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Energyscapes Highlights 

 Novel approach setting the whole energy system in a real landscape context. 

 Describes a method that can be used to clarify how different groups view biomass 

deployment 

 Uses different stakeholders perspectives of how the landscape interacts with all ecosystem 

services and how modifications of the energy system will influence them. 

 Demonstrated for Marston Vale, a sub catchment of the Great Ouse in eastern England. 

 Applicable across spatial scales and geographic zones. 
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Abstract 32 

The drive for sustainable energy production is leading to increased deployment of land based 33 

renewables.  Although there is public support, in principle, for renewable energy at a national level, 34 

major resistance to renewable energy technologies often occurs at a local level.  Within this context, it 35 

can be useful to consider the ―energyscape‖ which we initially define as the complex spatial and 36 

temporal combination of the supply, demand and infrastructure for energy within a landscape.   By 37 

starting with a consideration of the energyscape, we can then consider the positive and negative 38 

interactions with other ecosystem services within a particular landscape.   This requires a multi-39 

disciplinary systems-approach that uses existing knowledge of landscapes, energy options, and the 40 

different perspectives of stakeholders.  The approach is examined in relation to pilot case-study 41 

comprising a 155 km2 catchment in Bedfordshire, England.  42 

Keywords: energyscape, ecosystem services, energy system, Britain, Marston Vale 43 

  44 



1. Introduction 45 

Human use of energy is the major driver of anthropogenic climate change and challenges our ability 46 

to live sustainably [1] and [2].  However energy and climate change are not the only issues that 47 

determine sustainability, as we must also maintain and ideally enhance the ecological and social 48 

systems on which we depend.  The benefits (and dis-benefits) that we gain from ecological systems 49 

are termed ecosystem services [3], [4], [5] and [6] and wise stewardship of the Earth requires us to 50 

understand how changes in energy demand, production and supply affect such services.  For some 51 

ecosystem services, such as the provision of food, the interactions can be examined using established 52 

spatial models.  By contrast it has proved to be less easy to quantify the impact on the cultural 53 

services within a given area, and it is often these issues that form the focus of objections to renewable 54 

energy development. 55 

The need for a low carbon energy system is seen as an essential part of the solution to anthropogenic 56 

climate change and is recognized by Governments (e.g. [7]).  However, there is growing recognition 57 

that the deployment of low carbon energy technologies may have substantial impacts on a range of 58 

ecosystem services in the locality where they are deployed [8].  Most land based renewables (LBR), 59 

including bioenergy, have a lower energy content than fossil fuels and consequently have much larger 60 

spatial footprints.  This need for increased land area and more efficient use has led to a growing 61 

interest in more distributed approaches to energy production and distribution as a way to reduce 62 

carbon emissions [9].  In addition human population growth and increasing per capita consumption 63 

places further demands on land to provide food, fiber, and potable water; space for accommodation, 64 

occupation and recreation; and conservation of natural and social heritage.  Modification of any of 65 

these services may compromise the delivery of others and the risk of such trade-offs must be 66 

recognized if conflicts between policies and goals are to be avoided. 67 

New tools are needed to allow us to understand how changes to our energy system (both large and 68 

small) interact with ecosystem services, both in terms of technical assessments and in terms of 69 

planning decisions [10].  The standard approach for assessment involves planning applications and 70 

environmental impact assessments that narrowly focus on selected elements and exclude other 71 



important features. The situation is exacerbated by the potential deployment of different combinations 72 

and scales of renewable energy technologies in different localities. In these circumstances, the largely 73 

unknown synergies and conflicts generated by the technologies may well produce outcomes different 74 

from the sum of their individual effects.  75 

As the provision of energy becomes decentralized the issues become more location and site-specific; 76 

it will become increasingly important to consider energy demand, production and supply in a more 77 

local area or landscape context.  Decision makers are faced with the challenge of developing systems 78 

which will allow local sources of energy to be incorporated with currently centralized supplies.  There 79 

is currently uncertainty regarding the stability and temporal dynamics of the interactions between 80 

different renewable technologies and local energy demand, this is complicated by the historical legacy 81 

and the infrastructure needed to deliver the energy generated.  Some of this uncertainty is associated 82 

with the relatively poor availability of data with which to investigate local spatial interactions 83 

consistently across regional or national scales. Perhaps surprisingly, even nationally available basic 84 

resource data are often insufficiently detailed to reliably identify technically optimal locations for 85 

smaller scale renewable energy installations, let alone support analysis of more subtle issues (e.g. 86 

[11]). The widespread acceptance of the incompatibility of datasets and modeling across scales also 87 

creates a schism between local and national planning.  88 

The difficulty of understanding the impact of changes to the energy system is further compounded by 89 

our limited understanding of how it affects the provision of ecosystem services at a range of scales, 90 

from local to national and global.  Each environmental function is potentially affected by changes to 91 

land management and the exploitation of associated ecosystem services; their response may be 92 

immediate or show delay and variation over time making the system impossible to model accurately. 93 

While there is plenty of research devoted to developing approaches for the technical and economic 94 

optimization of distributed generation systems (e.g.  [12] and [13]), taking the perspective of the 95 

whole system is rare [14]. Ecosystem services and their social effects, have been largely neglected 96 

[15] and where they have been examined they are usually considered at the national or larger scales, 97 

rarely considering local impacts, interactions and multiple effects [16]. Where environmental 98 



considerations are taken into account, these are largely constrained to direct impacts such as 99 

atmospheric carbon emissions (e.g.[17] and [18]). Our understanding of how to deploy energy 100 

production technologies to minimize negative local impacts and maximize energy benefits is usually 101 

incomplete and inconsistent.  In fact, there is generally a disconnect in our understanding of actions 102 

and impacts elsewhere. 103 

From the problems described above, it is clear that we do not currently have sufficient understanding 104 

of the processes and complexity in the real world to effectively forecast the impacts of changes to the 105 

energy system.  Here we propose an alternative method of viewing the system, which provides the 106 

broader, whole system perspective that is needed for energy planning.  It recognizes the importance of 107 

different spatial scales and uses scenario studies to explore with stakeholders the desirability and 108 

feasibility of particular local or regional interventions into the energy system.  The approach requires 109 

a change in paradigm for most energy researchers who take a strictly scientific reductionist view.  We 110 

recognize that this cannot be achieved rapidly, but in this paper we present a framework that will 111 

enable and encourage new spatial models, theories and datasets to be developed, accessed and used 112 

interchangeably (what is known as ‗plug and play‘).   It also allows existing national land use 113 

databases such as the Countryside Survey [19] to be used to assist interpretation across scales and 114 

targeting of resources to maximize the returns from existing data. 115 

Most traditional modeling of the energy system employs an additive approach, concentrating on 116 

energy sources.  These are each examined and then their outputs summed; the calculations are usually 117 

aspatial, taking no account of the geographic distribution of material, let alone any interactions.  Even 118 

where demand is included (e.g. [20]) geography and interactions are ignored.  Efforts have been made 119 

to link such energy production models to a spatial infrastructure (e.g. [21]), but not the whole system. 120 

These models serve a valuable purpose in providing a crude estimate of overall potential, but they are 121 

impossible to interpret for local environmental impacts [22] and are imperfect for assessment in the 122 

context of productivity in the wider economy.  Our long term vision is to develop a flexible spatio-123 

temporal analysis framework in which the impacts of changes in energy system configurations can be 124 

identified for any specified area. The consequences of the change will be judged by a comprehensive 125 



range of environmental and socio-technical indicators.  The framework will need to represent (i) 126 

actual and potential energy sources, (ii) energy transportation pathways, (iii) the energy demand 127 

across a local area and (iv) be capable of seamlessly linking to examinations of other ecosystem goods 128 

and services. Taken in its entirety, we call this the ―energyscape‖ of the local area (a term first used 129 

with this breadth by Louise Heathwaite [23]). Combining such a framework with, for example, 130 

models of ecosystem behavior could provide a new means to facilitate ―what-if‖ comparisons of 131 

alternative approaches to distributed generation. Ultimately it might be possible to highlight the trade-132 

offs between different scenarios and, with recognition of the different value judgments and interests 133 

associated with different stakeholders, reduce land use conflicts.  Optimal energy solutions combining 134 

the technical elements of the energy landscape should not only minimize their wider impact but also 135 

be set in the context of sustainability.  136 

Our project involved a one year pilot study to discover the potential benefits and obstacles in using a 137 

whole system approach to evaluate the energy system.  Our aim was to determine how an 138 

understanding of the energyscape and ecosystem services could help guide the deployment of LBR.  139 

To deliver this we examined energy system options in the context of the wider landscape by taking 140 

into consideration the interactions both between the energy components and ecosystem services.  We 141 

are seeking to use it both as a proof of concept and a test bed in which we can identify the techniques 142 

needed, beneficiaries and differences to the current reductionist approaches; a major deliverable for 143 

the future will be a generic system that will advance evidence based sustainable development. 144 

In this paper we propose a new approach incorporating the whole landscape in terms of structure and 145 

process viewed from an energy perspective that can help surmount the problems of the complex 146 

dynamic system described above.  We will describe the components of our project that demonstrate 147 

how to collect evidence for better planning, take account of different people‘s perspectives and 148 

prepare for dramatic changes in land use. 149 

2. Materials and Methods 150 

2.1 Defining the energyscape 151 



Although the term ―energyscape‖ was used in New Zealand for a project (started in 2007) which 152 

developed long range assessments of national energy flows [24], there is, to our knowledge, no formal 153 

definition of an ―energyscape‖.  As a term, energyscapes sounds familiar and people intuitively make 154 

their own definition, but our first goal was to formalize a succinct, explicit definition.  As a large 155 

interdisciplinary team of natural and social scientists we discussed (at length) and eventually agreed 156 

on a working definition of an energyscape as ―the complex spatial and temporal combination of the 157 

supply, demand and infrastructure for energy within a landscape‖.  To ensure that this definition was 158 

both comprehensive and complete we contributed and commented on ideas on a wiki on the World 159 

Wide Web.   The discussion focused on both the definition and the characteristics of an energyscape. 160 

2.2 Case study 161 

The second part of this paper briefly describes the application of an energyscapes framework for a 162 

case study area.  The selected case study site, covering 155 km2, was Marston Vale (Figure 1), a sub-163 

catchment of the Great Ouse river in Bedfordshire, United Kingdom (UK).  The land use, including 164 

currently consented development, is reasonably typical of lowland England being 69% agricultural 165 

land, 12% urban, 8% woodland and 11% other including water and landfill [25].  The population 166 

density is predicted to increase to a level (3.1 people per ha), which is between the density for 167 

England (3.9 people per ha) and the UK (2.5 people per ha).  A full description of the site and the 168 

methodology is provided by Burgess et al [26], but the key issues are mentioned here for clarity.   As 169 

a demonstration of the application of the energyscapes concept in Marston Vale, a GIS was 170 

constructed using ArcGIS [27].  Datasets describing a broad range of environmental characteristics 171 

(e.g. soil, climate, geology, topography) and land cover (using aerial photographs, Land Cover Map 172 

2007 and field survey) were collated so that the existing functions of Marston Vale could be assessed.  173 

The functions were examined through the application of different models for production of both 174 

energy (e.g. biomass, wind, solar, ground-source heat, and landfill biogas) and other goods and 175 

services (such as food) [28].  These were then examined under different scenarios developed, in part, 176 

from the feedback from stakeholder workshops.   177 

2.3 Stakeholder perceptions of energy-ecosystem services interactions 178 



This section of the paper briefly outlines a method to improve our understanding of the perspectives 179 

of different stakeholders on how change in the energy system will impact their local area.  A two tier 180 

approach was developed.  Firstly each individual was asked to identify the ecosystem services that 181 

they think are delivered by specific habitats.  The dominant habitats were identified using Broad 182 

Habitats [29], as mapped in Land Cover Map 2007 (Figure 1). 183 

Figure 1 about here 184 

The information was collected by asking a series of questions that covered the breadth of ecosystem 185 

services with responses that range from strong agreement to strong disagreement.  The approach and 186 

analysis [30] was then extended in a second questionnaire to identify how people viewed the 187 

sensitivity of different services to components of the renewable energy system.   This was 188 

summarized to represent the opinions of different stakeholders and help clarify the reasons for their 189 

support, indifference or ambivalence.  The Broad Habitats are a practical categorization of land into 190 

different types devised following the Rio Convention for Biological Diversity [31] that can be 191 

mapped locally. They provide a comprehensive coverage of all UK land and habitats against which 192 

those requiring special protection or management can be viewed and are used by both conservation 193 

agencies and Government to assess targets.  As the spatial footprint of the energy system changes, it 194 

can be expressed in units such as Broad Habitats so that the conflict with conservation policies can be 195 

identified. 196 

3. Results 197 

3.1 Exploration of a concept 198 

Our initial definition of an energyscape was ―the complex spatial and temporal combination of the 199 

supply, demand and infrastructure for energy within a landscape‖.  A further exploration of the term 200 

focused on two components: the form and function of an energyscape (Table 1).  Some of the 201 

definitions included no consideration of energy demand.   There was also a debate on the extent to 202 

which ―ecosystem services‖ were best considered as ―separate from‖ or as ―part of the energyscape‖.  203 



One pertinent comment from a local stakeholder meeting was ―why are you inventing a new term: 204 

why do you not simply refer to an energy landscape?‖  205 

Insert Table 1 about here 206 

Most of the definitions recognize that an energyscape has both a geographic extent and a timeframe 207 

that reflect its evolution, development and potential.  Although the definitions do not cite a specific 208 

spatial scale, there are probably benefits to choosing a scale where the area has a functional identity.  209 

For example, for the case study area, a locally-recognized sub-catchment was chosen.  Whilst it is not 210 

essential to use natural divisions of a landscape, a catchment‘s boundaries reflect breaks and shifts in 211 

natural processes and the viewshed associated with a catchment often creates a unit that can be 212 

identified by people. 213 

Although the spatial scale should represent a functional unit, it is recognized that any studied area will 214 

not be a closed system but it will have inputs and outputs of energy and ecosystem services across the 215 

boundary (Figure 2).  Equally, the boundary may not be a crisp border as shown in Figure 1; some 216 

parts may have a recognizable border, for example the M1 defining the south western border, but in 217 

other places the definition is fuzzy.  This vagueness does not devalue the region to different local 218 

stakeholders but merely qualifies their considerations. 219 

No single, pithy final definition was unanimously agreed on; our original definition was not 220 

compromised by any of the suggestions which are not mutually exclusive.  An energyscape definitely 221 

has a spatial and temporal basis and focuses on both internal interactions between the energy system 222 

components (demand, supply and delivery) and interactions with other components of real landscapes 223 

such as people, structures, topography and ecosystem services.  224 

Figure 2 about here 225 

Energy may be produced, transmitted, stored and/or used by components of the energyscape within 226 

the system boundary and only one of these elements is needed for the energy to be viewed as part of 227 

the system. For example, we would argue that even if energy simply passes through the energyscape 228 

through a high tension electricity network it should be included.   229 



As the definition describes a complex dynamic system, when considering future options, potential 230 

features of the energyscape not present at the time of observation should be included; the 231 

classification of components and methods of linking (co-registering) data are key to this process.  For 232 

example, at the time of writing our case study area includes no energy from waste installations, but 233 

they are being actively considered.  It is only through a systematic approach that consideration of the 234 

possible energy options (Table 2), and the key ecosystem services in an area (Table 3) will be 235 

encouraged.  Early involvement of a wide range of stakeholders is key to the process as their 236 

perceptions of what is important and which ecosystem services matter to them provides important 237 

guidance for development of scenarios, data gathering and planning of locations for LBR. 238 

Insert Table 2 about here 239 

3.2 Inter-relationships with ecosystem services 240 

Ultimately any energyscape forms part of the wider biosphere, the self-regulating system containing 241 

all ecosystems that overlaps the lithosphere, hydrosphere and atmosphere creating a zone that 242 

supports life (Figure 3).  The addition of solar and cosmic radiation generates the systems of climate, 243 

terrain, soil/geology, hydrology and ecology that we exploit to support our life. 244 

Figure 3 about here 245 

Ecosystem services are defined as the products and services that people derive from ecological 246 

systems.  The Millennium Ecosystem Assessment [32] classified these services into four groups 247 

provisioning, regulation, supporting and cultural.  In addition to these , shown to the left in Figure 2 248 

de Groot and others also highlight the carrier and habitat services as shown on the right [33] and [34].  249 

Costanza and others have proposed additional characterizations as indicated in the box to the lower 250 

right [35].  Such categorizations are useful to ensure that we consider the full range of benefits that we 251 

gain from our environment. 252 

The energy infrastructure physically ties energy components to the landscape. Energy sources, energy 253 

demand and energy delivery systems potentially interact with most if not all ecosystem services; they 254 

may also be explicit services (e.g. provision of energy) or implicitly embedded (e.g. regulation of 255 



greenhouse gases) in specific categories. It is important not only to ensure that the key parts of the 256 

energy system are considered, but how they differentially interact with different ecosystem services 257 

through their physical location. 258 

3.3 Case study 259 

Within this paper only a brief indication of the outputs from the case study analysis has been 260 

presented by way of a demonstration of the potential of this approach.  Detailed results and analysis 261 

are given by Burgess et al [26], Armitage et al.[28] and Wadsworth et al. [30].  As described earlier, 262 

Marston Vale is a lowland predominantly agricultural landscape which currently offers provisioning 263 

of human food, animal feed, and fiber.  The existing land use was described through field survey and 264 

remote sensing and the production through the key provisioning ecosystem services was modeled 265 

(Figure 4).   266 

Figure 4 about here 267 

Other ecosystem services that were assessed include the regulation of biochemical processes (e.g. soil 268 

carbon), culture (e.g. recreation) and conservation (provision of appropriate and sufficient habitats for 269 

farmland birds).   The local energy demand was also mapped (Figure 5) and, although simple spatial 270 

overlay is not appropriate, this information is extremely useful in identifying the hot spots for service 271 

that can be used to improve efficiency by matching to local generation.  The information is also 272 

valuable for validation and informing stakeholders about their regional energy self-sufficiency and 273 

thus can provide an educational service. 274 

Figures 5 about here 275 

The implications of expanding bioenergy provision were considered in a number of ways.   One set of 276 

scenarios examined the deployment of different products from food or fiber into energy and fuel, 277 

leaving the landscape effectively unchanged.   A second set of scenarios examined the conversion of 278 

land currently used for agricultural production in specific locations within Marston Vale to energy 279 

crop production and alternative forms of renewable energy, to meet a number of government-defined 280 

targets for meeting energy demand. 281 



3.4 Stakeholder perceptions of energy-ecosystem services interactions  282 

The scenario outputs helped not only to inform and engage local stakeholders but also to elicit new 283 

information about strategies and plans that are being developed.  Different groups of stakeholders 284 

were asked to respond to the questions relating the area‘s common Broad Habitats (Arable and 285 

horticultural, Improved grass. Neutral grass, Broadleaved, mixed and yew woodland, Standing open 286 

water, Rivers & stream, Boundaries and linear features and Urban & built up) to ecosystem services 287 

and then questioned about their opinion of the sensitivity to different changes in the energy system 288 

[30].  They were asked to score which ecosystem services were delivered by which Habitats using the 289 

questions in Table 3. The first analysis highlights the relative position of different stakeholders and 290 

suggests where issues may cause friction and where there are similar beliefs. They are then asked to 291 

score the impact of LBR options against the Broad Habitats suggesting if they consider them to be 292 

beneficial or damaging.  293 

Table 4 provides an example of the output for one stakeholder‘s responses to questions of wind and 294 

biomass for Marston Vale.  The table shows the sum of the scores representing the stakeholder‘s 295 

perception of threats (-2, -1) or benefits (1, 2) of new LBR development in different habitats and on 296 

ecosystem services.  The results suggest that the stakeholder has a number of concerns over wind 297 

turbines seeing negative impacts with services delivered by a number of habitats. There is special 298 

concern about the impact turbines would have on the regulating services provided by Deciduous, 299 

mixed and yew woodland; it is only the Urban and built up habitats where he/she sees benefits. In 300 

contrast, the options for bioenergy do not raise as many concerns for this individual. Only Boundaries 301 

and linear features have a net negative score, the impact being from the cultural services; cultural 302 

services appear to be the major cause for concern in biomass planting, with supporting services 303 

benefiting and the others showing a balance. The analyses presented back to the stakeholder provided 304 

scope for discussion and validation; they helped clarify an individual‗s position and allowed dialogue 305 

to begin to understand concerns and express them to others. 306 

4. Discussion 307 



Bringing together an understanding of the energy system and ecosystem services is a complex task.  308 

Ecosystem services are often viewed as spatial processes that can be categorized through their 309 

delivery by specific habitats that are geographically fixed.  Conversely, the energy system is 310 

commonly viewed as aspatial and identified in units ranging from household to national, but ignoring 311 

their location or geographic characteristics.  The process of describing an energyscape can help, in 312 

part, to address this by modeling energy demand, supply and flows through  real landscapes, thereby 313 

helping to identify links, obstacles and important associations. 314 

In this context the energyscape provides a representative framework containing geographic and spatial 315 

characteristics; it does not necessarily have to be a complex simulation model.  The individual 316 

elements of an energyscape can be land parcels, each of which can have its own energy flow (Figure 317 

6), that can be joined together to describe even larger energyscapes. This description suggests that the 318 

approach is bottom up and requires masses of detailed data and intensive analysis, but this need not be 319 

the case.  Targeted and representative sampling as used by opinion polls and the Countryside Survey 320 

and hybrid models of the style used to combine input output statistics with life cycle analysis (e.g. 321 

[36]) can improve the efficiency and improve the consistency across scales. 322 

Insert Figure 6 about here 323 

The term ―energyscape‖ was new to stakeholders associated with the project.  As already indicated 324 

one respondent questioned the need for a new term, when the term ―energy landscape‖ could be 325 

created by combining existing terms.  However the philosophy of the approach was seen as a useful 326 

means through which changes in energy demand, sourcing and supply could be discussed in broad 327 

terms for a specific area.   The stakeholders were able to engage with issues, typically only considered 328 

at a national or international level, in the context of a landscape that they understood.  Different 329 

groups of stakeholders saw benefits of the approach, for example local planners valued the 330 

development of ―independent‖ integrative tools, whilst local action groups agreed that it should 331 

ensure that their goals were recognized whilst illuminating other issues that they had not considered.  332 

The use of questions drawing information and opinions about the whole landscape and energy options 333 

proved insightful in more ways than we had initially intended.  One clear strength of the questionnaire 334 



is that it brings all types of habitat and ecosystem service to the stakeholders‘ attention.  The example 335 

of the stakeholder whose results are presented in Table 4 suggests that on balance he/she is more 336 

likely to support biomass (a positive aggregate score) in Marston Vale rather than wind (aggregate 337 

negative).  However, the information presented back to the stakeholder gives them an opportunity to 338 

question their own values and judgments and discuss them with others.  In particular, it identifies 339 

which parts of landscapes are more valued (e.g. woodlands) and which less (e.g. built up).  The results 340 

are indicative not definitive and as the methodology is relatively simple (see [30]) it allows 341 

stakeholders to both recognize and adjust their position and enter dialogue with others about the 342 

specific areas they have concerns over. 343 

Until the energyscapes term is more commonly used, the feeling was that a longer description may 344 

help gain its acceptance and use of additional phrases such as ‗the local energy landscape‘ might be 345 

beneficial.  It is informative to note that the term ecosystem services is still not widely used at a local 346 

level, despite being well known in academia and national policy circles.  347 

5. Conclusion 348 

Energyscapes is a valuable term to engage people in discussion about how the energy system interacts 349 

with their local environment and the other ecosystem services that it provides.  It sets the specific 350 

components of the energy system in context of local energy demands and with other parts of the 351 

energy system, and offers a mechanism for making decisions that are more transparent and equitable; 352 

we hope that it can make a useful contribution to a wider public debate on our energy futures.  In the 353 

same way that ‗carbon footprint‘ or ‗food miles‘ have become well-known terms that are widely (if 354 

loosely) used in and by the public, we hope that one day people will have a popular term to refer to 355 

the main local characteristics of energy demand, transport and supply.  We propose that people 356 

discussing local wind farms or local authority development plans may start with the phrase ‗our 357 

energyscape is…‘. 358 

 359 
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Table 1 Options for the definition of an energyscape 454 

Table 2 A hierarchical list of components of the energy system used to check options for a location.  It 455 

can be expanded in both directions adding further components (rows) or breaking the existing 456 

components into more detail (columns). 457 

Table 3 Table of questions given to stakeholders to ask how they value different ecosystem 458 

services.  All questions are asked for every habitat present, with the term habitat in the 459 

question being replaced by specific names (e.g. Improved grassland).   Only the Broad 460 

Habitats commonly found in Marston Vale were used in this instance 461 

Table 4 Summary responses from an individual stakeholder who was asked to score the impact of 462 

two new energy sources (wind and biomass) on the provision of the individual ecosystem 463 

services listed in Table 3 (+2, +1, 0, -1, or -2) within seven habitats commonly found in 464 

the study area.  The responses are summed and grouped by ecosystem service category. 465 

  466 



Figure 1 Broad Habitats in Marston Vale from the satellite derived Land Cover Map 2007.  467 

Categories Arable & horticultural (Au, Ba), Coniferous and Deciduous woodland (C, D, 468 

Fd), Agricultural and amenity grasslands (Gi) semi-natural grasslands, heaths and scrub 469 

(Gr, H, Hga, M, Sc), Urban and industrial (U, Ud, Ui, Us) Rivers, lakes and ponds (Wl) 470 

Figure 2 A diagrammatic representation of the spatial domain of an energyscape as an open system 471 

with flows to other (energy) systems.  The broken line indicates the energyscape boundary 472 

Figure 3 Categories of ecosystem services drawn from [32], [33], [34] and [35] 473 

Figure 4 Modeled land use  in the Marston Vale in 2009 (from [26]) 474 

Figure 5 Modeled estimates of the intensity of demand for energy in the Marston Vale 475 

Figure 6 Energy flow through elements of an energyscape 476 



an energyscape is  

a spatial and temporal representation of a landscape  

a spatial domain defined from an energy perspective  

a framework  

a functional unit  

a description of the relationships between spatial patterns and man's energy system  

a whole system model  

 

that  

describes the interactions between energy system components and other ecosystem services  

visualizes the capture, conversion, transmission, use and disposal of energy relevant to human activities  

emphasizes the capture, conversion, transmission, use and disposal of energy for human use  

represents man's energy system and can be interrogated and manipulated to support the delivery of sustainable development  

tells you how much land could/should be devoted to energy and at what cost  

integrates all the processes related to man's use of energy  

 

Table



Energy Sources Fossil fuels 
 

Coal 
Oil 
Gas 
Peat 

Nuclear 
 

Fission 
Fusion 

Renewables 
 

Wind 
Bioenergy 
Solar photovoltaic 
Solar thermal 
Hydro  
Heat pumps 
Wave & tidal 
Geothermal 
Landfill gas 
Waste 

Energy Transport & Storage Electricity Cable 
Battery 

Gas Pipeline 
Tanks 

Liquid fuel Pipeline 
Road & rail transport 
Tanks 

Solid fuel Road & rail transport 
Storage bunkers 

Heat Pipe 
Water storage 

Energy Demand Management Heat Household insulation 

Power Efficient equipment 
Standby systems 

Motion Car sharing 
Speed restriction 

Light LED 
Natural light 

 

Table



Cultural services Does the habitat make you think ... 

Aesthetic ... it is beautiful? 

Heritage ... about the past? 

Jobs ... of opportunities for employment? 

Recreation ... you want to spend more time here? 

Scientific & educational ... there is a chance to learn or observe something interesting? 

Spiritual ... about the future? 

Habitat services Is the habitat where you would expect to see…. 

Flora ... wild plants 

Fauna ... wild animals 

Provisioning services What do you get from the habitat... 

Fiber ... fiber such as wood, flax or wool? 

Food ... food for people or livestock? 

Freshwater ... freshwater e.g. springs? 

Fuel ... fuel e.g. firewood or biodiesel? 

Genetic ... a genetic resource for the future? 

Medicinal/ornamental ... Medicinal or ornamental plants? 

Regulating services Does the habitat help ... 

Air quality ... improve the air  we breathe e.g. dust, smells, ammonium? 

Assimilation of carbon ... lock up carbon from the atmosphere in the soil or plants? 

Buffer - chemicals ... e.g. reduce pollution from acid rain, nutrients or pesticides? 

Buffer - physical ... e.g. reduce erosion or flooding? 

Buffer - economic  ... e.g. "safe" jobs in times of recession? 

Climate ... moderate the local (or global) climate? 

Disease, pests & natural 
hazards 

... reduce the impact of pest and diseases, e.g., aphids, Lymes 
disease, etc.? 

Erosion ... prevent erosion? 

Fire ... prevent wildfires? 

Pollination ... provide nectar resources for bees and other pollinators. 

Water flow ... moderate water flows (quantity) e.g. floods and droughts? 

Water quality ... improve water quality? 

Supporting services Does the habitat help support other services by ... 

Nutrient cycling ... reducing nitrogen and phosphorus losses? 

Primary productivity ... growing vegetation? 

Soil formation ... encouraging soil formation? 

Hydrological cycling … circulating water around the environment? 

 

Table



Energy 
Source 

Ecosystem Service 
Group 

Broad Habitat 

Arable & 
horticultural 

Boundary & 
linear features 

Broadleaved, 
mixed & 

yew woodland 

Improved 
grassland 

Rivers & 
streams 

Standing open 
water & canals 

Urban & 
built-up 

Wind Cultural 0 -4 -3 0 0 0 1 

 Provisioning 0 0 -4 0 0 0 0 

 Regulating -1 0 -13 0 0 0 2 

 Supporting 0 0 0 0 0 0 0 

 Total -1 -4 -20 0 0 0 3 

Biomass Cultural -1 -6 -2 0 0 0 4 

 Provisioning -1 0 3 -1 0 0 0 

 Regulating 1 0 0 -2 0 0 0 

 Supporting 3 0 0 4 0 0 0 

 Total 2 -6 1 1 0 0 4 
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