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Abstract  
 

In the present paper, we report the results of the experimental investigation of damping flexural vibrations 
in rectangular plates containing tapered indentations (pits) of power-law profile, with the addition of a 
small amount of absorbing material. In the case of quadratic or higher-order profiles, such indentations 
materialise two-dimensional ‘black holes’ for flexural waves. In the present investigation, pits have been 
made in different locations of rectangular plates. It has been found that basic power-law indentations that 
are just protruding over the opposite surface cause rather small reduction in resonant peak amplitudes, 
which may be due to their relatively small absorption crossection. To increase damping in the present 
investigation, the absorption crossection has been enlarged by increasing the size of the central hole in the 
pit, while keeping the edges sharp. As expected, such pits, being in fact curved power-law wedges, result 
in substantially increased damping comparable with that achieved by one-dimensional wedges of power-
law profile.  

 

 

1   Introduction  
 

Passive damping of structural vibrations is usually achieved by adding layers of highly absorbing 
materials to the structure in order to increase energy dissipation of propagating (mostly flexural) waves [1-
3]. Another well-known approach to suppression of resonant vibrations of different structures is to reduce 
reflections of structural waves from their free edges [4].  

To implement the latter approach in a more efficient way, a new method of damping flexural vibrations 
based on the so-called acoustic black hole effect has been recently developed and investigated [5-7]. This 
method has been initially applied to one-dimensional plates of power-law profile (wedges) that had to be 
covered by narrow strips of absorbing layers near sharp edges. Ideally, if the power-law exponent is equal 
or larger than two, the flexural wave never reaches the sharp edge and therefore never reflects back [5-8], 
which constitutes the acoustic black hole effect. It has been established theoretically [5,6] and confirmed 
experimentally [7] that this method of damping structural vibrations is very efficient even in the presence 
of edge truncations and other imperfections.  

The focus of the present work is on the experimental investigation of damping flexural vibrations in plates 
containing two-dimensional tapered indentations (pits) of power-law profile, with the addition of a small 
amount of absorbing material. In the case of quadratic or higher-order profiles, such pits materialise two-
dimensional ‘black holes’ for flexural waves. To understand basic principles of such two-dimensional 
black holes, a geometrical acoustics approach to analysing flexural wave interaction with power-law 
indentations has been developed [9]. The results of this approach show that, if a flexural wave is captured 
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by a black hole, its reflection coefficient can be calculated in the same way as in the case of one-
dimensional wedges. The first experimental investigation of two-dimensional acoustic black holes has 
been described in the paper [10] dealing with flexural vibration damping in elliptical plates. It has been 
demonstrated in this paper that such indentations can be very efficient dampers if they are placed in one of 
the plate’s foci. In this case, the energy of converging flexural waves is focused at the black hole, and the 
problem can be described by a one-dimensional theoretical model based on a tapered beam [11]. In the 
paper [12], circular indentations of power-law profile have been placed in the centre of a circular plate. It 
has been shown both theoretically and experimentally that such indentations also act as vibration dampers, 
albeit not as efficient as in the above mentioning case [10, 11] utilising focusing of flexural waves in 
elliptical plates.  

 

 

 

 

 

Figure 1: Illustration of a circular power-law indentation in a rectangular 
plate designed to suppress flexural vibrations  

 

In the present paper, we describe experimental measurements of damping flexural vibrations in 
rectangular plates containing circular indentations of power-law profile placed in arbitrary locations (see 
Figure 1). For rectangular plates, this configuration offers a range of benefits in comparison with the case 
of one-dimensional acoustic black holes (wedges of power-law profile).  

First of all, the potentially dangerous sharp edges of power-law wedges are eliminated, which brings a 
safety benefit. Secondly, two-dimensional pits can be applied to suppress just some selected resonant 
peaks, when placed in certain positions. In comparison with the above mentioned two-dimensional black 
holes in elliptical and circular plates, the arbitrarily located pits in rectangular plates open flexible 
solutions that could be more easily applied to various practical engineering structures.  

In following sections of this paper, the manufacturing method used to produce the experimental plates 
with two-dimensional power-law indentations will be described, followed by the description of the 
experimental set-up. Then, the obtained measurements’ results will be discussed, followed by the 
conclusions.  

It will be demonstrated in this paper that basic power-law pits that are just protruding over the opposite 
plate surface cause rather small reduction in resonant peak amplitudes, which may be due to their 
relatively small absorption cross-section capturing a relatively small number of flexural wave rays. Note 
that for elliptical plates this disadvantage has been overcome by focusing of flexural waves in the pit [10, 
11].  

To increase damping in the present investigation, the absorption cross-section has been enlarged by 
increasing the size of the central hole in the peat while keeping the edges sharp. As expected, such large 
pits, being in fact curved power-law wedges, result in substantially increased damping comparable with 
that achieved by one-dimensional wedges of power-law profile.  
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2   Manufacturing of experimental samples  
 

Experimental samples in the present work were manufactured from 5 mm thick hot drawn mild steel 
sheets; which are more resistant to mechanical stresses incurred in the manufacturing process than cold 
drawn steel sheets, resulting in fewer internal defects. Dimensions of the produced rectangular plates were 
400 x 300mm. Material properties of plates and damping layers (electrical tapes) are listed in Table 1.  

 

 
Thickness Young’s modulus Density 

Poisson’s 
ratio 

Loss factor 

Plate 5.04 mm 190 GPa 7000 kg/m3 0.3 0.6 % 

Damping 
layer 

0.08 mm - 300 kg/m3 - 6 % 

 

Table 1: Geometrical and material properties of plates and damping layers.  

 

A CNC (Computer Numerically Controlled) milling machine operating at a cutter speed of 1200 rpm was 
used to produce circular indentations of power law profile with the exponent m = 2 into the plates, through 
an initial ‘roughing out’ of the indentation area, where material is removed from the central location of the 
hole with adequate tolerances to reduce stresses on the cutter and plate during the machining process.  

 

 

 

Figure 2: Plate containing a circular indentation of power law profile with m = 2  

 

Three types of experimental samples were produced for this investigation, a plate with a singular circular 
indentation (Figure 2), a plate with a singular circular indentation with a drilled central hole (Figure 3(a)), 
and a plate containing three profiled circular indentations with central holes (Figure 3(b)). All these 
indentations have a power law (quadratic) profile with m = 2.  

 

DAMPING 1183



 

 

     (a)        (b) 

 

Figure 3:  A singular circular indentation with a drilled central hole (a),  
Three profiled circular indentations with central holes (b)  

 

There are three main problems encountered when utilizing this method of manufacturing. The first being 
that at the centre of the indentation, where the machining stress and resulting heat are high, the material 
thickness is less than 0.4mm resulting in blistering, see Figure 4, leading to inaccurate results during test. 
Secondly, it is the formation of a machine line, as the cutters movement through the indentation is 
computer controlled, it merely moves from one programmed height to another, gouging the material and 
creating a raised line in the indentation, which, as with blistering, could lead to increased elastic wave 
scattering. Finally, additional damage can occur when a hole is drilled into the centre of the circular 
indentation. Due to the thickness of the material at this point, it is more susceptible to tearing.  

 

 

 

Figure 4: Machine damage to a circular indentation  
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3   Experimental setup  
 

The experimental set-up has been designed to allow nearly free vibration of the sample plates (i.e. to 
eliminate clamping of edges), take the weight off the plate and introduce minimal damping to the system, 
see Figure 5.  

 

 

 

Figure 5: Experimental setup  

 

The excitation force was applied to the centre of the plate via an electromagnetic shaker attached to the 
plate using wax and fed via a broadband signal amplifier. The response was recorded by an accelerometer 
(B&K Type 4371) that was attached to the upper surface, directly above the force transducer (B&K Type 
8200), also via wax (see Figure 6). The acquisition of the point accelerance was utilised using a Bruel & 
Kjaer 2035 analyser and amplifier over a frequency range of 0-9 kHz, a schematic is shown in Figure 7 . 

 

 

 

Figure 6: Locations of the shaker (Force) and of the accelerometer (Response) on 
an experimental sample  
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Figure 7: Schematic of the experimental setup utilising the Bruel & Kjaer Analyser  

 

Two different styles of reference plate were considered in order to determine if there is any significant 
difference between them. A plain plate and a plate with a punched through hole were considered as both 
had merit as a reference. Both reference plates were of the same dimensions as the profiled plates, the 
punched hole plate contained a through cylindrical hole of the same diameter and position as the machined 
power-law profiles. 

The plain plate more accurately represents a practical situation, with the profile being cut into an existing 
structure, it also has reduced internal defects resulting from machining stress, when compared to the 
punched hole plate. However, it does not account for the reduction in mass and equivalent stiffness of the 
plate. Therefore, a punched hole reference plate was used for comparison in this paper. 

 

4. Experimental results and discussion  
 

4.1  A profiled circular indentation with and without a small central hole  

 

Two sets of experimental results are described in this section: the effect of adding a circular indentation of 
power law profile into a plate, when compared to a reference plate, and the effect of drilling a 2mm hole in 
the centre of the indentation. 

Our initial measurements with a single circular indentation without a central hole (that are not shown here 
for brevity) have demonstrated that in this case there are no noticeable damping effects when compared to 
a reference plate. There was little to no improvement in damping by the addition of a damping layer. To 
the contrary, in some frequency ranges the presence of the indentation actually increased the level of 
vibrations in the plate. From these initial observations it has been concluded that a central hole has to be 
drilled into the centre of the indentation.  

Note that due to manufacturing limitations at the centre of the circular pit, there is an area of almost equal 
thickness that extends from the central point out to a diameter of approximately 3 mm. A hole of 2mm 
diameter can therefore be drilled without affecting the minimum tip thickness.  

Figure 8 shows the measured accelerance for an indentation of quadratic profile (m = 2) with a 2mm 
central hole and an added damping layer compared to a reference plate. As it can be seen, below 3.2 kHz 
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there is little to no damping, a slight increase is seen in some of the peaks between 3.4 – 4.5 kHz, this 
increase is most likely due to a nodal point. A maximum damping of 4.5 dB occurs at 6.6 kHz.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Measured accelerance for a m=2 profiled circular indentation with a 
2mm central hole and an added damping layer (solid line) compared to 
a reference plate (dashed line)  

 

Measurements’s results show that the damping effect of drilling a hole in the center of the circular 
inclusion is immediately obvious. These measurements, however, also show an unusual behavior as a 
result of adding a damping layer to the tip of the circular inclusion. Earlier, it has been shown for power-
law wedges [7] that in order to achieve significant damping there is a requirement to add an additional 
damping layer to the tip of the wedge. However, this is not the clear case for a circular indentation with a 
2mm central hole; the addition of a damping layer in fact reduced the damping performance of the 
indentation. Nevertheless, if to make comparison with the reference plate, some damping occurs.   

 

4.2  A profiled circular indentation with a large central hole 

 

In attempts to improve the damping efficiency of the profiled indentations, the central hole size was 
increased progressively by 2mm until a central hole size of 14mm and an indentation diameter of 100mm 
was produced. As the central hole size increased so did the damping performance of the circular 
indentation.  

The results are shown in Figure 9. As expected, Figure 9 shows that the damping layer increases the 
damping performance of the inclusion up until 8 kHz, after which it has a reduced effect. This pattern of 
varying damping is consistent with the theory of power-law profiled wedge damping [5-7]. The greatest 
increase in damping performance was achieved in the frequency range between 3.5- 6 kHz, when an 
additional damping layer was attached.  The maximum increase in damping of 9dB occurs at 5.2 kHz.  
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Figure 9: Measured accelerance for a profiled circular indentation with a 
14mm central hole with (solid line) and without (dashed line) an 
additional damping layer  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Measured accelerance for a profiled circular indentation with a 14mm 
central hole with an additional damping layer (solid line) compared to a 
reference plate (dashed line)  
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A comparison of the results for a profiled circular indentation with a 14mm central hole and an additional 
damping layer to the results for a reference plate are shown in Figure 10. Again, Figure 10 shows that 
below 3 kHz the circular pit provides little to no damping. In the region of 3.8 – 9 kHz, damping varies 
between 3 – 8 dB, and maximum damping occurs at 6.6 kHz. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Measured accelerance for a damped circular indentation with a 14mm 
central hole (solid line)  compared to a damped circular indentation with 
2mm central hole (dashed line)  

 

Figure 11 shows a direct comparison between the two m = 2 profiled circular indentations with 2mm and 
14mm central holes. Below 3.8 kHz, the response of both samples is almost identical, varying by no more 
than approximately 1-2dB. The response is again identical at 7 kHz.  In all other regions the 14 mm 
central hole has an increased damping performance compared to the 2mm central hole. In the region 6-7 
kHz, the maximum difference can be seen, with the response of the 14mm central hole showing a greater 
reduction in amplitude than the 2mm central hole sample by a maximum of 7dB. Increasing the central 
hole diameter increases damping performance of the circular indentation as it increasingly resembles a 
curved wedge as the diameter of the central hole is enlarged.  
 

4.3   Multiple circular indentations  

 

This section describes the combined effect of three damped profiled (m = 2) circular indentations 
positioned randomly about the central excitation point, as compared to a reference plate and a plate 
containing a damped singular inclusion with a 14mm central hole. This multiple-hole sample was 
expected to perform better than the plates with one circular indentation. But still it was not expected to 
exceed the damping level of the plates with a power law wedge. The diameters of the circular inclusions 
were 100 mm and the central holes were 14mm in diameter.  
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Figure 12: Measured accelerance for a plate containing three profiled circular 
indentations with 14mm central holes and additional damping layers, 
as compared to a reference plate (dashed line)  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Measured accelerance for a plate containing three profiled circular 
indentations with 14mm central holes and additional damping layers 
(dashed line), as compared to a singular circular indentation with a 
14 mm central hole and additional damping layer (solid line)  
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The results for the plate with three profiled circular indentations with 14mm central holes compared to a 
reference plate are shown in Figure 12. As expected, at low frequencies (below 1.5 kHz) there is little to 
no damping, between 1.5 -3 kHz, the amplitude of the response is reduced by approximately 1-2 dB. As 
before, there is an increased response between 3-3.8 dB, again more than likely due to a node. This 
response is more pronounced than in the case of a singular pit responses. Between 3.8 and 9 kHz 
reductions are in the range of 3-8 dB, with the maximum reduction occurring at 6.2 kHz.  

The comparison of the effect of three indentations with that of a single one is shown in Figure 13. 
Surprisingly, it can be seen that almost no increased damping can be gained by including three 
indentations in the current configuration as opposed to one indentation. In fact, over the frequency range 
tested, the single inclusion sample showed even a greater damping ability. There is however an 
unfavourable increase of approximately 8 dB in the resonance peaks in the frequency range 3-8 kHz. The 
multiple indentations do however show a slightly increased damping performance in the range 4-5.2 kHz. 
As expected, the damping performance of the multiple or singular indentation plates is not greater than the 
performance of 1D wedges of the same profile. Also, the position of the holes is linked to performance, 
and different combinations may result in greater levels of damping.  

 

5.  Conclusions 
 

It has been demonstrated in this paper that basic power-law indentations that are just protruding over the 
opposite plate surface cause very small or no reduction in resonant peak amplitudes, which may be due to 
their relatively small absorption cross-section capturing a relatively small number of flexural wave rays. 
Note that for elliptical plates this disadvantage has been overcome by focusing of flexural waves in the pit 
[10, 11]. Introduction of a 2mm central hole improved the situation and increased damping.  

To increase damping even more, the absorption cross-section has been enlarged by increasing the size of 
the central hole in the indentation up to 14mm, while keeping the edges sharp. As expected, such pits, 
being in fact curved power-law wedges, resulted in substantially increased damping performance that was 
comparable with that achieved by one-dimensional wedges of power-law profile.  

Contrary to the expectations, the introduction of multiple hole plates in the current layout did not clearly 
increase the damping performance of the two-dimensional indentations of power-law profile. Further 
research is required to clarify the multiple-hole performance.  
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