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ABSTRACT

Vibration measurements on rotating surfaces are often referred to in the
commercial literature as a major application of laser Doppler wvibration
transducers. This paper examines such use of these instruments and shows
how the presence of a veloecity component due to the votation itself leads
to spurious measurement dependence on both torsional vibration and motion
perpendicular to the line of incidence of the laser beam. In addition, the
scale of this dependence increases with beoth rotation speed and
perpendicular distance between the line of incidence and a parallel line
through the centre of rotation. These phenomena are investigated
theoretically and excellent agreement is found when compared with
experimental data. Two solutions are suggested; the first involves careful
alignment of the laser beam whereas the second requires two simultaneous,
orthogonal measurements to bhe made. If neither method.is adopted it is
entirely conceivable that the intended solid body vibration measurement may

be masked at many frequencies of interest.




1. INTRODUCTION

Since the advent of the laser In the early 1960's, optical metrology has
continued to provide means of remote and unobtrusive measurement in the
most challenging of enviromments. For wvibration measurement, several laser
Doppler transducers [1-5] have been proposed for situations where use of an
accelerometer is precluded such as hot, light and rotating surfaces. The
latter case is of particular interest to the engineer who is concerned with
rotating and reciprocating machinery where problems with shaft
out—of-balance and solid body displacement of rotating components are of

concermn.

This paper examines the use of laser vibrometers to measure solid body
vibration velocity of rotating components and shows that great care is
necessary in the interpretation of results. For non-rotating, oscillating
targets the vibrometer output is simply a time-resolved voltage analogue of
the wvibration welocity component in the direction of the incident laser
beam. When the target is rotating, however, the additional presence of a
velocity component from this motion leads to the output being further
dependent upon torsional wvibration and motion perpendicular to the incident
laser beam. In practice, it is shown that use of a single laser vibrometer

may not be able to provide the vibration velocity vector required.

2. THEORETICAL CONSIDERATIONS

2.1 INSTRUMENT PHYSICS

Figure 1 is a schematic diagram which explains the physics of operation of




a laser vibrometer. Scattering particles Doppler shift the incident laser

beam by an amount fp, given by [6]:

2uU
fp = —— sin (6/2) . (1)
A

where u is the refractive index of air, X\ is the laser wavelength and 8 is
the angle defining the scattering direction. The wvelocity vector, U,

bisects the angle (II-8) shown in the figure.

Laser vibrometer measurements are usually taken in direct backscatter, With
this geometry (6=I1), the Doppler shift on-axis with the incident laser beam
is detected. Backscattered light is heterodyned with a frequency shifted
reference beam [6] on a photodetector. Demodulétion of the photodetector
coutput then produces a time-resolved voltage analogue of the velocity
vector, U. In what follows the vibration wvelocity in the direction of and
perpendicular to the incident laser beam are referred to as the on—axis and

in-plane components respectively.
2.2 THEORY OF LASER VIBROMETER MEASUREMENTS ON ROTATING SURFACES

In practice, factors such as mass imbalance will cause a rotating shaft to
whirl in a complicated manner and, consequently, a unit vector defining the
rotation axis will be a function of time. Further to this, at any
cross—section, the locus of the centre of rotation will, in general,
describe an ellipse. In order to simplify theoretical considerations,
however, attention will be limited to the case of a rigid shaft whose
centre of rotation describes a narrow ellipse such that motion along the

minor axis is mnegligible.




With reference to figure 2, consider a shaft of arbitrary cross—section and
radius wvector ;zt), rotating at speed N{t)} about an internal axis defined
by the unit vector Z. The centre of rotation of the shaft undergoes a
periodic vector displacement R(t) at a constant angle, #, to the axis of
the incident laser beam which is defined by the unit vector E. The measured
vibration wvelocity, Up, will then be the total component of surface

velocity in the direction of incidence of the laser beam, given by:

d2(t)
dc

A A > A
Uy, =1. + 2T N(t) 1 . ( £(t) x z ) (2)

where the second term represents the "error velocity", Ug, introduced by

virtue of the target rotation. Thus:

U = W N(E) 2 . (1x2()) (3)
Examining the wvector product:

( gx Z(t) ) = |iA|:?:)(t)| sin B(t) t (4)

A A
where t is a unit vector perpendicular to i and P(t) and f(t) is their

included angle. The dimension y(t) may be written:

y(t) = 12(t) | sin B(t) (5)

which allows simplification of equation (3), thus:

Uy = 2 N(t) y(t) (z . €) (6)




If it is assumed that the shaft rotates without tilt of the rotational axis
A
i.e. the direction of the unit vector z is maintained, then expansion of

the scalar product yields:
Ug = 21T N(t) y(t) cos a (7

A A
where « is the included angle between the unit wvectors z and t. For
simplicity has been assumed that o=0" in which case the overall laser

measurement may be written:

> -
dzgt) | cos 0+ 2nw(e) y(o) (8)

Up = |

where the first term represents the intended solid body vibration velocity
measurement and the second term is the "error velocity". Expanding

time—dependent terms into d.c. and a.c. components using Fourler series:

p

I GEE) [ os o = & (ag(t)) = T (a,cos ) sin (puyt + ¥o) (9)
dc aE ‘8z ap Py Py P
m
N(t) = Ng + n(t) where n(t) = L ny cos (mwpt + ¢p) (10)
P
y(t) = yg + ay(t) where ay(t) =X (apsin 8) cos (puyt + ¢p) (11)

where Ngp and yp are the appropriate mean values, ay(t) and ay(t) are,
respectively, the on-axis and in-plane components of vibration displacement
with fundamental frequency w,, n(t) corresponds to torsional vibration with
fundamental frequency, wp, and Yp and ¢, are phase terms. The "error

velocity", U, may now be written:




U = 21 ( Ngyo + Noay(t) + yon(t) + n(t)ay(t) ) (12)

Analysis of each of these terms, none of which pertain to the intended

measurement, will allow prediction of an "error spectrum”:

(i) Npyo: This is a d.c. term and is of little practical interest provided
it is mnot of sufficient magnitude to limit the working range of the

instrument.

(ii) Noay(t): This term indicates the measurement dependence on in-plane
vibration, particularly at high rotation speeds where the intended
measurement may be masked at all frequencies of interest. Since the
in-plane and on-axis components obviously have energy at the same
frequencies, this is a very significant term. Importantly, in the absence
of torsional vibrations, the measured vibration component at the
fundamental wvibration frequency may be written, from equations (8) to (11)

as:
Up(wy) = (ajeos ) wy sin (wyt + yp) + (apsin 8) 2Ny cos (uyt + ¥p) (13)

which, for the case where the fundamental vibration frequency equals the

rotation frequency, can be simplified to:
Up(wy) = a1 oy sin (et + Yp + 0) (14)

Thus, the amplitude of this frequency component is the modulus of the solid
body wvibration velocity but it is not possible to resoclve any directional

information.




(iii) yon(t): This term shows the dependency on torsional wvibration,
amplified by the mean "off-axis" distance, yg, and will result in the

presence of spurious information at the torsional vibration frequency.

(iv) n(t)ay(t): Finally, this cross—-term will introduce frequency
information at the sum and difference frequencies of soid bedy and
torsional vibration. The amplitudes of the components at these frequencies

will be equal and, from equations (10} and (11), are given by:

(ng apsin 8)

Up (mewp * pa)v)] - om (15)

2

A measurement was made on a test rig with the geometry of figure 2 with @
set to 90° to represent the worst possible case where the intended
measurement was nominally zero across the entire spectrum. The output of
the instrument is displayed in figure 3 clearly showing these latter three
phenomena. For the sake of clarity in the figure, the solid body and
torsional motions were induced at distinct frequencies of wy=6.8Hz and
wr=31.0Hz., It must be noted, however, that in many practical situations,
the fundamental vibration and torsional frequencies will coincide at the
rotation frequency, causing further ambiguity in Interpretation of the
measurement spectrum. Thus, a spectral peak at the fundamental rotation
frequency or a subsequent harmonic may contain information relating to

on~axis, in-plane and torsional wvibration.

For the case considered, immunity to this error can be achieved through
careful alignment of the laser beam. Firstly, the line of incidence should
pass through the centre of rotation such that yg=0, eliminating error terms

(i) and (iii). In practice this requires adjustment of the height and angle




of the beam until the time-averaged wvalue of the velocity output falls to
zero i.e. the d.c term Npgyp equals zero. Secondly, the line of incidence of
the laser beam must be parallel with the direction of the wvibration vector
{i.e. 6=0) such that ay(t)=0. This requires adjustment of the point of
incidence of the laser beam around the target perimeter until insensitivity
to rotation speed as dictated by (ii) is achieved. A second solution is to
take two simultaneous, orthogonal solid body vibration measurements and, if
necessary, a torsional wvibration measurement [7]. Computing power spectra
for each allows formation of simultaneous equations to resolve the required
vibration components at an individual frequency (w) of interest. For
example, neglecting torsional vibrations, the spectral amplitudes, L, and

Ly, where the subscripts denote direction, are given by:

(wax)2 (2HN0ay)2
Ly (@) = + (16a)
2 2
(way)? (2MNpay )2
Ly(m) = + {(1l6b)
2 2

where ay and ay here represent the appropriate wvibration displacement
amplitudes at frequency «. Solving these leads to the true components of

velocity, Uy and Uy:

() |

IUx(w)l = (way) = (17a)
whk -1
W Ly(@) - Ly(w) | 11/2
lUy(w)I — (way) - [ 2 [ pr— ] ] (17b)




where W = (2[Np/w). For the case where the vibration frequency of interest

is much greater than the rotation frequency, i.e. W<<l, the above equations

reduce to:
1/2

[ox(@ | = g0 (18a)
1/2

oy (@ | = 21y / (18b)

which correspond to the intended measurements. Note that no solution is

obtainable when W=1 except by recourse to equation (14).

It must be remembered, however, that this analysis assumes the direction of
the wvibration wvector to be constant and a solution for the more general
case where the centre of rotation describes a wider elliptical path is the

subject of continuing work.

3. EXPERIMENTAL WORK

The results of the experimental verification of the error velocity terms in
equation (12) are presented in figures 4-7. The geometry of figure 2 was
again used and the effect of the parameters Ng, yq, ay(t) and n(t)
investigated. In each figure the solid line represents theoretical data for

comparison with the experimental points plotted.
(i) Noay(t): Under conditions of zero on—axis (i.e. 6-II/2) and torsiomnal

vibration, finite off-axis distance and an in—plane vibration displacement

of 0.235mm, the wvariation with rotation speed of the apparent wvibration

10




level at the fundamental frequencyr was mnoted. From equation (13) the

apparent vibration velocity amplitude at this frequency is given by:
|Ue(mv)l - | (aysin 6) 2N (19)

The results are shown graphically in figure 4, The close agreement between
experimental points and the theoretical curve verifies the linear
dependence of the apparent vibration velocity on rotation speed as

predicted by equation (19).

(ii) ygon(t): Under conditions of zero solid body vibration and torsional
vibration of amplitude 3.39rads/s, the variation with mean off-axis
distance of the apparent wvibration lewvel at the fundamental torsional

frequency was studied. From equation (12), this is predicted as:

er(wT)| = I 2ny yo (20)

Figure 5 shows a comparison of the theoretical curve predicted from

equation (20) and the experimental results which show excellent agreement.

(1ii) n(t)ay(t): In the presence of both torsional and in-plane wvibrations,
equal amplitude frequency components are introduced at the sum and
difference frequencies of these motion types. From equation (15}, the

amplitudes at frequencies (wt * w,) are given by:

Ug (@ ~ wv)l = IUe(wT + wv)| | T (aysin 8) np (21)

Verification of this equation is shown in figures 6(a),(b) and 7(a),(b).

il




For a constant in-plane wvibration of amplitude 0.572Zmm, the torsional
vibration amplitude was varied and its effect on the apparent vibration
velocity at the frequencies specified above was monitored as illustrated in
figures 6(a) and 6(b). Conversely, for a constant torsional vibration of
amplitude 3.90rads/s, the in-plane vibration level was wvaried and its
.effect on the appropriate component of apparent vibration velocity is shown
in figures 7(a) and 7(b). In all cases experimental data shows good

agreement with theory.

(iv) The solution suggested in equations (17a&b) was investigated using a
modified version of the geometry in figure 2 incorporating two vibrometers
aligned perpendicularly in the x and y directions. The rotating target was
mounted to allow adjustment of its orientation relative to the fixed x-y
axes and measurements were made at a mumber of values of the angle #. The
vibration velocity components were then resolved, according to equations
(17a&b), at the fundamental (6.8Hz) and first two harmenic frequencies. The
results are presented in figures 8-10 where the solid line represents
theoretical data derived from a prior knowledge of the true magnitude and
direction of the wvibration vector and experimental points are plotted for
comparison. Excellent agreement is found at the fundamental wvibration

frequency in both x and y directions as shown in figures 8(a) and 8(b).

Such close agreement is mnot found, however, in the subsequent figures
showing power spectrum levels at the first and second harmonic frequencies,
illustrating important limitations of this technique. Figures 9(a) and 9(b)
show data at the first harmonic frequency where low vibration levels
approaching the noise-floor of the instruments have affected the accuracy
with which equations (17a&b) may be implemented. Figures 10(a) and 10(b)

show data at the second harmonic frequency where the ratio of the rotation

\2




frequency (17Hz) to the vibration frequency is close te wunity and,
consequently, the denominator in equations (17a&b) tends to =zero,

compounding measurement errors.

4. CONCLUSIONS

Vibration measurements on rotating surfaces are often referred to in the
commercial literature as a major application of laser Doppler vibration
transducers. However, Iin this paper, it has been demonstrated how the
measurement can show spurious dependence on in-plane and torsional
vibration, rotation speed and off-axis distance for the case of a solid
body wvibration vector of constant direction. The effect of each of these
parameters on the "error velocity" has been investigated experimentally and

found to be in excellent agreement with theoretical predictions.

For the case considered, these problems can be avoided by arranging for the
line of incidence of the laser beam to be parallel to the shaft vibration
vector while passing through the centre of rotation of the shaft.
Alternatively, two concurrent, orthogonal vibration measurements, in
conjunction with a torsional vibration measurement if necessary, will allow
solution of simultanecus equations at any individual frequency to yiéld the
true vibration velocities. This is not the case, however, at the rotation
frequency where it is only possible to evaluate the modulus of the
vibration vector. It sghould also be noted that at frequencies of interest
much higher than the rotation freguency the measured spectral amplitudes

will approximate to those of the true vibration wvelocity components.

In the absence of such measures, it is entirely conceivable that the

12




intended measurement may be masked at many frequencies of interest,
particularly when the fundamental solid body and torsional wvibration
frequencies coincide at the rotation frequency. This will be true in many

cases of engineering interest.
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FIGURES
Figure 1: Doppler Shift of Laser Beam by Scattering Particles
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Figure 6: Effect of Torsional Vibration during In-Plane Vibration

(a) Difference Frequency (b) Sum Frequency

Figure 7: Effect of In-Plane Vibration during Tersional Vibration

 (a) Difference Frequency (b) Sum Frequency

Figure 8: (a) Resolved X-Axis Component -~ Fundamental Frequency

{b) Resolved Y-Axis Component — Fundamental Frequency

Figure 9: (a) Resolved X-Axis Component - 2 X Fundamental Frequency

(b) Resolved Y-Axis Component — 2 x Fundamental Frequency

Figure 10: (a) Resolved X—Axis Component - 3 x Fundamental Frequency

(b) Resolved Y-Axis Component — 3 x Fundamental Frequency
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Figure 1: Doppler Shift of Laser Beam by Scattering Particles
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Figure 3: Instrument Output Showing Spurious Dependence on In-Plane and
Torsional Vibration
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Figure 4: Effect of Rotation Speed during In-Plane Vibration
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Figure 5: Effect of Mean '0ff-Axis' Distance during Torsional Vibration
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Figure 6: Effect of Torsional Vibration during In-Plane Vibration (a) Difference Frequency (b) Sum Frequency
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Figure 7: Effect of In-Plane Vibration during Torsional Vibration (a) Difference Frequency (b) Sum Frequency
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Figure 8: (a) Resolved X-Axis Component Fundamental Frequency (b) Resolved Y-Axis Component - Fundamental Frequency
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Figure 9: (a) Resolved X-Axis Component 2 x Fundamental Frequency (b) Resolved Y-Axis Component - 2 x Fundamental Frequency
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Figure 10: (a) Resolved X-Axis Component - 3 x Fundamental Frequency (b) Resolved Y-Axis Component - 3 x Fundamental Frequency




