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ABSTRACT

The reduction of flexural vibration in thin plates is examined uduegaicoustic black hole
effect associated with nearly zero reflection of quasi-planeesvdrom a lightly damped
wedge or tapered hole where the profile varies according to a pemerhe flexural wave
propagation can be determined through the application of geometrical tieeous
approximation or exact analytical solutions. For a plate of thickofegewer-law profile, the
wave slows down and grows in amplitude. In the ideal case of no tmadtthe quadratic
(or higher) profile, the phase speed asymptotically decreasesrdoand the wave never
reaches the end. Manufactured plates always have a truncation, leadelgtively high
reflection coefficients, however, the application of small dampipgréaleads to substantial
decreases in the reflection coefficients and thus large reductions in mabjiliyuales.

This paper contains the results of numerical models and experimedalirements of point
mobility for structural plates incorporating tapered holes for vatidaA rectangular plate
with a 1D wedge on one end is examined, in addition to a circular \pittea quadratic

profile in the centre. In both cases, the measurements show sighiductions in resonant
peaks of mobility, in good agreement to numerical predictions.

1 INTRODUCTION

The traditional methods of damping flexural vibrations in structural plateents involve the
use of viscoelastic damping layers applied to the surface, whiaghaimy cases is not
necessarily efficient and does not provide a substantial reductiobration amplitude [1-4].
More effective developments of these methods utilise constrained deymping, modal
shifting techniques and mass redistribution to focus energy into ispeeetfuency bands of
concern. However, the general topic of flexural vibration of platkéseshains an important
area of research and development, especially for functions wheapgheation of damping
films to the whole plate surface is unrealistic.
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This paper details a series of investigations into the novel and iptyeetficient method
of reducing the amplitude of flexural vibration of plate structuresigher frequencies
through the introduction of profiled indentations incorporating small amountsadelastic
damping material. The specific designs of the indentations follpoveer-law relationship
h(x) = &x™, wherex is the distance along the plate surface [m]s the thickness [m]¢ and

m are positive constants.

The use of damped indentations is designed to reduce the reflectiboieoiebdf flexural
waves from free edges. The reduction of edge reflections from amdthrough the use of
profiled beams was first proposed by Mironov [5], following work on thesatal bending
plate equation of motion through the application of geometrical acoagjireximation. As a
flexural wave travels into a beam where the reduction in thickeeggen byh(x) = &x™, the

phase speed slows down and the wave grows in amplitude. It can furtesvioe that for a
profile of m= 2, the phase speed asymptotically decreases to zero, and the waregthees
an indefinite time to reach the end of the beam a0, never reaching the end and therefore
never actually reflecting back [6]. Due to the increased ampldtidibration towards the end
of the beam, any inherent loss factor in the material causeshanced and highly efficient
attenuation of energy through extensive and compressive motion (thgy éneonverted to
heat).

A number of problems remain with this basic theory, the first o€lwls that it is based on
simplified classical theory, where any displacement from thelilequm position (neutral
layer) is considered small in comparison to the beam thicknessods as the amplitude
grows in the beam, which occurs very close to the end of the profi@, it is necessary to
take into account non-linear terms which prevent such high amplitudes/déd lead to
plastic deformation. It has been shown by Krylov [7] through the anaf/siee geometrical
acoustics approximation that fon=2 the solution is valid at all distances and form> 2
it is valid only in the area that is relatively close to the tip.

Furthermore, it is practically impossible to manufacture a wetiggpe which extends to
x =0 following the power-law profile. At some point in the cutting proc@struncation is
introduced, creating a free edge from which the reflection caaffie can be as high as 50-70
percent [7]. Krylov has suggested that one possible solution is to #pplylayers of
polymeric damping film to the wedge surface, near to the truncatian means of reducing
these reflection coefficients [6-8] while still utilising thelatively high vibration amplitudes
near to the wedge end.

Although the idea of using damping layers to reduce peak vibration maplitudes is
not new, the integration of these damping layers to a tapered ggasatew. As the
thickness of the plate becomes comparable with the thickness of riiy@ndalayer, the
composite loss factor increases considerably [4]. The integratidimeafapered power-law
profile with damping materials leads to a theoretical reductioreilection coefficients to
practically zero. From a position outside of the wedge, it appeairshie wave travels into the
wedge but does not significantly reflect back out, which has beeedeim “acoustic black
hole effect”. A similar effect could be replicated by modifythg material properties of the
plate with distance [9] (for example, by modifying the matedeisity with distance, or the
Young’s modulus). Techniques have been developed to modify the density td aypface
with distance, see for example the manufacture of metal foam#)dag are more expensive
than the simple milling or forging techniques required to creap®veer-law profile. In
addition, a power-law profile can be easily incorporated into animgxistructure suffering
from vibration and structure-borne acoustic problems, whereas it i dificult to modify
the internal density of a beam.

In this paper, we present both the theory and experimental measurements fogthgante
of these tapered power-law geometries into some plate strycgspesifically with the
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application of damping films to the tips of these wedge indentati@®io8 2 contains a
short theoretical discussion of the vibration of rectangular plaits wedge attachments,
followed by a number of numerical predictions. Then, section 3 deschbeglration of
plates with tapered cylindrical holes, then conclusions. The profiledhtatitens are both
quadratic power-law, as the theory suggests this is the lowkst for which the phase speed
will asymptotically decrease to zero in a profile extending to zero thickness.

Although this paper contains a series of results for rectangal@sphith attached wedges,
(see Fig. 1(a)), it is also possible to manufacture power-lawgwafito other geometries. For
example, in Fig. 1(b), the circular plate has been modified to inéudecular inclusion of
power-law profile. This geometry is important in this researobkvas there exist analytical
solutions for cylindrical tapering profiles, which are only valid witagy small hole (the
circular analogy of the truncation) is placed into the centre opldte. Otherwise the series
does not converge as the phase speed in the radial direction deasgasptotically to zero.
Further power-law profiles are not considered in this paper, howeVeryiftd investigation
with these simple shapes, it is intended that profiled indentationsbeacreated in
commercial structural elements and engineering parts whengothatial reductions can be
demonstrated.

@ (b)

Figure 1. Examples of structural plates with tapered indentations of quadraticlpawer
profile; (a) plate incorporating a wedge which is only tapering in one dimension, ingragat
a thin free edge, (b) cylindrical plate with cylindrical profiled indentation, e/ties very

centre has a hole creating the truncation free edge.

2 VIBRATION OF RECTANGULAR PLATES WITH WEDGE ATTACHMENTS

The numerical model of a plate with a profiled wedge section is ctedple two parts, firstly
the equation of motion for a constant thickness plate is developed, th@moftied test
section is joined at one end, as shown in Fig. 2.

Constant RES(P UH)SE ) Forcing
; Wiz,
thickness plate Foltun2u) Tapered wedge of power-law
Pl S R | . profile covered in damping
i [‘::“x e The— mmaterial
AN o NN

- - -

— " . - o .
p=i U . O
- r n
“HI i r L X,
_ r=a
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I

Figure 2. Numerical representation of a rectangular plate of constant thicktreasnedge
of power-law attached to one end.

x=h |

2.1 Numerical model of a constant thickness rectangular plate.

The classical bending plate equation of motion for flexural vibratica refctangular plate in
the (x,y) plane is given as [3],
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(DZ) (DD2 )w(x yt)+pha w(x yit) _ 0 1)

where D = Eh® /12(1-0v? ) is the bending stlffnessE, p and v are the Young's modulus,

density and Poisson’s ratio of the material respectively land the plate thickness. This
equation is valid for both Cartesian and polar coordinate systems aacfate of constant
thickness there are analytical solutions, employing either trigamienoe Bessel’'s functions
[3].

In the case of rectangular plates, we look for solutions to tharélexlisplacement as a

Fourier series of the formw(x,y,t)=> A b g™ \hare k, and k, are

wavenumbers in the and y directions respectively and harmonic motion at frequenadsg

assumed. The amplitude of displacement is provided by the constaniEhe plate is
assumed to be simply supported at all times on the plate bounderies, so that zero

displacement and bending moment exist here. Then the only applicable wdlube
wavenumber arek, =ns7/2c, where n is the mode number in thg direction, and 2c

represents the width of the plate.

Substitution of these terms into the equation of motion (1) and neglatngyivial
solution of zero displacement yields a fourth order equation in the unknovenwabers in
the x direction.

(2)

(DK? + (—2DK2)k? + (DK - pha?) w(k, ,k,, @) = 0.

iy

The solution to this equation provides four possgmlutions, which correspond to the four
Fourier amplitudesA; required to determine the displacement. In ordesolve this problem

and determine these Fourier amplitudes, a numeriethod based on a matrix of four known
boundary conditions is used. At the far ends ofpfag¢e in thex direction, the edges are free
and therefore we may assume zero bending momenslasat force exist at both of these
ends. These four conditions fully determine the fvébration motion of the plate, however,
we are interested in the plate response when fotiseckfore, at the far end of the plate b,
we specify a shear force along the entire lengtih@fedge of unit amplitude. These boundary
conditions in both Cartesian and polar coordingi#esns are found in the literature, see for
2 2
example [3] in terms of displacements. Thus thedr@nmomentM _?37+U?3y and the
3 3

6_\gv+ (Z_U) 9 W3 '
0x oxoy

The numerical method is used to calculate the atgwhent of the plate surface for a range
of mode numbers in thg direction and frequencies in the range 0-8kHz. |bar values of

the excitation frequencies it is not possible tsuea that the excitation position does not
locate on a nodal or anti-nodal point, therefoream be misleading to review the amplitude
changes in this region. We therefore predict thmerical response at the far end of the plate,
x =b for a range of higher frequencies.

We now have a method to determine the forced displ@nt of a constant thickness plate,
however, since the aim is to subsequently attaphofiled wedge section onto one end, as
shown in Fig. 2, then we must replace two of tharoary conditions at this enk=a,
representing the free edge with the numerical moéi¢he profiled wedge, described in the
following section.

shear force/ =
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2.2 Numerical model of a variable thickness rectangular plate.

There are many analytical and numerical solutiamgHe classical bending plate equation of
motion when the thickness is constant [3], howeN¢hjs varies, the equations become much
more complicated and consequently, fewer analytisalutions exist. Due to these
complications, more of the work in the literatusecarried out using finite series solutions to
approximate the displacement of the wedge (theeshaptions chosen in the series all fit the
boundary conditions applied to the plate edges).this paper, geometrical acoustics
approximations are applied to determine a soluti@sed on wave propagation.

Denoting the flexural displacement in the wedgg, we assume a general form to the

. _ ik, S(X) _ikyy i .
displacement w, (x,y,t) =B(x)e™™"e™’e’“ | where k, is the plate wavenumber

k, = o’ (pA-v?))/E, B(X) is the Fourier amplitude for the wedge displacenaem S(x)

is the integrated phase function. Substitution e tlisplacement in the wedge into the
equation of motion yields a far more complicatedeseof equations, as now the bending
stiffness is a function ok, as well as the displacement. This may be singpliby application
of geometrical acoustics approximations [10], stict any derivatives of order greater than
two are neglected as being small in comparisonh® remaining terms. The remaining
equation is a fourth order quadratic equation endarivative of the integrated phase function.
(aS(x)J“{aS(x)jz 25, [ _ e | _ 3
ox ox k2 ki D(xk; '

The four roots give four distinct solution®S(x)/ox = i(ky/kp)(—lt yx‘m)l/2 where
y = @2"%k,/&k?). This solution fordS(x)/ax can be expanded using a binomial expansion
for any value ofk, and it can be shown that the only time the ine@() = jaS(x)lax dx

converges is when the power-law profile satisfiess ¢conditionm< 2 (this applies when the
profile fully extends tox =0). For a power-law profile withm= 2, the flexural wave travels
closer to the pointx =0, asymptotically slowing down but never actuallpaking it. As it
can never reach the end of the plate, it can neafeact back and therefore the reflection
coefficient for an observer point on the plateasoz

As has previously been mentioned, real manufactplaes never extend all of the way to
x =0 and always include a truncation point= x,, where the cutting tool either begins to rip

the free edge of the thin metal or compresseseaimaining material to create an edge which
no longer follows a power-law profile. For typicdbmmercial applications, no matter how
accurate the tool path or precise the grinding ptiodile will at some point tend away from a

power-law, or truncate the material. As soon as tleicurs, the incident flexural wave reflects
from the free edge with a substantial reflectioaffioient.

The developed numerical prediction method incorgsréhe wedge into the model for the
constant thickness plate by assuming thak atx,, zero bending moment and shear force
exist (it therefore becomes a free edge with atloekness). Atx = a, as the wedge is joined
onto the constant thickness plate, we now have camulisplacement, slope, second and third
derivatives with the constant thickness plate imteof the boundary conditions. The overall
solution matrix is increased in size from a four foyr, to an eight by eight so that the
amplitude coefficients from both the constant the$s plate and the wedge can be
determined.

To minimise the amplitude of the reflected wavanfrthe free edgex = x,, a thin damping

layer of lengthx=2cm and widthy =2c, with a high loss factorp = 0.2 and compressed
thickness 0.5mm is applied to the wedge surfaceth&sthickness of the damping layer
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becomes comparable with the thickness of the wetihge composite loss factor increases
significantly. This loss factor is included throutite introduction of a complex term in the
Young's moduluse = E(@+7i) [1]. The inherent loss factor of mild steel iswased to be

n = 0.006 reflecting the fact that there is little dampimgthe material [4], which rises when a

thin layer of damping material is applied to theface. In order to quantify this rise in the loss
factor, we assume that the material propertieb®felastic damping tape akg,, 7, for the

Young’'s modulus and loss factdm, for the thickness. Using the non-dimensional tefons
the thickness ratio” =h,/h, a=TE,/E and S=hy, +h,/2h and assuming that the

Young’s modulus of the damping tape is significatess than the wedge material, then Ross,
Kerwin and Ungar [4] determine the composite dampass factor to be given by,

e S ) S 4 )]

It may be shown that the composite loss factoa @late of constant thickness rises to
approximatelyn = 0.014 when a thin elastic damping layer of Young’s modulOMPa is

applied to the surface. When the damping layep@ied to the wedge of power-law profile

with m=2, the local loss factor varies with the positiontba wedge. The above equation is
applied to constant thickness plates, thereforeagaire a method to incorporate this into a
variable thickness plate. Krylov [7] has calculatbd reflection coefficient from a wedge of

power-law profile, taking into account the integvatof the local loss factor over the length of
the wedge. This reflection coefficient is used ttedmine the equivalent composite loss
factor, which in the wedge rises tp=0.034 as the thickness of the damping layer can

become comparable to the tip. This composite dagnpses further if the truncation point of
the wedge is moved closer 0= 0, subject to the constraints of the machining tegs

2.3 Numerical predictions for a rectangular plate with a wedge attachment

The numerical predictions apply to a mild steeltg@lésee Fig. 2) with Young's modulus,
density and Poisson’s ratidc =210GPa, p=7800kg/mi and v= 0.3 respectively, with

dimensions a=0.05m, b=0.3m, ¢=0.03m (and thickness 2.5mm). This plate can
incorporate a wedge profile of power-law=2, with truncation positiorx, =3mm.

The numerical calculations provide the predictdaration velocity response of the plate
surface to an applied Ioa(d/ p)dB, at a position(x, y) = (b,0) when the plate is forced along

the edge atx =b (see boundary conditions in [3] for shear fordd)e boundary conditions
for a free edge on a plate are zero bending moar&hizero shear force.

The velocity is obtained from the displacement &ach frequencyyv=-iaw. The
response of the plain rectangular plate is showrign 3, where it may be seen that the first
mode of vibration occurs at a frequency of appratety 1.75kHz. There then exist a series
of resonances corresponding with the mode shapéeir direction, then the second mode
shape in they direction has a resonance located at approximét8jkHz.

The application of a thin layer of damping tapeoasrthe whole of the plate surface yields
a small reduction in peak mobility amplitude, ofpegximately 4-4.2dB, which applies to
both longitudinal and across width mode shapesthBurreductions could be found by
optimising this layer, through the use of consirairiayers to enhance the amount of shearing
action in the damping material, however, there t@ypplications where the application of
damping material over the whole plate surface isfeasible or where larger reductions in
peak mobility amplitude are required.

Many current engineering structures utilise thismgag method, as it is relatively cheap
and simple to incorporate. In order to recogniséhér reductions, larger thickness damping
layers are required, subject to a saturation ofdbmposite loss factor, adding mass and
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thickness to the structure, therefore we now exarttie alternative method, of incorporating
the wedge of power-law profile into the structuwgilising only a thin strip of damping
material on the very wedge end.

-20

-30
-40
-50 1

-60

dB re 1 m/s/N

-70 {{ — Plain plate, no damping
— = Plain plate with damping tape

-80 | =+ Plate with damped wedge attachment
I I I

| | |
2 3 4 5 6 7 8
Frequency [kHZz]

Figure 3. Comparison of the mobility predictiofyd p)dB relm/s/ N for a plain undamped

rectangular plate with the same plate when covengidely with a thin layer of elastic
damping material. The final plot is the undampedamegular plate incorporating a wedge of
quadratic power law-profile covered by a layer aifrgbing film.

When an undamped wedge of power-law profile ischttd to the end of this plate, as
shown in Fig. 1(a), the wavelengths in the longiatl direction are modified, moving the
longitudinal resonant frequencies lower. The resoesa in the across width direction are
maintained at a frequency of approximately 1.71 &@BkHz. The peak amplitudes of the
resonances appear to be very similar, which reptedbe fact that any truncation of the
power-law profile leads to a significant reflectionefficient from the free edge. Therefore,
we conclude that the undamped wedge cannot pravsiignificant reduction in amplitude.

A thin damping strip is now placed onto the wedgdaze, and the response of this plate
with a damped wedge attachment is compared to ltie pectangular plate in Fig. 3. The
peak amplitudes of the resonances in the acrosstidins are not modified at all, as there is
no additional damping in the across width directidtowever, the resonances in the
longitudinal direction are significantly modifiedyith a reduction in peak amplitude of
between 8-20dB between a frequency range of 2. H=gklthough there is a sharp increase
in the response at one initial resonant frequeotc$dB at 1.95kHz). We expect the effective
damping from the wedge to increase at higher freges and mode shapes due to the shorter
flexural wavelengths and this is reflected in taguits.

A table containing the peak mobility amplitudes &éorange of mode shapes is provided,
Table 1, where the peak mobility amplitude is delécas a suitable measure of damping
effectiveness as for structural vibration contiibljs usually of the most interest. As the
incorporation of a wedge into the basic plate malages the frequency location of the
resonances, we cannot directly compare the ampliiccach resonance. Instead the average
amplitude of peak resonance in a given frequenoyl lze compared and reductions in peak
mobility noted by using the plain undamped rectdagplate as a reference. It may be seen
that the introduction of the damped wedge providese than double the peak reduction than
just covering the whole plate with damping material
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Plain plate wih damped wedc

Plain plate Plain plate with dampmgttachment
Frequency Peak mobility Reduction in peak Reduction in peak mobility
/kHz amplitude/dB  mobility amplitude/dB ~ amplitude /dB

2-4 -26.8 -4.2 -8.5

4-6 -31.0 -4.0 -11.0

6-8 -34.3 -4.2 -6.0

Table 1. Comparison of the peak amplitude mobgidictions at various resonant
frequencies(v/ p)dB relm/s/ N . The mobilities for an undamped rectangular péaite

shown, with reductions from this reference giventf® damped rectangular plate and also
the undamped rectangular plate incorporating a wedgower-law profile with a thin
damping layer on the wedge tip.

3 VIBRATION OF CYLINDRICAL PLATES WITH CYLINDRICAL
INDENTATIONS OF POWER-LAW PROFILE

The previous section contained an analysis of tifiecteon the vibration amplitude of
incorporating a simple rectangular wedge strucam® one end of a rectangular plate. In
order to determine the numerical solution, georoatiacoustics approximation has been used.
In this section, we turn our attention to power-iadentations of cylindrical profile, as shown
in Fig. 1(b), as these can be easily incorporatemlplate structures without the need to attach
further plate structures, thus reducing the addasism

Cylindrical indentations of power-law profile, thataterialise two-dimensional “acoustic
black holes”, have one particular advantage overwiedges of the rectangular geometry
considered in the previous section. Namely, thgrgt®an analytical solution to the equation
of motion for flexural waves in polar coordinateppbed to variable thickness plates,
specifically where the power-law is quadratic. Thest common application is envisaged to
be an indentation applied to a rectangular platevéver, plates of other geometrical forms
can be used as well, e.g. elliptical plates wheoeiging of flexural waves has been used to
enhance the two-dimensional “acoustic black holec&f [11]. In this section we restrict the
analysis to circular plates so that this analytsmalition may be used.

The equation of motion for these indentations diuar and circumferential anglé is
now in polar cylindrical coordinates, where thexéfleal displacement can be written as

w(r,8,t) =w(r)é"e™ (n is now the circumferential mode number).

2 5
m% = (1-v)o* {D,W(r,H,t)}—DZ[DDZW(r,H,t)]. ©)
The bilinear operator is defined as,
2 2 2 (6)
04{D,W} = 0 [2) 16_VV+i26_VZV +6_\2V(16_Dj
or“\ror r°06 or<\r or

For the case of a circular plate of constant theslsn the bending stiffness is not a function
of the radius and the equation of motion reducethéocommon wave equation in polar
coordinates with four solutions incorporating Bésskinctions. Four constants are included,
representing amplitudes to be determined throughafiplication of boundary conditions and

the variable* = pha/ /D.
w(r,8,a) = (6,3, (8r) + .Y, (B )+ cil (Br) + . K, (Br))e’e™ . ™

The centre of the circular plate is replaced witprafiled indentation, as shown in Fig.1
(b), of power law profile. The numerical methodvexy similar to the one introduced in the
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previous section, where boundary conditions orotiiter edge are free (at the outer radius we
apply zero bending moment and shear force [3],tthis in polar coordinates) and common
boundary conditions join the constant thicknesdepta the profiled indentation (common
displacement, slope, second and third derivativéiseodisplacement).

We now proceed with the analysis of the circulatemtation, in particular the case of a
quadratic radial power-law profilen=2, where the existence of an analytical solution by
Conway [12] is used, which is valid for the casenadtion independent of circumferential
position n =0 using a variable =12p0a” (1—v2)/ Ee?.

W(r,n=0,w) =cr™ +cgr2 +c,r’ +cr (8)

A=-24\7-302 Jofl-07)+ K ©)

As the radius decreases ta= 0, there exists a singularity similar to the acauslack hole
effect seen in beams. Ti(r) term implies an increase in amplitude throughdbrstantsc

with a consequent fall in phase speed. The onlytiiaysingularity can be avoided, while still
maintaining the analytical solution is through tinéroduction of a truncation hole in the
centre of the inclusior, =r,, introducing a free edge from which wave refleationay occur.

Higher order solutions for non-zero circumferentr@ddes are subsequentially determined by
numerical calculations, although the method remtéiasame.

In order to provide a validation to the numeridadry and explore how representative the
classical plate theory is for practical plate desjghree circular plates have been machined
from the same sheet of mild steel (these are ardiit size to the plates discussed in section
2). The first is a plain circular plate of radiusO2am by 5.04mm thickness. The second is an
identical circular plate covered with a layer ofrgang material. The third is an undamped
circular plate of outer radius 250mm and inneruadiOOmm where a cylindrical indentation
of quadratic power-law profile extends to a trurmatadius of 5mm, created by traversing a
cutting bit in a circular motion 50 times, eachaaslightly different position in radius and
depth. Although this is a profile made of a seonésliscrete thickness changes, we assume
that the change in thickness is small comparechéoaverall radius. A layer of damping
material is then applied to the surface of thisemtdtion.

The plates are supported by thin straps on ther aliéeneter to represent free boundary
conditions on the outer and inner surfaces. A foraesducer (B&K type 8200) is connected
through an electromagnetic shaker (controlled thinoa broadband frequency signal). An
accelerometer (B&K type 4371) is attached to thdase in the same location, as we are
interested in driving point mobility response o thlatew = —iav, where the dot represents a
differentiation with respect to time. The locatiohthe shaker is at a radius of 175mm at the
same circumferential position as the accelerometer.

The comparison of the experimental driving pointbiity against frequency for the
undamped plain plate is shown in Fig. 4, also sh@mie equivalent plate once a layer of
damping material is applied to the surface. Onlagyer of damping treatment is applied to the
plain plate, we expect there to be reductions enpbak mobility amplitudes, especially at the
higher frequencies, but these are expected to bé amboth the thickness and stiffness of the
damping tape is small in comparison to the plateerras. On the same graph we also show
the point mobility measurements once an indentadfopower-law profile is machined into
the surface (and then covered with a layer of dagpim).
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Figure 4. Comparison of the mobility predictio(w p)dB relm/s/ N for an undamped

circular plate of radius 250mm with the same ptatee a thin layer of damping material is
applied to the whole surface. Also shown are thasueements once an indentation is created
in the centre of the plate which is then damped.

We now compare the predictions of the point mopiit these same plates found through
the use of the numerical models, shown in Fig 5.

_10 Z R -
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+ Disc with damped mdentanon (predlcted)
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Figure 5. Comparison of the mobility predictio(w p)dB relm/s/ N for an undamped

circular plate with the same plate which has aemation of power-law profile machined
into the surface, and a thin damping layer placest @.

A table of peak mobility amplitudes for differerstnges of resonant frequencies is shown
in Table 2 for both experimental and numerical piahs. The numerical predictions show
that the inclusion of a damped tapered inclusiopafer-law profile can provide double the
damping reduction at high frequency than that foopaovering the whole cylindrical plate
with a damping material. The experimental resulte alightly more varied however,
indicating that the inclusion of a profiled holencéead to a slight increase in mobility
amplitudes at lower frequencies around 2-3kHz.
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Plain plate with damped rad

Plain plate Plain plate with dampin%uadratic power-law indentation

Experimental measurements

Frequency Peak mobility Reduction in peak Reduction in peak maobility
/kHz amplitude/dB  mobility amplitude/dB ~ amplitude /dB
2-4 -10.63 -0.435 +0.495
4-6 -15.55 -0.85 -4.85
6-8 -16.8 -1.4 -4.3
Numerical predictions
2-4 -10.94 2.7 -7.9
4-6 -15.1 -2.6 -8.3
6-8 -18.8 -2.5 -4.6

Table 2. Comparison of the peak amplitude mobgidictions at various resonant

frequencies,(V/ p)dB relm/s/N rpe mobilities for an undamped circular plate sirewn,
with reductions from this reference given for tlaargbed rectangular plate and also the
undamped rectangular plate incorporating a rad@gmtation of quadratic power-law profile
with a thin damping layer on the surface.

The results for a cylindrical profile indicate thiage inclusion of a cylindrical hole is not as
efficient a damping method than the rectangulafilprbwedges, most likely as the available
surface area for damping is reduced. Further waltke carried out into determining the
actual reflection coefficients and introducing diffnt manufacturing methods for other
power-law profiles.

CONCLUSIONS

It has been shown theoretically that the incorponadf a profile of quadratic power-law into
a rectangular plate structure can reduce the peddility amplitude at higher frequencies by
significantly more than found by covering the whelate structure with damping material.
This proves that the inclusion of power-law profildentations can provide a valid alternative
damping method where covering the whole plate siracwith damping material is not
possible.

It has been demonstrated both theoretically aneraxentally that the introduction of a
circular indentation of quadratic power-law profiteat has an analytical solution associated
with low reflection coefficients, also results imrdping flexural vibrations. However, the
damping introduced by these indentations does ppéar to be as efficient as the damping
due to rectangular power-law profiles, most likdlye to the reduction in available surface
area.
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