threshold.

4.4 Attack Resistance Attribution

Attack trees have been applied to model diverse security systems in different set-

tings [19, 29, 45, 72, 129]. In a parallel direction, work has also been dedicated

to enriching the attack tree technique itself. Some notable works consider: differ-

ent node connectors; node attribution; multi-attribute (or parameter) nodes; and

augmented edges [17, 18, 19, 44, 45, 71, 92, 107].

In this section, we revisit the notion of attack tree attribution, that is, how

explicit attribute values of child nodes are aggregated to form the attribute of the

parent node, and present a novel attribution approach. We use this attribution

within the context of analysing the weakest links of security systems; and thereby

demonstrate how the weakest link may not necessarily always be so, instead it

depends on the existence of other stronger links.



CHAPTER 4. UNIFIED PARAMETRISABLE ATTACK TREE 57

4.4.1 Attribution

The attribution at a parent node u with a connector ∈ {AND,OR} is the function

f connector
u : N n → RE taking as input all the n child nodes v1, . . . , vn ∈ N of u and

outputting an effective attribute value Ru ∈ RE .

The specific instantiations of this attribution operation is parametrised by the

type of combining operation of the parent node.

Definition 21 Attribution for AND Connector Node. For some n child

nodes v1, . . . , vn of parent node u, we define the attribution operation for the AND

connector parent node u as the mathematical summation of the attributes Ri (for

i = 1 . . . n) of all child nodes. More precisely, the output of this attribution is the

effective resistance of these n child nodes that will lead to the parent node u, and

is defined as

fAND
u (v1, . . . , vn) = RAND

u =
n∑

i=1

Ri. (4.1)

Definition 22 Attribution for OR Connector Node. For some n child

nodes v1, . . . , vn of parent node u, we define the attribution operation for the OR

connector parent node u to be

fOR
u (v1, . . . , vn) = ROR

u =
1

1
R1

+ 1
R2

+ · · ·+ 1
Rn

. (4.2)

Equation (4.1) and Equation (4.2) are inspired from the field of electrical cir-

cuit analysis for effective electrical resistance across series and parallel circuits

respectively. For AND connector, the adversary needs to fulfill all child nodes

before achieving the parent node, hence the overall resistance of the system up to

that point of abstraction (represented by the parent node) is the summation of

individual resistances of each child node. For OR connector, the adversary only

needs to fulfill any child node in order to achieve the parent node.

So it is clear that the AND and OR attributions as defined in Equation (4.1)

and Equation (4.2) capture the ‘all’ and ‘any’ requirements that an AND and/or

OR connector dictates; that is, for any n and some parent node u with n child

nodes vi of resistance Ri (i = 1 . . . n), it is always the case that fAND
u (v1, . . . , vn) >

fOR
u (v1, . . . , vn).

It turns out that these two attribution equations intuitively capture an ad-

versary’s view of his attack options in terms of ease (or resistance) with which to

achieve the goal represented by the parent node.
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To see why Equation (4.2) intuitively models the adversary’s options in this

context and why existence of options affects the overall effective resistance of a

system to attacks, we revisit the weakest link principle with regards to a system’s

strength against attacks.

4.4.2 Case Study: Analysis of the Weakest Link

For a security system composed of n components, each can be seen as a link

within a security chain that represents the overall resistance of the entire system

against attacks. Then the overall resistance of the system and its reliance on the

individual security of each component can be described by an attack tree having a

parent node whose attribute represents the overall resistance of the system, while

its n children nodes each represents one of the links connected together via an OR

connector. This models the fact that a system is only as strong as its weakest link.

In more detail, for some n child nodes v1, . . . , vn of an OR connector parent u,

the node vw for w ∈ {1, . . . , n} is said to be the weakest node if Rw = min(RE)

where RE = {R1, . . . , Rn} denotes the set of n resistances corresponding to the

n nodes. Clearly, the weakest node is considered the weakest link to the security

of the parent node because if the adversary decides to target this node vw, this

would lead to achieving the parent node with the least resistance, in line with the

weakest link principle.

Going further, Equation (4.2) can be put to good use to analyse the influence

that the weakest link and other stronger sibling links have on the overall resistance

of the system. More precisely, consider two systems I and II with parent node u,

and where in system I the parent node u has one child node vw with resistance

Rw while in system II the parent node u is an OR connector node that has n + 1

child nodes v1, v2, . . . , vn, vw where Ri ∈ {R1, R2, . . . , Rn} > Rw, for example, vw

is the weakest link. The easiest path for the adversary would be via the weakest

child node vw, thus it appears in both systems that the adversary in this case

meets with the same resistance if he decides to attack the weakest link. This is

evidently demonstrated by conventional attribution methods for the OR connector

for example [97], which is simply the min(·) function.
Nonetheless, effectively the resistance of the systems against a generic ad-

versary, without presuming on how the adversary behaves, can be computed based

on our attribution definitions above as

RI
u = Rw, (4.3)
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RII
u =

1
1
R1

+ 1
R2

+ · · ·+ 1
Rn

+ 1
Rw

. (4.4)

We then have the following result.

Lemma: The Effect of Being There. For a parent node u with n+1 child nodes

v1, . . . , vn, vw, the existence of the child nodes v1, . . . , vn with resistance Ri > Rw

stronger than that of the weakest child node vw /∈ {v1, . . . , vn} decreases the effect-

ive attributed resistance of the parent node u.

Proof. Rewrite Equation (4.4) as

RII
u =

1
Πi̸=1Ri+Πi ̸=2Ri+···+Πi̸=nRi+Πn

1Ri

Rw·Πn
1Ri

=
Rw · Πn

1Ri

Πi̸=1Ri +Πi̸=2Ri + · · ·+Πi ̸=nRi +Πn
1Ri

where Πn
1Ri denotes the product of all Ri for i = 1 . . . n and Πi ̸=jRi denotes the

product of all Ri for i = 1 . . . n except for i = j. Rewrite Equation (4.3) as

RI
u =

Rw

1

=
Rw · (Πi ̸=1Ri +Πi̸=2Ri + · · ·+Πi ̸=nRi +Πn

1Ri)

Πi̸=1Ri +Πi ̸=2Ri + · · ·+Πi̸=nRi +Πn
1Ri

Comparing the above two equations, it is clear that RII
u < RI

u. �

For an adversary considering which system to attack, the above lemma justifies

that system II is a better choice because although all child nodes other than vw

have stronger resistance than vw, the fact that they exist actually decreases the

effective resistance of system II because there is now more than one way to break

the system, even if the ways other than the easiest (that is, vw) do have higher

resistance.

From the perspective of a system administrator, the above result is counter-

intuitive in the sense that the effect of the weakest link vw cannot be strengthened

by ensuring that all other nodes have a stronger resistance than vw, and this even

if the node vw exists in both systems as the weakest link individually. In fact in the

case of system II, the effective resistance is weakened to a value even below that

of vw. In contrast, such a result cannot be sufficiently captured by conventional

attribution techniques for the OR connector.
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4.4.3 Concluding Remarks

In this section, we considered the notion of attack trees with node attributes; each

such node attribute denotes the resistance of a system against an attack action

represented by that node. We proposed a novel attribution approach and applied

this within the context of analysing the weakest links of security systems. This

helps to cast the relevance of the weakest link in interaction with other stronger

links to show how their presence impacts the effective security of the entire system.

4.5 Summary

The essential reason to the proposed UPAT is to provide a general framework

for any attack tree based extensions. At first, the formalisation of CAT had

been described by adapting notions from AAT. Then, several unified parameters

were proposed to represent the extendable elements on the attack tree. Next, the

formalisation of UPAT was presented by embedding the unified parameters into

CAT’s formalisation. Finally, the attack resistance attributions of attack tree with

the weakest link analysis are presented.

In the next chapter, a new attack tree will be proposed based on UPAT to

provide the relevant mechanisms to facilitate the intrusion detection process.



Chapter 5

Advanced Attack Detection Tree

Although the attack tree has been widely applied to model and analyse system

security in terms of vulnerabilities and countermeasures, while, the attack tree

had been additionally utilised to conduct the intrusion detection analysis as the

early discussion of this thesis in Section 3.2.4, no previous contribution had been

provided to execute intrusion detection based on a modelled intrusion road map

in conjunction with the real-time intrusion threat analysis on high-level detection

(that is, one aggregated intrusion alarm generated after the multiple relevant ma-

licious network packets been identified), and the detection uncertainty analysis

(that is, the high-level detection process to deal with the uncertainty and the

ignorance when an intrusion detector generates a false detection result).

This chapter presents the proposed mechanisms, which contribute to the func-

tionalities of advanced attack detection tree. First, Section 5.1 proposes three

categories of Quality of Detectability (QoD) metrics. All of these QoD metrics

provide the guarantees of service on the modelled attack tree structure with respect

to the ability of an intrusion detector to detect service-disrupting events caused by

malicious attacks. Then, Section 5.2 describes how the Dempster-Shafer evidence

theory based detection uncertainty analysis mechanism can be used to examine any

uncertainty or ignorance caused during the intrusion detection process. Section 5.3

gives the formalisation of Advanced Attack Detection Tree. Finally, Section 5.4

describes the summary of this chapter.

5.1 Quality of Detectability Metrics

In views that the hidden logics and relations, for example, the causal relation

(one attack step enables another), the temporal relation (one attack step happens

before another), the spatial relation (one attack step relates to another in the

network topology) [67], usually exist in complex attacks involving multiple steps
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between atomic attacks. It is crucial to consider some way of keeping track of

the state of an attack and its corresponding state of intrusion detection. For this

purpose, we propose to consider Quality of Detectability (QoD) metrics.

This section describes three QoD metrics groups: logical steps based QoD met-

rics ML, time based QoD metrics MT , and alert based QoD metrics MA. To

appreciate the detection capability of an IDS protected computer network system

that leverages on the attack tree, it is possible to view the intrusion event occur-

rence logically or along the time axis, denoted as logical steps based QoD metrics

and time based QoD metrics. Both of these are in terms of the sequence of attack

steps between the start of the attack, the actual detection and the end goal of the

attack, which are represented by the nodes of the tree. To investigate the nature

of the raw alerts generated by the intrusion detector, alert based QoD metrics

examine the attack detector’s output during the specific atomic attack detection

process in terms of the alert type number, the total counted alert number and the

alert threat level.

5.1.1 Logical Steps Based QoD Metrics

The main concept behind logical steps based QoD metrics ML is to provide the

logical threat level information of the protected target, which is currently facing

the multi-step attack according to the modelled attack tree. It considers the attack

tree node level as the logical step between nodes. The higher value of node level,

the closer the adversary is to achieve the ultimate goal.

A multi-step attack Ac is represented as a sequence of m attack steps {ai}mi=1,

the culmination of the last attack step, that is, am denotes the achievement of

the attack end goal. In this sense, each attack sequence can be projected into

the corresponding attack path P = ⟨nl, . . . , ns, . . . , nr⟩ traversed upwards from a

leaf node to the root node via any particular subgoal nodes, represented simply

by the terminal nodes (that is, leaf node nl, root node nr), and any nodes ns

in between. Typically, an attack step is embedding between the corresponding

child node and parent node. Therefore, the number of required attack steps from

start to culmination of attack is simply |P | − 1, where | · | denotes the number

of elements in a sequence ⟨. . . ⟩. With this in place, the logical steps based QoD

metrics ML can be defined as follows.

• Steps before Detection (SbD): SbD is defined as the number of attack steps

already achieved on path P ′ (P ′ = ⟨nl, . . . , nd⟩) between the leaf node nl

and the currently detected node nd (for d ∈ {1, 2, . . . ,m} as the index of the



CHAPTER 5. ADVANCED ATTACK DETECTION TREE 63

currently detected node). The computation of SbD is give as,

SbD = |P ′| − 1 (5.1)

SbD logically measures how fast an intrusion detector can discover something

is wrong once an attack sequence is launched, in terms of how many attack

steps have gone past before the detection occurs. The higher value of SbD,

the more risk of the adversary to compromise the victim system.

• Steps to Goal (StG): StG is defined as the number of attack steps not yet

achieved on path P ′′ between nd and nr (P
′′ = ⟨nd, . . . , nr⟩). The computa-

tion of SbD is give as,

StG = |P ′′| − 1 (5.2)

Rather than measuring the effectiveness of an intrusion detector, this is more

of a metric to indicate after an attack detection, how many more steps have

yet to be performed by the adversary before the attack succeeds. The less

value of StG represents the closer to achieve the ultimate goal of intrusion.

• Progress to Goal (PtG): PtG [91] is defined as the probability to measure

how far the adversary has progressed towards achieving the ultimate goal

in terms of the least effort along the attack path in the constructed attack

tree. The computation of PtG is given as

PtG =
α

β
(5.3)

where, α denotes the number of actually achieved subgoals moving towards

the ultimate goal, and β denotes the theoretical least effort to achieve the

ultimate goal.

In order to automatically obtain the value of β, it is defined that a node u

has k child nodes {vi}ki=0. The least effort of a child node vi is denoted as

βvi . The computation approaches [91] of least effort β are stated as follows:

(1) if u is a leaf node of the modelled attack tree, u ∈ leafNodes, then, β=0;

(2) if u is an interior node of the modelled attack tree, u ∈ internalNodes

and has an conjunctive decomposition, then, the computation approach is

as Equation (5.4); (3) if u is an interior node of the modelled attack tree, u

∈ internalNodes and has a disjunctive decomposition, then, the computation
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approach is as Equation (5.5).

β =
k∑

i=0

(βvi) + k (5.4)

β = min(βvi) + 1 (5.5)

5.1.2 Time Based QoD Metrics

Alternatively to viewing the logical steps based QoD metrics along the logical

sequences, analogous metrics can be defined to work along the time axis of the

attack steps (represented as edges within the modelled attack tree). Let {ti}mi=0

denote the time sequence corresponding to the attack sequence with the discrete

time steps, thus, t0 denotes the initial time step that the adversary started the

attack actions, t1 denotes the time step that the adversary achieved the first

attack subgoal, tm denotes the time step at the end goal achievement. Thus, td

(for d ∈ {1, 2, . . . ,m}) denotes the time that an attack step ai ∈ {ai}mi=1 is detected

by the applied IDS if it can detect the attack step instantaneously. Note that in

terms of traversing the program of the attack through the constructed attack tree,

a0 would correspond to a leaf node nl and a1 is its parent node, etc. The time

based QoD metrics MT are defined as follows.

• Time to Detect (TtD): TtD measures how fast an intrusion detector can

discover something is wrong once an attack sequence is launched. It is

defined as the difference between t0 and td:

TtD = td − t0 (5.6)

However, practically, it is not possible to determine t0 from the view of

protection (neither the system administrator nor the intrusion detector can

identify when an adversary has started an attack). Instead, it can be only

measured when an attack activity has been implemented or achieved, that

is, an edge has been traversed, and therefore detected.

W.l.o.g and for simplicity of discussion, the minimum time factor Tmin is

defined as the assumed time cost for each attack step in the attack scenario

corresponding to an attack tree edge that is emergent from a leaf node.

Hence, it is able to compute t0 once t1 is determined by rolling back Tmin,

that is, t0 = t1 − Tmin.
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• Time to Current Subgoal (TtCS): TtCS measures how long an intrusion de-

tector had taken to detect the next consecutive attack step after the achieve-

ment of last attack step. TtCS is defined as the difference between td−1 and

td:

TtCS = td − td−1 (5.7)

It implicitly represents the adversary’s attack skill. Typically, a skilless ad-

versary may spend quite a long time to conduct the attack, while a skillful

adversary may execute the attack quickly. On the other hand, the soph-

isticated adversary may wait a long period to implement the consecutive

intrusion steps or slow down the intrusion process to avoid the intrusion

exposure.

• Time to Goal (TtG): TtG is defined as the difference between td and tm

as Equation (5.8). Rather than measure the effectiveness of an intrusion

detector, it is the metric indicating that, after an attack detection, how

much more minimal time is left before the ultimate attack goal would be

compromised.

TtG = tm − td (5.8)

Similarly, it is also not possible to determine tm (neither system admin-

istrator nor IDS detector can identify when an adversary is expected to

complete an attack). Instead, it can be only determined by calculating the

assumed expected minimal time Tmin in each step with the number of un-

achieved steps to goal StG as Equation (5.9), if all Tmins have the same value

for all steps.

tm = Tmin × StG (5.9)

Alternatively, it is possible that different steps may have their own unique

expected minimal time Tmin (for example, Tmin may be short for a single

SQL injection attack, but Tmin may be quite long for a DDoS attack). Thus,

tm can be computed by summing all Tmins of the unachieved attack steps

from step d+ 1 to step m on the attack path (that is, steps to goal StG):

tm =
m∑

i=d+1

Tmini
(5.10)



CHAPTER 5. ADVANCED ATTACK DETECTION TREE 66

5.1.3 Alert Based QoD Metrics

Besides the tree structure based QoD metrics, an additional group of QoD metrics

is to investigate the possible detected atomic attack information by intrusion de-

tection detector. By providing the possible and essential attack information within

QoD mechanism, it implicitly indicates or predicts the next possibly intrusion step

and the on-going threat from the adversary.

According to Definition 17 and Definition 18 in Section 4.3, an atomic attack

ai is a combination of q types of modelled attack incidents {Ij}qj=1.

However, the amount of actual detected attack incident types during one attack

step process may be different from the modelled number of incident types, because

the audited data may contain other kinds of un-modelled incident types due to

noise, or, the adversary may be attempting to achieve the subgoal by applying

different attack techniques. Let t denotes the number of actual attack incident

types, and {I+j}tj=1 denote the actual detected attack incident types. Let {Nj}tj=1

denote the actual detected incident number corresponding to each attack incident

type {I+j}tj=1. The metrics in this category are proposed based on metrics in [75]

and examine the statistical information about the generated alerts of the low-level

incidents. The defined MA metrics are then as follows.

• Number of Alert Types (NAT): NAT is defined as the number of actual IDS

detected incident types within an attack step detection between node nd and

nd−1. The measured NAT means that the attack is in progress to comprom-

ise the subgoal. In addition, NAT provides the basis for the following two

metrics.

NAT = t = |{I+j}tj=1| (5.11)

• Mean Alert Number (MAN): MAN is defined in Equation (5.12) as the av-

erage alerts amount of the actual detected incident types within one attack

step detection. The larger value of measured MAN, the more likely that the

adversary is attempting intrusion, and more possibly DoS/DDoS attack.

MAN =

∑NAT
j=1 Nj

NAT
(5.12)

• Mean Alert Severity (MAS): MAS is defined as the average alert severity risk

level of the actual IDS detected incident types within one attack step detec-

tion. The alert severity ASi (for i ∈ {1, 2, . . . , r}) denotes the severity level,

where, AS1 denotes the bottom severity level, ASr denotes the top severity
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level. Note that the value of a single alert severity risk level AS may be ob-

tained from the low-level detector directly, for example three “sig priority”

values (“1” indicates highest risk, whereas “3” indicates least risk) in the

“signature” table of the Snort database. The higher (lower) the MAS level,

the less(more) risk of the intrusion incident.

MAS =

∑NAT
j=1 ASi ×Nj

NAT
, i ∈ {1, 2, . . . , r} (5.13)

5.2 Detection Uncertainty Analysis

Most intrusion detector and attack tree modelling research treat alerts and symp-

toms with certainty without doubting the truth behind the alert detectors. In

intrusion detection, the intrusion is considered detected if the identified symp-

toms completely match the predefined signature or statistics information. While

in attack tree modelling, the event denoted by an edge, is considered satisfied if

the prerequisites denoted by incidents forming the edge, are explicitly achieved.

Very little work appear to consider the uncertainty analysis.

Though there are many potential uncertainty issues, as previously discussed

in Section 2.5.2, our proposed detection uncertainty analysis considers the uncer-

tainty of the generated intrusion alerts and the tree edge achievement process.

In order to propose the detection uncertainty analysis within the attack tree,

Dempster-Shafer evidence theory (D-S theory) [98] will be applied to deal with

the uncertainty due to the following reasons: (1) it reflects uncertainty or a lack of

complete information; and (2) Dempster’s Rule of Combination gives a numerical

procedure to fuse multiple uncertain data as evidence together. Note that D-S

theory has been widely applied in the DIDS related research to fuse the multiple

intrusion alerts from the high-level IDS detectors [21, 123].

In this detection uncertainty analysis mechanism, the main idea is to analyse

how the missed intrusion alerts or the false alerts can effect the modelled attack

tree edge transition based on incidents achievement. Since the intrusion detector

monitors the real-time network traffic to examine any malicious attack packets,

it is possible to obtain statistical information denoted as the assessment factors

from alerts generated by the intrusion detector. The assessment factors can be

measured by applying the membership functions, which will be discussed in Sec-

tion 5.2.2. Once a set of assessment factor values have been generated, the next

step is to conduct the basic probability assignment process to determine the belief

on each claimed focal element for one particular observer. Section 5.2.3 explains

the corresponding process in detail. Finally, the Dempster’s Rule of Combination
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will be applied to fuse the belief values from multiple observers with two different

assessment approaches as discussed in Section 5.2.4 and Section 5.2.5.

5.2.1 Foundation of Dempster-Shafer Evidence Theory

Dempster-Shafer evidence theory allows the explicit representation of ignorance

and uncertainty. Precisely, it is not only “a theory of evidence because it deals with

weights of evidence and with numerical degrees of support based on evidence”, but

also “a theory of probable reasoning because it focuses on the fundamental operation

of probable reasoning: the combination of evidence” [98].

The Frame of Discernment Θ in D-S theory is a finite hypothesis space that

consists of mutually exclusive propositions for which the information sources can

provide evidence. All possible subsets V of Θ are also called as focal elements.

Equation (5.14) is called a basic probability assignment (bpa) or mass function

m whenever it satisfies conditions in Equation (5.15) and Equation (5.16). Equa-

tion (5.15) reflects the fact that no belief ought to be committed to ϕ, where ϕ is

an empty set. While Equation (5.16) reflects the convention that one’s total belief

has measure one. The value of m(V ) is called V ’s basic probability number, and it

measures the belief committed to V .

m : 2Θ → [0, 1] (5.14)

m(ϕ) = 0 (5.15)

∑
V⊆Θ

m(V ) = 1 (5.16)

Dempster’s Rule of Combination provides a data fusion approach that can

combine difference pieces of evidence from different observers together to obtain

a joint support contribution and can reduce uncertainties simultaneously. The

general rule is given by the combined mass function as Equation (5.17), where

the combination operator
⊕

is called orthogonal summation. If there are more

than two sets of belief values that need to be fused, the combination process is

expressed as Equation (5.18). Equation (5.19) shows two equivalent computa-

tional approaches based on the different intersection between the observers’ focal

elements.

m = m1

⊕
m2 (5.17)
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m = m1

⊕
m2

⊕
· · ·

⊕
mn (5.18)

m(V ) =

∑∩
Vj=V

∏
1≤q≤n mq(Vj)

1−
∑∩

Vj=ϕ

∏
1≤q≤nmq(Vj)

=

∑∩
Vj=V

∏
1≤q≤n mq(Vj)∑∩

Vj ̸=ϕ

∏
1≤q≤n mq(Vj)

(5.19)

5.2.2 Membership Functions

For our detection uncertainty analysis, three focal elements are defined to determ-

ine the risk of the achievement of the corresponding attack incident. These three

focal elements are: not risk (V1), risk (V2) and uncertain (V3).

All of the elementary membership functions examine the related aspects on

modelled attack tree edge according to the intrusion detector generated alert in-

formation. The generated alert information normally contains the detected attack

information (for example, source information, target information) as requested by

the Intrusion Detection Message Exchange Format (IDMEF) [27] and the corres-

ponding statistical information, yet it is difficult to distinguish the evidence from

the genuine and direct source of attack. One of main reasons is that the adversary

may masquerade the content of malicious packet and intrusion detector therefore

identifies the attack symptoms without the capability to judge between the genu-

ine or fake malicious packets. Possible measures [75] to overcome this are to count

the number of alerts and retrieve the severity of each alert.

• Alert Amount. The alert amount functions f1 examine the total number

of generated alerts to each single incident type during an edge detection

process. The obtained value represents not only the attack strength but also

the attack confidence. The more the alerts in an edge detection process, the

more likely the intrusion and the achievement of the edge.

The alert amount Ai represents the quantity of generated alerts on incident

type Ii, where i is the index of attack incident type on the modelled attack

tree edge. Three possible thresholds γ1, γ2 and γ3 indicate the border of

no risk, the border between no risk and risk, and the border of risk. Thus,

there are four corresponding ranges as [0, γ1), [γ1, γ2], (γ2, γ3) and [γ3, ∞]

to represent no risk, may be no risk, may be risk and risk.

Therefore, the assessment factor on no risk is measured by considering γ2

as Equation (5.20), while the assessment factor on risk is measured by con-
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sidering γ1 and γ3 as Equation (5.21).

f11 =


γ2−Ai

γ2
if Ai ≤ γ2

0 if Ai > γ2
(5.20)

f12 =


0 if γ1 > Ai

Ai−γ1
γ3−γ1

if γ1 < Ai ≤ γ3

1 if γ3 < Ai

(5.21)

• Alert Severity. The alert severity functions f2 of an incident type determine

how serious is the impact of the attack incident. The low-level intrusion

detector normally predefines the severity level. Thus, the alert severity Pr0

of an incident type Ii can be directly obtained from most low-level intrusion

detectors, such as Snort.

δ represents the number of severity levels according to the intrusion de-

tector’s pre-defined signature database. In Snort, the “sig priority” field

within “signature” table defines three attack severity levels for each corres-

ponding alert to the detected attack. sig priority = 1 represents the top

severity level for the detected attack; sig priority = 2 indicates the medium;

while sig priority = 3 indicates the lowest. Hence, set δ = 3 and Pr0 = 4 −
sig priority for each Snort detected attack.

Equation (5.22) expresses the computation process to measure the assess-

ment factor about no risk. Equation (5.23) shows the computation process

to measure the assessment factor about risk.

f21 =

 δ−Pr0

δ
if Pr0 ≤ δ

0 if Pr0 > δ
(5.22)

f22 =

Pr0

δ
if Pr0 ≤ δ

1 if Pr0 > δ
(5.23)

5.2.3 Basic Probability Assignment

According to the above membership functions, the basic probability assignment

can be conducted by generating a set of belief values mIi
q (Vj) on the claimed

focal elements (not risk, risk and uncertain) for each incident type. Note that

q indicates the index of the above two membership functions, Ii represents the

index of the detected incident type and Vj only represents the jth focal element
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without the uncertain one. Equation (5.24) and Equation (5.25) provide the way

to compute each focal element’s belief value.

mIi
q (Vj) =

fqj∑2
j=1 fqj + 1− PIDS

(5.24)

mIi
q (V3) = 1−

2∑
j=1

mIi
q (Vj) (5.25)

where, q = 1,2; j = 1,2; PIDS is the general detection precision of the intrusion

detector. 1 − PIDS represents intrusion detector’s incorrect detection rate, which

is one of the main uncertainty issues. In addition, V1 denotes the first focal element

as not risk, V2 denotes the second element as risk, while V3 denotes the third focal

element as uncertain.

Once a set of belief values have been generated, these belief values can be fur-

ther fused into mIi(V1), m
Ii(V2) and mIi(V3) based on Dempster’s Rule of Com-

bination as Equation (5.19).

5.2.4 Proposed Sequential Based Assessment Approach

This subsection describes our proposed sequential assessment approach. In the

sequential based approach, the two membership functions are selected as the only

observer set. Figure 5.1 depicts the abstracted assessment approach on a modelled

edge. The edge between child node CN and parent node PN has n kinds of

incidents Ii (i ∈ {1,2,. . .,n}). For each incident, the corresponding belief values

of all three claimed focal elements not risk, risk and uncertain are represented as

mIi(V1), m
Ii(V2) and mIi(V3), respectively.

PN

CN

I1

In

mI1(V1), mI1(V2),

mI1(V3)

mIn(V1), mIn(V2),

mIn(V3)

Phase 1

Phase n

Figure 5.1: Process of Sequential Based Approach

Sequential based approach examines the detection uncertainty by investigating

the belief values of each single modelled attack incident type within the tree edge
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Algorithm 5.2.1: Sequential Based Assessment(Input)

01 {Definitions:
02 n: Number of Modelled Incidents within one Edge
03 Ii: ith Incident Type I within one Edge
04 q: Index of Membership Function
05 Focal Elements: V1 as Not Risk, V2 as Risk, V3 as Uncertain
06 Belief Values of Incident Type Ii: mIi(V1), m

Ii(V2), m
Ii(V3)}

07 {Input: Real-time obtained Alert Amount Ai and Alert Severity Pr0}
08 {Output: Edge Transition with Success or Failure}
09 BEGIN
10 FOR (i = 1; i ≤ n; i++)
11 IF (q == 1) //First Membership Function to Examine Alert Amount
12 mIi

q (V1) = fq1(Ai), m
Ii
q (V2) = fq2(Ai)

13 mIi
q (V3) = 1 - mIi

q (V1) - m
Ii
q (V2)

14 END IF
15 IF (q == 2) //Second Membership Function to Examine Alert Severity
16 mIi

q (V1) = fq1(Pr0), m
Ii
q (V2) = fq2(Pr0)

17 mIi
q (V3) = 1 - mIi

q (V1) - m
Ii
q (V2)

18 END IF
19 mIi(V1) = DSCombination(mIi

1 (V1), m
Ii
2 (V1))

20 mIi(V2) = DSCombination(mIi
1 (V2), m

Ii
2 (V2))

21 mIi(V3) = DSCombination(mIi
1 (V3), m

Ii
2 (V3))

22 IF (mIi(V2) > mIi(V1) + mIi(V3))
23 IF (i < n)
24 Check Next Incident Type in Sequence
25 ELSE
26 Current Edge Achieved and Check Next Edge in Sequence
27 BREAK
28 END IF
29 ELSE
30 Keep Check Current Incident Type Till Been Achieved
31 END IF
32 END FOR
33 END

Figure 5.2: Pseudocode of Sequential Based Approach
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according to the modelled bottom-up sequence. The main purpose of this ap-

proach is to certain that each incident type within edge has been achieved by the

adversary according to the detected evidence from the intrusion detector without

any ignorance.

By applying two membership functions as two independent observers to provide

probability belief evidence, the main analysis principle is to take the provided

belief evidence and examine whether the detected incident alerts are trustworthy

or not for each particular incident type. Each process of the incident type is

regarded as a separate phase. Figure 5.1 illustrates the abstracted process from

the first modelled incident type I1 to the last modelled incident type In. Note that

the horizontal dash line distinguishes the connective incidents as the consecutive

phases.

There are two main steps in each phase. The first main step obtains the belief

values of the incident. Once the values of assessment factors have been measured

by applying the membership functions (that is, Equation (5.20), Equation (5.21),

Equation (5.22) and Equation (5.23)) based on intrusion detector’s real-time de-

tection results, two sets of belief values (that is, Belf1 = {m1(V1), m1(V2) and

m1(V3)}; Belf2 = {m2(V1), m2(V2) and m2(V3)}) to focal elements are generated

for both membership functions f1 and f2. Then, the essential process is to fuse

the two set of belief values into one set (m(V1), m(V2) and m(V3)) by applying the

D-S’s Rule of Combination as Equation (5.19).

The second key step is to compare m(V2) against the summation of m(V1) and

m(V3). Once the conducted analysis generates the appropriate results (that is,

m(V2) > m(V1) + m(V3)), the analysis determines the current incident had been

achieved and goes up to examine the next type of modelled attack incident along

the edge. Because the measured evidence proves that the detected incident is risky

enough as the intrusion. Otherwise, the checking process remains at the current

incident. When all of the modelled attack incidents have been achieved, then,

the whole current edge is considered to be achieved. Consequently, the sequential

based analysis on that edge is completed. Figure 5.2 shows the pseudocode for

this sequential based approach.

The strength of the sequential based approach is that every modelled incident

has been proved by the evidence, considering the uncertainty of the alerts. How-

ever, the possible limitation is that the edge cannot be deemed to be achieved if

any incident along that edge is not achieved.
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5.2.5 Proposed Combination Based Assessment

Approach

Combination based approach examines the detection uncertainty by investigating

the fused belief values from all modelled attack incident types as a bundle. The

main purpose of this approach is to determine if the whole edge has been achieved

by the adversary according to the provided evidence from the intrusion detector,

even if the intrusion detector generates any wrong detection results (for example,

miss any malicious network packets without alert generation, mark any normal

network packets with alert generation) due to ignorance or uncertainty.

PN

CN

I1
mI1(V1),mI1(V2),

mI1(V3)

mIn(V1), mIn(V2),

mIn(V3) mE(V1), mE(V2),

mE(V3)

Phase 1 Phase 2

Figure 5.3: Process of Combination Based Approach

In the combination based approach, the two membership functions are selected

as the first observer set, then, all of the modelled incidents within one edge are

selected as the second observer set. Compared with the previous sequential based

approach, the difference is the selection of observers. Beyond the membership func-

tions as the first observer set, all of the modelled incident types are additionally

taken as the second observer set.

There are two main phases in the processing of this approach. The former phase

is to measure the belief values of each incident type by applying the membership

functions as the observer. While the latter phase is to fuse multiple belief value

sets into the ultimate set by applying the incident types as the observer. Figure 5.3

displays the abstracted overview of the combination based approach on one sampled

attack tree edge with all of the incident types from I1 to In. Note that a vertical

dash line had been plotted to separate the two phases.

In Phase 1, by conducting the same process as the first step of each phase

in the sequential based approach, we firstly generate n sets of belief values BelIi

= {mIi(V1), m
Ii(V2), m

Ii(V3)}, where i = 1, 2, . . . , n, for all incident types by

applying D-S combination according to evidence provided by the first observer.
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Algorithm 5.2.2: Combination Based Assessment(Input)

01 {Definitions:
02 n: Number of Modelled Incidents within one Edge
03 Ii: ith Incident Type I within one Edge
04 q: Index Number of Membership Function
05 E: Targeted Edge
06 Focal Elements: V1 as Not Risk, V2 as Risk, V3 as Uncertain
07 Belief Values of Particular Incident Type: mIi(V1), m

Ii(V2), m
Ii(V3)}

08 {Input: Real-time obtained Alert Amount Ai and Alert Severity Pr0}
09 {Output: Edge Transition with Success or Failure}
10 BEGIN
11 //Phase 1 Process
12 FOR (i = 1; i <= n; i++)
13 IF (q == 1) //First Membership Function to Examine Alert Amount
14 mIi

q (V1) = fq1(Ai), m
Ii
q (V2) = fq2(Ai)

15 mIi
q (V3) = 1 - mIi

q (V1) - m
Ii
q (V2)

16 END IF
17 IF (q == 2) //Second Membership Function to Examine Alert Severity
18 mIi

q (V1) = fq1(Pr0), m
Ii
q (V2) = fq2(Pr0)

19 mIi
q (V3) = 1 - mIi

q (V1) - m
Ii
q (V2)

20 END IF
21 mIi(V1) = DSCombination(mIi

1 (V1), m
Ii
2 (V1))

22 mIi(V2) = DSCombination(mIi
1 (V2), m

Ii
2 (V2))

23 mIi(V3) = DSCombination(mIi
1 (V3), m

Ii
2 (V3))

24 BelIi = {mIi(V1), m
Ii(V2), m

Ii(V3)}
25 END FOR
26 //Phase 2 Process
27 BelE = BelI1

⊕
BelI2

⊕
. . .

⊕
BelIn

28 IF (mE(V2) > mE(V1) + mE(V3))
29 Current Edge Achieved and Check Next Edge in Sequence
30 ELSE
31 Keep Check Current Edge Till Been Achieved
32 END IF
33 END

Figure 5.4: Pseudocode of Combination Based Approach
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Then, in Phase 2, the Phase 1 generated belief values are taken as another set of

evidence and further fused by applying D-S rule of combination as Equation (5.19)

by selecting all incident types as the second observer set. Note that the combina-

tion rule may be repeatedly applied since there could be more than two incidents

types. The combination process is shown as Equation (5.18). Figure 5.4 illustrates

the pseudocode of the combination based analysis with two-phase computation.

The limitation of the combination based approach is that it does not require

that every modelled incident type had been achieved according to the evidence.

Nevertheless, the significant advantage is to conduct the edge-based intrusion de-

tection analysis that considers ignorance and uncertainty in the alerts.

5.3 Formalisation of Attack Detection Tree

This section presents the formalisation of Attack Detection Tree. Attack Detection

Tree (ADtT) 1 is proposed to model the attack detection progress and addition-

ally satisfy the quality of detectability mechanism and the detection uncertainty

analysis by extending the notations of AAT [91, 92]. The formalisation of AAT is

given in Appendix A. The formalisation of ADtT is given as follows:

Definition 23 Attack Detection Tree. An attack detection tree is a node-

labelled rooted tree given by ADtT=⟨N , E, D, M, F , Label, SIGu,v⟩, where

• N is a finite set of nodes in the tree representing the different states of partial

compromise or sub-goals that an adversary needs to move through in order

to fully compromise a system. r ∈ N is a special node, distinguished from

others, that forms the root of the tree. It represents the system compromise

as the ultimate goal of the adversary. The set N can be partitioned into two

subsets, leafNodes and internalNodes, such that

∗ leafNodes
∪

internalNodes = N ,

∗ leafNodes
∩

internalNodes = ∅,

∗ r ∈ internalNodes.

• E ⊆ N×N constitutes the set of edges in the attack detection tree. An edge

⟨u,v⟩ ∈ E defines an atomic attack, as per Definition 26, and represents the

state transition from a child node v to a parent node u, for u, v ∈ N . The

edge ⟨u, v⟩ is said to be emergent from v and proceeding to u.

1Note that the abbreviation “ADtT” is used to represent Attack Detection Tree instead of
“ADT” to avoid the confusion with the acronym for Attack Defence Tree in [49].
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• D is a set of tuples of the form ⟨v, decomposition⟩, such that

∗ v ∈ internalNodes,

∗ decomposition ∈ [O-AND-decomposition, OR-decomposition], where O-

AND-decomposition and OR-decomposition are given in Definition 24

and Definition 25 below.

• M is a finite set of metrics on the tree nodes and tree edges representing

Quality of Detectability of an attack detector. More details on the types of

metrics considered have been presented in Section 5.1. The set M partitioned

into two sections, edgeMetrics and nodeMetrics, such that

∗ edgeMetrics
∪

nodeMetrics = M,

∗ edgeMetrics
∩

nodeMetrics = ∅.

• F is a finite set of assessment factors to an incident, as per Definition 27, on

the tree edges representing Detection Uncertainty Analysis mechanism to an

attack detector. More details on the detection uncertainty analysis considered

have been presented in Section 5.2.2. The set F can be partitioned into two

subsets, amountFactor and severityFactor, such that

∗ amountFactor
∪

severityFactor = F ,

∗ amountFactor
∩

severityFactor = ∅.

• Label is the name of the exploit associated with each edge.

• SIGu,v is an attack signature of an atomic attack for attack detection purpose

which is defined in Definition 28 below.

Definition 24 O-AND Decomposition. Given a node v of an attack detection

tree such that v ∈ internal nodes, the node is an O-AND-decomposition if all edges

incident to the node are connected by the AND operation but with a particular

sequence order.

Definition 25 OR Decomposition. Given a node v of an attack detection tree

such that v ∈ internal nodes, the node is an OR-decomposition if all edges incident

to the node are connected by the OR operation.

Definition 26 Atomic Attack. An atomic attack A is a combination of n

incidents (I1, I2, . . ., In) with a particular order. The occurrence of an atomic

attack contributes towards the state transition in the attack tree.
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Definition 27 Incident. An incident I is a basic benign or malicious action

performed by the adversary or the corresponding response by the target victim.

The occurrence of a single incident does not contribute an attack but taken together

may lead to an atomic attack.

Definition 28 Attack Signature. An attack signature SIGu,v of an atomic

attack is a sequence of sub-signatures combination for each single incident (SIGI1,

SIGI2, . . ., SIGIn) in the atomic attack.

5.4 Summary

This chapter has described two proposed mechanisms: the Quality of Detectability

mechanism and the detection uncertainty assessment mechanism. The goal of the

first mechanism is to measure and show the on-going intrusion state and intru-

sion detection progress based on the tree structure and the generated low-level

alerts. While the task of the second mechanism is to measure the evidence from

the obtained low-level alerts information to identify the achievement of the mod-

elled atomic attack. Two relevant processes are proposed: the sequential based

assessment and the combination based assessment. The former conducts the as-

sessment on every single modelled incident according to the measured evidence,

whereas the latter conducts the assessment by fusing the measured evidence to-

gether from all modelled incidents. By applying the notion of AAT, ADtT is

proposed and formalized by additionally augmenting the QoD mechanism and the

detection uncertainty assessment mechanism into the tree framework.

In the next chapter, the intrusion detection approaches will be proposed based

on the original AAT and our proposed ADtT.



Chapter 6

Attack Tree Based Intrusion

Detection

This chapter describes two different detection mechanisms based on two advanced

attack trees: Augmented Attack Tree (AAT), and Advanced Attack Detection Tree

(ADtT), respectively. The AAT-based intrusion detection conducts the bottom-

up high-level detection process based on the modelled attack tree by applying the

original AAT modelling technique [91, 92]. Then, taking the AAT-based intrusion

detection mechanism as the foundation, ADtT-based intrusion detection mechan-

ism further implements the Quality of Detectability mechanism and investigates

the detection uncertainty from the lower-level intrusion detector to guarantee the

quality of detection results, despite there being uncertainty in low-level alerts.

The remainder of this chapter is organized as follows. Section 6.1 describes

the proposed time window scheme for the detection mechanisms. Then, two intru-

sion detection mechanisms based on AAT and ADtT are described in Section 6.2

and Section 6.3, respectively. Finally, the summary of this chapter is given in

Section 6.4.

6.1 Sliding Based Detection Window

The detection algorithms are implemented with respect to sliding window based

time intervals, denoted Detection Window (DW). The main purpose of DW is

to provide an expected detection time range to facilitate the implementations of

our detection algorithms, not only to provide the high-level detection, but also

to identify hidden relations of intrusions within time bound. Within each DW,

the algorithms examine the detected low-level alert information to ascertain if any

high-level alerts would be triggered. The possible time unit of DW is set in terms

of seconds.
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There are two possible scenarios with this DW scheme. The first time scheme

provides the overlapping part between two consecutive DWs, whereas the second

time scheme provides the non-overlap between two consecutive DWs. The main

advantage of the former is to investigate the hidden relations between the currently

detected alerts in current DW and the partial history from the previous DW.When

carrying over from the current DW to a subsequent one, the algorithm should

continue along the modelled tree path from the detected edges in the current DW

to the next one so that this historic information is also carried forward to the

next DW. Meanwhile, the latter concentrates on the detection within current DW

without any information provision from the previous DW.

The formalisation of sliding based detection window scheme is as follows:

Definition 29 Detection Window. A sliding based detection window is given

by DW = ⟨T, S, ∆⟩, where

• T is the time interval [Ts, Te], where Ts and Te are the starting time and the

ending time of one desired time interval.

• S is the window size:

∗ S = Te − Ts + 1

• ∆ is the sliding move step:

∗ [Te +∆, Ts +∆]

For example, a detection window sets as DW=⟨[Ts, Te], 5 ,2⟩ means the window

size is 5 seconds and the move step is 2 seconds. If the first DW is [11:26:01,

11:26:05], then, the second DW is [11:26:03, 11:26:07], the third DW is [11:26:05,

11:26:09], etc. For another example, DW=⟨[Ts, Te], 1 ,1⟩ represents the window

size is 1 second and the move step is 1 second. Thus, this defined DW works as

the normal second tick.

Note that the size of DW plays an important role in the detection mechanism,

not only in terms of detection performance, but also to the potential logical rela-

tions between the atomic attacks that constitute multi-step attacks. In practice,

both of these points can be achieved by slicing the detection in time into overlap-

ping windows, such that atomic attacks detected in different time windows can

be considered in unison to avoid mis-detecting multi-step attacks that span more

than one time window.

Lemma: DW Overlap. Two DWs could overlap only if S > ∆.



CHAPTER 6. ATTACK TREE BASED INTRUSION DETECTION 81

Proof. For any pair of distinct DWs, with starting and ending times respectively

denoted as [Ts1, Te1], [Ts2, Te2], Ts1 ̸= Ts2 and Te1 ̸= Te2, we consider all possible

scenarios: (1) S = ∆; (2) S < ∆; (3) S > ∆. Observe that w.l.o.g. it must be that

Ts2 = Ts1 + k∆ and Te2 = Te1 + k∆ for some integer k. For the DWs to have any

chance of overlapping, it suffices to consider the smallest integer multiple, k = 1.

In scenario (1), for k = 1, we have Ts2 = Ts1 + ∆ = Ts1 + S = Te1 + 1, so there

can be no overlap. In scenario (2), we have (Ts2 = Ts1 +∆) > (Te1 = Ts1 + S− 1)

since S < ∆, so in fact some gap of at least Ts2 − Te1 = ∆− S exists between two

DWs. In scenario (3), we could have, for example for k = 1, the situation where

(Ts2 = Ts1 +∆) ≤ (Te1 = Ts1 + S− 1) since S > ∆, so the DWs could overlap. �

6.2 Augmented Attack Tree Based Intrusion

Detection

The AAT based intrusion detection is proposed according to the original AAT [92].

The corresponding AAT formalisation is given in Appendix A. Generally, this pro-

posed detection mechanism is a bottom-up approach by detecting the atomic at-

tacks from the initial leaf nodes towards the root node of the modelled attack tree.

For the detection of every atomic attack, the detection mechanism inspects the

specified low-level alerts from the low-level intrusion detector to match the pre-

defined atomic attack signature within multiple successive DWs. This detection

algorithm notably considers the overlapping time windows mechanism to determ-

ine the potential relations between the consecutive intrusions within the defined

time range.

Algorithm 6.2.1 within Figure 6.1 shows the pseudocode of proposed AAT

based intrusion detection mechanism. The top part, which is from Line 2 to Line

7, provides some basic information of algorithm. While, the main body, which

from Line 8 to the last line, provides the algorithm. The part between Line 2 and

Line 5 is the relevant definitions relating to AAT formalisation. Line 6 states the

algorithm input, which is the real-time network traffic. Line 7 states the algorithm

output, which is the high-level detection alert on each atomic attack.

The proposed algorithm works as follows. It initializes the detection at one of

the bottom edges (whose child nodes are leaf nodes) by defining all the bottom

edges as a set of SelectedEdges. The SelectedEdges are all potential atomic attacks,

and either of them could be achieved in the next step. Meanwhile, the low-level

intrusion detector commences to examine the coming traffic and generates any

alerts once any malicious packets have been identified. Once both of the initial-

ization steps have been achieved, the algorithm identifies the DW information to
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Algorithm 6.2.1: AAT-based Intrusion Detection(Input)

01 {Definitions:
02 Nodes (currentChild, currentParent, leaf, root)
03 Edges (currentEdge, parentEdge, siblingEdge)
04 Signatures (compoundAlert, compoundSig)
05 Decompositions (AND,OR)}
06 {Input: Real-time Network Traffic}
07 {Output: High-Level Intrusion Alert}
08 BEGIN
09 Select All Bottom Edges as SelectedEdges
10 WHILE (INTRUSION DETECTOR IS DETECTING) DO
11 Determine the Current DW
12 FOR currentEdge ∈ SelectedEdges
13 Retrieve compoundSig of currentEdge
14 Generate compoundAlert in Current DW
15 IF sigMatch(compoundAlert, compoundSig) THEN
16 Record compoundSig, edgeID and DW
17 Retrieve currentParent.Decomposition
18 selectNextAppropriateEdge(currentParent.Decomposition)
19 IF currentParent.Decomposition == OR THEN
20 Select parentEdge
21 END IF
22 IF currentParent.Decomposition == AND THEN
23 IF All siblingEdge been Detected THEN
24 Select parentEdge
25 ELSE
26 Select siblingEdge
27 END IF
28 END IF
29 break
30 END IF
31 END FOR
32 IF rootMatch(currentParent, Root) THEN
33 Generate High-Level Alert
34 END IF
35 Update SelectedEdges
36 DW Move Forward
37 END WHILE
38 END

Figure 6.1: Pseudocode of AAT Based Intrusion Detection Algorithm
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set the specified time range for current intrusion detection process as its first mis-

sion, as Line 11. Then, from Line 12, the algorithm retrieves each bottom edge

from the SelectedEdges, and for each, the algorithm retrieves the corresponding

signature information (Line 13). In addition, the algorithm generates the com-

pound alert (compoundAlert) in the specified DW (Line 14). Then, in Line 15, the

algorithm compares between the generated compound alert (compoundAlert) and

the retrieved edge signature (compoundSig). If they match, the algorithm records

the related information, compoundSig, edgeID and DW information, as Line 16.

Then, the algorithm identifies the subsequent edge that should be checked next.

To do so, the algorithm retrieves the decomposition of the current edge’s parent

node from Line 17 to Line 28. If the decomposition is OR, the algorithm sets the

current parent node as the next child node and retrieves the corresponding edge

that has that node as a child node. If the decomposition is AND, the algorithm

selects the sibling edge, which has the same parent node. If all sibling edges have

been detected, the algorithm would proceed to select the parent edge.

Next key step is to check if the current parent node of the newly selected

edge is the ultimate root node and generates a final high-level alert if it is, as

the part between Line 32 and Line 34. The algorithm is then ready to start from

the beginning, in preparation for the next DW to detect new ultimate attacks,

as Line 36. Part of this preparation involves updating the SelectedEdges set to

include edges in the path following the recently detected edges, which should be

checked next. The algorithm adds the newly selected edge into SelectedEdges, due

to that edge may be one of the next attack steps by the adversary; also, it removes

the just achieved non-bottom edge from SelectedEdges, because that attack step

had already been achieved. Aside from bottom edges, the remaining edges within

SelectedEdges should also be checked in the next DW to ensure continuity between

DWs.

6.3 Attack Detection Tree Based Intrusion

Detection

The ADtT based intrusion detection is proposed according to our formalisation

of ADtT in Section 5.3. Generally, this detection mechanism adds the detection

uncertainty analysis mechanism and the QoD mechanism into the existed AAT

based intrusion detection algorithm.

Figure 6.2 and Figure 6.3 display the pseudocode of ADtT based intrusion

detection algorithm. The whole pseudocode had been separated into two parts

due to the limited page length. This algorithm is also a tree-based bottom-up
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detection mechanism. It starts with the same detection process as AAT-based

intrusion detection algorithm does. In each edge’s detection process, the ADtT

based algorithm further conducts the detection uncertainty analysis, the QoD

mechanism measurement, the metrics aggregation.

Once compoundSig and compoundAlert have been generated in each DW, the

algorithm deals with the signature matching process.

If compoundSig is fully matching with compoundAlert, the algorithm records

the related information, for example, compoundSig, edgeID and DW information.

Then, the next essential step is to implement the detection uncertainty analysis

with the real-time measured assessment factors as Line 19, for example, alert

amount, alert severity, based on either the sequential based assessment or the

parallel based assessment. If the measured result is failure (the part from Line 20

to Line 22), the D-S evidence theory based assessment claims that the detection

result is failed. Thus, the algorithm stops the following additional analysis for

this DW and prepares another detection on the next coming DW. However, if

the assessment result is success, then, the algorithm continually implements the

QoD metrics measurement (as Line 23) and the metrics aggregation (as Line 24).

For Line 23, the algorithm measures the detectability quality metrics from the

logical, time and alert statistics aspects. For Line 24, the algorithm computes the

aggregated values of the parent node from the multiple child nodes.

If compoundSig is only partially matching with compoundAlert, the algorithm

records the relevant detected incidents information. Then, the algorithm updates

compoundSig of that edge by marking the already matched incident alerts. Hence,

it records the current detected process. The undetected incident types within

compoundSig will be examined in the following coming DWs. The part between

Line 39 and Line 42 in Figure 6.3 shows the corresponding process.

Then, the algorithm identifies the subsequent edge that should be checked next,

according to the modelled attack detection tree. To do so, the algorithm retrieves

the decomposition of the current edge’s parent node. If the decomposition is OR,

the algorithm sets the current parent node as the next child node and retrieves

the corresponding edge. If the decomposition is O-AND, the algorithm selects the

next sibling edge (sharing the same parent node) following some defined order; if

all sibling edges have been detected in that order, the algorithm would proceed to

select the parent edge. The part between Line 27 and Line 36 in Figure 6.2 shows

the corresponding process. The rest of process is same as Algorithm 6.2.1.
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Algorithm 6.3.1: ADtT-based Intrusion Detection(Input)

01 {Definitions:
02 Nodes (currentChild, currentParent, leaf, root)
03 Edges (currentEdge, parentEdge, siblingEdge)
04 Decompositions (O-AND,OR)
05 Metrics (resistanceMetrics, QoDMetrics)
06 Assessment Factors (alertAmount, alertSeverity)
07 Signatures (compoundAlert, compoundSig)}
08 {Input: Real-time Network Traffic}
09 {Output: High-Level Intrusion Alert and QoD Values}
10 BEGIN
11 Select All Bottom Edges as SelectedEdges
12 WHILE (INTRUSION DETECTOR IS DETECTING) DO
13 Determine the Current DW
14 FOR currentEdge ∈ SelectedEdges
15 Retrieve compoundSig of currentEdge
16 Generate compoundAlert in Current DW
17 IF sigFullMatch(compoundAlert, compoundSig) THEN
18 Record compoundSig, edgeID and DW
19 detectionUncertaintyAnalysis(alertAmount, alertSeverity) on currentEdge
20 IF detectionUncertainAnalysis obtains Failure THEN
21 break
22 END IF
23 QoDMeasurement(QoDMetrics) on currentEdge
24 metricsAggregation(resistanceMetrics) on currentParent
25 Retrieve currentParent.Decomposition
26 selectNextAppropriateEdge(currentParent.Decomposition)
27 IF currentParent.Decomposition == OR THEN
28 Select parentEdge
29 END IF
30 IF currentParent.Decomposition == O-AND THEN
31 IF All siblingEdge been Detected THEN
32 Select parentEdge
33 ELSE
34 Select siblingEdge in Order
35 END IF
36 END IF
37 break
38 ELSE
to be continued

Figure 6.2: Pseudocode of ADtT Based Intrusion Detection Algorithm (Part 1)
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Algorithm 6.3.2: Continue of Algorithm 6.3.1(Input)

39 IF sigPartMatch(compoundAlert, compoundSig) THEN
40 Record detected incidents information
41 Update compoundSig of currentEdge
42 END IF
43 END IF
44 END FOR
45 IF rootMatch(currentParent, Root) THEN
46 Generate High-Level Alert
47 END IF
48 Update SelectedEdges
49 DW Move Forward
50 END WHILE
51 END

Figure 6.3: Pseudocode of ADtT Based Intrusion Detection Algorithm (Part 2)

6.4 Summary

This chapter has stated two attack tree based intrusion detection mechanisms

based on AAT and ADtT, respectively. Both of the proposed detection mechan-

isms apply detection window based on the sliding window scheme. The AAT based

mechanism provides the prototype as a bottom-up tree based detection algorithm.

Then, the additional QoD metrics measurement and the detection uncertainty as-

sessment mechanisms are added into the detection algorithm as the ADtT based

mechanism.

In the next chapter, we will set up the experimental testbed and conduct exper-

iments to evaluate our proposed attack tree based intrusion detection mechanisms.



Chapter 7

Experiment and Analysis

This chapter presents and evaluates the experimental results on our proposed at-

tack tree based intrusion detection mechanisms. First, Section 7.1 describes the

design of the attack tree based intrusion detection system. Second, the initializa-

tion processes of the experiment are stated in Section 7.2. Then, the experimental

results of AAT based intrusion detection mechanism and ADtT based intrusion

detection mechanism are presented in Section 7.3. Next, Section 7.4 presents our

discussions on the detection uncertainty assessment with different value settings.

Finally, Section 7.5 summarises this chapter.

7.1 Design of Attack Tree Based Intrusion

Detection System

This section describes the architecture and database structure for the proposed

intrusion detection system, named as Attack Tree based IDS (ATIDS).

7.1.1 Architecture of ATIDS

Figure 7.1 illustrates the architecture of the proposed ATIDS. In the protected

network, ATIDS monitors the incoming and outgoing network traffic on the edge

device with the appropriate configuration, for example, port mirroring in router.

There are three key components in ATIDS: (1) Detector Module, which functions

as the low-level detector to generate low-level alerts for the high-level attack tree

based detection process; (2) Detection Module, which conducts the high-level in-

trusion detection and the advanced intrusion analysis mechanisms; and (3) Support

Dababase Module, which stores all the relevant data, such as: the generated low-

level alert from the Detector Module; and the obtained high-level attack data from

the Detection Module.
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Figure 7.1: Architecture of ATIDS

In addition, the Detection Module is subdivided into the following three sub-

sections: (I) Tree Based Detection Sub-Module; (II) Detection Uncertainty Sub-

Module; and (III) QoD Measurement Sub-Module. Tree Based Detection Sub-

Module implements the fundamental detection process according to the ADtT

based intrusion detection algorithm. Detection Uncertainty Sub-Module deals with

the D-S evidence theory based detection uncertainty analysis as part of the tree

based detection. Moreover, QoD Measurement Sub-Module measures the relevant

QoD metrics values according to the achieved detection results.

Both Detector Module and Detection Module are controlled by the network

security analyzer through the command terminal.

7.1.2 Support Database Schema

Figure 7.2 illustrates the visual overview of the support database module in ATIDS

with the entity relations between the tables. The support database module can

be classified into two main sections: tree detection section and detector support

section. The left dash line box in Figure 7.2 shows the tree detection section, while

the right dash line box in Figure 7.2 shows the detector support section. The tables

in the tree detection section represent the relevant database tables relating to the

modelled tree representation and the detection procedure recording. The tables
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in the detector support section are Snort provided standard tables, for example,

event, signature. The corresponding Snort database schema can be found in [4].

Tree Detection Section Detector Support Section
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PK nodeID
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Figure 7.2: ER Diagram of Support Database

The tree detection section can be further divided into two parts: tree struc-

ture part and detection procedure part. The tree structure part tables are estab-

lished based on the ADtT formalisation. We set five tables: tNode, tEdge, tSigna-

ture, tDecomposition and tMetric to represent ADtT’s node N , edge E , signature
SIGu,v, node decomposition D and metric M, respectively. All values from the

modelled attack detection tree are stored in the relevant tables. In the detection

procedure part, dResults table stores the detected high-level atomic attack inform-

ation, whereas, dSelectedEdges table records the selected edges during detection

process about the possible edges which may be checked in the next DW.

Within the range of tree detection section, tNode and tEdge are most funda-

mental modelled tree elements due to each edge having two nodes and the edge

provides the framework of the tree. Hence, there is one relation between tNode

and tEdge. In addition, each node entity has been attributed with the correspond-

ing decomposition and metric entities. Thus, another two relations exist between

tNode and tDecomposition, and between tNode and tMetric. For each edge entity,

there is another relation between itself and the signature entity, since each edge

has its own unique signature. Besides the entity relations within the tree detection

section, there is one relation that connects from tSignature entity to signature en-

tity in the detector support section. Consequently, the modelled Attack Detection

Tree is virtually represented in the database.
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7.2 Experimental Initialization

7.2.1 Testbed Setup

A testbed had been constructed to implement the proposed ATIDS. Figure 7.3

illustrates the network structure of the built testbed. Two laptops with installed

Ubuntu OS connect to each other via a network hub. The version of applied

Ubuntu on both laptops is v9.10. According to Figure 7.3, the left laptop plays

as the attack traffic provision server, irrespective of whether it is a compromised

bot, or the root attack source from an adversary; whereas the right laptop plays

as the detection server. In the left one, a piece of network traffic replay software

had been installed to replay the captured attack traffic in .PCAP format. In the

right one, the developed ATIDS had been deployed to implement the high-level

detection on the attack traffic.

Attack Traffic

Provision Server

ATIDS Deployed

Detection Server

ATIDSAdversary

Figure 7.3: Constructed Testbed

During the ATIDS development process, the development platform is also

Ubuntu v9.10; the main developing language is C and the applied C compiler

is the GNU C Compiler (v4.4.4.1-1ubuntu2) in Ubuntu; the applied database

is MySQL (v5.1.37-1ubuntu5.4). In addition, the attack traffic provision server

installed replay software is tcpreplay (v3.4.1). Furthermore, Snort (v2.8.4.1) is

utilised as the low-level detector of ATIDS.

7.2.2 Experimental Data Set Selection

As the proof of concept, DARPA2000 data sets [55] have been applied to examine

the proposed ATIDS. Compared with other well-known intrusion data sets (for

example, KDD CUP 1999 [1], DARPA1998 [52], DARPA1999 [53]), the significant

feature of DARPA2000 is that DARPA2000 data sets are multi-step intrusions

for the unique ultimate attack goal (to compromise host by DDoS) by the single

adversary or the multiple cooperating adversaries. Thus, there are causal relations

between two consecutive intrusion steps. In contrast, for the other data sets,
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though they contain large volume of attack traffic, these attacks target on different

attack goals (for example, in DARAP1999, DoS targets on the disruption of a host

or network service, Remote to Local (R2L) targets on the remote and illegal access

to the local machine, User to Root (U2R) targets on the local user illegally obtain

the administrator privilege [64].) and may launched by different adversaries from

different sources without any comprehensive causal relations. From the view of

attack tree modelling, it is difficult to build an attack tree with multiple ultimate

attack goals (root nodes). Therefore, we apply DARPA2000, which includes two

separate data sets: LLDOS1.0 and LLDOS2.0.2.

The simulated network of DARPA2000 is divided into three segments repres-

enting the networks inside an Air Force base, which is the target network system

of the adversary; the outside Internet of the Air Force base; and the De Militarized

Zone (DMZ ) that connects the inside and outside. Within each data set, there

are two groups of provided traffic files in .PCAP format. One group is a set of

traffic files from the “Inside” network, and another is a set of traffic files from

the “DMZ” network. The abstracted network topology is shown as Figure 7.4.

Both “Inside” traffic and “DMZ” traffic are captured simultaneously when the

adversary conducting the multi-step attacks. Thus, both of “Inside” traffic and

“DMZ” traffic have same attack process and most of the attack packets are same.

Outside Internet

Adversary

172.16.114.0/24

DMZ Network

172.16.115.0/24

172.16.113.0/24

172.16.112.0/24Inside Network of Air

Force Base

Victim Server

Victim DNS Server

Victim Server

Victim Server

Figure 7.4: Network Topology of DARPA2000 Data Sets

In LLDOS1.0 data set, the adversary targets on four subnets within the inside

network and compromises three victim servers to launch DDoS attacks. In LL-

DOS2.0.2 data set, the adversary targets on the DNS victim server to exploit the

same victim servers to launch DDoS attacks. In addition, both LLDOS1.0 data

set and LLDOS2.0.2 data set have five intrusion steps, the main process of each

step is briefly described in Table 7.1. More statistics information of each phase
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will be presented in Section 7.2.3.

We apply the “Inside” files to establish the model of ADtT and initialize the

detection performance of Snort. We then apply both the “Inside” and “DMZ”

files to evaluate our proposed ATIDS.

Table 7.1: Typical Attack Phases Matching in DARPA2000 Data Sets

Data Set Phase Attack Description

LLDOS1.0

Phase 1 IP Sweep
Phase 2 Probe by Sadmind Vulnerability
Phase 3 Break into Victims
Phase 4 Install DDoS Daemons on Victims
Phase 5 Launch Attacks to Primary Victim

LLDOS2.0.2

Phase 1 DNS Probe
Phase 2 Break into Victim
Phase 3 Install DDoS Daemon on Victim
Phase 4 Install DDoS Daemons on Victims
Phase 5 Launch Attacks to Primary Victim

7.2.3 Prerequisite Detection Evaluation

Since Detection Uncertainty Analysis requests the calculation of total uncertainty

(as Equation (5.24) in Section 5.2.3) during the attack detection tree based in-

trusion detection process, it is necessary to obtain the uncertainties from both

the membership functions and detector’s detection performance. This subsection

provides the corresponding process to evaluate the detector’s detection perform-

ance.

In order to identify Snort’s detection performance on DARPA2000 data sets,

the first essential task is to investigate the ground truth of the examined traffic.

Though DARPA2000 is one of the widely applied data sets for intrusion de-

tection related research, there is limited information about the ground truth of

DARPA2000 from MIT Lincoln laboratory. In addition, few relevant publications

clarify the detailed ground truth of those data sets. Thus, we have conducted

the ground truth analysis on DARPA2000. The detailed process is presented in

Appendix B. Table 7.2 and Table 7.3 show the measured ground truth including

the total number of traffic packets from each “Inside” .PCAP file, the number

of identified attack packets and the number of identified normal packets in both

LLDOS1.0 and LLDOS2.0.2 data sets.

After that, the next key process is to determine Snort’s detection precision.

The general idea is to examine whether the alert generated packet is the attack
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Table 7.2: Ground Truth of DARPA2000 LLDOS1.0 Inside Traffic

Phase
Number of Number of Number of

Total Packets Attack Packets Normal Packets

Phase 1 40 40 0
Phase 2 158 151 7
Phase 3 225 111 114
Phase 4 520 190 330
Phase 5 73924 34059 39865

Table 7.3: Ground Truth of DARPA2000 LLDOS2.0.2 Inside Traffic

Phase
Number of Number of Number of

Total Packets Attack Packets Normal Packets

Phase 1 4 2 2
Phase 2 6 4 2
Phase 3 72 42 30
Phase 4 203 135 68
Phase 5 954 609 345

packet or the normal packet according to the measured ground truth. The detailed

process is presented in Appendix C.

Refer to the four fundamental intrusion detection metrics in Section 2.2.3, the

packet which had been labelled as positive in both ground truth and detection

result is determined as TP ; the packet which had been labelled as negative in

both ground truth and detection result is determined as TN ; the packet which

had been labelled as positive in ground truth and negative in detection result

is determined as FN ; the packet which had been labelled as negative in ground

truth and positive in detection result is determined as FP. Table 7.4 shows the

measured four common detection metrics (TP, FP, FN, TN) of each phase on

the DARPA2000 LLDOS1.0 Inside traffic. The measured results for DARPA2000

LLDOS2.0.2 are shown in Table 7.5.

Then, it is possible to calculate the relevant detection performance for each

phase by applying the detection performance examination equations as Equa-

tion (2.1), Equation (2.2), Equation (2.3) and Equation (2.4) in Section 2.2.3.

Table 7.6 shows the measured detection performance in terms of DR, FAR, Pre-

cision and Accuracy in the corresponding columns. Note that “NAN” in “LL-

DOS2.0.2 Inside Phase 1” row and “LLDOS2.0.2 Inside Phase 3” represents Not

A Number. The reason to “NAN” is due to there being no packet detected in both
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Table 7.4: Measured Detection Metrics of DARPA2000 LLDOS1.0 Inside Traffic

Phase Number of TP Number of FP Number of FN Number of TN

Phase 1 40 0 0 0
Phase 2 151 0 0 7
Phase 3 28 7 83 107
Phase 4 7 4 183 326
Phase 5 267 311 33792 39554

Table 7.5: Measured Detection Metrics of DARPA2000 LLDOS2.0.2 Inside Traffic

Phase Number of TP Number of FP Number of FN Number of TN

Phase 1 0 0 2 2
Phase 2 4 0 0 2
Phase 3 0 0 42 30
Phase 4 4 2 131 66
Phase 5 3 2 606 343

phases, thus, the corresponding 0 TP and 0 FP cause the division 0/0.

Table 7.6: Detection Performance of Each Phase

Phase DR FAR Precision Accuracy

LLDOS1.0 Inside Phase 1 100% 0% 100% 100%
LLDOS1.0 Inside Phase 2 100% 0% 100% 100%
LLDOS1.0 Inside Phase 3 25.23% 20% 80% 60%
LLDOS1.0 Inside Phase 4 3.7% 36.36% 63.64% 64.04%
LLDOS1.0 Inside Phase 5 0.78% 53.81% 46.19% 53.87%
LLDOS2.0.2 Inside Phase 1 0% NAN NAN 50%
LLDOS2.0.2 Inside Phase 2 100% 0% 100% 100%
LLDOS2.0.2 Inside Phase 3 0% NAN NAN 41.67%
LLDOS2.0.2 Inside Phase 4 2.96% 33.33% 66.67% 34.48%
LLDOS2.0.2 Inside Phase 5 0.49% 40% 60% 36.27%

As all four metrics represent the detection performance, the following task is

to determine the most suitable metric to be applied in D-S analysis. For DR, FAR

and Precision, they determine the detection performance by only investigating

the fact of generated alerts. Accuracy measures the detection performance by

examining not only the correctly labelled attack packets, but also the correctly

classified normal packets. Though the former set shows the performance about how

the detector can correctly detect the attack packets, the latter metric represents
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the comprehensive detection performance on both attack packets detection and

normal packets labelling. Therefore, Accuracy is a more appropriate metric to

represent the detector’s general performance. The values from all phases will be

utilised for the following detection process.

7.2.4 Attack Tree Modelling

To build the attack detection tree model for DARPA2000 data sets, there are two

essential steps: (1) tree framework construction, and (2) attack signature creation.

According to ADtT formalisation in Definition 23, the infrastructure of the tree

consists of node N , edge E and decomposition D, whereas SIGu,v represents the

attack signature and can be applied in intrusion detection. Hence, the first phase

determines the fundamental structure of the tree according to the data set’s attack

process. Meanwhile, the second phase composes the attack signatures for the

corresponding tree edges.

• Tree framework construction. The files are the network captures within

each of the DARPA2000 data set containing five attack phases. Generally,

the adversary probes the target network system to determine the live hosts,

then, compromises the live hosts and installs the DDoS daemons, and finally,

launches the DDoS attack on the primary victim. More detailed information

can be found from the DARPA2000 website of MIT Lincoln Laboratory [55].

With the attack description information, we can construct the DARPA2000

Attack Detection Tree model based on the analysis of the general attack step

sequence and the causal relations between attack phases. The general attack

step sequence analysis is applied to construct the overall tree structure of the

five phases in DARPA2000, whereas the causal relations analysis is applied

to determine the appropriate position of each phase within the overall tree

structure.

In practical computer network attacks, irrespective of how the attacks are

different from each other, there is typically a general attack step sequence:

reconnaissance; exploit vulnerable port and attack goal.

In LLDOS1.0, the main operation of Phase 1 is to identify the live machines

in the target network by applying the IP sweep attack. Then, in Phase

2, the adversary explores the flaws of targeted machines based on the port

information. Thus, both of phases are classified as reconnaissance in the

general attack step sequence. Phase 3 and Phase 4 are the exploit vulnerable

step as the adversary breaks into the secondary victims and installs the DDoS

attack daemon programs. The DDoS attack had been launched targeting on
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the primary victim in Phase 5, which is the ultimate attack goal as the final

step. Table 7.7 concludes the steps in the general attack step sequence attack

phases and the corresponding phase and attack description for LLDOS1.0.

Table 7.7: Typical Attack Phases Matching in LLDOS1.0 Data Set

Typical Attack Phase Phase Attack Description

Reconnaissance
Phase 1 IP Sweep
Phase 2 Probe by sadmind Vulnerability

Exploit Vulnerability
Phase 3 Break into Victims
Phase 4 Install DDoS Daemons on Victims

Attack Phase 5 Launch Attacks to Primary Victim

In DDOS2.0.2, the operation of Phase 1 is to probe the DNS server by

conducting HINFO query as reconnaissance. Then, the adversary breaks

into the secondary victims and installs the DDoS daemon in Phase 2, Phase

3 and Phase 4 as exploit vulnerable process. At last, the adversary launches

the DDoS attacks by controlling these secondary bots to the primary victim.

Table 7.8 concludes the steps in the general attack step sequence attack

phases and the corresponding phase and attack description for LLDOS2.0.2.

Table 7.8: Typical Attack Phases Matching in LLDOS2.0.2 Data Set

Typical Attack Phase Phase Attack Description

Reconnaissance Phase 1 Probe by DNS HINFO Query

Exploit Vulnerability
Phase 2 Break into one Victim
Phase 3 Install DDoS Daemons on Victim
Phase 4 Install DDoS Daemons on More Victims

Attack Phase 5 Launch Attacks to Primary Victim

Therefore, we determine that all of these five phases in both LLDOS1.0 and

LLDOS2.0.2 follow the generic attack sequence, and the overall structure of

these phases is one phase linking to another subsequent phase. The determ-

ined edges, relevant nodes and labels are listed in Table 7.9. The syntax

of a node name is represented as “NX.X”, which the prefix “N” indicates

“Node”, the first “X” indicates data set and the second “X” indicates the

corresponding phase index. The “R” indicates the root node.

• Attack signature creation. As defined in Definition 28, an atomic attack
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Table 7.9: Framework of Modelled Attack Detection Tree

Data Set Edge ID Child Parent Label

LLDOS1.0

E1.1 N1.1 N1.2 IP Sweep
E1.2 N1.2 N1.3 sadmind Probe
E1.3 N1.3 N1.4 Breakin Victims
E1.4 N1.4 N1.5 DDoS Daemons Installation
E1.5 N1.5 R DDoS Attacks

LLDOS2.0.2

E2.1 N2.1 N2.2 DNS Probe
E2.2 N2.2 N2.3 Breakin Victim
E2.3 N2.3 N2.4 DDoS Daemon Installation
E2.4 N2.4 N2.5 More DDoS Daemons Installation
E2.5 N2.5 R DDoS Attacks

signature (SIGu,v) of ADtT is a group of combined signatures from related

incidents. As all of the incident signatures (SIGI) appear with a particular

order in each phase, it is important to construct SIGu,v with multi SIGI

obeying that specific sequence. In addition, because most SIGI must appear

in the signature to fully represent the attack step, we apply logical AND to

connect the incident signatures. The symbol ∪ indicates the AND connection

in the SIGu,v.

From the view of detection on DARPA2000 data sets, the possible incidents

are the network traffic packets, which are labelled as attack packets by Snort.

While, the signature of each incident is the corresponding Snort signature.

Thus, we may obtain SIGIs by implementing the Snort detection on the

provided sample data. Table 7.10 lists all of the 16 kinds of Snort alert names

as the low-level incident types within DARPA2000. Some of the incidents

appear in both LLDOS1.0 data set and LLDOS2.0.2 data set. Note that

our obtained attack incident list is slightly different from other researchers’

work (for example, 15 in total in [5]) even though we applied the same data

files. The possible reason could be due to our applied Snort versions being

different (for example, Snort 2.8.2 in [5], but ours is Snort 2.8.4.).

Table 7.11 shows the details of the incidents that make up the atomic attack

signatures and corresponding edges in the attack tree.

Figure 7.5 displays the modelled attack detection tree of DARPA2000. The left

branch represents the LLDOS1.0, whose initial phase is Phase 1; the right branch

represents the LLDOS2.0.2, whose initial phase is Phase 2. Note that Phase 1

and Phase 3 in the right branch have been represented with the dash line. This is
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Table 7.10: Summary of Low-Level Incident Types in DARPA2000

Index Name of Incident

I1 ICMP PING
I2 ICMP Echo Reply
I3 RPC portmap sadmind request UDP
I4 RPC sadmind UDP Ping
I5 ICMP Destination Unreachable Port Unreachable
I6 RPC sadmind UDP NETMGT PROC SERVICE

CLIENT DOMAIN overflow attempt
I7 RPC sadmind query with root credentials attempt UDP
I8 INFO TELNET access
I9 INFO TELNET login incorrect
I10 INFO TELNET Bad Login
I11 RESERVICES rsh root
I12 COMMUNITY SIP TCP/IP message flooding directed to SIP

proxy
I13 (snort decoder) Bad Traffic Loopback IP
I14 BAD-TRAFFIC loopback traffic
I15 SNMP AgentX/tcp request
I16 BAD-TRAFFIC tcp port 0 traffic

Table 7.11: Atomic Attack Signatures of DARPA2000

LLDOS1.0 LLDOS2.0.2

Edge Sig ID Sig Value Edge Sig ID Sig Value

E1.1 SIGN1.2,N1.1 I1∪I2 E2.1 N/A N/A
E1.2 SIGN1.3,N1.2 I3∪I4∪I5 E2.2 SIGN2.4,N2.2 I3∪I6∪I7
E1.3 SIGN1.4,N1.3 I6∪I7∪I8∪I9∪I10∪I3 E2.3 N/A N/A
E1.4 SIGN1.4,N1.4 I11∪I8 E2.4 SIGN2.5,N2.4 I3∪I6∪I7∪I8
E1.5 SIGR,N1.5 I8∪I12∪I13∪I14∪I15∪I16 E2.5 SIGR,N2.5 I8∪I12∪I5
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Figure 7.5: Constructed Attack Detection Tree of DARPA2000

due there being no Snort alerts generated in Phase 1 and Phase 3 in LLDOS2.0.2

according to Section 7.2.3. In addition, the DDoS attack on the primary victim

is the ultimate attack goal of both two datasets, thus it is the root node of the

tree. Since the adversary had implemented only one attack operation to achieve

each single sub-goal in the dataset, the modelled tree has only two direct branches

without any more leaf nodes or additional paths, where achieving the sub-goals

of any branch leads to the final goal (root node). The label and the signature

information are drawn on both sides of each edge. Each edge contains the atomic

attack signature ID as detailed in Table 7.11.

7.3 Experimental Results

Once we have established our testbed and generated ADtT for DARPA2000,

the experiments are conducted by executing ATIDS on testbed and replaying
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DARPA2000 data sets. The experimental input is the malicious network traffic

from either LLDOS1.0 data set or LLDOS2.0.2 data set, while the experimental

outputs include the generated high-level alert and the measured on-going intrusion

detection metrics. The whole experiments last two weeks from 20th October 2011

to 2nd November 2011, in which we are kept ATIDS executing and replayed the

attack data set into the monitored network at any time as we wish.

The general detection process of ATIDS is stated as follows. ATIDS conducts

the high-level intrusion detection within each specified time period according to

DW setting. The detection process follows strictly on the modelled multi-step

attack signatures and further implements the detection uncertainty analysis to

allow any wrong detection (Please refer to Chapter 6 for the detailed intrusion

detection process). On GUI of ATIDS, it shows the time information of each DW.

ATIDS additionally shows attack information, which including Attack Phase, DW

start time, DW end time and the name of high-level attack step, as soon as any

high-level attack step been detected. All the experimental data shown in the tables

of this section are obtained from the detection process.

We define two DW settings: (1) Non-overlapped setting is configured with T

= now, S = 6 and ∆ = 6; (2) Overlapped setting is configured with T = now, S =

6 and ∆ = 5. The former DW represents that ATIDS examines Snort generated

low-level alerts every 6 seconds and the investigated time period is latest 6-second

period without the overlapping between two consecutive DWs. The latter DW also

represents that ATIDS examines Snort generated low-level alerts every 6 seconds,

but the investigated time period is latest 5-second period plus with an additional

overlapped 1-second period between the current DW and the last DW.

However, the time constraint is always exist as the research limitation. The

reason is that the relevant detection process only investigates the low-level alerts

within the specified time period, no matter it is overlapped or not. Any generated

low-level alerts beyond the current DW cannot be examined. Thus, the hidden

logic and relation may be difficult fully identified.

We conduct three groups of experiments: (1) AAT based intrusion detection;

(2) ADtT based intrusion detection with sequential based assessment; and (3)

ADtT based intrusion detection with combination based assessment. The meas-

ured experimental results of each group are as follows.

7.3.1 AAT Based Intrusion Detection

With the AAT Based Intrusion Detection approach, we have conducted three sets

of experiments with two targets. The first two experiment sets target on the de-

tection performance evaluation on “Inside” traffic with both the non-overlapped
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DW setting and the overlapped DW setting, while the third experiment set targets

on the detection performance evaluation on “DMZ” traffic.

Non-overlapped DW Setting

Table 7.12 and Table 7.13 show the relevant detection results of each attack

phase on LLDOS1.0 “Inside” attack traffic and LLDOS2.0.2 “Inside” attack traffic.

In both tables, the “Detection” column represents the detection results of that

phase. The possible detection results are True, False and N/A. True indicates

that the attack phase is detected through detection process. False indicates that

the ATIDS has conducted the relevant detection on the attack phase, but the

detection result is negative. N/A indicates the corresponding detection is unable

to be implemented due to the unachieved detection of last attack phase. Then,

the “DW Start” column and the “DW End” column represent the start time

and the end time of the DW, which is the corresponding detection time window

of the attack phase detection. The last “High-Level Alert” column represents the

generated high-level alert of each phase according to the edge label from Table 7.9.

It is clear that ATIDS generates the high-level alerts for all modelled five at-

tack phases in LLDOS1.0 Inside data set and three attack phases in LLDOS2.0.2

Inside data set. Figure 7.6 illustrates the snapshot of LLDOS1.0 Phase 5 detection

and the corresponding high-level alarm generation on the Ubuntu terminal.

Table 7.12: AAT Based Detection Results of LLDOS1.0 Inside Traffic with Non-
overlapped DW Setting

Attack Phase Detection DW Start DW End High-Level Alert

Phase 1 True
2011-10-26 2011-10-26

IP Sweep
09:41:06 09:41:11

Phase 2 True
2011-10-26 2011-10-26

Sadmind Probe
09:41:30 09:41:35

Phase 3 True
2011-10-26 2011-10-26

Breakin Victims
09:41:54 09:41:59

Phase 4 True
2011-10-26 2011-10-26 DDoS Daemons
09:42:18 09:42:23 Installation

Phase 5 True
2011-10-26 2011-10-26

DDoS Attacks
09:42:36 09:42:41

Overlapped DW Setting
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Figure 7.6: Output Snapshot of AAT Based Intrusion Detection

Table 7.13: AAT Based Detection Results of LLDOS2.0.2 Inside Traffic with Non-
overlapped DW Setting

Attack Phase Detection DW Start DW End High-Level Alert

Phase 2 True
2011-10-26 2011-10-26

Breakin Victim
09:46:07 09:46:12

Phase 4 True
2011-10-26 2011-10-26 More DDoS Daemon
09:46:31 09:41:36 Installation

Phase 5 True
2011-10-26 2011-10-26

DDoS Attacks
09:46:55 09:47:00

This experiment set investigates the detection performance with the overlapped

DW scenario. The measured detection results of LLDOS1.0 data set and LL-

DOS2.0.2 data set are shown in Table 7.14 and Table 7.15.

Same as the detection results in the Non-overlapped DW Setting, all of the

modelled atomic attacks have been detected successfully. However, note that the

detection of LLDOS1.0 Phase 1 and LLDOS2.0.2 Phase 2 are repeated once after

the first detected DW. This demonstrates that ATIDS has the capability to detect

the atomic attack with the historic information. In addition, any historic inform-

ation is helpful to identify any hidden relation between the past and the on-going

intrusion.

DMZ Traffic
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Table 7.14: AAT Based Detection Results of LLDOS1.0 Inside Traffic with Over-
lapped DW Setting

Attack Phase Detection DW Start DW End High-Level Alert

Phase 1 True
2011-10-31 2011-10-31

IP Sweep
08:36:51 08:36:56

Phase 1 True
2011-10-31 2011-10-31

IP Sweep
08:36:56 08:37:01

Phase 2 True
2011-10-31 2011-10-31

Sadmind Probe
08:37:11 08:37:16

Phase 3 True
2011-10-31 2011-10-31

Breakin Victims
08:37:31 08:37:36

Phase 4 True
2011-10-31 2011-10-31 DDoS Daemons
08:37:56 08:38:01 Installation

Phase 5 True
2011-10-31 2011-10-31

DDoS Attacks
08:39:01 08:39:06

Table 7.15: AAT Based Detection Results of LLDOS2.0.2 Inside Traffic with Over-
lapped DW Setting

Attack Phase Detection DW Start DW End High-Level Alert

Phase 2 True
2011-10-31 2011-10-31

Breakin Victim
08:39:36 08:39:41

Phase 2 True
2011-10-31 2011-10-31

Breakin Victim
08:39:41 08:39:46

Phase 4 True
2011-10-31 2011-10-31 More DDoS Daemon
08:40:21 08:40:26 Installation

Phase 5 True
2011-10-31 2011-10-31

DDoS Attacks
08:40:36 08:40:41

The experiment set with DMZ traffic applies non-overlapped DW setting.

Though the applied “DMZ” traffic files and the applied “Inside” traffic files are

captured simultaneously on the same network traffic, there are some differences

between them, such as the total number of captured packets in each phase, the

number of incident types. Take Phase 5 of LLDOS1.0 for example, the modelled

attack signature has six modelled incident types in the “Inside” file, but, there are

only three incident types in the “DMZ” file.

The detection results of DMZ traffic are shown in Table 7.16 and Table 7.17

to represent LLDOS1.0 data set and LLDOS2.0.2 data set. In Table 7.16, the

first four attack phases have been detected with “True” results, while the last
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attack phase had been evaded. In Table 7.17, the detection results of LLDOS2.0.2

DMZ traffic show that only the first modelled attack phase had been detected, the

second modelled attack phase had been evaded due to the unmatched signature,

while the last attack phase cannot be achieved since the Phase 4 is unachieved

yet.

Table 7.16: AAT Based Detection Results of LLDOS1.0 DMZ Traffic

Attack Phase Detection DW Start DW End High-Level Alert

Phase 1 True
2011-10-26 2011-10-26

IP Sweep
09:48:30 09:48:35

Phase 2 True
2011-10-26 2011-10-26

Sadmind Probe
09:48:36 09:48:41

Phase 3 True
2011-10-26 2011-10-26

Breakin Victims
09:48:54 09:48:59

Phase 4 True
2011-10-26 2011-10-26 DDoS Daemons
09:49:12 09:49:17 Installation

Phase 5 False N/A N/A N/A

Table 7.17: AAT Based Detection Results of LLDOS2.0.2 DMZ Traffic

Attack Phase Detection DW Start DW End Alert

Phase 2 True
2011-10-26 2011-10-26

Breakin Victim
09:52:48 09:52:53

Phase 4 False N/A N/A N/A
Phase 5 False N/A N/A N/A

Summary

According to the above generated alerts information, we summarise that the

proposed AAT based intrusion detection approach can detect the atomic attacks

which satisfy the modelled atomic attack signatures from the attack traffic, irre-

spective of whether the applied DW has been set with either the non-overlapped

or overlapped DW setting.

With the non-overlapped DW setting, ATIDS detects the atomic attacks by

investigating only the Snort generated alerts within that time range without bind-

ing any historic information. If DW contains all of the relevant incidents, ATIDS

generates the high-level alerts as TP. Otherwise, it generates FN.

With the overlapped DW setting, ATIDS is able to detect any atomic attacks

which are low-level incidents that happened in the two consecutive DWs. Thus,
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the reason why the Phase 1 high-level alert in LLDOS1.0 and the Phase 2 high-

level alert in LLDOS2.0.2 repeat is because the low-level incidents are generated

in the exactly overlapped part.

However, ATIDS lacks detection capability to identify any signature non-fully

matched atomic attacks as demonstrated by the experiment set on DMZ traffic

files. These attacks can be regarded as the uncertainties in the detection process.

Without access to the traffic ground truth, the possible reasons of the undetected

incidents may be due to the FNs generated by Snort or the inexistence of incidents

from traffic. In practice, it is possible for a sophisticated adversary to achieve any

atomic attacks by using only a subset of the incidents modelled in the atomic attack

plus other unmodelled incidents. Therefore, the next detection approaches will

conduct the high-level atomic attack detection and additionally try to address the

detection uncertainty as the problem of incidents not fully modelled within atomic

attacks (that is, no relevant incidents within attack traffic, low-level intrusion

detector unable to detect incidents).

7.3.2 ADtT Based Intrusion Detection with Sequential

Based Detection Uncertainty Assessment

In this category, the attack data sets are detected by applying the ADtT based

intrusion detection with sequential based assessment approach as described in Sec-

tion 5.2.4. Generally, the main idea of this approach is to determine the achieve-

ment of every single modelled incident within the atomic attack through the se-

quential detection uncertainty assessment to cause the achievement of an attack

tree edge.

The main process of this approach is as follows. ATIDS firstly detects the

achievement of modelled atomic attack signatures in each DW as the AAT based

approach does. If any of the atomic attacks have been matched, ATIDS generates

a “caution” instead of a high-level alarm to indicate the signature matching. Next,

the sequential based approach implements the detection uncertainty assessment on

each modelled incident within the atomic attack based on the obtained real-time

assessment factors. The assessment mainly measures the identified incidents with

evidence to trigger the alert. If the measured evidence supports the identified

incident, then, ATIDS labels that incident to be achieved. Otherwise, ATIDS

labels it as unachieved. Once all of the modelled incidents within an atomic attack

have been achieved, ATIDS generates a high-level alert to confirm the detection

on the corresponding edge. If not, ATIDS continually examines the currently

unachieved incident without high-level alert generation.

Dissimilar to the previous tables in the last approach, the tables in this ex-
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periment set record more detailed information. The “Detection” column shows

the results of the basis signature matching detection. The “Assessment” column

shows the results of the sequential based assessment. Two “True” values from

both “Detection” and “Assessment” columns indicate the achievement of the at-

tack phase. Otherwise, the attack phase cannot be achieved by ATIDS, and the

following attack phase cannot be examined. In addition, the “Achieved Incidents”

column and the “Unachieved Incidents” column list the relevant index of achieved

and unachieved modelled incidents during the assessment. Moreover, the “DW

Start” column and the “DW End” column represent the corresponding DW start

and end time.

Non-overlapped DW Setting

Table 7.18 and Table 7.19 show the detection results on LLDOS1.0 Inside at-

tack traffic and LLDOS2.0.2 Inside attack traffic by applying ADtT based intrusion

detection with sequential based assessment and the non-overlapped DW setting.

Table 7.18: ADtT Sequential Based Detection Results of LLDOS1.0 Inside Traffic
with Non-overlapped DW Setting

Attack Dete- Asse- Achieved Unachieved DW DW
Phase ction ssment Incidents Incidents Start End

Phase 1 True True I1, I2 NULL
2011-10-31 2011-10-31
16:50:25 16:50:30

Phase 2 True True I3, I4, I5 NULL
2011-10-31 2011-10-31
16:50:37 16:50:42

Phase 3 True False
I6, I7, I10

2011-10-31 2011-10-31
I8, I9 16:50:55 16:51:00

Phase 4 N/A N/A N/A N/A N/A N/A
Phase 5 N/A N/A N/A N/A N/A N/A

According to Table 7.18, Phase 1 and Phase 2 within LLDOS1.0 Inside attack

traffic have been successfully detected since the atomic attack signatures have been

matched and all of the modelled incidents (that is, I1 and I2 in Phase 1, I3, I4 and

I5 in Phase 2) have been determined. However, in Phase 3, I10 can not be achieved

through the computation of the detection uncertainty assessment. Therefore, I10

has been recorded in the “Unachieved Incidents” column. Additionally, “False”

value has been generated for the whole edge assessment due to not all of the

incidents achieved in current DW. The unachieved Phase 3 causes the detection

process to continually check the current phase. Any further detection on Phase 4
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Table 7.19: ADtT Sequential Based Detection Results of LLDOS2.0.2 Inside
Traffic with Non-overlapped DW Setting

Attack Dete- Asse- Achieved Unachieved DW DW
Phase ction ssment Incidents Incidents Start End

Phase 2 True False NULL I3
2011-10-26 2011-10-26
16:53:26 16:53:31

Phase 4 N/A N/A N/A N/A N/A N/A
Phase 5 N/A N/A N/A N/A N/A N/A

and Phase 5 have been evaded.

Table 7.19 shows the detection results on LLDOS2.0.2 Inside attack traffic.

The assessment of first attack phase has failed because the first modelled incident

I3 cannot be achieved based on the measured assessment factors, even though the

signatures are matched.

Overlapped DW Setting

With the utilisation of the overlapped DW setting, Table 7.20 and Table 7.21

display the obtained results of this approach. Same as the last experiment with

the non-overlapped DW setting, Phase 3 in LLDOS1.0 and Phase 2 in LLDOS2.0.2

have been achieved with failure due to the same reason: I10 in Phase 3 and I3 are

not determined according to the detection uncertainty assessment.

As one of the possible characteristics of the overlapped scheme, Phase 1 and

Phase 3 in LLDOS1.0 repeat in the two consecutive DWs since the atomic attacks

are conducted in the overlapped part.

DMZ Traffic

The detection results of LLDOS1.0 DMZ traffic and LLDOS2.0.2 DMZ traffic

are shown in Table 7.22 and Table 7.23. Only the first attack phase in LLDOS1.0

has been detected and achieved by ATIDS’s process.

Summary

We conclude that the proposed ADtT based intrusion detection with sequential

based assessment approach generates poor results. Since this approach requires

that all of the modelled incidents within the atomic attack must be achieved
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Table 7.20: ADtT Sequential Based Detection Results of LLDOS1.0 Inside Traffic
with Overlapped DW Setting

Attack Dete- Asse- Achieved Unachieved DW DW
Phase ction ssment Incidents Incidents Start End

Phase 1 True True I1, I2 NULL
2011-10-31 2011-10-31
16:54:38 16:54:43

Phase 1 True True I1, I2 NULL
2011-10-31 2011-10-31
16:54:43 16:54:48

Phase 2 True True I3, I4, I5 NULL
2011-10-31 2011-10-31
16:54:58 16:55:03

Phase 3 True False
I6, I7, I10

2011-10-31 2011-10-31
I8, I9 16:55:13 16:55:18

Phase 3 True False
I6, I7, I10

2011-10-31 2011-10-31
I8, I9 16:55:18 16:55:23

Phase 4 N/A N/A N/A N/A N/A N/A
Phase 5 N/A N/A N/A N/A N/A N/A

Table 7.21: ADtT Sequential Based Detection Results of LLDOS2.0.2 Inside
Traffic with Overlapped DW Setting

Attack Dete- Asse- Achieved Unachieved DW DW
Phase ction ssment Incidents Incidents Start End

Phase 2 True False NULL I3
2011-10-26 2011-10-26
16:57:40 16:57:45

Phase 4 N/A N/A N/A N/A N/A N/A
Phase 5 N/A N/A N/A N/A N/A N/A

through both the signature matching and detection uncertainty assessment, any

of the unachieved incidents handicap the successful detection of the atomic attack.

Therefore, the limitation of this approach is that once any of the modelled incidents

cannot been achieved, the detection of that whole attack phase will fail.

According to the above generated alerts information, the main reason of the

unachieved incident is due to the weakness of the measured evidence. However,

it is difficult to conclude that the obtained weak evidence cannot support the

achievement of the incident, or any missed evidence can support the unachieve-

ment of the incident. Therefore, we will solve this problem in the next experiment

set by applying the combination based assessment approach.
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Table 7.22: ADtT Sequential Based Detection Results of LLDOS1.0 DMZ Traffic

Attack Dete- Asse- Achieved Unachieved DW DW
Phase ction ssment Incidents Incidents Start End

Phase 1 True True I1, I2 NULL
2011-10-31 2011-10-31
16:59:16 16:59:21

Phase 2 True False I3, I4 I5
2011-10-31 2011-10-31
16:59:40 16:59:45

Phase 3 N/A N/A N/A N/A N/A N/A
Phase 4 N/A N/A N/A N/A N/A N/A
Phase 5 N/A N/A N/A N/A N/A N/A

Table 7.23: ADtT Sequential Based Detection Results of LLDOS2.0.2 DMZ Traffic

Attack Dete- Asse- Achieved Unachieved DW DW
Phase ction ssment Incidents Incidents Start End

Phase 2 True False NULL I3
2011-10-26 2011-10-26
17:01:00 17:01:05

Phase 4 N/A N/A N/A N/A N/A N/A
Phase 5 N/A N/A N/A N/A N/A N/A

7.3.3 ADtT Based Intrusion Detection with Combination

Based Detection Uncertainty Assessment

In this experiment set, the attack data sets are detected by applying the ADtT

based intrusion detection with combination based assessment approach as de-

scribed in Section 5.2.5. The main background idea of this approach is to determ-

ine the detection of an atomic attack with general detection uncertainty analysis.

Specifically, the atomic attack detection is examined by fusing the multiple sets

of measured evidence which are provided from each single incident.

For each atomic attack detection, ATIDS firstly detects the achievement of

modelled atomic attack signatures in each DW as AAT based approach does. Next,

ATIDS obtains the assessment factors as the evidence to measure the certainty

of every modelled incident as the ADtT sequential based approach does. Then,

instead of the determination on each incident, ATIDS combination based approach

applies the measured results as another evidence set about uncertainty to determ-

ine the detection of the atomic attack. Through this way, it is helpful to determine

the achievement of atomic attack if any of the incidents are missed or have been
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detected falsely by Snort. Once the atomic attack has been achieved through

both signature matching and detection uncertainty analysis, ATIDS generates the

high-level alert to confirm the detection on the corresponding edge. If not, ATIDS

continually examines the currently unachieved incident without high-level alert

generation. Furthermore, ATIDS implements the QoD mechanism to monitor and

record the on-going intrusion detector’s detection performance and the on-going

intrusion progress.

In this experiment set, we conduct the experiments by applying the non-

overlapped DW setting in ATIDS to detect the Inside traffic files, and additionally

detect the DMZ traffic files.

Non-overlapped DW Setting

Non-overlapped DW setting is applied first to evaluate the detection of ADtT

Based Intrusion Detection with Combination Based Detection Uncertainty Assess-

ment. The detection results on both LLDOS1.0 data set and LLDOS2.0.2 data

set are as follows.

In contrast to detection results of ADtT sequential based detection approach,

the combination based approach has better detection performance as the first four

attack phases have been identified. In the last phase, though the atomic attack

signature has been matched, the detection uncertainty assessment determines that

the result is weak to generate the final alarm. Specifically, there are three modelled

incidents I8, I12 and I16, each of which has only one generated low-level alert.

Thus, the proposed D-S evidence based combination analysis cannot support the

atomic attack achievement due to three sets of weak evidence from these modelled

incidents. Table 7.24 displays the detection results on LLDOS1.0 Inside traffic.

Table 7.25 shows the detection results on LLDOS2.0.2 Inside traffic. Although

the last attack phase is not achieved, the first two atomic attacks have been

detected and achieved. Figure 7.7 illustrates the snapshot on the relevant detection

uncertainty assessment results on LLDOS1.0 Phase 3. Figure 7.8 illustrates the

output snapshot on LLDOS2.0.2 Phase 5 detection.

The measured QoD metrics of each attack phase in LLDOS1.0 are shown in

Table 7.26. In addition, the measured on-going QoD metrics of LLDOS2.0.2 are

displayed in Table 7.27. The measurement of QoD metrics are based on the pro-

posed computation methods in Section 5.1. The logical steps based metrics (that

is, StD, StG and PtG) are computed according to Equation (5.1), Equation (5.2)

and Equation (5.3). The time based metrics (that is, TtD, TtCS and TtG) are

computed according to Equation (5.6), Equation (5.7) and Equation (5.8). While,

the alert based metrics (that is, NAT, MAN and MAS) are computed according to
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Figure 7.7: Output Snapshot of ADtT Combination Based Intrusion Detection on
Phase 3

Figure 7.8: Output Snapshot of ADtT Based Intrusion Detection on LLDOS2.0.2
Phase 5
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Table 7.24: ADtT Combination Based Detection Results of LLDOS1.0 Traffic
with Non-overlapped DW Setting

Attack
Detection Assessment

DW DW High-Level
Phase Start End Alert

Phase 1 True True
2011-10-27 2011-10-27

IP Sweep
22:02:11 22:02:16

Phase 2 True True
2011-10-27 2011-10-27

Sadmind Probe
22:02:23 22:02:28

Phase 3 True True
2011-10-27 2011-10-27

Breakin Victims
22:02:35 22:02:40

Phase 4 True True
2011-10-27 2011-10-27 DDoS Daemons
22:02:53 22:02:58 Installation

Phase 5 True False
2011-10-27 2011-10-27

N/A
22:03:23 22:03:28

Table 7.25: ADtT Combination Based Detection Results of LLDOS2.0.2 Inside
Traffic with Non-overlapped DW Setting

Attack
Detection Assessment

DW DW High-Level
Phase Start End Alert

Phase 2 True True
2011-10-27 2011-10-27

Breakin Victim
22:10:11 22:10:16

Phase 4 True True
2011-10-27 2011-10-27 More DDoS Daemon
22:10:29 22:10:34 Installation

Phase 5 True False
2011-10-27 2011-10-27

N/A
22:10:41 22:10:46

Equation (5.11), Equation (5.12) and Equation (5.13).

In this experiment, we assign Tmin = 10 sec to avoid unnecessary computa-

tion complexity and unreasonable attack time consumption. The “Edge Metrics”

columns display the measured metrics about the alert-based information from

the “Detector Module”. The “Node Metrics” columns display the measured lo-

gic and time metrics according to the modelled tree information with ADtT. The

“Phase” column in table denotes the corresponding atomic attack on edge and the

“NodeID” column denotes the corresponding node of each edge (“Phase”). Since

the achievement of parent node indicates the compromise of the (sub)goal, we

assign the node metrics of parent node on the same row with the “Phase” (edge).

Note that we initialise the leaf nodes of the bottom edges as the abstracted starting
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Table 7.26: Measured QoD Metrics of LLDOS1.0 Inside Traffic Detection

Phase
Edge Metrics

NodeID
Node Metrics

NAT MAN MAS
TtD TtCS TtG StD StG PtG
(Unit: Second) (Unit: Step)

P1.1 2 20.00 3.00
N1.1 0 0 50 0 5 0.00
N1.2 10 10 40 1 4 1.00

P1.2 3 50.33 2.46 N1.3 22 12 38 2 3 1.00

P1.3 6 9.50 1.88 N1.4 34 12 26 3 2 1.00

P1.4 3 8.00 1.54 N1.5 52 18 8 4 1 1.00

P1.5 6 289.50 2.67 R 82 30 0 5 0 1.00

Table 7.27: Measured QoD Metrics of LLDOS2.0.2 Inside Traffic Detection

Phase
Edge Metrics

NodeID
Node Metrics

NAT MAN MAS
TtD TtCS TtG StD StG PtG
(Unit: Second) (Unit: Step)

P2.2 3 2.00 1.67
L2.2 0 0 30 0 3 0.00
L2.4 10 10 20 1 2 1.00

P2.4 4 2.00 2.00 L2.5 28 18 12 2 1 1.00

P2.5 3 1.67 2.60 R 40 12 0 3 0 1.00

point of attack and store the leaf node metrics on the row of the bottom edges.

ATIDS generates a separated alert with a set of corresponding QoD metrics in

each DW.

According to the measured edge metrics from the Edge Metrics columns, the

system administrator can quickly have a general idea about the attack traffic.

As the measured NAT is exactly same as the modelled incident type number on

each edge, the system administrator can know that the adversary follows the

exactly modelled attack process to compromise the system without any other

attack attempts. MAN and MAS metrics can assist the system administrator to

understand the average attack incident number and the seriousness of the detected

attack incidents. Take Phase 5 from Table 7.26 for example, the measured MAN

= 289.50 and MAS = 2.67. The system administrator knows that there are lots of

malicious traffic with low risk level, which may be DoS/DDoS attack. While the

generated high-level alert may confirm his understanding of the attack process.

From the Node Metrics columns, it is clear that there is one incremental factor

in StD metric column and one decremental factor in StG metric column from the
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start phase to the end phase in both datasets. With the progress of the attack, the

system administrator can identify that the attack is getting close to the ultimate

goal of the simulated attack. Take Phase 4 for example, the measured StD =

4 steps and StG = 1 step. Thus, the system administrator can determine that

the adversary had already achieved the 4th attack step and with only one step to

compromise the whole system in attack scenario LLDOS1.0.

In columns of MT , the value of TtD follows the increasing tendency and the

value of TtG follows the decreasing tendency. Once ATIDS detects the achieve-

ment of the first attack phase, the corresponding metrics can be measured on the

parent node N1.2. Since the values of TtD and TtG have been obtained with the

assistance of Tmin, ATIDS simply assumes that the initial values of TtD, TtCS and

TtG are 0, 0 and 50, respectively. As the attack progress, the values of TtD, TtCS

and TtG are dynamically updated till the achievement of the root node. We can

also identify the hidden relation between these three metrics. The current value

of TtD equals to the sum of the last measured TtD value with current TtCS value

(for example, TtD = 34 sec in Phase 3, TtCS = 18 sec in Phase 4, so, TtD = 34

+ 18 = 52 sec in Phase 4 ). This represents that the current detection time since

the beginning is based on the detection time cost of the last phase and the current

detection time consumption. In addition, the current value of TtG equals to the

difference between the previously measured TtG value in last phase with current

TtCS value (for example, TtG = 34 sec in Phase 3, TtCS = 8 sec in Phase 4, so,

TtG = 34 − 18 = 16 sec in Phase 4 ). This represents that the achievement of the

current phase is closer to the ultimate than the last phase. Though TtCS and Tmin

are similar since both of them represent the time on each single edge, we found

that there is no constraint between the actually measured TtCS and the theoret-

ically assumed Tmin. In order to better assign a value on Tmin, we suppose that

there should be one justifiable mechanism on Tmin as the threshold according to

the feedback from the detection result and the measured metrics value. Figure 7.9

illustrates the snapshot on the relevant QoD measured results on the LLDOS1.0

Phase 3.

DMZ Traffic

Since some attack phases in DMZ data set (for example, Phase 5 in LLDOS1.0)

have incomplete incidents compared with the modelled incidents in the built At-

tack Detection Tree, thus, the assistance of DMZ traffic can help us to identify the

detection capability of the combination based detection with the missing alerts as

uncertainty. It is possible for us to regard the missed incidents as the unable to be

detected incidents since Snort cannot generate alerts fort them. In that case, the
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Figure 7.9: QoD Output Snapshot of ADtT Combination Based Intrusion Detec-
tion on LLDOS1.0 Phase 3

assessment factors can be assigned with 0 for the alert amount, while maintaining

the value of the alert severity. The results are stated as follows.

Table 7.28 and Table 7.29 show the measured detection results and QoD res-

ults on LLDOS1.0 DMZ files. Figure 7.10 illustrates the output snapshot on the

DMZ Phase 5 detection. As Snort only generates the alerts for I8 and I16 in that

phase, the numbers of the undetected incidents are assigned with 0. Through D-S

evidence assessment, Phase 5 has not been achieved according to Snort generated

evidence. Table 7.30 and Table 7.31 show the measured detection results and QoD

results on LLDOS2.0.2 DMZ files. Figure 7.11 illustrates the output snapshot on

the DMZ Phase 4 detection.

Summary

According to the obtained detection results, we can summarise that the pro-

posed ADtT based intrusion detection with the combination based assessment ap-

proach can detect most of the modelled atomic attacks by handling the uncertainty

issues during the detection process. Since this approach fuses all of measured

evidence from each single modelled incidents within the atomic attack, the D-S

evidence based assessment determines the detection of the atomic attack by fus-

ing all of the evidence into the ultimate evidence to support the atomic attack

detection. Therefore, the combination based assessment approach is more flex-

ible and more general to determine the detection achievement compared with the
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Table 7.28: ADtT Combination Based Detection Results of LLDOS1.0 DMZ
Traffic

Attack
Detection Assessment

DW DW High-Level
Phase Start End Alert

Phase 1 True True
2011-11-01 2011-11-01

IP Sweep
11:18:18 11:18:23

Phase 2 True True
2011-11-01 2011-11-01

Sadmind Probe
11:18:30 11:18:35

Phase 3 True True
2011-11-01 2011-11-01

Breakin Victims
11:18:42 11:18:47

Phase 4 True True
2011-11-01 2011-11-01 DDoS Daemons
11:18:55 11:19:00 Installation

Phase 5 True False
2011-11-01 2011-11-01

N/A
11:19:07 11:19:12

sequential based assessment.

However, we notice that some of the modelled incidents within the typical un-

detected atomic attack (that is, in LLDOS1.0 Phase 5 Inside traffic, the generated

low-level alert number of I8, I12 and I16 are 1, 1, 1, respectively) only have a few

number of the generated low-level alerts. In addition, according to Table 7.6, we

notice that the applied values of PIDS in the assessment of the typical undetected

atomic attacks (for example, PIDS = 53.87% in LLDOS1.0 Phase 5, PIDS = 34.48%

in LLDOS2.0.2 Phase 4) are lower than the values of detected atomic attacks (for

example, PIDS = 100% in LLDOS1.0 Phase 1, PIDS = 100% in LLDOS2.0.2 Phase

2). As these applied values are required for the D-S evidence based detection un-

certainty assessment, we will discuss whether these different values may affect the

assessment results in the next section.

7.4 Discussion

We discuss two points in this section based on two settings within the detection

uncertainty assessment. The first discussion targets on how the different detector

precision PIDS value within the basic probability assignment process may affect the

assessment result. The second discussion targets on how the different threshold γ2

value within in the alert amount membership function may affect the assessment

result.

Our discussions are conducted based on the ADtT combination based intrusion

detection approach on LLDOS1.0 Inside traffic. Every discussion is classified into
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Table 7.29: Measured QoD Metrics of LLDOS1.0 DMZ Traffic Detection

Phase
Edge Metrics

NodeID
Node Metrics

NAT MAN MAS
TtD TtCS TtG StD StG PtG
(Unit: Second) (Unit: Step)

P1.1 2 392.50 3.00
N1.1 0 0 50 0 5 0.00
N1.2 10 10 40 1 4 1.00

P1.2 3 45.00 1.96 N1.3 22 12 38 2 3 1.00

P1.3 6 23.00 1.99 N1.4 35 13 25 3 2 1.00

P1.4 2 5.50 1.55 N1.5 47 12 13 4 1 1.00

P1.5 N/A N/A N/A R N/A N/A N/A N/A N/A N/A

Table 7.30: ADtT Combination Based Detection Results of LLDOS2.0.2 DMZ
Traffic

Attack
Detection Assessment

DW DW High-Level
Phase Start End Alert

Phase 2 True True
2011-11-01 2011-11-01

Breakin Victim
11:11:28 11:11:33

Phase 4 True False
2011-11-01 2011-11-01 N/A
11:11:40 11:11:45

Phase 5 N/A N/A N/A N/A N/A

two steps. The first step discusses the affect on the measured results from the

basic probability assignment process, while the second step discusses the affect on

the measured results from the fusion process.

7.4.1 Detector Precision Value Setting for Basic

Probability Assignment

The basic probability assignment with the detector precision PIDS value has been

described in Section 5.2.3. PIDS represents the detection precision of the low-level

detector, the value of PIDS determines the certainty on the correctly classified

low-level incidents and low-level normal actions. While the value of 1 − PIDS

represents the uncertainty on the incorrectly classification. Since the applied PIDS

value may be assigned with different values within ADtT based intrusion detection

approaches, this subsection discusses how the different PIDS values may affect the
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Table 7.31: Measured QoD Metrics of LLDOS2.0.2 DMZ Detection

Phase
Edge Metrics

NodeID
Node Metrics

NAT MAN MAS
TtD TtCS TtG StD StG PtG
(Unit: Second) (Unit: Step)

P2.2 3 2.00 1.67
N2.2 0 0 30 0 3 0.00
N2.4 10 10 20 1 2 1.00

P2.4 N/A N/A N/A N2.5 N/A N/A N/A N/A N/A N/A

P2.5 N/A N/A N/A R N/A N/A N/A N/A N/A N/A

Figure 7.10: Output Snapshot of ADtT Combination Based Intrusion Detection
on LLDOS1.0 DMZ Phase 5

atomic attack detection results.

We set PIDS with three typical probabilities: the maximal, the medium and

the minimal. Note that all these values should be measurable and reasonable. For

the former, the probabilities should be obtained directly according to any relev-

ant analysis or computation (that is, Snort detection performance evaluation as

described in Appendix C). For the latter, the applied values should be meaningful

(for example it should not be “NAN” in Table 7.6) and possible (for example 0

is the minimal probability to represent that an IDS misses all of the intrusions at

all, but it is impractical because the normal IDS should generate some TP and

TN).

According to the “Accuracy” values from Table 7.6, which records the meas-
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Figure 7.11: Output Snapshot of ADtT Combination Based Intrusion Detection
on LLDOS2.0.2 DMZ Phase 4

ured detection performance through the ground truth analysis and detection eval-

uation, the possible probabilities are as follows: 100% as the maximal, 75% as

the medium and 53.87% as the minimal. The reason to set the first probability

with 100% is because 100% is the largest one from the stored data, while it is also

the maximal probability boundary. Likewise, we select the least one 53.87% as

the minimal probability. The reason to assign the second probability with 75% is

because 75% is the average of five accuracy values in the LLDOS1.0 inside traffic.

As the known least value is 53.87% from the “Accuracy” column of Table 7.6, any

values which are less than 53.87% cannot be considered for this discussion.

In our previous experiments in Section 7.3, PIDS has been assigned with dif-

ferent probabilities according to Table 7.6 for each particular atomic attack. We

set this group of fused evidence as “Group 1”. Besides, we set a fixed PIDS in all

attack phases in Group 2, Group 3 and Group 4 with PIDS = 100%, PIDS = 75%

and PIDS = 53.87%, respectively, to make the comparison against the previous

experiment and also between each other.

Effect on the Basic Probability Assignment

According to Equation (5.24) in the Basic Probability Assignment process in

Section 5.2.3, the proposed divisor takes the uncertainty 1 − PIDS into account

by adding the measured evidence from the membership functions together with

the uncertainty on the misclassification. Hence, the lower value of PIDS causes
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the higher value of the divisor, and additionally causes the lower value of the

quotient. While the higher value of PIDS causes the lower value of the divisor,

and additionally causes the higher value of the quotient.

Table 7.32 takes Phase 2 of LLDOS1.0 for example and shows the measured

detection evidence of I3, I4 and I5, which are obtained from the basic probability

assignment process.

Table 7.32: Belief Values on Every Single Incident in LLDOS1.0 Phase 2 with
Different PIDS

Attack Group 1 Group 2 Group 3 Group 4
Incident PIDS PIDS = 100% PIDS = 75% PIDS = 53.87%

I3

m(V1) = 0.08 m(V1) = 0.00 m(V1) = 0.07 m(V1) = 0.09
m(V1) = 0.82 m(V2) = 1.00 m(V2) = 0.88 m(V2) = 0.80
m(V1) = 0.10 m(V3) = 0.00 m(V3) = 0.05 m(V3) = 0.11

I4

m(V1) = 0.00 m(V1) = 0.00 m(V1) = 0.00 m(V1) = 0.00
m(V1) = 0.78 m(V2) = 1.00 m(V2) = 0.84 m(V2) = 0.73
m(V1) = 0.22 m(V3) = 0.00 m(V3) = 0.16 m(V3) = 0.27

I5

m(V1) = 0.21 m(V1) = 0.00 m(V1) = 0.19 m(V1) = 0.21
m(V1) = 0.65 m(V2) = 1.00 m(V2) = 0.74 m(V2) = 0.65
m(V1) = 0.14 m(V3) = 0.00 m(V3) = 0.07 m(V3) = 0.14

Therefore, we may conclude that, generally, the higher PIDS value generates

strong evidence, for example, m(V2) is higher where V2 corresponds to belief in

there being an attack, in contrast with the lower PIDS value with the same assess-

ment factors. The strong evidence may be helpful to determine the achievement

of the atomic attack.

Effect on the Final Fusion Process

This part discusses how PIDS values may affect the final fusion process. The

measurement of the atomic attack detection combines the multiple evidences from

each modelled incident as Equation (5.19) in Section 5.2.1, thus, the evidence

values of incidents from basic probability assignment determine the final fused

results. According to the measured results from Table 7.33, it is clear that the first

four phases have been achieved since the obtained belief value of the second focal

element exceeds the summation of the first belief value and the third belief value

(that is, m(V2) > m(V1) + m(V3)). However, the last attack phase is unachieved

as the obtained belief value of the second focal element less than the summation of

the first belief value and the third belief value (that is, m(V2) < m(V1) + m(V3)).
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Table 7.33: Belief Values on LLDOS1.0 Inside Traffic with Different PIDS

Attack Group 1 Group 2 Group 3 Group 4
Phase Origin PIDS PIDS = 100% PIDS = 75% PIDS = 53.87%

Phase 1
m(V1) = 0.00 m(V1) = 0.00 m(V1) = 0.15 m(V1) = 0.22
m(V2) = 1.00 m(V2) = 1.00 m(V2) = 0.84 m(V2) = 0.73
m(V3) = 0.00 m(V3) = 0.00 m(V3) = 0.01 m(V3) = 0.04

Phase 2
m(V1) = 0.00 m(V1) = 0.00 m(V1) = 0.01 m(V1) = 0.02
m(V2) = 1.00 m(V2) = 1.00 m(V2) = 0.99 m(V2) = 0.97
m(V3) = 0.00 m(V3) = 0.00 m(V3) = 0.03 m(V3) = 0.01

Phase 3
m(V1) = 0.00 m(V1) = 0.00 m(V1) = 0.01 m(V1) = 0.01
m(V2) = 0.99 m(V2) = 1.00 m(V2) = 0.99 m(V2) = 0.99
m(V3) = 0.00 m(V3) = 0.00 m(V3) = 0.00 m(V3) = 0.00

Phase 4
m(V1) = 0.11 m(V1) = 0.00 m(V1) = 0.08 m(V1) = 0.12
m(V2) = 0.83 m(V2) = 1.00 m(V2) = 0.89 m(V2) = 0.79
m(V3) = 0.06 m(V3) = 0.00 m(V3) = 0.03 m(V3) = 0.09

Phase 5
m(V1) = 0.56 m(V1) = NAN m(V1) = 0.60 m(V1) = 0.56
m(V2) = 0.44 m(V2) = NAN m(V2) = 0.39 m(V2) = 0.44
m(V3) = 0.00 m(V3) = NAN m(V3) = 0.00 m(V3) = 0.00

Therefore, we may conclude that different value of PIDS could not affect the

final results on any atomic attack detection, though the measured evidences in

each group are slightly different.

7.4.2 Threshold Setting for Alert Amount Membership

Function

In the applied ADtT combination based intrusion detection approach, three pos-

sible thresholds γ1, γ2 and γ3 of the Alert Amount membership functions (that

is, Equation (5.20) and Equation (5.21) in Section 5.2.2) are defined with 1, 3

and 30, respectively. The value assignment on γ1 and γ3 are direct. γ1 = 1 is

because that 1 represents the existence of the incident as the minimal. γ3 = 30

is because that 30 is the measured average incident number in LLDOS1.0 Inside

data sets. However, the assignment of γ2 is indirect. Thus, in this subsection, we

discuss how different settings on γ2 may affect the evidence measurement in the

basic probability assignment process and the detection results of the atomic attack

detection.

We define four threshold setting groups: Set 1, Set 2, Set 3 and Set 4. γ2

in these four groups are 3, 5, 10, 15, respectively. While γ1 = 1 and γ3 = 30

are fixed in each group. The applied PIDS value in each attack phase sets as the

corresponding “Accuracy” value from Table 7.6.
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Effect on the Basic Probability Assignment

Table 7.34 shows the measured evidence on I8 and I10 of Phase 4 by the basic

proability assignment process. According to Equation (5.20) in Section 5.2.2, γ2

is only relating to the evidence measurement on the first focal element V1, which

represent no risk as the non-achievement. It is clear that all measured values of

m(V1) in both I8 and I10 increase from Set 1 to Set 4. The reason to this trend

is because the higher value of γ2, the more possibility the measured evidence to

represent the non-achievement of the modelled incident.

Table 7.34: Belief Values on Every Single Incident in LLDOS1.0 Phase 4 with
Different PIDS

Attack Set 1 Set 2 Set 3 Set 4
Incident γ2 = 3 γ2 = 5 γ2 = 10 γ2 = 15

I8

m(V1) = 0.45 m(V1) = 0.69 m(V1) = 0.76 m(V1) = 0.78
m(V2) = 0.31 m(V2) = 0.18 m(V2) = 0.13 m(V2) = 0.12
m(V3) = 0.24 m(V3) = 0.13 m(V3) = 0.10 m(V3) = 0.10

I10

m(V1) = 0.00 m(V1) = 0.00 m(V1) = 0.04 m(V1) = 0.14
m(V2) = 0.83 m(V2) = 0.84 m(V2) = 0.82 m(V2) = 0.73
m(V3) = 0.06 m(V3) = 0.16 m(V3) = 0.14 m(V3) = 0.13

Figure 7.12 illustrates an abstracted relation between γ1, γ2 and γ3. The left

part of γ2 represents the area of “No Risk” as the non-achievement, whereas the

right part of γ2 represents the area of “Risk” as the achievement. As γ2 increasing

from 3 to 15, the “no risk” area becomes wider. In that case, there is higher

possibility about the non-achievement of the incident.

Therefore, we may conclude that the higher value of γ2 increase the certainty

of m(V1) as the non-achievement. Next, we will identify how γ2 may affect the

final fusion on the atomic attack detection.

Effect on the Final Fusion Process

Table 7.35 shows the measured belief values on the detection of each atomic

attack with different thresholds. According to the provided data from Table 7.35,

the phases from Phase 3 to Phase 5 share the same tendency: with the value of

γ2 increases, the value of m(V1) also increases, but the value of m(V2) decreases.

The reason of the values unchanged in Phase 1 and Phase 2 is because the applied

PIDS = 100% without any detection uncertainty.
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Figure 7.12: Abstracted Relation Between Three Thresholds

As the evidence combination approach considers all the measured evidence

(that is, m(V1), m(V2) and m(V3)), the higher m(V1) value of the incident leads

the higher m(V1) value of the atomic attack after the fusion. Therefore, we can

summarise that the higher γ2 value cause the generation of higher m(V1) evidence

value. Note that, the generated detection results are different in Phase 4 of Set 4.

Because Phase 4 in Set 1, Set 2 and Set 3 are achieved, but the highest γ2 value

in Set 4 causes that attack phase unachieved.

From the view of intrusion detection, the security administrator aware of a

security issue once an alert had been generated by IDS. By setting the lower

value of γ2, it is possible to make the “No Risk” field smaller and the “Risk”

field bigger. Compared with other three groups, Set 1 is the optimum group

because it can generate least “No Risk” field and most “Risk” field. Therefore, it is

easier to generate evidence to support the achievement of the detection uncertainty

assessment.

7.4.3 Discussion Summary

Through the discussions on the different values of PIDS and γ2 about the potential

effect on the basic probability assignment and the final fusion process, we can make

the following conclusions: (1) the higher value of PIDS generates the higher value

of m(V2) on single incident detection; (2) the value of PIDS could not affect the

final results on any atomic attack detection; (3) the higher value of γ2 leads the

higher value of m(V1) on single incident detection; (4) the value of γ2 may affect

the final results on any atomic attack detection.

Therefore, several ideas are made to suggest the corresponding value settings.
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Table 7.35: Belief Values on LLDOS1.0 Inside Traffic with Different Thresholds

Attack Set 1 Set 2 Set 3 Set 4
Phase γ2 = 3 γ2 = 5 γ2 = 10 γ2 = 15

Phase 1
m(V1) = 0.00 m(V1) = 0.00 m(V1) = 0.00 m(V1) = 0.00
m(V2) = 0.10 m(V2) = 0.10 m(V2) = 0.10 m(V2) = 0.10
m(V3) = 0.00 m(V3) = 0.00 m(V3) = 0.00 m(V3) = 0.00

Phase 2
m(V1) = 0.00 m(V1) = 0.00 m(V1) = 0.00 m(V1) = 0.00
m(V2) = 0.10 m(V2) = 0.10 m(V2) = 0.10 m(V2) = 0.10
m(V3) = 0.00 m(V3) = 0.00 m(V3) = 0.00 m(V3) = 0.00

Phase 3
m(V1) = 0.00 m(V1) = 0.01 m(V1) = 0.04 m(V1) = 0.11
m(V2) = 0.99 m(V2) = 0.99 m(V2) = 0.96 m(V2) = 0.89
m(V3) = 0.00 m(V3) = 0.00 m(V3) = 0.00 m(V3) = 0.00

Phase 4
m(V1) = 0.11 m(V1) = 0.25 m(V1) = 0.39 m(V1) = 0.55
m(V2) = 0.83 m(V2) = 0.70 m(V2) = 0.57 m(V2) = 0.42
m(V3) = 0.06 m(V3) = 0.05 m(V3) = 0.04 m(V3) = 0.03

Phase 5
m(V1) = 0.55 m(V1) = 0.77 m(V1) = 0.84
m(V2) = 0.44 m(V2) = 0.23 m(V2) = 0.15 N/A
m(V3) = 0.00 m(V3) = 0.00 m(V3) = 0.00

(1) No particular requirement on the PIDS value assignment. (2) The γ2 value

should be set closer to the threshold γ1.

7.5 Summary

This chapter has presented our conducted experiments and relevant analysis.

Firstly, the design of ATIDS and the design of corresponding database have been

described. Second, the relevant experimental initialization process has presented

including how we setup the testbed, how we select the experimental data set, how

we analyse the ground truth of data set and how we generate the attack detection

tree against the data set. Then, we presented three set of experimental results

by applying three attack tree based intrusion detection approaches. Finally, we

discussed how the different value settings may affect the detection uncertainty

analysis during the intrusion detection process.

According to the obtained experimental results, AAT based intrusion detection

approach conducts the detection process as a typical SID. It can detect intrusions,

which are fully modelled as the signatures. As a common SID limitation, it is un-

able to generate intrusion alarm if the identified low-level alerts not matching the

modelled how-level signature. ADtT sequential approach conducts the detection

process by considering the detection uncertainty analysis. However, since it has
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been proposed with the strict signature matching process (that is, every modelled

low-level incident must be achieved by both low-level detection and detection un-

certainty assessment), any generated weak evidence from the detection uncertainty

assessment will cause the whole step detection fail. Finally, ADtT combination

approach deals with the detection uncertainty assessment to accept any low-level

incident detection missing or ignorance.

By comparing the obtained detection results, though AAT based intrusion de-

tection approach and ADtT combination approach have better detection perform-

ance, it is difficult for us to determine which approach is the best one. The reason

is because each approach has its own feature and mechanism. For the AAT based

approach, it achieves the detection with the full signature matching without any

detection uncertainty assessment. Hence, any missed low-level detection makes

the high-level attack step detection fail. For the ADtT sequential approach, it

achieves the detection with the not only the full signature matching, but also the

evidence assessment achieving on each low-level incident. For the ADtT combin-

ation approach, it achieves the detection if the evidence assessment been achieved

with either full or partial signature matching. Even if some of the low-level intru-

sions are missed by the detector, it is still possible to generate high-level alert if

the generated evidence supports the detection uncertainty assessment.

In the next chapter, we will make the conclusion of the whole thesis. Addi-

tionally, we will summarise the limitations and future work of this research.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis has presented our research on the advanced attack tree based intru-

sion detection to detect high-level atomic attack of the multi-step attack. In this

thesis, Chapter 2 had reviewed the relevant background on intrusion detection

and couple of related work on detection uncertainty analysis. Chapter 3 had re-

viewed the background on attack graph and attack tree modelling techniques,

which have particularly investigated how attack graph modelling technique assists

intrusion detection research and how attack tree modelling technique and com-

ponents may be extended for intrusion detection. Chapter 4 had presented our

proposed theoretical contributions on the Unified Parametrisable Attack Tree and

attack resistance attribution within a general attack tree. Then, targeted on the

intrusion detection, Chapter 5 had described our proposed Quality of Detectability

metrics and Detection Uncertainty Analysis mechanisms, and additionally given

the formalisation of Attack Detection Tree. Our proposed intrusion detection al-

gorithms based on advanced attack trees are presented in Chapter 6. Next, the

design of our intrusion detection system, the experimental initialisation, the meas-

ured experimental results and further discussions have been described in Chapter

7.

Generally, our research can be split into two parts: the research on the advanced

attack tree and the research on the intrusion detection. Table 8.1 summarises the

main research contributions and research weaknesses. Two main contributions

are an advanced attack tree modelling technique for intrusion detection (that is,

ADtT) and an attack tree based IDS with uncertainty assessment (that is, ATIDS).

ADtT is the first known attack tree modelling technique specialised for intrusion

detection purpose, while ATIDS is the first known IDS based on modelled attack

tree road map and provides detection uncertainty assessment. However, there are

126
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two weaknesses in our research. The first weakness is that ATIDS is unable to

detect the unknown high-level attack. Since the detection of ATIDS is mainly

depends on the modelled signature, any unmodelled attacks cannot be detected

by ATIDS. This weakness indicates that ATIDS is a signature based IDS. The

second weakness is that there is no metrics been modelled from the applied data

sets, because no detailed state information been provided from the data sets. Thus,

it is difficult for us to conduct our proposed aggregations within our experiments.

Table 8.2 summarises the information of each main contribution, including the

elementary minor contributions and the corresponding description.

Table 8.1: Summary of Research

Main Research Contributions Research Weaknesses

1. ADtT (Attack tree modelling tech-
nique for intrusion detection.)

1. ATIDS is unable to detect the un-
known high-level attack.

2. ATIDS (IDS based on attack tree
model and additionally with uncer-
tainty assessment.)

2. No node metrics provided from the
applied data sets to verify the proposed
aggregation approaches.

Table 8.2: Summary of Research Contributions

Main Minor
Description

Contributions Contributions

ADtT

QoD
Provides the real-time tree structure based
and alarms based metrics to describe the se-
curity situation.

DUA
Provides the real-time detection uncer-
tainty assessment during intrusion detection
process.

UPAT
Provides the theoretical complete attack
tree formalisation for any attack tree exten-
sions.

ATIDS

Aggregations
Provides the theoretical metrics computa-
tion approaches.

ADtT
Provides the intrusion detection capability
for attack tree modelling.

Algorithms
Provides the real-time intrusion detection
approaches based on ADtT.
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The research on the advanced attack tree is the foundation to intrusion de-

tection. Our proposed Attack Detection Tree modelling technique targets on not

only the modelling of the multi-step attack, but also the framework for intrusion

detection. The Attack Detection Tree modelling technique applies the notion of

Augmented Attack Tree, and furthermore provides two advanced mechanisms to

facilitate the intrusion detection. These two proposed mechanisms are the Quality

of Detectability mechanism and the detection uncertainty assessment mechanism.

The proposed Quality of Detectability mechanism measures the real-time met-

rics to represent the on-going intrusion detection progress according to the mod-

elled tree structure, the detection time and the alert information. While the pro-

posed detection uncertainty assessment mechanism measures the evidence from

the real-time generated alerts to conduct the relevant detection uncertainty ana-

lysis, and especially investigates the situations such as any modelled low-level

attack incidents are missed by Snort.

Specifically, two detection uncertainty assessment approaches have been pro-

posed: the sequential based approach and the combination based approach. The se-

quential one examines each single modelled incident one-by-one within the atomic

attack according to the captured evidence. The achievement of the atomic at-

tack is indicated by the achievement of all modelled incidents. Any undetected

incident within this approach is unacceptable, as it causes the unachievement of

the atomic attack. The combination approach examines the achievement of the

atomic attack by fusing the measured evidence from all modelled incidents. Any

undetected incident within this approach is acceptable, since the achievement of

the atomic attack is determined by fusing all of the captured evidence together.

According to the original Augmented Attack Tree and our proposed Attack De-

tection Tree, we have proposed two main intrusion detection approaches: the AAT

based intrusion detection and the ADtT based intrusion detection. The AAT based

approach targets on the validation of the high-level atomic attack detection. The

ADtT based approach targets on not only the high-level atomic attack detection,

but also the Quality of Detectability mechanism measurement and the detection

uncertainty assessment mechanism analysis.

The experimental results show that both of the proposed detection approaches

can detect the high-level atomic attacks from the generated low-level incidents

alerts. For the ADtT based intrusion detection approaches, they generate differ-

ent results with the sequential based assessment approach and the combination

based assessment approach. With the sequential based detection approach, the

experimental results show that it generates less TP. The main reason is that any

unachieved modelled incidents lead to the non-achievement of the atomic attack

detection. With the combination based detection approach, the experimental res-
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ults show that it generates more TP. The main reason is that the atomic attack

detection is by fusing all of the measured evidence from all modelled incidents,

irrespective of whether that incident is missed or not. Moreover, the experimental

results show the measured QoD metrics can represent the progress of on-going

intrusion and intrusion detection.

Besides the aforementioned practical detection process, we have additionally

proposed several theoretical mechanisms to enhance the research on the attack

tree: (1) Unified Parametrisable Attack Tree; and (2) attack resistance aggregation

in the attack tree. Our Unified Parametrisable Attack Tree gives the theoretical

prototype for the attack tree extensions, including our proposed Attack Detection

Tree. Since the possible extension locations are tree node, tree edge and tree

connector, the relevant extensions should fall in that scope. While the attack

resistance aggregation shows the metrics attribution approaches on the attack

tree.

In general, this research explores a new attack tree examination with uncer-

tainty and tree based intrusion detection techniques. The framework presented

here is hoped to be the foundation for the security solutions of the future.

8.1.1 Limitations

There are several limitations within this research.

Limitation 1. Detection Window constraint.

Detection window assists the proposed detection mechanism to identify the

low-level incidents and the corresponding evidence within the determined time

period, and not alerts outside that window. However, the detection window con-

straint exists no matter how we set the window length, for example, 1 second, 1

hour, 1 day, 1 year, etc, even if we apply the overlapped setting.

Limitation 2. Lack of capability to distinguish the generated low-level alerts are

from multiple intrusions.

In our proposed detection approach, we take all of the Snort generated alerts

into the account assuming that they are all relating to the current on-going in-

trusion. However, it is possible that there are multiple adversaries conducting the

intrusions on the same victim system simultaneously. For instance, one of the

adversaries conduct the multi-step attack, but the rest of them simply launch any

intrusions without any particular attack goals.
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8.2 Future Work

The possible future work are as follows.

Future Work 1. Automatic Attack Detection Tree construction.

The main reason of this future work is to address the limitation of Assump-

tion 2. In this piece of future work, the Attack Detection Tree would be gener-

ated automatically by software, and would combine the attack information from

any open attack databases (for example, Common Vulnerability Scoring System

(CVSS)).

For one, the software based generation is more efficient and effective compared

with the manual work. For another, the software based process may generate

the more comprehensive attack tree by analysing and applying different attack

databases, that provided various network intrusions. Therefore, the constructed

attack detection tree may be more precise and can represent more sophisticated

multi-step attacks.

Future Work 2. Attack tree based intrusion detection in real network.

The main reason of this future work is to address the problem of Limitation

2. This piece of future work will apply the attack detection tree mechanism within

the real network. Therefore, the attack tree based intrusion detection should be

capable to identify the low-level alerts which are corresponding to the on-going

multi-step attack, in contrast to those which are the intrusions launched by other

adversaries not mounting multi-step attacks. Therefore, the proposed attack tree

based intrusion detection can be practically applied to implement the high-level

intrusion detection on the modelled attack tree in any real network.
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[73] B. Morin and L. Mé. Intrusion Detection and Virology: an Analysis of Differ-

ences, Similarities and Complementariness. Journal in Computer Virology,

3(1):39–49, 2007.



REFERENCES 138
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Appendix A

Formalisation of Augmented

Attack Tree

Augmented Attack Tree (AAT) [92, 91] extended the conventional attack tree

by associating additional information on the tree edge. There are two different

formalized AATs for two different research. In the former, AAT [91] had been

proposed by augmenting the attack probability label on each edge to identify ma-

licious attacks from authorized insiders. with each branch a sequence of malicious

operations that could have been used in the attack. In the latter, AAT [92] had

been proposed by augmenting the attack signature on each edge to implement

attack forensic analysis. The applied AAT in this thesis is the second one. The

formalisation of applied AAT is as follows.

Definition 30 Augmented Attack Tree. An augmented attack tree is a rooted

labelled tree given by AAT = (V, E, ε, Label, SIGu,v), where

• V is the set of nodes in the tree representing the different states of partial

compromise or sub-goals that an adttacker needs to move through in order

to fully compromise a system. V ∈ V is a special node, distinguished from

others, that forms the root of the tree. It represents the ultimate goal of the

attacker, namely system compromise. The set V can be partitioned into two

subsets, leaf nodes and internal nodes, such that

∗ leaf nodes
∪

internal nodes = V,

∗ leaf nodes
∩

internal nodes = ∅, and

∗ V ∈ internal nodes

• E ⊆ V×V constitutes the set of edges in the attack tree. An edge (u,v) ∈ E

defines an atomic attack and represents the state transition from a child node
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v to a parent node u, u, v ∈ V. An atomic attack is a sequence of incidents.

The edge (u, v) is said to be “emergent from” v and “incident to” u.

• ε is a set of tuples of the form ⟨v, decomposition⟩ such that

∗ v ∈ internal nodes and

∗ decomposition ∈ [AND-decomposition, OR-decomposition]

• Label is the name of the exploit associated with each edge.

• SIGu,v is an attack signature which is defined as Definition 32 below.

Definition 31 Incident-choice. An incident-choice is a group of related incid-

ents, the occurrence of any one of which can contribute towards the state transition

in the attack tree.

Definition 32 Attack Signature. An attack Signature SIGu,v is a sequence

of incident-choices (incident-choice1, incident-choice2,. . ., incident-choicen) such

that the sequence (incidenti,1, incidentj,2, . . . ,incidentm,n) constitute an atomic

attack.

Definition 33 AND-decomposition. Given a node, v in an attack tree such

that v ∈ internal nodes, the node is an AND-decomposition if all edges incident to

the node are connected by the AND operation, or there is exactly one edge incident

to the node.

Definition 34 OR-decomposition. Given a node v of an attack tree such that

v ∈ internal nodes, the node is an OR-decomposition if all edges incident to the

node are connected by the OR operation.



Appendix B

Process of Data Set Ground

Truth Analysis

This appendix describes the process to examine the ground truth of DARPA2000

data sets.

The data information of applied LLDOS1.0 and LLDOS2.0.2 “Inside” traffics

are provided in Table B.1 and Table B.2, respectively. Note that all of the applied

files are from the “inside” network category of the DARPA2000 data sets.

Table B.1: Applied Files for LLDOS1.0 Inside Traffic Ground Truth Analysis

Phase IDMEF Alert File TCPDUMP Traffic File Session List File

Phase 1 mid-level-phase-1.xml phase-1-dump.pcap phase-1.list
Phase 2 mid-level-phase-2.xml phase-2-dump.pcap phase-2.list
Phase 3 mid-level-phase-3.xml phase-3-dump.pcap phase-3.list
Phase 4 mid-level-phase-4.xml phase-4-dump.pcap phase-4.list
Phase 5 mid-level-phase-5.xml phase-5-dump.pcap phase-5.list

Table B.2: Applied Files for LLDOS2.0.2 Inside Traffic Ground Truth Analysis

Phase IDMEF Alert File TCPDUMP Traffic File Session List File

Phase 1 mid-level-phase-1.xml phase-1-dump.pcap phase-1.list
Phase 2 mid-level-phase-2.xml phase-2-dump.pcap phase-2.list
Phase 3 mid-level-phase-3.xml phase-3-dump.pcap phase-3.list
Phase 4 mid-level-phase-4.xml phase-4-dump.pcap phase-4.list
Phase 5 mid-level-phase-5.xml phase-5-dump.pcap phase-5.list

MIT Lincoln laboratory provides a list of IDMEF alert files in XML for each

attack phase. Although each XML alert is a part of the attack, it represents the
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Figure B.1: Abstracted Process of Data Set Ground Truth Analysis

alert as the network session instead of the network packet. As Snort implements

the intrusion detection by examining every single network packet, it is necessary

to accurately identify the malicious attack network packets from the TCPDUMP

file relating to each provided attack session. Thus, the IDMEF alert file is tra-

versed to obtain the key information (for example, attack time stamp, source IP,

destination IP) of alert session record, to identify the corresponding attack packet

in TCPDUMP file. Note that “sessionduration” field in IDMEF file represents

the amount of time between the attack start and end times [54].

Figure B.1 displays the general attack packets determination process. Briefly,

both sets of IDMEF alert files in XML format and the set of TCPDUMP traffic

files in PCAP format are converted into files in CSV format, and then imported

into MySQL database. The tables which contain IDMEF alert files are called as

IDMEF alert tables, while, the tables which contain network traffic files are called

as network traffic tables.

To each attack phase in DARPA2000, the developed C ground truth analysis

program extracts each attack session’s key information from IDMEF alert table.

After that, the program selects the corresponding attack packet(s) with the exactly

same information in network traffic table according to sessionduration value. If

sessionduration equals to 0 second, the matched single attack packet in network

traffic table will be labelled as attack packet; if sessionduration exceeds 0 second,

a number of matched attack packets in network traffic table within session will be

labelled as attack packets. The analysis program traverses the IDMEF alert table

from the first alert record till the last one. Figure B.2 illustrates the flow chart

of attack packets determination for an attack phase. The determination process

repeats in all of the phases in DARPA2000. Therefore, the ground truth of data

set is determined.
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Figure B.2: Flow Chart of Data Set Ground Truth Analysis



Appendix C

Process of Snort Detection

Evaluation

This appendix describes the detailed process how we examined Snort’s detection

results against the obtained data sets ground truth.

As the typical attack alert from the intrusion detector contains the same char-

acteristic values as the originally network packet has, such as source IP, destination

IP, source port, destination port and protocol, the key mechanism of this process

is to identify these essential alert information from each Snort alert, then, ap-

ply these information to match the corresponding attack packet from TCPDUMP

traffic file.

Figure C.1 illustrates the abstracted process to examine Snort’s detection per-

formance. By replaying the exactly same TCPDUMP traffic files as Ground Truth

Determination phase, Snort generates the relevant alerts for each phase. Once

again, five alert CSV files have been generated by setting Snort alarming with

CSV output and also been imported into MySQL database. Additionally, all of

the converted TCPDUMP traffic files in CSV format are imported into MySQL

database. The tables contain Snort alert information are termed as Snort alert

tables, while, the tables contain raw network traffic information are termed as

TCPDUMP traffic tables.

In each phase, the developed Snort detection examination program in C re-

trieves the alert information from the first alert till the last one in each Snort alert

table from database. Firstly, the program selects a set of selected alert informa-

tion of each alert. Then, the program identifies the corresponding matched attack

packet in TCPDUMP traffic table by selecting the retrieved alert information.

Once an attack packet had been matched, the examination program retrieves the

next alert information and implements the matching process till all of the alerts

in current Snort alert table been retrieved.
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Figure C.1: Abstracted Process of Snort Detection Examination

Note that there is a special scenario, where several successive alerts in Snort

alert table have exactly same packet characteristics (for example, source IP, same

destination IP, source port, destination port and protocol) but with different alert

types. This phenomena is generated due to the packet information from one single

packet has been matched by multiple Snort attack signatures (rules). Thus, these

successive alerts only match with the relevant single attack packet.

Figure C.2 shows the process flow of Snort detection examination.
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Figure C.2: Flow Chart of Data Set Ground Truth Analysis


