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Model-H is used to describe structures found in the phase separation in films of binary liquid

mixture that have a surface that is free to deform and also may energetically prefer one of the

components. The film rests on a solid smooth substrate that has no preference for any compo-

nent. On the one hand the study focuses on static aspects by investigating steady states that are

characterised by their concentration and film height profiles. A large variety of such states are

systematically analysed by numerically constructing bifurcation diagrams in dependence of a

number of control parameters. The numerical method used is based on minimising the free en-

ergy functional at given constraints within a finite element method for a variable domain shape.

The structure of the bifurcation diagrams is related to the symmetry properties of the individual

solutions on the various branches. On the other hand the full time dependent model-H is lin-

earised about selected steady states, in particular, the laterally invariant, i.e. layered states. The

resulting dispersion relations are discussed and related to the corresponding bifurcation points

of the steady states. In general, the results do well agree and confirm each other.

The described analysis is performed for a number of important cases whose comparison allows

us to gain an advanced understanding of the system behaviour: We distinguish the critical and

off-critical case that correspond to zero and non-zero mean concentration, respectively. In the

critical case the investigation focuses on (i) flat films without surface bias, (ii) flat films with sur-

face bias, (iii) height-modulated films without surface bias, and (iv) height-modulated films with

surface bias. Each case is analysed for several mean film heights and (if applicable) energetic

bias at the free surface using the lateral domain size as main control parameter. Linear stabil-

ity analyses of layered films and symmetry considerations are used to understand the structures

of the determined bifurcation diagrams. For off-critical mixtures our study is more restricted.

There we consider height-modulated films without and with surface bias for several mean film

heights and (if applicable) energetic bias employing the mean concentration as main control

parameter.
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Chapter 1

Introduction

In fluid dynamics lubrication theory describes the flow of fluids in geometries in which

one of the spatial dimensions is significantly smaller than the others. One example is

thin liquid layers with a free surface that flow or rest on a solid substrate. They are often

referred to as thin liquid films [20, 67]. Such films are widely used in many industrial

technologies. For instance, they are part of major processing techniques related to pro-

tective and adhesive coatings, painting, dyeing, spraying, and cleaning. They are also

involved in microfluidic processes employed in the fabrication of electronics, fuel and

solar cells [43]. They also occur in a number of natural processes, e.g., they are present

as tear films in the eye [82]. The study of thin liquid films may be considered to be a

field where physics, chemistry, and sometimes biology meet to understand a variety of

everyday live applications. The understanding in depth of these processes requires as

well a knowledge of the micro- and nano-structuring of thin films of mixtures as some

of the emerging technological applications are related to structured polymer coatings on

solid substrates.

Several ways exist to create liquid films. Very common is to drive a coating layer of liq-

uid onto a solid surface by an external force, such as gravity or centrifugal forces [54,

71, 76, 98]. The latter process is called “spin coating” and allows for a good control of

the film thickness, for instance, via an adjustment of the spin speed [81]. Occasionally,

the film can be as thin as a few nanometrs. Ideally, the films have a perfectly uniform

height (thickness). However, in reality the height is normally not perfectly regular. The

free surface of the film may be affected by capillary waves or by inhomogeneities of

the substrate. This may produce irregularities in the film thickness over the horizontal

1
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direction. Furthermore, advancing interfaces as e.g., liquid fronts during the spin coat-

ing process can be particularly affected by the driving forces, resulting e.g. in fingering

instabilities that are observed, for instance, when paint drips [17, 27, 29]. These effects

occur for liquid films that consist of a single liquid but may become more complex if

the film consists of a mixture of liquids.

In general, one may say that dealing with films of mixtures is more complicated than

with films of a simple liquid. Already a film of simple liquid may dewet a solid sub-

strate [23, 77], i.e., the film ruptures under the influence of effective intermolecular

forces between solid (or liquid) substrate, film and ambient gas phase. As a result the

system forms random arrangements of droplets or holes [83]. The process is called

“dewetting”. In contrast, “wetting” denotes the opposite process when a liquid spreads

over a substrate [12, 23]. A bulk mixture may decompose when the components of

the mixture are more attracted to themselves than to the other components [16, 66].

The resulting phase separation (decomposition, demixing) process results in drop or

labyrinthine structures that coarsen over time. The two processes of dewetting and de-

composition are already intricate and the subject of many studies. However, a thin layer

of a liquid mixture may undergo both processes – demixing and dewetting – at the same

time [38].

Both, demixing and dewetting phenomena have been theoretically studied on many oc-

casions. However, most studies focus on decomposition in bulk systems, i.e., without

solid substrates or free surfaces. Many of the studies of decomposition are based on the

so called Cahn-Hilliard theory [16] using a Landau-Cahn free energy functional. The

Cahn-Hilliard equation is considered a good tool to model and study such processes.

Many authors have studied and mathematically modelled the physics of phase separa-

tion. Among those investigations are Refs. [15, 28, 63, 100]. However, most of the

studies neglect the contribution of the confining boundary. As an exception, a relatively

small number of theoretical studies describes the phase separation phenomenon in a

gap between solid walls [11, 33, 50]; others consider a single wall [32] either on a hor-

izontal [41] or on an inclined substrate [59]. The above studies focus on transport by

simple diffusion of the components alone, without taking hydrodynamic transport into

account. Other authors have coupled the transport equations for the concentration, the

Cahn-Hilliard equation [39, 40], and of momentum, the Navier-Stokes equation, to de-

scribe phase separation of a binary liquid mixture or a liquid-gas mixture. The resulting

model is known as model-H [45], and has mainly been employed to study the coupling

of fluid dynamics and diffusion in the bulk [4, 6, 49, 55, 69, 92, 94]. The model has been
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re-derived and supplemented with boundary conditions for velocity and concentration

fields at the free surface and the substrate in Ref. [87]. The resulting completed model

has been used to determine special steady states, namely, in the form of homogeneous

and stratified films.

The theoretical description of the structuring processes involves complicated partial dif-

ferential equations (PDE) that take the form of evolution equations. Often, the resulting

evolution is simulated in time to model the system behaviour. This, however, does not

allow us to construct a complete picture of the system as unstable solutions of the gov-

erning equations are excluded right from the beginning. In general, for many physical

systems the mathematical analysis corresponds to the solution of a parameter-dependent

systems of nonlinear equations that typically have more than one solution. Therefore

it is desirable to compute a set of solutions that is as complete as possible. This allows

for a search for solutions with certain desirable properties. The resulting solution sets

presented with dependence on some control parameter are called bifurcation diagrams.

For simple problems they can often be calculated analytically. If this is not possible the

bifurcation diagrams and their singularities as, for instance, folds and branching points

may be determined employing numerical parameter continuation algorithms. Often, the

symmetries of the underlying equations and of the individual solutions play an impor-

tant role in the understanding of the bifurcation behaviour.

In the present work, we focus on the thickness profiles of liquid films and at the same

time on the phase separation inside the film. The film is situated on a horizontal solid,

perfectly smooth and energetically neutral substrate and consists of a binary mixture of

demixing liquids. The surface is open to the ambient gas, (i.e., the surface is free to

deform). The modulated free surface and concentration fields are described through a

pair of non-linear evolution equations: model-H as re-derived in Ref. [87]. It couples

the convective Cahn-Hilliard equation and the Navier-Stokes equations amended by a

concentration dependent stress tensor. The model is simplified assuming an isother-

mal setting. In our study we follow and extend Ref. [87]. In particular, we consider

a two-dimensional system (see Fig. 1.1) that corresponds to a domain whose length

corresponds to the lateral domain size and whose height corresponds to the mean film

thickness. If the film surface is kept flat the domain is rectangular. This is not the case

if the surface is free to deform. Depending on system size and control parameters, our

system may undergo a phase separation which is strongly influenced by the interfacial

conditions. Here, we investigate non-linear laterally periodic steady state solutions and

their bifurcation as functions of various control parameters such as the film thickness,
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Figure 1.1: Shown is a 2-dimensional concentration profile of the system

energetic bias at the free surface and the lateral domain size. In our study, we distin-

guish between critical mixtures and off-critical mixtures. In critical mixture, the mean

concentration of the two liquids is equal. However, in the off-critical mixture the mean

concentration of the two liquids is different.

Beside the distinction with regard to mean concentration we make a further distinction

related to the free surface. We introduce two types of films: (i) films with an imposed

flat free surface and (ii) films with a modulated free surface. For the flat surface films

we monitor the changes in the bifurcation diagrams for the free energy of the system

and the L2-norm of the concentration field. For films with surface modulations we also

monitor the L2-norm of the film thickness. In addition to the study of the bifurcation

diagrams we look at the linear stability (in time) with respect to lateral structuring modes

for all layered solutions. Note that these transversally invariant solutions correspond to

one-dimensional solutions studied in [87]. The structure of the bifurcation diagrams is

related to the symmetry properties of the individual solutions on the various branches.

For the critical case we employ the lateral domain size as our main control parameter

and fix the film thickness and the energetic bias at several selected values. However, in

the off-critical case we use the mean concentration as the main control parameter and

fix the lateral domain size, film thickness and the energetic bias at selected values.

Systems that are related to our study have been investigated extensively in experimental

work that form a primary motivation for our work. In the following discussion we

introduce several experimental set-ups and material combinations in more detail than

in the sketch provided above. First, we discuss the production of thin films in general

and then continue with systems that investigate the relation of phase separation and film

thickness modulations for layers of binary liquid mixtures that correspond either to the

critical or the off-critical case.
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Fluid properties such as density and viscosity and experimental conditions as tempera-

ture and pressure are sensitive parameters and important when selecting fluids for par-

ticular experimental settings. Thin film experiments are commonly performed with oils

or polymers Ref. [38] on silicon substrates. Oils are used because they are chemically

inert, i.e., they do not react with most other materials including soft solid substrates

made of rubber and plastic. They are also thermally stable even when they are heated or

cooled for a long time. Silicon substrates are widely used as a solid substrates as they

are very smooth and readily available.

Spin coating [52] is a widely known method for producing uniform thin films on flat

substrates. In industry this method is normally used if one aims at creating uniform

films. At the start an excess amount of a pure liquid, solution or mixture is placed on

the substrate that is then rotated at a sufficiently high speed in order to spread the fluid

by centrifugal forces. The higher the rotating speed is chosen, the thinner is the pro-

duced film. During the spinning process first the centrally placed drop spreads, when

the advancing contact line of the drop reaches the edge of the substrate, part of the fluid

is spun off over the edge. As a result the substrate is completely covered by the fluid

(see Fig. 1.2). If the pure liquid or the solvent of the solution is volatile, the volatile liq-

uid evaporates in parallel with the spinning process. Depending on spinning speed and

evaporation rate the processes of evaporation and spin off dominate the overall thinning

behaviour during different stages of the process [61]. When the spin coating method is

applied to a solution of a single component the usual result is an unstructured smooth

thin film of that component. In contrast, if a solution of a mixture of polymers is used,

then the polymer mixture may undergo a phase separation and develop structures on

the micro- or nano-scale. This might either already happen during the spin coating pro-

cess or during a subsequent annealing step, e.g., via heating above the glass transition

temperature where the polymer becomes a liquid.

Such structuring of films by the decomposition of a liquid mixture may also trigger an

additional dewetting phenomenon. It is usually said that fluctuations in the concentra-

tion field may result in the roughening of the surface profile [48], by producing droplets

of one liquid inside the other liquid [38] and phase separation [51]. There are many pos-

sible morphologies that result from phase separation. It is a complex non-equilibrium

process and its outcome are profiles that depend sensitively on the details of the creation

process of the thin film and on the properties of the used mixture. Phase separation may

take place in the direction parallel to the substrate resulting in a purely lateral struc-

ture, i.e., films that consist of vertically homogeneous regions of phase 1 and vertically
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homogeneous regions of phase 2. Alternatively, the decomposition can take place per-

pendicularly to the substrate resulting in stratified layers [2, 24, 60, 75, 88]. The control

of the process of phase separation through a better understanding of the phenomenon is

highly desirable in the application of thin liquid films. Many studies on phase separation

particularly for spin coated films are restricted to the analysis of the structure of the final

films. Others have developed techniques to study the process of phase separation in spin

coated films in situ. They establish the sequence of the processes which lead to the final

phase separated structure in the film. This gives the basis to understand the development

of the morphology in the mixed polymer thin films (see Fig. 1.2). Experimental investi-

(i) (ii) (iii)

(iv) (v) (vi)

150

100

50

0

1,000.0 nm

0.0 nm

500.0 nm

a

b
Height

0 50 100 150
µm

(A)

(i) (ii) (iii)

(iv) (v) (vi)

150

100

50

0

1,000.0 nm

0.0 nm

500.0 nm

a

b
Height

0 50 100 150
µm

(B)

Figure 1.2: Schematic model shows the deformation of films of binary mixture during the
process of spin coating until the final stage of morphology (reproduced from [44]).

gations introduced in Ref. [44] found that phase separation initially takes place through

the formation of wetting layers at the surface and the substrate (see stages (i)-(iii) in

Fig. 1.2(A)), and when the film thickness decreases below the critical one, the interface

becomes unstable, “thermally excited capillary waves are amplified with a mechanism

to select a length scale, resulting in the observed off-specular scattering” (see stage (iv)
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in Fig. 1.2(A)). As the film becomes thinner the instability grows which leads to an in-

crease in the off-specular scattered intensity and an increase in the roughness of the free

surface of the film. To some extent, the amplitude of the instability becomes such that

the free surface and the inner liquid-liquid interface meet. At this point a rapid move-

ment of the three-phase (liquid-liquid-gas) contact lines takes place yielding a laterally

phase-separated structure as shown in stage (v) in Fig. 1.2(A). Simultaneously, as the

total polymer concentration is increased through the ongoing evaporation of the solvent

and the boundaries in the equilibrium phase diagram change, phase separation may be

initiated in one or both phases, leading to a hierarchical, secondary phase-separation

see stage (vi) of Fig. 1.2(A). In thin films of immiscible binary mixture, experiments

demonstrate that phase separation can proceed [44] in a multistage process as indicated

in Fig. 1.2(A). The further thinning of the film consequent to a characteristic modulation

in the visibility of interference fringes measured during the scattering process. Second,

the interface between these two layers develops an instability with a well defined wave

vector. In other words, this is made manifest both through a continuous decrease in

fringe visibility and in the onset of off-specular scattering. When the instabilities grow

to such an extent that the highest interfacial protrusions touch the top surface of the

film, the film breaks up rapidly into lateral domains. At some point during this process

a secondary phase separation takes place within the primary domains. This is obvious

from the morphology of the final stage shown in Fig. 1.2(B).

Other observations show that the film thickness can be a control parameter of phase sep-

aration, i.e., the lateral phase separation in thicker films is considerably stronger than

that in thinner ones [38, 95]. In the experiment in Ref. [95] a blend of polystyrene

(PS) and polymethylmethacrylate (PMMA) is used. In Fig. 1.3 it is shown that the film

thickness is decreased by altering the speed of spin coating from 140 nm in panel (A)

to 80 nm in panel (D). In such films, phase separation starts during solvent evaporation

and continues until the film reaches equilibrium. However, during solvent evaporation

the film thins and geometrical constraints also become important. The characteristic

size of the phase-separated domains decreases with decreasing film thickness and the

images from (A) to (D) in Fig. 1.3 exhibited a self-similar domain structure. As con-

firmed by a qualitative observation of the spin-coating process, films of a larger film

thickness take longer to dry, allowing for longer diffusion times and a higher degree of

domain-coarsening during the spin-coating procedure. The resulting increase in lateral

domain size is compatible with the assumption of a spinodal decomposition process of a

binary mixture with subsequent domain growth, constrained to a quasi-two dimensional
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Figure 1.3: A series of final structures as obtained for different mean film thickness of a
PS/PMMA mixture produced by spin-coating. The average film thickness is varied by ad-
justing the rotation speed of the spin coater from 2000 rpm to 1000 rpm. The film thickness in
panel (A) is 140 nm, in panel (B) is 105 nm, in panel (C) is 95 nm, and in panel (D) is 80 nm.
The PMMA phase is the bright domain and the dark is the PS phase. Reproduced from [38].

configuration by the thickness of the film. Fig. 1.3 indicates that the growth of domain

size proceeds significantly faster than a linear relation.

The formation of other patterns is observed in films of off-critical blends that are rela-

tively rich in one component. The effect of off-critical composition has been the focus

of experimental investigation aiming at determining phase diagrams for decomposition

in thin films [68]. In confined flows of polymer blends of polybutadiene/polydimethyl-

siloxane one has observed that the droplet size depends on composition [90]. In the pres-

ence of an external temperature gradients, micro-convective patterns have been studied

in polystyrene/polybutdadien blends and it has been shown that off-critical composi-

tions give rise to irregular droplets in the early stages of the phase separation process

as compared to more spherical droplets observed for critical mixtures [62]. On the the-

oretical side, the influence of the average composition has been discussed by means

of phase diagrams derived from Hamiltonian approaches [84], whereas lower solution

temperature phenomena are described by state equations arising from the Sanchez and

Lacombe theory [97]. Particularly interesting for applications such as the oil recov-

ery from porous media is the effect that a confinement at the microscale has on the
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behaviour of blends. For polymer blends confined in cylindric geometries it has been

shown, that the phase separation in the spinodal region driven by infinitesimal pertur-

bations is independent of the confinement, whereas phase separation via nucleation and

growth is strongly affected by confinement [86].

9708011/ 8Q49$$8011 11-18-97 16:30:13 polpas W: Poly Physics
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Figure 1.4: Atomic force microscopy (AFM) image of an ultra-thin film of a blend of deuter-
ated poly(styrene) (dPS)/poly-(vinylmethylether) (PVME) at off-critical composition with
film thickness L ≈ 1000Å. The concentration of dPS is in (A) φdPS = 0.10, and in (B)
φdPS = 0.35. The films were annealed for 17min at 160◦C. Apparently, the elevations in (A)
correspond to dPS-rich minority droplets, while the depressions in (B) correspond to regions
of PVME-rich minority droplets. Reproduced from [30].

Further experiments in Ref. [30] show that droplets of the minority phase tend to form

at off-critical polymer compositions and the presence of these droplets within the film
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layer leads to a distortion of the free surface. Often the droplets form by nucleation

or via a breakup of an early-stage bicontinuous spinodal decomposition pattern. In

general, the observations show that droplets have higher surface tension than the sur-

rounding medium cause a local elevation of the liquid-gas boundary, while droplets of

lower surface tension result in a depression in the film surface. The surface topogra-

phy contains elevations or bumps rather than the bicontinuous structure seen for critical

mixtures. Direct observations of surface perturbations created by the droplets within

the film also makes it possible to follow the droplet kinetics. The presence of such

droplets within these ultra-thin polymer layers should have a disruptive influence on the

film. In Fig. 1.4(B) it is found that the initially smooth film surface evolves to form

holes. The kinetics of the formation of the holes in the dPS-rich films is much slower

than the growth of the elevations (mound structures) seen in Fig. 1.4(A). This is likely

a consequence of the higher viscosity of the dPS-rich phase. There are other situations

where holes and mounds occur in thin polymer films. For example, some of the features

appear to be similar to defect structures found in block copolymer (a polymer formed

of two or more sub-chains that consist of different molecules) films Ref. [30].

The surface patterns in copolymer films arise from a reorganisation of incomplete block

copolymer layers. Depending on the film thickness, either islands or holes can be

formed. For dense systems the formation of islands appears to be very different from

the formation of holes [19]. Smooth films form for quantised values of film thickness,

that are controlled by the domain spacing. In the early stage, thin, elongated elevations

are created. This, more or less, connected network splits progressively into shorter and

shorter segments and leads, finally, to rounded islands [19]. Clearly, this is a different

type of surface pattern formation than found in thin blend films. Hole formation also

occurs in polymer dewetting [77].

Another experimental study of off-critical films is presented in Ref. [42] where the

film thickness is controlled in the range of between 1 nm and 100 nm. The sample is

annealed to allow for phase separation. Panels (A,B,C) of Fig. 1.5 show the topography

of films of thickness (40, 15, 7) nm, respectively. Panels (D,E,F) give a measurement of

the frictional force for the samples corresponding to (A,B,C). The results show that the

thinner film develops smaller and more bumps. The number of bumps of the minority

phase (PS) is inversely proportional to the film thickness. The bumps correspond to the

dPS-rich phase and the PMMA-rich area forms the background.
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Figure 1.5: Representative images of the topography (panels A,B,C) and of the fractional
force (panels D,E,F) of SP/PMMA blend films with a 5 wt% diblock copolymer. The thick-
ness of the films are 40nm(A,D), 15nm(B,E), 7nm(C,F). On the frictional force images,
the bright spots at the centre of islands are clear. Reproduced from [42].

The presented experimental studies indicate that in general a purely lateral structure

can be produced in very thin films, while, stratified structures are not present in very

thin films. For thicker films the film becomes able to produce stratified layer or purely

vertical structuring. Also the phase separation for both, the critical and off-critical cases,

crucially depend on the film thickness. In the off-critical films it is expected to see

droplets of the minority phase embedded in a background of the majority phase. Other

situations show that holes and mounds occur in off-critical films.

Our main aim in the present thesis is to systematically analyse the structures that may

emerge in films of binary mixtures of immiscible liquids. The underlying mathemati-

cal model is model-H that we review in Chapter 3 after briefly discussing in Chapter 2

basic physical, mathematical and computational concepts that are used in the subse-

quent chapters either explicitly or implicitly. In particular, our interest focus on the

determination of film thickness and concentration profiles for a two-dimensional sys-

tem in the two-phase region as literature studies of such free surface films are limited

to fully non-linear results for the one-dimensional case [87] and its two-dimensional

linear instability modes [57]. On the one hand our study focus on static aspects by in-

vestigating two-dimensional steady states that are characterised by their concentration
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and film height profiles. A large variety of such states are systematically analysed by

numerically constructing bifurcation diagrams as a function of a number of control pa-

rameters. The numerical method used is based on minimising the free energy functional

at given constraints within a finite element method for a variable domain shape. It is also

presented in Chapter 3. The structure of the bifurcation diagrams is related to the sym-

metry properties of the individual solutions on the various branches. On the other hand

the full time dependent model-H is linearised about selected steady states as introduced

in Chapter 4. The chapter continues with a presentation of selected linear results for ver-

tical, horizontal and checkerboard instability modes for homogeneous films. Stability

results for laterally invariant, i.e. layered states are discussed alongside the bifurcation

diagrams in the subsequent chapters that present the various steady states.

The previously introduced analysis is performed for a number of important cases whose

comparison allows us to gain an advanced understanding of the system behaviour: We

focus on the critical and off-critical case in Chapters 5 and 6, respectively. In particular,

in Chapter 5 the investigation focuses on (i) flat films without surface bias, (ii) flat films

with surface bias, (iii) height-modulated films without surface bias, and (iv) height-

modulated films with surface bias. Each case is analysed for several mean film heights

and (if applicable) energetic bias at the free surface using the lateral domain size as main

control parameter. Linear stability analyses of layered films in the form of dispersion

relations allow for an independent second determination of the bifurcation points of the

various steady state solution branches that bifurcate from the homogeneous (weakly

stratified) and the stratified solutions for different energetic biases. The study of the

bifurcation diagrams is furthermore supplemented by an investigation of the symmetry

groups of the concentration profiles on the various. As a result we are able to completely

understand the structure of the determined bifurcation diagrams in cases (i) to (iv).

The results presented in Chapter 6 for off-critical mixtures focus on the role of the addi-

tional major control parameter, the mean concentration. In particular, we only consider

height-modulated films without and with surface bias for several mean film heights and

(if applicable) energetic bias employing the mean concentration as main control param-

eter. The bifurcation diagrams of the films are supplemented by concentration profiles

at particular mean concentrations selected in such a way that they well illustrate the

behaviour of the films as one follows the individual steady solution branches.

Finally, Chapter 7 concludes and discusses possible future work.



Chapter 2

Theoretical and Numerical
Background

2.1 Introduction

The observation of phenomena associated with fluids has probably started many cen-

turies ago. In fact, almost any action a person does involves some kind of fluid mechan-

ics problem. Recently, the rise of the empirical sciences, mathematics, and computing

has pushed the general scientific study of fluid mechanics. It continues to receive in-

creasing attention as technical requirements of modern applications request a better

control of the dynamics of a wide variety of simple and complex fluids [31, 35, 65, 78].

The models for the flow of thin films are mostly based on the continuity and Navier-

Stokes equations which present a system of partial differential equations to describe the

fluid flow, e.g. of air or liquids. The equations express the conservation of mass and

momentum, respectively.

A wide range of problems are investigated in fluid dynamics. Many of them involve

the movement of a fluid on/in/around solids (that may be rigid or elastic). In particular,

the boundary between a solid and a fluid is a widely discussed part of modern fluid

mechanics and has to be carefully considered especially for small scale applications.

The study of thin layers of fluid attracts a large attention within fluid mechanics as thin

films play a very important role in modern technology. The mathematical treatment

of thin liquid films combines the Navier-Stokes equations with new ideas. Numerous

papers were published that combine critical ideas: (i) the lubrication approximation

13
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which takes advantage of the thinness of the layer (film) through the small quantity

ε = H/L (2.1)

where L is a characteristic film length and H is the characteristic film height. This is

equivalent to the assumption that the thickness of the thin film is small as compared to

the horizontal extent of the fluid. Employing the lubrication theory, the Navier-Stokes

equations are simplified and the system may be studied in a more systematic way [67].

In any physical problem one has to translate the problem into a mathematical expres-

sion which reflects an accurate understanding of all the basic physics involved. In this

chapter we introduce fundamental concepts which will be employed in the model we

study later on.

2.2 Fluid Properties

There exist many properties of fluids that distinguish the various gases and liquids.

Among fluids there can be wide differences in their behaviour and their deformation

such as how fluids are affected by solid walls, how fluid phases interact and how material

properties affect the flow itself. The analysis of the behaviour of fluids is based on both

the familiar material properties and laws of non-equilibrium thermodynamics that relate

continuity of mass, momentum, and energy. Sometimes one describes the properties of

fluids in asymptotic ways as, for instance, in the case of the assumption of an ideal fluid

that is assumed to be inviscid. This assumption is a useful concept when mathematical

solutions are being considered which simplifies the model and helps to achieve some

practically useful solutions. It is very important to understand the various properties to

be introduced in the mathematical models.

2.2.1 Density and (in)Compressibility

The fluid density is defined as its mass per unit volume and it can be considered as a

measure of how tightly the molecules of fluid are packed. It is usually denoted by the

symbol ρ and is calculated by dividing the mass m by the volume V

ρ =
m

V
. (2.2)
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One of the most common uses of density is in how different fluids interact when mixed

together. It is well known that a fluid with lower density rises within one of higher

density. In fluid mechanics, density can be a key concept to analyse how fluids interact

with each other.

The property of compressibility refers to changes in the density that result from changes

in the pressure. In reality, all fluids are compressible to some extend. Often, however,

the changes in the pressure result in a negligible change in density. In this case the flow

is called “incompressible”. Mathematically, incompressibility means

Dρ

Dt
= 0 (2.3)

where D
Dt = ∂

∂t+v ·∇ is the substantial derivative, i.e., the derivative in the frame mov-

ing with the fluid element. The validity of the incompressibility assumption depends on

the fluid properties. Practically, Eq. (2.3) reveals that the study of incompressible fluids

is much easier than the one of compressible fluids.

2.2.2 Viscosity and (non)Newtonian Behaviour

The term “viscosity” refers to the effect internal friction has on the fluid motion. The

ratio between inertial and viscous forces (Reynolds number) is used to evaluate whether

viscous or inviscid equations are appropriate to the problem. Close to solid boundaries

the viscosity always plays an important role and cannot be neglected. The no-slip condi-

tion at the solid-liquid interface for instance (see section 2.4), can generate a thin region

of large strain rate, a so called boundary layer, which enhances the effect of even a small

amount of viscosity, and thus generates vorticity.

A Newtonian fluid is a fluid whose stress at each point is linearly proportional to the

strain rate at that point [8]. All gases and most liquids such as water and oils for in-

stance are considered to be Newtonian fluids. Mathematically, the simplest equation

that describes the behaviour of a Newtonian fluid is

τ = µ
dv

dy
(2.4)

where τ is the shear stress, µ is the dynamic viscosity of the fluid, and the derivative of

v with respect to y is the velocity gradient perpendicular to the direction of shear stress.

The viscosity in a pure Newtonian fluid only depends on pressure and temperature,
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but not on the forces acting on it. For incompressible fluids of constant viscosity the

components of the shear stress tensor are given by

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
. (2.5)

As a result, the complete stress tensor is

Tij = −pδij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)
(2.6)

where p is the pressure and δij is the Kronecker delta. If a fluid does not satisfy this

relation, it is termed a non-Newtonian fluid. Many particle suspensions and most highly

viscous fluids are examples of non-Newtonion fluids. An extensive literature is available

regarding analytic and numerical studies in both Newtonian and non-Newtonian fluids,

see for instance [18, 37, 80].

2.2.3 Interfacial Tensions, Capillarity and Wettability

The surface tension of a liquid manifests itself by a depression or rise of the free surface

of a liquid. It is responsible for creating drops and bubbles of liquid as well as for the

breakage of a liquid jet inside another phase into many drops. The surface tension unit

corresponds to a force per length and is measured in [N/m]. Surface tension results

from the sharp changes in the density between two adjoined materials or phases. The

Non-wetting
fluid

θ Wetting fluidθ wetting fluid
Partially

SLγ
γ

γ
LG

SG

Figure 2.1: Schematic diagram for wetting, partially wetting, and non-wetting fluids of solid
substrate

relation between surface tension and the pressure difference between the two opposite

sides of the surface is based on geometry. Suppose that a small element of a curved

surface is taken into consideration. If the surface tension is constant, then the tangential

component of the forces cancel because of symmetry. This is not the case in the normal

direction. There the surface tension forces pull the surface into one direction. There
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needs to exist a pressure difference to balance the surface tension. Otherwise bubbles

would always collapse.

The process of the spreading of liquids on solid substrates is called wetting and is related

to wettability properties. It can be related to the contact angle θ (see Fig. 2.1) and to the

spreading coefficient. The behaviour depends on the properties of the solid surface, the

liquid and the ambient gas (or second liquid). Wettability is a major factor that controls

the distribution of fluids on the walls of a reservoir.

There exists a surface tension between a solid and a fluid, and also between two im-

miscible fluids. The equilibrium configuration at a three-phase contact depends on the

relative values of the surface tensions between each pair of the three phases and satisfies

the Young’s law

γSG = γSL + γLG cos θ (2.7)

where γSG, γSL and γLG are the surface tensions of the solid-gas, solid-liquid and liquid-

gas interfaces, respectively (see Fig. 2.1). If θ < 90 ◦ then the liquid is said to partially

wet the substrate, if θ > 90 ◦ then the liquid is said to not wet the substrate. When the

liquid covers the whole solid surface, i.e., θ = 0 ◦, then one says the liquid completely

wets the solid. I.e., the surface is coated by a liquid film. [23, 53]

2.3 Transport Equations

When a fluid fills a region of space say Ω then we can write the representation of the

flow of this fluid considering the position r = (x, y, z) in Ω, the velocity of fluid particle

v = v(r, t), the density ρ = ρ(r, t), the pressure p = p(r, t) of the fluid at position r and

time t. If the fluid is Newtonian then the density, pressure and the velocity are governed

by the Navier-Stokes equation which represents momentum transport, the continuity

equation that represents mass conservation and by some constitutive relation connecting

the density ρ and pressure p.

2.3.1 Navier-Stokes Equations of Momentum Transport

The Navier-Stokes equations are a system of non-linear partial differential equations

which govern the motion of a Newtonian fluid. The fluid can be a liquid or a gas.

In essence, they represent the balance between the rate of change of momentum of
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an element of fluid and the forces that act on it. The equations were first introduced

by Claude-Louis Navier and George Gabriel Stokes to describe the motion of simple

fluids. They result from applying Newton’s second law to fluid motion, together with

the assumption that the fluid stress is the sum of viscous stress and pressure term. The

equations are used to describe a large number of physical, biological and engineering

applications [26, 34, 89].

The equations establish relations between the rates of change of pressure, velocity, and

acceleration. The derivation of the Navier-Stokes equations is based on applications

of momentum and mass conservation in an arbitrary control volume. The resulting

equations have the form

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · T + f (2.8)

where ρ is the fluid density, v is the velocity of the liquid,∇ is the Nabla operator, T is

the stress tensor given by Eq. (2.6), and f presents the body forces that act on the fluid,

∇v is the tensor derivative of the velocity vector. The nonlinear term v·∇v corresponds

to convective momentum transport. The term ∇ · T = ∇p+∇ · τ represents gradients

of stresses in the fluid and is responsible for diffusive momentum transport [1, 8].

Individually,∇p is the pressure gradient, and∇ · τ represents viscous forces. The body

forces may include, e.g., gravity, centrifugal force, electromagnetic forces that depend

on the nature of the particular problem.

On many occasions the material derivative

D

Dt
=

∂

∂t
+ v · ∇ (2.9)

is used, and Eqs. (2.8) are rewritten as

ρ
Dv

Dt
= −∇p+∇ · τ + f . (2.10)

An important body of work focuses on incompressible flow for Newtonian fluids. In

that case ∇ · v = 0 and the viscosity is constant. In consequence the Navier-Stokes

equations can be rewritten in classical form

ρ
(∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + f . (2.11)
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The first term ∂v
∂t represents the unsteady acceleration. The LHS of Eq. (2.11) repre-

sents inertia (per unit volume), whereas the sum of the first two terms on the RHS of the

equation represents the divergence of stress. Overall, the LHS describes acceleration

of a fluid element in its moving frame, and RHS is the sum of divergence of stress and

body forces.

2.3.2 Non-dimensionlisation

In many situations, not all of the terms in Eq. (2.11) are equally important. In fact, the

static situation is the most trivial situation. In this case all of the terms involving the

velocity are zero, the pressure gradient and the external forces are the only contributions.

There are many other possibilities that can be considered. The difficult task in any

particular situation is to determine which of the terms are small, and which are large.

The Reynolds number is the most important parameter which indicates the relative im-

portance of viscous and inertial forces in a given situation. Assume the characteristic

velocity scale is V0 and the characteristic length scale for the variation of the velocity is

L. Then the orders of magnitude of the terms in the equation are

∂v

∂t
≈ V0

τ
=
V 2

0

L
≈ v · ∇v, µ∇2v ≈ µV0

L2
, (2.12)

where we introduce the time scale τ = L/V0. The ratio of the inertial terms to the

viscous term is a characteristic dimensionless number called the Reynolds number.

Re =
ρV0L

µ
. (2.13)

Non-dimensionalising Eqs. (2.8) using non-dimensional variables t̃ = (V0/L)t, ṽ =

v/V0 and r̃ = r/L one obtains after dropping the tildes:

∂v

∂t
+ v · ∇v = −∇p+

1

Re
∇2v + f . (2.14)

Note that, p̃ = (1/(ρV 2
0 ))p is the pressure scale and f̃ = (L/(ρV 2

0 ))f is the scale of

body forces. This scaling explains why all flows with the same Reynolds number are

related by similarity relations. When the Reynolds number is very large the flow is

rather inviscid, and can be described away from solid walls by Euler’s equation. Under

these conditions turbulence can occur. However for small Reynolds number the flow is
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very viscous and no turbulence is found. Then, one may neglect the inertial terms in

the Navier-Stokes equations and obtain creeping flow or Stokes equations (see section

2.3.3).

To non-dimensionalise a system of equations, the following steps need to be taken:

• Identify all the independent and dependent variables

• Replace each of them with a quantity scaled relative to a characteristic unit to be

determined

• Divide through by the coefficient of the highest order polynomial or derivative

term

• Choose judiciously the definition of the characteristic unit for each variable so

that the coefficients of as many terms as possible become 1

• Rewrite the system of equations in terms of their new dimensionless quantities.

The last three steps are usually specific to the problem where non-dimensionalisation is

applied. However, almost all systems require the first two steps to be performed.

2.3.3 Turbulent vs Laminar Flow and the Stokes Limit

At large Re number the flow is often characterised by a chaotic and stochastic behaviour

showing random eddies or/and recirculation. The flow is called turbulent and is char-

acterised by rapid variations in velocity, pressure, high momentum convection and/or

low momentum diffusion. If the flow is not turbulent then it is called laminar. In fact,

the presence of eddies and recirculation does not necessarily indicate turbulent flow.

Such phenomena may be present also in laminar flow. Mathematically, turbulent flow

is often described by Reynolds decomposition, in which the flow is broken down into

the sum of an average component and a perturbation component. Turbulent flows can

be described well through the Navier-Stokes equations where Reynolds number is high.

Steady flow occurs when all time derivatives introduced in the flow field vanish, i.e., in

steady states the properties of the flow do not change over time at a given point in the

system. Otherwise, flow is unsteady. Turbulent flows are highly unsteady. A turbulent

flow can, however, be statistically stationary [70]. The random field U(x, t) is statisti-

cally stationary if all statistic measures are invariant in time. This means that the flow
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has constant statistical properties. Often, the mean field is the object of interest, and this

is steady too in a statistically stationary flow. Steady flows are often more tractable than

otherwise similar unsteady flows. The governing equations of a steady problem have

one dimension fewer (time) than the governing equations of the same problem without

taking advantage of the steadiness of the flow field.

For Stokes flow convective momentum transport is negligible as inertial forces are rel-

atively small compared with viscous forces, i.e. the Reynolds number is small. This

is a typical situation in flows where the fluid velocity is very small, the viscosities are

very large, or the length-scales of the flow are very small. Under this conditions the

Navier-Stokes equations are reduced to Stokes equations.

In the unsteady case (if the time scale 6= L/V0 where V0 and L as defined in section

2.3.2) one has

ρ
∂v

∂t
= ∇ · T + f , (2.15)

while in the steady case the equation reduced to

∇p = µ∇2v + f . (2.16)

2.3.4 Mass Transport and Continuity Equation

The continuity equation is an expression of the mass conservation. Consider the dif-

ferential volume element ∆V = ∆x∆y∆z shown in Fig. 2.2(A). The conservation of

mass for the volume ∆V is written in the expression (rate of change of mass in ∆V

= rate of mass convected into ∆V -rate of mass convected out of ∆V ) which can be

formulated mathematically in the equation

∆x∆y∆z
∂ρ

∂t
= ∆y∆z

[
(ρvx)|x − (ρvx)|x+∆x

]
+ ∆x∆z

[
(ρvy)|y − (ρvy)|y+∆y

]
+ ∆x∆y

[
(ρvz)|z − (ρvz)|z+∆z

]
(2.17)

where ρ is the density of the fluid in ∆V . By dividing each side of Eq. (2.17) by ∆V ,

and taking the limit as ∆V → 0 and after invoking the definition of the partial derivative

we obtain the equation

∂ρ

∂t
= −

[ ∂
∂x

(ρvx) +
∂

∂y
(ρvy) +

∂

∂z
(ρvz)

]
, (2.18)
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which can be expressed as

∂ρ

∂t
= −∇ · (ρv). (2.19)

Eq. (2.19) is the differential expression of the continuity equation and it can be rear-

ranged as

Dρ

Dt
= −ρ(∇ · v) (2.20)

where D
Dt is the material derivative given by Eq. (2.9).

If the fluid is assumed to be incompressible, i.e., the (local) fluid density ρ is constant.

This means that ρ of a fluid element does not change along a trajectory, implying Dρ
Dt

=

0. This reduces the continuity equation to

∇ · v = 0. (2.21)

The continuity equation can be derived in a similar way using an arbitrary fixed closed

infinitesimal region (see Fig. 2.2(B)). Conservation of mass to such volume is expressed

by the following integral

y

∆y

z

x

∆x
∆z

(A)
z

y

x

n
V

S

(B)

Figure 2.2: Shown are, (A) an arbitrary closed infinitesimal control volume element, (B) an
arbitrary fixed closed infinitesimal region

d

dt

∫
V

ρdV = −
∮
S

(n · ρv)dS. (2.22)
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Eqs. (2.19) and (2.22) are equivalent. This is shown using the divergence theorem which

states that, if V is a volume bounded by a closed surface S and A is a continuous vector

field then one can write ∫
V

(∇ · A)dV =

∮
S

(n ·A)dS. (2.23)

I.e., the surface integral in Eq. (2.22) can be converted to the volume integral

d

dt

∫
V

ρdV = −
∫
V

(∇ · ρv)dV. (2.24)

As we fix the control volume in space, the ordinary derivative can be moved inside

the integral by changing it into a partial derivative, and we can write both sides of the

equation to be consolidated within the integration∫
V

[∂ρ
∂t

+ (∇ · ρv)
]
dV = 0. (2.25)

Since this equation is satisfied for an arbitrary volume V , the integrand must vanish

which gives Eq. (2.19).

2.3.5 Mass Diffusion and the Cahn-Hilliard Equations for Mixtures

The Cahn-Hilliard equation describes the decomposition of a binary mixture [16]. It is

based on a free energy functional that takes into account contributions at the diffuse in-

terface between the two components which come from composition gradients. It is used

to study the dynamics of phase separation. The Cahn-Hilliard equation is formulated as

∂c

∂t
= m∆

[
f ′(c)− κ∆c

]
(2.26)

wherem is the mobility and c is the concentration difference. The equation characterises

important features of two-phase systems. It corresponds to a gradient dynamics for the

free energy functional

ψ[c,∇c] =

∫ [
f(c) +

1

2
κ|∇c|2

]
dr. (2.27)
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The local energy f(c) is often approximated by a double well potential (see the upper

part of Fig. 2.3). The gradient term with the positive constant κ represents the interfacial

energy of the diffuse interface between the phases. The system consists of component 1

characterised by the local concentration c1 and component 2 characterised by the local

concentration c2. The local concentrations are scaled such that c1+c2 = 1. Furthermore,

we use c = c1 − c2 as concentration variable.

f

ccm

c

T

T

T

T  < T

T  > T

 spinodal

binodal

unstable

stable

metastable
c

1

ce1 cs1 cs2 ce2

c

c1

1

Figure 2.3: Free energy f as a function of c at temperatures T > Tc, and T1 < Tc with
spinodal points marked by squares and binodal points marked by dots. Underneath is the
phase diagram of f as a function of c and T . Recreated after Fig. 1 of [3].

The free energy function f may change between qualitatively different forms depending

on temperature T . If T is high, then f is convex in c (see Fig. 2.3). In our case, when

the temperature of the mixture is lower than the critical one, the free energy density

diagram changes from a single well to a double well, and mixtures which have a con-

centration between the two binodal points ce1 and ce2 of the diagram become unstable.

When f ′′
(c) < 0, any perturbation that causes the mixture phases to separate tends to

reduce the total bulk free energy. However, for mixtures which are partially separated

and satisfy the condition of concentrations c1 < c2 for which f ′
(c1) > f

′
(c2), the con-

centration moves from the c1 into the c2 phase. This tends to decrease the total bulk free
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energy. If we consider a mixture comprised of a finite number of volumes say vi, each

with distinct concentration corresponding to ci then it is possible to determine the bin-

odal points i.e., the equilibrium concentration values by minimising the total bulk free

energy. This indicates that for an asymmetric double-well function f , the binodal points

do not lie at the minima of each well, but on a double tangent line shown in Fig. 2.3.

A miscibility gap (where the system can not take any arbitrary concentration) is ob-

served when f takes a double-well form. The phase diagram shown in Fig. 2.3 cor-

responds to the latter form of f . The particular positions of concentration values ce1 ,

and ce2 , defined by the common tangent to f , determine the coexistence curve in the

Tc-plane, indicated as the binodal. These concentrations are characterised by an identi-

cal chemical potential (slope of the tangent) and may coexist. Above the binodal is the

region that represents stable single phase states, the complement of this region refers to

states that are thermodynamically unstable. The inflection points cs1 , cs2 of f determine

a curve indicated by the spinodal. That curve separates the metastable and unstable

subregions with f ′′ > 0 and f ′′ < 0, respectively. In the homogeneous state, the system

quenched below a critical temperature undergoes separation into two phases. For inner

states of the spinodal, the path to phase separation is traditionally classified as spinodal

decomposition, whereas in the metastable region as nucleation. See, however, Ref. [64]

for a subtle correction of this picture.

When the system is inside the spinodal line it is linearly unstable and the order pa-

rameter fluctuations grow. The gradient term in Eq. (2.27) has a smoothing effect on

interfaces between the two phases. In consequence, jumps of c are not allowed, instead

different phases are separated by diffuse interfaces, that is, small subregions with rapid

changes of c. The thickness of these interfaces is related to the value of κ. In the limit

κ→ 0 the surface area of the interface is minimised locally in Ω [85].

2.4 Boundary Conditions

Beside using the governing bulk equations to solve a flow problem, one has to specify

boundary conditions that model the behaviour of the fluid at solid boundaries of various

types and at liquid gas interfaces.

At a Solid Substrate Nearly all flow observations on the meso and macro scale in-

dicate that a fluid does not move relative to a solid surface, neither in the tangential
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direction nor in the perpendicular one. These conditions are called the no-slip and no-

penetration condition. For instance, if a considered solid surface does not move, the

no-slip condition is v · t = 0 where t is the unit vector in the tangential direction. The

no-slip condition is normally invoked for every solid-fluid interface. Furthermore, if the

substrate is not porous, the normal component of the fluid velocity, v · n, is zero. This

is the so-called no-penetration boundary condition.

At a Free Surface Two boundary conditions are required at the free surface: (i) Kine-

matic boundary condition which relates fluid motion to the change of position of the

free surface. (ii) The dynamic boundary condition that is concerned with the force bal-

ance at the free surface. It requires continuity of tangential and normal forces across

the free surface. The traction exerted by the liquid onto the gas is equal and opposite to

the traction exerted by the gas on the liquid. Here we give them in the form of Eq. 3.13

below where the first term of the RHS of the equation corresponds to the Laplace or

curvature pressure that acts normal to the free surface and the second term corresponds

to Marangoni force which act tangentially to the interface and results from the varia-

tion of the surface tension along the surface caused normally by a solutal or thermal

Marangoni effect.

2.4.1 Periodic Lateral Boundary Conditions

There is a difference between finite and infinite systems. As all simulations take place in

a finite domain, periodic boundary conditions is an option used in dynamics simulations

to avoid problems with boundary effects caused by finite size and make the system

more like an infinite one, at the cost of possible periodicity effects. When a system

is bounded but free of physical walls it becomes important to use periodic boundary

conditions. This is equivalent to considering an infinite array of identical copies of the

system region filling a space. The consequences of this periodicity in general are: (i)

Any flux that leaves the simulation region of the system through a particular bounding

face immediately enters the system region through the opposite face, i.e., when a flux

leaves the right-hand face, it enters the simulation box through the left-hand face. (ii)

Fluxes lying within a distance of a boundary interact with those in an adjacent copy

of the system. In fact, using periodic boundary conditions is topologically equivalent

to mapping the region onto a torus. As our system is a rectangular system, periodic

boundary conditions are used on the lateral edges of the system.
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2.5 Finite Element Method

Because of the difficulty of solving most fluid dynamics problems analytically, often

numerical methods are employed to tackle them. They play a very important role in

solving such problems, in particular, methods that have more flexibility when dealing

with problems involving various materials, distinct boundary conditions or irregular

domains. Because of their importance, a variety of numerical methods have been de-

veloped. Some of them are quite simple but others are quite advanced. Examples for

the latter methods are, for instance, Finite Difference Methods, Finite Volume Methods,

and Finite Element Methods. The Finite Element Method (FEM) was mentioned first

by the mathematician Richard Courant, who utilised Ritz method of numerical analysis

and variational calculus to obtain approximate solutions to vibration systems. Since the

rapid decline in the cost of computers and the increase in computing power, nowadays

supercomputers and even personal computers are able to produce accurate results for

many kinds of problems.

FEM uses a system of points called nodes which make a grid called a mesh. This mesh

is programmed to contain the structural properties which define how the structure will

react to certain loading conditions. Nodes are assigned at a certain density through-

out the material depending on the anticipated stress levels of particular areas. Regions

which will receive large amounts of stress usually have a higher node density than those

which experience little or no stress. Regions of interest may consist of high concen-

tration areas, high stress areas, high energy areas or regions that show other complex

details [9, 47, 101].

The mesh is similar to a spider web: Each node, is connected by a mesh element to each

of the adjacent nodes. This web of vectors is what carries the material properties to the

object. Actually finite element methods provide a greater flexibility to model complex

geometries than other methods such as finite differences and finite volume methods. It

has been widely used in solving structural, mechanical, and fluid dynamics problems as

well as problems of other disciplines. The code we employ called “mss” implements a

finite element method to solve a variation problem [36].
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2.5.1 Finite Element Displacement

Usually when FEM are applied to physical or engineering problems described by dif-

ferential equations or by variational approaches then continuous expressions need to be

converted to discrete finite element expressions. The procedure is called finite element

discretization and depends on the type of elements that are implemented and also on

the approximation accuracy. This process incorporates boundary conditions and pro-

duces a discrete system of equations that needs to be solved. For our case finite element

discretization can be summarised in the following points.

• The continuum problem is divided by notional lines or surfaces (depending on

the problems dimension) into a number of non-overlapping finite elements, see

Fig. 3.2 for our case.

• The lines form a mesh and meet at a number of nodal points.

• The displacements of nodal points are the unknown parameters of the problem.

• A set of functions is established to uniquely define the state of displacement

within each finite element and on its boundaries in terms of its nodal displace-

ments.

• The displacement functions will define the physical properties within an element

and on its boundaries in a unique manner, in terms of the nodal displacements.

• A system of forces concentrated at the nodes and equilibrating the boundary

stresses and any distributed loads generates so-called stiffness matrix.

2.5.2 Two Dimensional Strain Triangular Elements

Finite element approximations are usually developed with shape functions expressed in

terms of parent element coordinates. In our 2D-problem, linear triangular elements have

been used employing a so-called area coordinate system. The area coordinate system

divides the area of a triangular element into three proportional areas. Isoparametric

coordinates are considered i.e. shape functions are fixed for all the unknown values.

Using matrix expressions unknowns can be rewritten with respect to shape functions [9].

The three linear shape functions Ni, with i = 1, 2, 3 are constructed in such a way that



Chapter 2. Theoretical and Numerical Background 29

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

€ 

N1
e

€ 

N2
e

  2 

1 

3 

x 

y 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

€ 

N2
e

 

€ 

x
 

2 

1

 

3 

y 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 

€ 

N3
e  

1 

3 

x 

y 

Figure 2.4: Three-node triangular element shape functions

they are equal to one at the node i and are linearly reduced to zero at the other two nodes

(see Fig. 2.4). The summation of Ni, i = 1, 2, 3 will represent the plane at the height

of one over the three nodes and thus it will be parallel to the triangle 123, consequently

for every Ni, i = 1, 2, 3 we have
∑3

i=1 Ni = 1. The shape functions are determined as,

x

y
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3
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Figure 2.5: (A) Area coordinate system, (B) Isoparametric natural coordinate system

N1 = ξ, N2 = η, and N3 = 1 − ξ − η, where ξ, η are natural coordinates, i.e. area

coordinates (see Fig. 2.5). One notices that only two Ni are linearly independent. As

mentioned above, any point on the triangle divides its area into three areasAi, i = 1, 2, 3

with summation equal the whole area of that element, and at every point inside the

triangle one can write

N1 =
A1

A
, N2 =

A2

A
, and N3 =

A3

A
. (2.28)

From now onwards we rename the vector N = (N1, N2, N3) as H for later compatibil-

ity.
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2.5.3 Mesh Adaption

Frequently, finite element results can be made more accurate by utilising procedures

for error estimation and subsequent generation of a more precise mesh. One of these

procedures is known as adaptive mesh. The process depends on previous results at all

stages [101]. In particular, it is possible to adaptively refine the mesh so that the ac-

curacy of a certain quantity of interest satisfies some specified criteria. One way is to

reduce the Root Mean Square error represented by the difference between the original

control points and the new control point locations calculated in the transformation pro-

cess. Various refinement procedures can be applied, that fall mainly into two categories:

1- The p-refinement in which one uses the same element size but increases, generally hi-

erarchically, the order of the polynomial used in their definition. p-refinement is divided

into subclasses: One, in which the polynomial order is increased uniformly throughout

the whole domain. In another one the polynomial order is increased locally using hier-

archical refinement. In neither of these, a direct procedure has been developed which

allows the prediction of the best refinement to be used to obtain a given error. Much

work has been reported in the literature, one can refer to [9, 101].

2- The h-refinement in which the same class of elements is used but they are changed

in size, in some locations made larger and in others made smaller, to provide maximal

economy in reaching the desired accuracy. h-refinement is divided into subclasses as it

can be applied and thought of in different ways. The first of these h-refinement methods

is element subdivision (enrichment). Here refinement can be conveniently implemented

and existing elements, if they show too much error, are simply divided into smaller

ones keeping the original element boundaries intact. The second method is known as

r-refinement, which keeps the total number of nodes constant and adjusts their position

to obtain an optimal approximation. The last method, is that of a complete mesh re-

generation or re-meshing. Here, on the basis of a given solution, a new element size

is predicted in all the domain and a totally new mesh is generated. This refinement

method is used in our system where the refinement predominantly takes place in the

diffuse interface regions, and in zones along the free surface, where high concentration

gradients and/or surface curvature are detected. The refinement could be repeated once

more before the final solution is obtained.
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2.6 Symmetry

A set S is said to be symmetric under a transformation g if g maps the set onto itself

gS = S. Here the set S refers to a solution (bifurcation branches) [79]. Symmetry

operations are used to analyse and classify our solutions by symmetry groups. This

requires examination of the symmetries present in their structures.

A solution has reflectional symmetry if it can be bisected by one or more ‘mirror’ axes.

In this example the portion on the left hand side of such an axis relates to the portion on

the right hand side by being its mirror image. All the points on the mirror (reflection)

axis remain fixed. However, it has translational symmetry if its profiles can be moved

to congruent profiles by a glide in any direction, while it is still keeping the same ori-

entation. All points of the solution must move the same distance in the same direction.

The symmetry of glide-reflection is a motion combining a reflection and translation,

along the direction of the reflection axis, consecutively. Two successive glide-reflection

operations along an axis are equivalent to one unit of translation in the same direction.

In addition to these four symmetry operations, there are two other symmetries which

are in fact characteristics of every solution profile, the identity and inverse symmetry.

The identity is equivalent to no movement at all. Here the profile is effectively left in

exactly the same position, i.e., each point is mapped onto itself. For every symmetry

of a solution there is another symmetry which will take the solution back to its original

position. This is called the inverse symmetry.

A symmetry group is a set of symmetry operations satisfying the following conditions:

• The identity symmetry is included in the set

• For every symmetry operation moving a solution from position A to position B,

there exists a unique inverse operation which is able to move the solution back

from position B to its original position.

• Each symmetry operation in the group can be followed by another operation re-

sulting in a new operation that is also a member of the symmetry group.

In symmetric bifurcation theory, one studies how the trajectories of symmetric vector

fields behave when parameters are varied [56]. In general the theory makes it possible

to analyse symmetric dynamical systems in a systematic manner. The results are able

to explain several phenomena that can be observed in simulations of specific equations.



Chapter 2. Theoretical and Numerical Background 32

Elements of symmetry based analysis which is known as equivariant bifurcation theory

are employed in the study to sort and relate the various obtained solutions, e.g. by

understanding the involved symmetry breaking bifurcations, see Chapter 5. Thereby the

explanation of the behaviour of our system becomes more visible and understandable.

Our results contain many types of symmetries as the symmetry of the individual so-

lution, the symmetry of the solutions branches and the symmetry of the bifurcation

diagrams.

2.7 Summary

We have introduced basic concepts that are used either explicitly or implicitly in this

thesis. As the properties of the fluid are very important in mathematical modelling, the

concepts of density and compressibility of fluid have been introduced. As we work with

Newtonian fluids, we introduced the concepts of viscosity and Newtonian behaviour of

fluid. The interfacial tension, wettability and the capillarity where the fluid can produce

significant changes in the concentration fields, surface topographies, and surface mor-

phologies. Consequently, the transport equations represented by Cahn-Hilliard equation

and Navier-Stokes equations have been introduced as well as the continuity equation

which presents the mass conservation. As we will use non-dimensional form of model-

H, we have given an idea about this subject. Since the equations are supplemented

by boundary conditions we have introduced general concepts related to the boundary

conditions at the free surface and the substrate. However, at the lateral edges of the

container of our system we will consider periodic boundary conditions. In terms of the

finite element method, we have explained the finite element displacement using trian-

gular elements and we have given an idea about the mesh adaption. Finally, we have

given some basic concepts about symmetry.
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The Model and Numerical Procedures

3.1 Introduction

Phase-field models are able to deal with multiphase systems including various bound-

ary conditions at the free interfaces by a continuous description of the entire domain,

including the interfacial regions. This continuous variation is realised with the assis-

tance of one or several order parameter(s), called phase-field functions that distinguish

the thermodynamic phases. In a sharp interface model, the basic equations are written

for each phase separately and the boundary conditions are specified explicitly at the in-

terface. However, in a diffuse interface theory the basic equations with supplementary

terms depending on variations of the phase field are written only once for the entire

system without interface conditions. Then the physics of the interface becomes part

of the bulk description and two transport processes can be observed when the system

evolves towards a minimum of the free energy. The first one is the diffusion of the indi-

vidual components within the binary mixture that may lead to phase separation, while

the second corresponds to the convective motion of the binary fluid. By neglecting the

convective flow, the process of phase-separation can be described by the theory of Cahn

and Hilliard [16] which is based on minimisation mentioned above of the free energy

functional that includes the square of the density gradient which is introduced by Van

der Waals [91]. Simulations of the phase separation in thin films have been able to re-

produce the experimental coarsening phenomena [99], the interplay of phase separation

and the wetting behaviour of the components for an unstable binary mixture with off-

critical composition [73], the surface interaction with molecules of the binary mixture

via long-ranged Van der Waals interaction [74], and the dynamics of phase separation in

33
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binary mixtures near a surface with a preferential attraction for one of the components

of the mixture [72].

An important model used to describes the phase separation in liquid systems is model-

H [45, 94]. The model consists of a modified Cahn-Hilliard equation which includes

advection of the order parameter that represents the mixture composition, amended

Navier-Stokes equations, and the continuity equation. The equations of conservation

of mass and momentum are coupled through the convective term of the convection-

diffusion equation, which is driven by a composition-dependent body force. As noted

in [49], when the system is composed of single-phase domains separated by sharp in-

terfaces, this force incorporates capillary effects and plays the role of the Marangoni

force. Model- H shows that during the early stages of the phase-separation process

(i.e., spinodal decomposition), initial instabilities grow exponentially, forming at the

end single-phase micro domains whose size corresponds to the fastest growing mode of

the linear regime [94].

Various problems have been treated with phase field models. Examples are the motion

of phase separating liquid drops in two dimensions where convection and diffusion are

coupled via the body force [93], and the phase separation taking place when an initially

homogeneous liquid binary mixture is moved deeply into its two-phase region Ref. [94].

A phase-field model for Marangoni convection in a liquid-gas system with a deformable

interface, heated from below was developed in Ref. [13], and a phase field model for

analysing the influence of evaporation on Marangoni convection in liquid-vapour sys-

tem was proposed in Ref. [14]. The behaviour of miscible liquids was theoretically

studied by means of a diffuse interface approach in order to show the existence of an

effective interfacial tension between them [10]. Interfacial phenomena in miscible liq-

uids are transient since the system is driven to a homogeneous equilibrium by diffusion.

However, if the diffusion coefficient is sufficiently small, capillary forces can lead to

a significant fluid motion. This situation was investigated by numerical simulations

of miscible drops, jets, and plane interfaces in Ref. [10]. A mathematical model of

non-isothermal phase separation was suggested in Ref. [3], but the hydrodynamic phe-

nomena have not been included there. An attempt to construct a phase-field model for

non-isothermal immiscible incompressible liquids has been undertaken by [5]. Ref. [87]

proposed a dynamic model for describing the coupled decomposition and profile evolu-

tion of a free-surface film of a binary mixture and analysed steady base states. The phase

separation in a binary mixture subjected to a temperature gradient was investigated in

experimental work in Ref. [7].
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3.2 Model-H

For our purpose to study binary mixtures problems, the isothermal model-H is an ad-

equate description as it couples the transport equations for momentum, and the mass

density of one of the components, i.e., the Navier-Stokes equations and the convective

Cahn-Hilliard equation. The model has been formulated in various ways according to

the particular definition of pressure used. As the present study extends on results of

reference Ref. [87], we describe model-H following their notation.

We will consider a binary fluid with constant density ρ which implies ∇.v = 0. This

is possible if an identical mass density of the two pure components is assumed. Fur-

thermore, an isothermal setting is considered, i.e., a constant temperature T . The local

densities of the two components ρ1 and ρ2 are expressed in terms of concentrations

c1 = ρ1/ρ and c2 = ρ2/ρ where ρ = ρ1 + ρ2. Model-H in terms of the concentration c

defined by

c = c1 − c2 = 2c1 − 1 (3.1)

is written in the form of two coupled equations. The first one describes the transport of

concentration:
∂c

∂t
+ v · ∇c = −∇ ·

{
M∇

[
σc∆c− ∂cf(c)

]}
(3.2)

where σc = ρ2ξ/4, and M = 4k3/ρ
2. where ξ is the dimensional stiffness of the diffuse

interface, and k3 is the kinetic coefficient of the dimensional Cahn Hilliard equation.

The chemical potential is given by µ̃d = ρµd = 2∂cf(c), where µd is the difference in

the chemical potential of component 1 and component 2 and f(c) is the concentration

dependent part of the local free energy which is assumed to be a symmetric double-well

potential.

The second equation describes the transport of momentum:

ρ
∂v

∂t
+ ρv · ∇v =−∇ ·

{
σc(∇c)(∇c)

+
[
p− σc(c+ 1)∆c− σc

2
(∇c)2

]
I
}

+ η∆v (3.3)

where p is the mechanical pressure for homogeneous material in the thermodynamic

equilibrium which is not dependent on gradients or derivatives. The term (p − σc(c +

1)∆c − σc
2

(∇c)2) is introduced as an effective pressure and denoted by peff [87] and

η∆v is the viscosity term. If a finite domain is considered (see Fig. 3.1), then Eqs. (3.2)

and (3.3) must be supplemented with boundary conditions. We first introduce boundary
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conditions for the concentration and the velocity at the surfaces. The boundary condi-

h(x)

x

H

L

z

xL

H
h(x)

c(x,z)

z

Figure 3.1: Sketch of the two-dimensional (2d) geometry: An infinitely extended free-surface
film of a liquid binary mixture on a horizontal smooth solid substrate.

tions for the concentration field at the substrate where z = 0 are as follows:

Zero diffusive flux through the rigid substrate

∂z

[
σc∆c− ∂cf(c)

]
= 0, (3.4)

an energetic condition related to a possible preferred adsorption of one component at

the substrate [
− σc∂zc− σ−∆||c+ ∂cf

−(c)
]

= 0 (3.5)

where ∆|| = ∇||·∇||,∇|| = (∂x, ∂y), and f−(c) is the excess free energy at the substrate.

Focusing on surface energies that do not depend on concentration gradients (σ− = 0)

we have [
− σc∂zc+ ∂cf

−(c)
]

= 0. (3.6)

At the free surface h(x, z, t), the boundary conditions are (i) zero diffusive flux through

the moving surface

n · ∇
[
σc∆c− ∂cf(c)

]
= 0 (3.7)

where n is the outwards normal vector at the free surface given by

n =
(−∂xh, 1)√
1 + (∂xh)2

, (3.8)

and (ii) an energetic condition[
σc(n · ∇)c− σ+∆sc+ ∂cf

+(c)
]

= 0 (3.9)
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where ∆s = ∇s · ∇s the surface Laplace operator, i.e., ∇s is the surface gradient

operator∇s = t · ∇ and the tangent vector t is given by

t =
(1, ∂xh)√
1 + (∂xh)2

. (3.10)

Assuming as before σ+ = 0 results in[
σc(n · ∇)c+ ∂cf

+(c)
]

= 0. (3.11)

The boundary conditions for the velocity field are the no-slip and no-penetration condi-

tions at the solid substrate (z = 0), i.e.,

v = 0, (3.12)

and the force equilibrium at free surface

(τ − τair) · n = −γ(c)n∇ · n +∇sγ(c) (3.13)

where τ = −σc(∇c)(∇c)−
[
p−σc(c+1)∆c− σc

2
(∇c)2

]
I+η[∇v+(∇v)T ] is the stress

tensor and the ambient air is assumed to not transmit any forces (τair = 0). The function

γ(c) is the concentration dependent surface tension. Note that ∇ · n corresponds to the

curvature of the free surface. A kinematic condition at the free surface indicates that the

surface follows the flow field.

(∂th) · n = v · n (3.14)

where h is defined as h = h(x, y, t)ez.

3.3 Dimensionless Form of Model-H

In Chapter 4 below, we discuss the linear stability of layered steady states employing

the fully time-dependent model-H. Preparing for that analysis, we rewrite the govern-

ing equations and the boundary conditions of model-H in dimensionless form using the

scales introduced in Ref. [57, 87]. We use l = C
√
σc/E as length scale which corre-

sponds to the thickness of the diffuse interface between the two phases, U = ME/lC2

as velocity scale, τ = l/U = l2C2/(ME) as time scale. The energy scale is E. Choos-

ing the pressure scale based on the energy P = E and C is the concentration at the
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binodal given by C =
√
a/b. The parameter M is the diffusive mobility in the Cahn-

Hilliard equation. With these scales, two dimensionless numbers appear in the gov-

erning equations, the pressure number Ps = ρM2E2/C6σc and the Reynolds number

Re = MEρ/ηC2.

Eqs. (3.2) and (3.3) in the dimensionless form are

∂tc+ v · ∇c = −∇ ·
{
∇[∆c− ∂cf(c)]

}
, (3.15)

Ps
[∂v

∂t
+ v · ∇v

]
= −∇ ·

{
(∇c)(∇c) + peffI

}
+

Ps

Re
∆v, (3.16)

respectively, and the continuity equation is given by

∇ · v = 0. (3.17)

The diagonal of the stress tensor contains the effective pressure given as

peff = p− (c+ 1)(∇c)− (∇c)2

2
. (3.18)

where p represents the normal pressure and f(c) is the bulk free energy. Eqs. (3.15) and

(3.16) are supplemented by the non-dimensional boundary conditions. For the concen-

tration field the boundary conditions at the substrate (Eq. 3.4) become

∂z

[
(∂xx + ∂zz)c− ∂cf(c)

]
= 0 (3.19)

This condition prevents the diffusive mass flux through the substrate, whereas the fol-

lowing condition

−∂zc+ S∂cf
−(c) = 0 (3.20)

allows for energetic bias at the substrate, where f− is the non-dimensional free energy

at the substrate defined by the relation

f−(c) = γs + a−c+
1

2
b−c2. (3.21)

The parameter S indicates the dimensionless surface tension of the liquid-gas interface

at c = 0 and the dimensionless solid liquid interface tension at c = 0 is represented by

Sγs. The parameters a− and b− refer to adsorption preference of one of the components

at the substrate and changes in the mixing behaviour of the components at the substrate,

respectively. Similar conditions are applied at the curved free surface z = h(x, y, t),
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i.e., [
∂z − (∂xh)∂x

][
(∂xx + ∂zz)c− ∂cf(c)

]
= 0, (3.22)

[
∂z − (∂xh)∂x

]
c+ S∂cf

+(c)
√

1 + (∂xh)2 = 0 (3.23)

where

f+(c) = α + a+c+
1

2
b+c2. (3.24)

is the free energy at the free surface. The boundary conditions for the velocity field at

the substrate are the no-slip and no-penetration conditions

u = w = 0 at z = 0 (3.25)

At the free surface the conditions result from the balance of tangential forces

−[∂xc+ (∂xh)∂zc][∂zc− (∂xh)(∂xc)] +
Ps

Re
[(uz + wx)(1− h2

x)

+ 2(wz − ux)hx] = S
√

1 + h2
x[∂x + (∂xh)∂z]f

+(c) (3.26)

and normal force

− 1

1 + hx
2 [∂zc− (∂xh)(∂xc)]

2 − peff +
Ps

Re

2

1 + h2
x

[uxh
2
x + wz

− hx(uz + wx)] = Sf+(c)∂x

[ ∂xh√
1 + h2

x

]
. (3.27)

The kinematic boundary condition becomes

∂th = w − u∂xh. (3.28)

Now if we consider a flat film (h = h0) of quiescent mixture (v0 = 0) with stratified

layers (c(x, z) = c0(z)), then it is a steady solution of the following one-dimensional

non-convective Cahn-Hilliard equation

∂zz

[
∂zzc0 − ∂cf(c)|c0

]
= 0 (3.29)
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and the boundary conditions

∂z

[
∂zzc0 − ∂cf(c)|c0

]
= 0 at z = 0, h0 (3.30)

±∂zc0 + S∂cf
±(c)|c0 = 0 at z = 0, h0. (3.31)

where the “-” sign is at the substrate (z = 0), and the “+” sign is at the free surface

(z = h0).

3.4 Variational Approach to Steady States

The static limit of the bulk equations and boundary conditions constituting model-H can

be alternatively derived minimising the free energy functional (appendix of Ref. [87]).

For a two dimensional free surface film of binary mixture this free energy functional

can be split into two terms

F [c(x, z), h(x)] = Fb[c(x, z), h(x)] + Fs[c(x, h(x)), h(x)] (3.32)

where c(x, z) is the concentration field and h(x) is the film height depending on x. The

first term on the right hand side is the film bulk energy and the second term represents

the interface energies at the upper and lower film surfaces. The two terms Fb and Fs are

defined respectively as

Fb =

∫ ∞
−∞

∫ h(x)

0

[σc
2

(∇c)2 + f(c)
]
dzdx− λd

[ ∫
Ω

c1dA− C1A
]

− λ
[ ∫

Ω

dA− A
]

(3.33)

and

Fs =

∮
∂Ω

fs(c)ds. (3.34)

The concentration field is defined in all the bulk and depends on position, i.e., c =

c(x) = c(x, z). The film thickness only depends on position along the substrate, i.e.,

h = h(x). The film domain is restricted to Ω = (−∞,∞) × [0, h(x)], and ∂Ω indi-

cates the boundary of Ω. The surface energy is assumed not to depend on the gradient

of c. Lagrange multipliers λd, λ ensure that both the concentration of component 1,

c1 = 1
2
(c + 1) and the total area of the domain have the prescribed values C1 and A,
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respectively. F has to be varied with respect to all possible degrees of freedom [87].

In our case these are small changes of the concentration field and of the film thickness

defined as c(x; ε) = c(x) + εη(x) and h(x; ε) = h(x) + εζ(x), respectively, where sym-

bols ζ and η denote arbitrary variations. Using the definitions of c and h, the variations

can be computed by the limits

δh(x) = lim
ε→0

h(x; ε)− h(x)

ε
= ζ(x) (3.35)

and

δc(x) = lim
ε→0

c(x; ε)− c(x)

ε
= η(x), (3.36)

respectively. The variation of the bulk energy is given by

δFb = lim
ε→0

Fb

[
c(x; ε), h(x; ε)

]
− Fb

[
c(x), h(x)

]
ε

(3.37)

This results in the following form (for details see [87]),

δFb =

∫ ∞
−∞

∫ h(x)

0

[
− σc[∇c(x)] +

(
∂cf −

λd
2

)]
ηdzdx

−
[ ∫

Ω

c1dA− C1A
]
δλd −

[ ∫
Ω

dA− A
]
δλ

+

∮
∂Ω

σc
(
∇c
)
.nηds

+

∫ ∞
−∞

[σc
2

(∇c)2 + f(c)− λdc1 − λ
]
ζ(x)dx. (3.38)

The surface energy Fs is represented as a summation of two terms, the free surface term

F top
s and the term of liquid solid interface F bot

s

F top
s =

∫ ∞
−∞

fs[c(xs)]
ds

dx
dx =

∫ ∞
−∞

fs[c(xs)]
√

1 + [∂xh(x)]2dx (3.39)

where xs = [x, h(x)]. To evaluate δxs we write

δxs = lim
ε→0

(xs; ε)− xs
ε

= lim
ε→0

[x, h(x) + εζ(x)]− [x, h(x)]

ε
= [0, ζ(x)]. (3.40)
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Consequently,

δc
[
xs(x)

]
= ∇c(xs(x)).δxs(x) + η(xs(x)). (3.41)

As a result when varying F top
s one obtains

δF top
s =

∫ ∞
−∞

[[
(n.∇c)∂cfs + fsκ

]dx
ds
ζ + (∂cfs)η

]
ds (3.42)

δF bot
s has a similar form as the second term of δF top

s . i.e.,

δF bot
s =

∫ ∞
−∞

∂cfsηdx (3.43)

For the local bulk energy f(c) a simple double well quartic potential is employed and

defined in dimensionless form as

f(c) =
1

4
(c2 − 1)2. (3.44)

The surface energies of the liquid-gas and liquid-solid interfaces that are considered here

are given by Eq. (3.24) and Eq. (3.21), respectively, where b± = 0 and a− = γs = 0,

i.e., we assume a linear Marangoni effect at the free surface and no effect at the substrate

(asymmetric case). In terms of the energetic bias we focus on the case where a+ > 0. To

characterise steady states for the two dimensional system, we determine the L2-norms

of surface deflection ||δh|| and concentration field ||δc|| as

||δc|| =

√
1

Lh̄

∫ L

0

∫ h(x)

0

(
c(x)− c̄

)2
dzdx, (3.45)

the normalised L2-norm of the film thickness profile

||δh|| =

√
1

L

∫ L

0

(
h(x)− h̄

)2
dx, (3.46)

and the normalised energy

E =
1

L

∫ L

0

{
a+c
√

1 + (∂xh)2 +

∫ h(x)

0

[
1

2
(∇c)2 + f(c)

]
dz

}
dx− h̄f(1). (3.47)

In the next section we will describe how to discretise Eqs. (3.33), (3.42), (3.43) in terms

of finite elements.
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3.5 Energy Functional in Terms of Finite Elements

In this section we show how the minimisation of the energy functional is formulated

in terms of finite elements. The domain has to be discretised into a number of finite

elements. We use linear triangular elements described in section 2.5.2. A partition

(mesh or triangulation) is established over the entire system domain in which one must

ensure, that the finite element approximations converge to the exact solution of the

model.

First, we rewrite the energy functional given by Eq. (3.32) to obtain

F [c(x), h(x), λd, λ] =

∫ L

0

∫ h(x)

0

[1

2
(∇c)2 + f(c)− λdc− λ

]
dx (3.48)

+

∫ L

0

γ(c)
√

1 + [h′(x)]2dx+ λdc̄A+ λA

where x = (x, z), dx = (dx, dz), and the bulk energy f(c) is given by (Eq. 3.44).

The surface energy fs is defined as

fs(c) =


α + a+c, at free surface

0, at the substrate

where α and a+ > 0 are constants. For films with an imposed flat surface we chose

α = 1000 while for films with height modulations α = 1 is used. From now onwards

we indicate fs(c) at the free surface by f+, and at the substrate by f−, i.e.,

f+(c) = α + a+c, (3.49)

f−(c) = 0. (3.50)

We convert from the cartesian coordinate system to a natural isoparametric coordinate

system for easy usage of the finite element method. We write

x =
[
ξ η 1− ξ − η

]
x1

x2

x3

 = H(ξ)x̂x, (3.51)
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z =
[
ξ η 1− ξ − η

]
z1

z2

z3

 = H(ξ)ẑx, (3.52)

h =
[
ξs ηs 1− ξs − ηs

]
h1

h2

h3

 = Hs(ξs)ĥ, (3.53)

c =
[
ξ η 1− ξ − η

]
c1

c2

c3

 = H(ξ)ĉ (3.54)

where ξ denotes the pair of the area coordinates (ξ, η), and ξs, ηs are the values of ξ, η at

the surface, and x̂x, x̂z, ĥ, x̂ are unknown nodal values. In terms of Eqs. (3.51)-(3.54),

the functional given by Eq. (3.48) becomes

F [c(ξ), h(ξs), λd, λ] =

∫
Ω(ξ)

[1

2
[(∇c(ξ)]2 + f(c(ξ), x(ξ))− λdc(ξ)− λ

]
JA(ξ)d2(ξ)

(3.55)

+

∫
∂Ωt(ξs)

Js(ξs)dξs + λdC1A0 + λA0

where∇ is the gradient in x-space, JA = ∂(x, z)/∂(ξ, η), and Js = ds/dξs.

To determine the stationary condition for the functional (3.55) we need to evaluate δF .

Using Eqs. (3.51)- (3.54) one writes δx, δz, δh, δc as follows

δx(ξ) = H(ξ)δx̂x, (3.56)

δz(ξ) = H(ξ)δx̂z, (3.57)

δh(ξs) = Hs(ξs)δĥ, (3.58)

δc(ξ) = H(ξ)δĉ. (3.59)

Next we write the energy functional (3.48) in terms of finite elements following the

steps of Ref. [36]. We write for component i of x̂x

x̂xi = const., (3.60)
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x̂zi =
x̂z0i

Hs(ξs(x̂xi))ĥ0

Hs(ξs(x̂xi))ĥ, (3.61)

x̂z = Qĥ (3.62)

using Eqs. (3.60), (3.61) one obtains

δx = 0, δz = H(ξ)δx̂z = H(ξ)Qδĥ, (3.63)

(∇c)(ξ) = T T (ξ)
[
∂ξH

T (ξ)
]T
ĉ (3.64)

where T (ξ) = (∂ξx)−1 is the inverted transformation matrix ∂ξx defined as

dx = (∂ξx)dξ. (3.65)

In the following derivation, we use index notation with Einstein’s convention of sum-

mation. Eq. (3.64) reads

(∇ic)(ξ) = Tji(ξ)
[
∂ξjHl(ξ)

]
ĉl. (3.66)

The resulting variation of∇c is

δ(∇ic) = Tji(ξ)
[
∂ξjHl(ξ)

]
δĉl − Tj2(ξ)(∂ξnHm)QmlδĥlTni(ξ)

[
∂ξjHk(ξ)

]
ĉk

= (∇iHl)δĉl − (∇2Hk)ĉk(∇iHm)Qmlδĥl (3.67)

where∇2 ≡ ∂z in matrix notation we have

δ(∇c) = (∇H)δĉ− (∂zH)ĉ(∇H)Qδĥ

= (∇H)δĉ− (∂zc)(∇H)Qδĥ. (3.68)

The variations of the Jacobian are

δJA = ∂ξx∂ηδz − ∂ηx∂ξδz

= (∂ξx∂ηHi − ∂ηx∂ξHi)Qijδĥj

= JA(∂zHi)Qijδĥj

= JA(∂zH)Qδĥ, (3.69)
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and

δJs = J−1
s ∂ξsh(ξs)∂ξsδh(ξs)

= J−1
s ∂ξsHsĥ∂ξsHsδĥ. (3.70)

Now, we are ready to rewrite the energy functional using finite elements. First we write

the energy functional (3.55) in the form

F = F[c(ξ), h(ξs), λd, λ]

=

∫
Ω(ξ)

{
1

2
(∇c(ξ))2 + f

(
c(ξ)

)
+ λdc(ξ)− λ

}
JA(ξ)d2ξ

+

∫
Ω(ξs)

γ(ξs)Js(ξs)dξs + λdC1A0 + λA0 (3.71)

then, the variational formula can be written as

δF = δF[ĉ, ĥ, λd, λ]

= δĉ
T

Fĉ + δĥ
T

Fĥ + δλdFλd + δλFλ. (3.72)

The four terms on the right hand side of Eq. (3.72) can be formulated individually in

the following expressions,

δĉ
T

Fĉ = δĉ
T

{∫
Ω

{1

2
(∇H)

T

(∇c) + H
T

∂cf(c,x)− λd
2

}
d2ξ

+

∫
∂Ωt(ξs)

H
T

s (ξs)
dγ

dc
Js
−1dξs +

∫
∂Ωb(ξs)

H
T

s (ξs)
dγ

dc
Js
−1dξs

}
, (3.73)

δĥ
T

Fĥ = δĥ
T

{
Q

T

∫
Ω

{−1

2
(∇H)

T

(∇c)∂zc+ H
T

∂zf(c,x)
}
d2ξ

+Q
T

∫
Ω

(∂zH)
T

JA

{(∇c)2

8
+ f(c,x)− λdc1 − λ

}
d2ξ

+

∫
∂Ωt(ξs)

(∂ξH
T

s (ξs))γ(c(ξ))(∂ξHs)ĥJ
−1
s dξs

}
, (3.74)

δλdFλd = δλd

{
−
∫

Ω

c1dξ + C1A

}
, (3.75)
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δλFλ = δλ

{
−
∫ L

0

h(x)dx+ A

}
. (3.76)

where d2ξ = dzdx, the Jacobian is JA = ∂(x, z)/∂(ξ, η) and Js = ds/dξs.

At this point the system of equations is written in terms of the finite element method.

Initially, a coarse 11 × 6 nodes domain is used which was automatically created using

matlab’s pdetool (see Fig. 3.2). The basic mesh is created with a maximum element

edge size to allow us to produce 10 elements along the horizontal edge of the original

rectangular domain and 5 elements along the vertical edge. To start the calculations we

produce a solution built on an initial approximation on the coarse mesh as a starting

solution. The coarse mesh is used to effectively obtain the indicative numerical solution

for given values of the parameters which are the mean height H , the energetic bias a+,

and for the continuation parameters (the lateral domain size L or the mean concentra-

tion c). Once the calculations start, the dimensions of the starting rectangle are rescaled

according to the surface profile of the film. Many functions are introduced into the code

H

L

Figure 3.2: Finite element discretisation of the domain in the xz-plane using a linear triangu-
lar elements.

to produce various starting solutions over the original rectangular domain. Integrals are

calculated numerically using Gaussian quadrature while Newton’s iteration method is

used to refine the starting solution. We use different ways to adjust the concentration

of the components to produce the coarse starting solutions, which is one of the most

difficult parts. One needs a good guess to find the wanted solution, in particular, in re-

gions where several solutions exist. Once the coarse solution is obtained the code saves

it to be used as an initial approximation for the adaptive mesh refinement and further

computation of the refined solution. The refinement is then repeated once more and the
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final solution is obtained. The refinement predominantly takes place in the diffuse in-

terface region, and in zones along the free surface, where high concentration gradients

and/or surface curvature occur. The considered continuation parameter is advanced and

the previous solution on the basic coarse mesh can be used as an initial approximation

for the next run.

3.6 Summary

The bulk equations and the boundary conditions of Model-H have been introduced fol-

lowing the steps of Ref. [87]. Then the variational approach to the steady states derived

alternatively by minimising the free energy functional. The energy functional is written

in terms of finite element discretisation. The domain has been discretised into linear

triangular elements using a natural isoparametric coordinate system. The resulting vari-

ational problem is numerically solved employing finite element method on an adaptive

grid. The developed numerical scheme allows us to obtain the coupled steady-state film

thickness profile and the concentration profile inside the film. In the following chapters,

we introduce the linear stability of the full time dependent model-H as well as bifur-

cation diagrams for various film thicknesses and energetic biases at the free surface.

The bifurcations of the critical case are compared with the symmetry groups. For the

off-critical case we only introduced the bifurcation diagrams.

As the study of the linear stability is a part of the results presented in this disserta-

tion, in the following chapter we introduce the linear stability analysis for the full time

dependent model-H in non-dimensionlised form.



Chapter 4

Linear Stability Analysis

4.1 Introduction

The dispersion relation β = β(k) relates the growth rate ω of an harmonic mode to

its wave number k and is obtained from the linearised evolution equation, i.e., it is the

function for which the plane waves eikx+βt (real β > 0 [β < 0] that correspond to

growth [decay]) solve the equation of first order in time.

As a consequence of the previous chapter, we study the linear stability of laterally ho-

mogeneous steady states of thin films of binary liquid that are bounded by a rigid solid

substrate and an upper free surface. The full time dependent model-H is used to describe

the dynamics within the film. The bulk equations are supplied by boundary conditions

at the substrate and the free surface as explained in section 3.3.

To develop a good understanding of linear stability for several cases of steady state

solutions we first introduce the concept of the linear stability analysis. The parameter

limits within which instabilities of steady state solutions are found can be determined

by employing infinitesimal perturbations about these states into the full time dependent

model-H. Within a certain range of parameters, the solution may be stable or unstable to

infinitesimal perturbations. Furthermore, it may change between the stable and unstable

state when changing a parameter or the wave number of the perturbation. The latter case

is shown in Fig. 4.1, where the solution is unstable for the wave number 0 < k < kc

and stable for k > kc. The calculations are done numerically for steady stratified flat

49
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0 k

0

β
kc

β
max

maxk

Figure 4.1: The dimensionless growth rate of perturbations with dimensionless wave number
k. The positive growth rate corresponds to the growth of a perturbation, while a negative
growth rate indicates decay. Therefore the unstable domain is k ∈ (0, kc).

films, i.e., for concentration profiles c0(z), velocity v0 = 0, pressure p0(z) = −(∂zc0)2,

and film thickness h0 = H .

In this chapter we investigate their linear stability with respect to lateral perturbations

of the wavenumber k and growth rate β. Analytical results for homogeneous films are

also studied in section 4.5.

4.2 Linearised Model-H

We want to study the linear stability of the homogeneous and nearly homogeneous films

without and with energetic bias, respectively, and also of vertically stratified two-layer

films. First, we linearise the full time-dependent model-H, i.e., the dimensionless gov-

erning equations (mass balance, momentum, and continuity equations) and the bound-

ary conditions introduced in Chapter 3, i.e., Eqs. (3.16) - (3.28). To analyse the stability

of the quiescent base states with respect to infinitesimal perturbation the solution of the

problem has to be written in the following form:

The velocity field v is

v = v0 + εv1(z)eβt+ikx (4.1)
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where v = (u,w), v0 = (u0, w0), and v1 = (u1, w1). The small parameter ε � 1 will

be used in the linearization. The pressure p is

p = p0(z) + εp1(z)eβt+ikx (4.2)

where p0 = −(∂zc0)2. The concentration field c

c = c0(z) + εc1(z)eβt+ikx, (4.3)

and the film height h

h = h0 + εh1e
βt+ikx. (4.4)

The fields εv1, εp1, εc1, and εh1 are infinitesimally small perturbations of the fields v0,

p0, c0, and h0 respectively. β is the growth rate, and k is the wave number. The pertur-

bations u1, w1, p1, c1 are functions of z, whereas h1 is a scalar. We have decomposed

the lateral perturbations of all fields into normal modes eikx

To start, we consider the steady state (u0, w0) = (0, 0) and introduce expressions (4.1)

- (4.4) into Eqs. (3.16) - (3.28), and linearise in ε. The time derivative of v becomes

∂v

∂t
= εβv1e

βt+ikx, (4.5)

whereas ∆v is

∆v =
[
(−k2 + ∂zz)v1

]
εeβt+ikx. (4.6)

One may neglect

v · ∇v = [(u,w) · (∂x, ∂z)] (u,w)

= (iku1
2 + w1(∂zu1), iku1w1 + w1(∂zw1))ε2e2(βt+ikx), (4.7)

as it is O(ε2).

Since p0 = −(∂zc0)2, one uses Eqs. (4.2) and (3.18) to write

peffI = (−(∂zc0)2 + p1εe
βt+ikx)I, (4.8)
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with

∇c = (ikc1, ∂zc0 + ∂zc1)εeβt+ikx. (4.9)

Also one finds (∇c)(∇c) as

(∇c)(∇c) =

[
(∂xc)(∂xc) (∂xc)(∂zc)

(∂zc)(∂xc) (∂zc)(∂zc)

]

=

[
0 0

0 (∂zc0)2

]
+

[
0 ikc1(∂zc0)

ikc1(∂zc0) 2(∂zc0)(∂zc1)

]
εeβt+ikx +O(ε2).

(4.10)

Substituting (4.5), (4.6), (4.7), (4.8), and (4.10) into Eq. (3.16) yields

εβ Ps v1 =

{[
−ikp1 − ik∂z(c1(∂zc0)) −2∂z((∂zc0)(∂zc1)) + ∂zp1

]
+

Ps

Re
(∂zz − k2)v1

}
ε+O(ε2). (4.11)

Taking the linear terms in ε and writing v1 component-wise we obtain the linearised

equations of (3.16)

β Ps u1 = −ik∂z(c1(∂zc0))− ikp1 +
Ps

Re
(∂zz − k2)u1, (4.12)

and,

β Ps w1 = k2c1(∂zc0)− 2∂z[(∂zc0)(∂zc1)]− ∂zp1 +
Ps

Re
(∂zz − k2)w1. (4.13)

Next, we linearize the Cahn-Hilliard equation (3.15) using Eqs. (4.1) - (4.4). With

∂cf(c) = ∂cf |c0 + ε∂ccf |c0c1e
βt+ikx, (4.14)

to order O(ε) one finds

βc1 + w1∂zc0 = −
(
∂zz − k2

)[(
∂zz − k2

)
c1 − c1∂ccf |c0

]
. (4.15)

Since u0 = w0 = 0, the incompressibility condition∇ · v = 0, takes the form

0 = ∇ · v = iku1 + ∂zw1. (4.16)
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Now we linearise the boundary conditions. For the kinematic condition at the free

surface (3.28), we get

βh1 = w1. (4.17)

The linearised forms of the condition of zero diffusional flux (Eq. (3.19)) on substrate

(at z = 0), and on the free surface (at z = h0), are

∂z

[(
∂zz − k2

)
c1 − c1∂ccf |c0

]
= 0, (4.18)

The energy bias conditions at the free surface and the substrate become

−∂zc0 + S∂ccf
−|c0 = 0, z = 0 (4.19)

and

−∂zc0 + S∂ccf
+|c0 = 0, z = h0, (4.20)

respectively, whereas the no-slip and no-penetration conditions at the substrate become

u1 = w1 = 0. (4.21)

The tangential force balance at z = h0 becomes

−ik(∂zc0)[c1 + h1(∂zc0)] +
Ps

Re
(∂zu1 + ikw1) = ikS[c1 + h1(∂zc0)]∂cf

+|c0 . (4.22)

This equation is reordered to obtain

Ps

Re
(∂zu1 + ikw1) = ikc1

[
∂zc0 + S∂cf

+|c0
]

+ ikh1(∂zc0)
[
∂zc0 + S∂cf

+|c0
]

= ik
[
∂zc0 + S∂cf

+|c0
][
c1 + h1(∂zc0))

]
= 0. (4.23)

Which means that there are no Marangoni forces in O(ε). Finally, we linearise the

normal force boundary condition (3.27) and obtain

2(∂zc0)(∂zc1) + p1 − 2
Ps

Re
(∂zw1) = −k2h1Sf+(c). (4.24)
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In the following two sections we investigate the eigenvalue problem for the stratified

and homogeneous films.

4.3 Eigenvalue Problem for the Stratified Film

To solve the eigenvalue problem for the stratified film we need to eliminate the pressure

from the equations and boundary conditions. First of all we eliminate the pressure

term from the linearised Navier-Stokes equations. To do so we take a z-derivative of

Eq. (4.12) and get

βPs(∂zu1) = −ik∂zz(c1(∂zc0))− ik(∂zp1) +
Ps

Re
(∂zz − k2)(∂zu1). (4.25)

Then, we multiply Eq. (4.13) by (ik)

ikβ(Ps)w1 = ik
[
k2c1(∂zc0)− 2∂z[(∂zc0)(∂zc1)]

]
− ik(∂zp1) + ik

Ps

Re
(∂zz − k2)w1.

(4.26)

Subtracting Eq. (4.26) from Eq. (4.25) one obtains

β(Ps)(∂zu1)− ikβ(Ps)w1 = −ik∂zz(c1(∂zc0)) +
Ps

Re
(∂zz − k2)(∂zu1)

+ ik[−k2c1(∂zc0) + 2∂z(∂zc0)(∂zc1)]− ikPs

Re
(∂zz − k2)w1. (4.27)

Differentiating the incompressibility condition Eq. (4.16) three times w.r.t. z one has

ik∂zzzu1 = −∂zzzzw1 (4.28)

Next, one introduces (4.28), in Eq. (4.27) and gets after rearranging a linear equation

for the vertical component of velocity w1 and concentration c1

∂zzzzw1 =β(Re)(∂zz − k2)w1 + k2 Re

Ps
∂zz(c1(∂zc0)) + 2k2∂zzw1

+ k4 Re

Ps
c1(∂zc0)− 2k2 Re

Ps
∂z

(
(∂zc0)(∂zc1)

)
− k4w1. (4.29)

Since the linearised Cahn-Hilliard equation (4.15) does not contain any pressure terms,

we may rearrange it as

∂zzzzc1 = −(βc1 + w1∂zc0)−
[
(k4 − 2k2∂zz)c1 − (∂zz − k2)(c1∂ccf |c0)

]
. (4.30)
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As a result we have bulk equations for c1 and w1. The fields u1 and p1 may be obtained

via Eqs. (4.16) and (4.12), respectively. Next we list the boundary conditions:

w1 = ∂zw1 = 0 at z = 0, (4.31)

Ps

Re
(∂zzw1 + k2w1) = 0, at z = h0. (4.32)

and rewrite Eq. (4.12) in the form

ikp1 =
Ps

Re
(∂zz − k2)u1 − β(Ps)u1 − ik∂z(c1(∂zc0)), (4.33)

and multiply Eq. (4.24) by (ik) to obtain

2ik(∂zc0)(∂zc1) + ikp1 − 2ik
Ps

Re
(∂zw1) = −2ik3h1Sf+(c). (4.34)

Substituting (4.33) in Eq. (4.34) and using Eq. (4.28) one obtains after rearranging

k2∂z(∂zc0)(∂zc1) +
Ps

Re
(∂zz − 3k2)∂zw1 − β(Ps)∂zw1

− k2c1(∂zzc0) = k4
(w1

β

)
Sf+|c0 , at z = h0, (4.35)

where we used h1 = w1/β, i.e. Eq. (4.35) now only involves c1 and w1.

Furthermore we have

∂z[(∂zz − k2)c1 − c1∂ccf |c0)] = 0 at z = 0, h0, (4.36)

−∂zc1 + c1S∂ccf
−|c0 = 0 at z = 0, (4.37)

and

∂zc1 + c1S∂ccf
+|c0 = 0 at z = h0. (4.38)

Now we have obtained the tools to study the linear stability of the stratified films. In

the next section we will simplify the expressions for the special case of homogeneous

films.
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4.4 Eigenvalue Problem for the Homogeneous Film

If the concentration of the base state does not dependent on z then all the derivatives of

c0 are zero, and from Eq. (4.29) we obtain

∂zzzzw1 =β(Re)(∂zz − k2)w1 + 2k2(∂zzw1)− k4w1 (4.39)

whereas Eq. (4.30) takes the form

∂zzzzc1 = −βc1 − (k4 − 2k2∂zz)c1 − (∂zz − k2)(c1∂ccf |c0) (4.40)

while the boundary conditions are

w1 = ∂zw1 = 0 at z = 0, (4.41)

Ps

Re
(∂zzw1 + k2w1) = 0, at z = h0. (4.42)

From Eq. (4.35) we obtain

Ps

Re
(∂zz − 3k2)(∂zw1)− β(Ps)(∂zw1) = k4

(w1

β

)
Sf+|c0 at z = h0. (4.43)

Furthermore,

∂z[(∂zz − k2)c1 − c1∂ccf |c0)] = 0 at z = 0, h0, (4.44)

−∂zc1 + c1S∂ccf
−|c0 = 0 at z = 0, (4.45)

and, finally

∂zc1 + c1S∂ccf
+|c0 = 0 at z = h0. (4.46)

Since we are using a constant free energy at the substrate and only linearly biased free

energy at the free surface, the derivatives ∂ccf±|c0 are zero, and the boundary conditions

(4.37), (4.45) and (4.38), (4.46) can be rewritten, respectively as

−∂zc1 = 0 at z = 0, (4.47)
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and

∂zc1 = 0 at z = h0. (4.48)

Note that in this case c1 and w1 are entirely decoupled.

The calculations of the layered base states and of their linear stability are performed

using numerical continuation techniques (AUTO) [25]. This technique allows to follow

known solutions when a given set of control parameters is changed. Together, the equa-

tions for the steady state (3.29) and for the real linear perturbations (4.29) and (4.30)

can be rewritten as a ten-dimensional dynamical system

y′ = f(y(z), λ) (4.49)

where

y = (c0, c0z, c1, c1z, c1zz, c1zzz, w1, w1z, w1zz, w1zzz), (4.50)

and λ represents the parameters β, k, Re, Ps/Re, S, and c̄. This system of ordinary

differential equations, together with the boundary conditions at the substrate (z = 0)

and at the free surface (z = h) which are given by Eqs. (4.31, 4.32, (4.35 - 4.38),

and one integral condition (mass conservation), is discretised in space. The resulting

algebraic system of equations is solved using iterative technique method starting from

known solutions. In particular, AUTO uses a combination of Newton and Chord itera-

tive methods.

When the solution is reached, the code proceeds along the solution branch by a small

step (determined by user) in the parameter space defined by the free continuation pa-

rameters and restarts the iteration. The boundary conditions and the integral conditions

require another free parameters which are determined simultaneously and they are con-

sidered as a part of the solution of the differential equation.

4.5 Linear Stability Results for Homogeneous Films

The homogeneous films (c0 = 0) are steady solutions only in the neutral case (a+ = 0)

where the dispersion relation can be determined analytically. Referring to the dispersion

relation introduced in section 4.3 by the linearised Eqs. (4.29) and (4.30), we remember

that the perturbations in the concentration and in the velocities decouple. This implies
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that advection does not influence the evolution in the linear stage, all velocity modes

are stable and no surface deflection develops. All unstable modes are purely diffusive

and similar to the ones obtained in a Cahn-Hilliard model for the decomposition of a

mixture in a finite gap [50, 57].

For c0 = constant one may use a harmonic ansatz not only for the lateral but also for the

vertical spatial dependence, i.e., the ansatz becomes c(x, z, t) = ε exp(ikxx+ikzz+βt)

where kx and kz are lateral and vertical wavenumbers, respectively. After linearisation

in ε one obtains the dispersion relation extracted from Eq. (4.40)

β = −(k2
x + k2

z)
[
(k2
x + k2

z) + ∂ccf |c0
]
. (4.51)

In the critical case, the film is unstable (β > 0) for modes with (kx)
2 + (kz)

2 < 1.

For finite domains it is convenient to introduce vertical and lateral mode numbers n =

kzH/2π andm = kxL/2π, respectively. They count the number of periods of a mode of

a certain wavenumber that fit into the domain. For the employed boundary conditions,

n and m can take integer and half-integer values. First, we fix the mode number in the

vertical direction, i.e., where kz = 0 and consider purely lateral structuring with mode

numbers m = 1/2, 1, 3/2, 2, . . . above critical domain sizes Lmc = 2πm. Similarly,

for kx = 0 one obtains purely vertical structuring (layered films) with mode numbers

n = 1/2, 1, . . . above critical film heights Hn
c = 2πn. Finally, the homogenous film is

unstable w.r.t. checkerboard modes, i.e., m 6= 0 and n 6= 0, for

Lcb
c =

mH√
(H/2π)2 − n2

(4.52)

where we have used the mean film thickness as parameter. The number of unstable

modes for certain film thicknesses H and domain sizes L can be obtained from Fig. 4.2

where the linear stability thresholds for the various modes are given. Note that the

stability thresholds for vertical, lateral and checkerboard modes also correspond to loci

of symmetry breaking bifurcations where branches of vertically structured (layered),

laterally structured, and checkerboard structured steady solutions branch off the trivial

homogeneous solution. In the following we denote both, the linear modes and the fully

nonlinear solutions branching of the trivial solution, by their corresponding pair of mode

numbers (m,n).

The eigenfunctions in the horizontal and vertical direction are given by eikxx and eikzz,

respectively. Depending on the mode number, lateral domain size, and the film thickness
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Figure 4.2: Linear stability thresholds for and loci of symmetry breaking bifurcations from
the trivial homogeneous flat film state (without energetic bias, a+ = 0) as a function of
the domain size L and the film thickness H . The horizontal and vertical dashed lines rep-
resent thresholds for vertical structuring, i.e., (0, n) modes, and lateral structuring, i.e.,
(m, 0) modes, respectively. The solid lines correspond to checker-board modes (m,n) with
m,n = 1/2, 1, 3/2, 2. The mean concentration is c̄ = 0. The number of unstable modes
for a given pair L and H is obtained by counting the number of thresholds one crosses when
moving on a straight line from the corresponding point P in the (L,H)-plane to the origin.
The example for P in the figure corresponds to 14 unstable modes.

we write

kx = 2πm/L, m = 0, 1/2, 1, 3/2, 2, ... (4.53)

and

kz = 2πn/H, n = 0, 1/2, 1, 3/2, 2, ... (4.54)

Fixing the mode number in the vertical direction at n = 0 yields

kz = 0 (4.55)

and one obtains the dispersion relation

β = (kx)
2
[
(kx)

2 + 3c2
0 − 1

]
. (4.56)
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For β = 0 we have

kx =
√

1− 3c2
0. (4.57)

In the critical mixture case we have c0 = 0 and the critical wave number in the horizontal

direction is given by

kLc = 2πm/Lc = 1 (4.58)

i.e., the critical lateral domain size depending on the mode number is given by

Lc =
2πm

kLc
= 2πm, m = 1/2, 1, 3/2, 2, ... (4.59)

Similarly, for the vertical direction one obtains

Hc =
2πn

kHc
= 2πn, n = 1/2, 1, 3/2, 2, ... (4.60)

Note that, the critical film thicknesses of neutral film are depicted in Fig. 4.2 by the

horizontal dashed lines, and the critical lateral domain sizes depicted by the vertical

dashed lines.

4.6 Linear Stability for Off-critical Films

Here we calculate the linear stability for neutral films (without energetic bias) for the

off-critical case (c̄ 6= 0). We know the film is stable if β < 0, and unstable otherwise.

To find the critical mean concentration we assume β = 0 in Eq. (4.51) and write

0 = (kx)
2 + (kz)

2 + 3c̄2
c − 1. (4.61)

Now we replace the mode numbers for lateral domain size (kx), and the film thickness

(kz) using Eqs. (4.53) and (4.54), respectively. One obtains

0 =
(2πm

L

)2

+
(2πn

H

)2

+ 3c̄2
c − 1. (4.62)

Rewriting this equation explicitly in terms of the critical mean concentration c̄c,

c̄c =

√√√√1−
(

2πm
L

)2

−
(

2πn
H

)2

3
,

(2πm

L

)2

+
(2πn

H

)2

≤ 1. (4.63)
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Figure 4.3: For the off-critical films without energetic bias, we show in (A) the critical mean
concentration for the laterally structured and checkerboard films of thickness H = 5 ver-
sus the lateral domain size L. (B) gives the critical mean concentration for the stratified and
checkerboard films at lateral domain size L = 10 versus the film thickness H . The branches
of the films are indicated in the legends.

This equation can be used to indicate the bifurcation points for the off-critical films see

Chapter 6. Fig. 4.3 indicates the critical mean concentration for the neutral laterally

structured, stratified and checkerboard solutions depending on both the lateral domain

size L and the film thickness H . Note that, the critical mean concentration for the films

(1/2, 0) and (1, 0) does not depended on the film thickness H , and for the stratified

films (0, 1/2) and (0, 1) does not depended on the lateral domain size L (compare these

branches in Panels (A) and B of Fig. 4.3). This will be observed also in Chapter 6 as we

consider two different film thicknesses for the neutral case.

4.7 Summary and Outlook

In Chapter 4, first we have introduced the tools to perform linear a stability analysis

of homogeneous and vertically stratified steady films with respect to harmonic distur-

bances in the lateral direction. The eigenvalue problem for infinitesimal perturbations

of the base state solution has been considered. The evolution of the corresponding nor-

mal modes determines the growth rate of the disturbances as a function of the lateral

wave number k. The linear stability analysis of the system has been carried out in the

general case and the long-wave limit of the general dispersion relation is derived. The

stability of the system is investigated in the absence of flow, and in the presence of the

Marangoni effect. Finally, the influence of Korteweg stresses on the stability is also

introduced.
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In the next chapter, we discuss results for 1d steady states that correspond to layered 2d

states and 2d steady states together with the linear stability of the relevant layered states.

We work with a small number of fixed mean film heights and use the energetic bias in

1d varying the domain size in 2d, at various fixed energetic bias as control parameters.



Chapter 5

Non-linear Analysis for Critical
Mixture

5.1 Introduction

Many partial differential equations contain parameters in addition to their variables. If

a set of linear differential equations is solved for different parameter values, it is often

found that the qualitative changes are not large. However, in our strongly nonlinear

model one may find sets of parameter values which are close to each other but result

in model behaviour that is qualitatively different. For instance, a stable equilibrium

point might become unstable and the system undergoes a bifurcation. Bifurcations of-

ten change the attractors of a dynamical system. Stable equilibrium points are attractors,

but they are not the only possibility. We will present simple numerical results in which

we will see important bifurcations and their consequences. These bifurcations are re-

lated to the symmetry groups of the solutions. Although in fact, we do not treat our

system employing full scale equivariant bifurcation theory, we use consideration of the

symmetries of our solutions to understand the structure of our bifurcation diagrams and

to predict any missing branches.

In this chapter we study various fully two-dimensional steady film states that are char-

acterised by non-uniform concentration profiles within the film and a free surface that

can be flat or with modulations. The numerical tools employed are presented in [36].

The analysis is performed with and without energetic bias at the free surface.

63
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Using the parameters for polymer blends as in Ref. [57], Sections 5.2 discusses the 1d

(layered) film states. The following Section 5.3 analyses fully two-dimensional steady

film states and relates their features to the results of the linear stability analysis. In par-

ticular, we present results for the cases of (i) a flat film without energetic bias at the free

surface (Section 5.3.1), (ii) a flat film with energetic bias (Section 5.3.2, (iii) a height-

modulated film without energetic bias (Section 5.3.3), and (iv) a height-modulated film

with energetic bias (Section 5.3.4). Note that here the influence of the composition of

the film is not discussed as we focus on the “critical case”, i.e., a symmetric blend where

the concentrations of the two components are equal. The “off-critical case”, i.e., of a

non-symmetric blend where the concentrations of the two components are not equal, is

considered in Chapter 6.

5.2 One-dimensional Case – Stratified Films
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Figure 5.1: Branches of steady vertical concentration profiles for layered films with biased
free surface (a+ ≥ 0) of a critical mixture c̄ = 0 in dependence of a+. The thicknesses
are H = 2.5 (black dot-dashed line), H = 3.5 (red dashed line), and H = 5 (blue solid
line). The vertical dotted lines indicate the location of the saddle node bifurcation points.
The black dots indicate solutions at particular values of a+ that are further discussed later
on. The symbols “+” and “-” indicate linear stability and instability w.r.t. one-dimensional
perturbations, respectively.

Before we embark on the study of fully 2d solutions we discuss the possible stratified

states, i.e., layered flat films without any lateral structure. They are studied in detail in

Ref. [87]. We briefly review the cases of neutral and asymmetrically biased free surface

that are relevant here.
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Depending on the film thickness, homogeneous films may demix into a number of dif-

ferent stratified states that can be characterised by their energy and the 1d-norm of the

concentration profile. Normally, the energy of the solutions is higher for a larger number

of layers, i.e., multilayer film states occur in the time evolution as transients only. The

thicker the films, the more layered states exist. In the neutral case subsequent layered

states branch off the trivial state atH = 2nπ (cf. Section 4.5). For c̄ = 0 all bifurcations

are supercritical. Note that 2n + 1 corresponds to the number of layers: n = 1/2 is a

two-layer state, n = 1 a three layer state, i.e., a sandwich structure.

Particularly interesting are the two-layer and the sandwich structure. For H < 3π they

are the only nontrivial solutions. In Fig. 5.1, the trivial (n = 0) and the two-layer

(n = 1/2 ) state for a neutral surface are indicated by the black dots at a+ = 0. The

n = 1/2 solution is not present for H = 2.5 < π. For H = 3.5 and H = 5.0 it

actually represents two solutions, called n = 1/2a and n = 1/2b. They are related by

the symmetries z → H−z and c→ −c and can therefore not be distinguished by global

measures like the energy or norm. In the context of two-dimensional states, we call the

stratified, laterally homogeneous films (0, n) branches, where the zero corresponds to

the lateral mode number m.
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Figure 5.2: Branches of steady layered films of critical mixture c̄ = 0 are characterised by
their energy in dependence of the bias a+ ≥ 0 at the free surface. Film heights, and symbols
are as in Fig 5.1.

Introducing the energetic bias (a+ > 0) breaks the symmetry between the two n = 1/2

solutions as now component two is preferred at the free surface. This implies that for

a+ > 0 two branches emerge from the single n = 1/2 dot at a+ = 0. The n =
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1/2b branch is the one of two that is more relevant. It has component two at the free

surface and is therefore of lower energy (and larger norm) than the n = 1/2a branch

that has component one at the free surface. Note, however, that both branches are

linearly stable. The n = 1/2b branch has a norm [energy] that monotonically increases

[decreases] with increasing bias. For a+ > 0 the homogeneous n = 0 state does

not exist anymore as such. Component one is enriched at the surface and the norm

increases from zero. We call this a weakly stratified film. The enrichment layer becomes

more pronounced with increasing bias. The state is, however, linearly unstable even in

1d and the corresponding branch annihilates with the n = 1/2a branch in a saddle-

node bifurcation at a+
sn. For H = 2.5 the weakly stratified layer is stable (cf. also

Fig.10 of Ref. [87]). The saddle-node itself emerges at Hc = π from the dot at the

origin (Fig. 5.1), then moves for increasing H towards larger norms and larger a+. For

a+ > a+
sn only the n = 1/2b branch exists.

5.3 Steady States in the Two-dimensional Case

All the 1d states obtained in the previous section (Fig. 5.1) correspond to laterally in-

variant 2d states, i.e., stratified layers c0(x, z) = c0(z). They may be unstable with

respect to lateral perturbations c1(z) exp(βt + ikx) (cf. Chapter 4). Whenever a (real)

eigenvalue β (growth rate) crosses zero we expect a branch of steady two-dimensional

states to bifurcate from the stratified (or homogeneous) state. In the following, the re-

sults of the linear analysis are discussed alongside the bifurcation diagrams of the 2d

states as obtained by the fully nonlinear analysis (cf. Section 3.4).

We distinguish four cases: flat and modulated films without and with energetic bias at

the free surface. Each case is discussed for a number of film thicknesses H < 2π.

Similar studies may be performed for larger thicknesses, however, then the bifurcation

diagrams become rather crowded. In the cases with energetic bias we look at one to

three different strengths a+.

In each of the cases we will determine several branches of steady solutions. To order

the various solutions and to discuss relations between the branches we employ some

ideas from equivariant bifurcation theory [21, 22, 46]. This will allow us to infer the

multiplicity of the various branches, the character of the symmetry breaking bifurcations

and help to determine the stability of the solutions. Note, however, that we will sort our

numerical results using a convenient selection of symmetries (reflections, inversions
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and rotations in a space spanned by the spatial coordinates and the concentration). To

keep the picture simple we exclude whenever possible translations. A proper group

theoretical treatment is beyond the scope of the present work.

From the linear stability analysis of homogeneous films we deduce that the complex-

ity of the bifurcation diagrams will increase with increasing film thickness and lateral

domain size because an increasing number of modes becomes linearly unstable. Based

on this we distinguish “thin films” (0 < H < π) where the homogeneous film is only

unstable w.r.t. lateral modes, “medium films” (π ≤ H < 2π) where additionally the first

vertical structuring mode is unstable, and “thick films” (H ≥ 2π) where more vertical

modes are unstable. We will not analyse such thick films as we expect the picture to be

too involved. Our study focuses on thin and medium films.

5.3.1 Flat Films Without Energetic Bias

In the first case we impose a flat free surface without energetic bias. This corresponds

to the limit of large and concentration-independent surface tension. The symmetry

group that leaves the system of equations, boundary and integral conditions invariant

is Zx
2×Zz

2×Zc
2. The superscripts indicate which coordinate/field the symmetry refers to,

i.e., Zx
2×Zz

2 =Dxz
2 is the dihedral group of the rectangle that the domain forms in the

(x, z)-plane and Zc
2 is a cyclic group of order 2 that corresponds to reflection in c, i.e.,

the transformation c → −c. The corresponding group table is given as Table A.1 in

Appendix A. The trivial homogeneous solution c(x, z) = 0 is invariant under the full

group. All solutions that bifurcate from it must be invariant under one of its subgroups.

Thin film of thickness H = 2.5 For films of thickness H = 2.5 < Hc = π, layered

or checker-board states do not exist (Sections 4.5 and 5.2). The trivial state is present

for all domain sizes L and corresponds to the horizontal line at ||δc|| = 0 (E = 0.625)

in the bifurcation diagram in Fig. 5.3. For L > Lc = π, laterally structured films exist

as expected from the linear analysis. The corresponding dispersion relation is given in

Fig. 5.4 (case a+ = 0). The growth rate β crosses zero at klsc = 1.0, i.e., the critical

domain size is Llsc = 2π.
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Figure 5.3: The bifurcation diagram for steady state solutions in dependence of the domain
size L for flat films of thickness H = 2.5, and without energetic bias (a+ = 0). Shown are
(A) the L2-norm for the concentration field (Eq. (3.45)), and (B) the energy E (Eq. (3.47)).
The dot-dashed horizontal line corresponds to the homogenous (0,0) solution whereas the
solid lines are the various laterally structured film states (m,0).

In Fig. 5.3 the first four branches of laterally structured patterns are shown; with lateral

mode numbers m = 1/2, 1, 3/2 and 2. We call them (m, 0) branches, where the zero

corresponds to the vertical mode number n. The first one bifurcates at L = Lls1/2 = π

and consists of films laterally demixed into two parts. A typical concentration profile

is given on the left of the second row of Fig. 5.5. These profiles correspond to half a

lateral period and are invariant under the subgroup {I, σxc, πz, ρxzc} and to translations

T xL/m = T x2L, i.e., to translations in x by multiples of 2L in the embedded PBC system.

The subgroup is the same for all branches where 2m is odd. The next branch bifurcates
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Figure 5.4: The linear stability of a thin flat homogeneous film ((0, 0) branch for H = 2.5)
is characterised by the dispersion relation, i.e., by the dependence of the growth rate on the
lateral wave number. Shown are cases without (a+ = 0) and with (a+ > 0) energetic bias at
the free surface for a+ as given in the legend. Transport may occur via diffusion and convec-
tion, but the interface is kept flat. The thin dashed line is parameterized by a+ and follows the
maximum (kmax, βmax) of the dispersion relation.
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Figure 5.5: For the case of films of thickness H = 2.5 without energetic bias we show (i)
typical steady concentration profiles on the (0, 0), (1/2, 0) and (1, 0) branches, (ii) the cor-
responding symmetry groups and (iii) the subgroup relation between them that correspond to
the pitchfork bifurcations in the bifurcation diagram of Fig. 5.3. Translations are not included
in the scheme, but are discussed in the main text. The concentration profiles for the (1/2, 0)
and (1, 0) branch are at L = 5 and L = 8, respectively.

at L = Lls1 = 2π. It is the first branch of periodic solutions and is therefore directly

predicted by the linear stability theory. The solutions consists of three different regions

(see right part of the second row of Fig. 5.5) and are invariant under the subgroup
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{I, σxc, σzc, πc} and to translations T xL/m = T xL by multiples of L in the PBC system.

This applies to all branches with even 2m. As the solutions have no vertical structure,

all of them inherit the symmetry w.r.t. vertical reflection (σxc) from the trivial state.

The corresponding relation of the subgroups together with example profiles is given in

Fig. 5.5.

Note that the bifurcations at the Llsm are actually pitchfork bifurcations. At each of them

two branches emerge. Their solutions are related by the symmetry σxz : c→ −c.

The importance of the various solutions in a real physical system may be deduced from

their energies (Fig. 5.3). For L < π only the trivial state exists, and for L > π the

(1/2, 0) branch is always the one of lowest energy, i.e., the system will always evolve

towards it. The other solutions might still occur as transient states during a vertical

coarsening process.

Film of medium thickness H = 5 In the previous section we have studied films with

H < Hc = π. There, no laterally homogeneous solutions exist beside the trivial one.

For H > Hc layered structures are possible.

Here we consider H = 5, i.e., Hc < H < 2Hc, where the stratified bilayer (0, 1/2)

branch exists but not the trilayer (0, 1) branch (cf. Fig. 5.1 at a+ = 0). The correspond-

ing bifurcation diagram is given in Fig. 5.6. For selected concentration profiles see

Fig. 5.7. The horizontal lines in Fig. 5.6 represent the trivial (0, 0) branch (||δc|| = 0,

E = 1.25) and the (0, 1/2) branch of two-layer stratified states (||δc|| = 0.65, E = 0.94

(see 3rd profile on middle row in Fig. 5.7(B)). Again there are two (0, 1/2) branches

with the same global measures whose solutions are related by the symmetry σxz : c →
−c.

They correspond to half a vertical period and are invariant under the subgroup {I, σzc, πx, ρxzc}
and under translations T zH/n = T z2H in z by multiples of 2H in the PBC system. The

(0, 1) branch exists only at larger H > 2π and has solutions that correspond to trilayer

or sandwich films. They are invariant under the subgroup {I, σzc, σxc, πc} and under

translations T zH/n = T zH in z by multiples of H in the PBC system. We will not discuss

them further and do not include them or the related secondary branches in Fig. 5.7.

As for H = 2.5, the branches of laterally structured films bifurcate from the trivial

one at Llsm = 2mπ. Fig. 5.6 gives the branches with the lateral mode numbers m =
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Figure 5.6: The bifurcation diagrams for steady film solutions in dependence of the domain
size L for flat films of thickness H = 5 and without energetic bias (a+ = 0). Shown are (A)
the L2-norm for the concentration field, and (B) the energy E. The dot-dashed lines corre-
spond to the laterally homogenous (0, n)-solutions for n = 0 (dash-dash-dot) and n = 1/2
(dash-dot); the solid lines are laterally structured (m, 0)-states for m = 1/2, 1, 3/2 and 2;
the dotted lines are checker-board (m, 1/2)-states for m = 1/2, 1 and 3/2; the dashed lines
corresponds to various types of oblique solutions that are further explained in the main text.
The small red squares and green dots in panel (A) mark solutions that are given in Fig. 5.7.

1/2, 1, 3/2 and 2. Concentration profiles are shown for m = 1/2 and m = 1 on the

second row of Fig. 5.7. Comparing Figs. 5.6 and 5.3 one notices that for all branches

with n = 0, the energy in the H = 5 case is twice the one for H = 2.5. The norms for
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Figure 5.7: For the case of films of thickness H = 5 without energetic bias we show (i)
typical steady concentration profiles on the various branches in the bifurcation diagram of
Fig. 5.6, (ii) the corresponding symmetry groups and (iii) the subgroup relations between
them that correspond to the various occurring pitchfork bifurcations. Translations are not
included in the scheme, but are discussed in the main text. The concentration profiles on the
second row are on branches (from the left): (1/2, 0), (1, 0), (0, 1/2) and (1/2, 1/2) all for
L = 10, whereas the ones on the third row are on branches (from the left) O1/2 at L = 8, O1

at L = 10, J (1/2,1/2)
(1,0) that joins (1, 0) and (1/2, 1/2) at L = 8.2, J (1,1/2)

(3/2,0) joining (3/2, 0)

and (1, 1/2) at L = 12, and J (0,1/2)
(1/2,1/2) that joins (1/2, 1/2) and (0, 1/2) at L = 14. They are

marked by small red squares in Fig. 5.6(A).

the concentration fields are identical. This is as expected for the present case without

energetic bias.

The two laterally structured (1/2, 0) branches are linearly unstable when they emerge

from the (0, 0) branch at L = π, then they stabilise at symmetry-breaking pitchfork

bifurcations at about L = 3.9 where four branches of oblique solutions (O1/2) emerge

(two from each (1/2, 0) branch). A profile is given on the very left of the third row of

Fig. 5.7. The four branches end at about L = 11.0 in two further pitchfork bifurcations

on the (0, 1/2) branches (Fig. 5.6). The schematic bifurcation diagram in Fig. 5.9 illus-

trates the multiple branches. For each branch it also indicates the stability and provides a

pictogram of the corresponding decomposition pattern. Along the oblique branches the
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Figure 5.8: The linear stability of a flat homogeneous film of medium thickness [(0, 0)
branch for H = 5.0] is characterised by the dispersion relation. Shown are the cases with-
out (a+ = 0) and with (a+ > 0) energetic bias at the free surface for a+ as given in the
legend. Given are two sets of dispersion curves: for the lateral instability mode (larger kmax

at a+ = 0), and for the checker-board instability mode (smaller kmax at a+ = 0). The thin
dotted and dashed lines are parameterized by a+ and follow the maxima (kmax, βmax) and
minima of the dispersion relations.

originally [on (1/2, 0) branches] vertical liquid-liquid interface turns until it becomes

horizontal [on (0, 1/2) branches]. Note that both – the (1/2, 0)- and the (0, 1/2) branch

are linearly stable for 3.9 < L < 11.0, i.e., where the O1/2 branches exists. All the

solutions on all the O1/2 branches are invariant under the subgroup {I, ρxzc} and under

translations T x2L by multiples of 2L in the PBC system. The corresponding relations

between the mentioned subgroups are given in Fig. 5.7.

Similar sets of branches of oblique solutions connect all (m, 0) branches with the (0, 1/2)

branch. We call them Om branches. A profile on the O1 branch that connects the (1, 0)

and the (0, 1/2) branch is given in Fig. 5.7 (second on row three). Other branches of

oblique solutions connect checker-board branches (discussed next) and various (m, 0)

branches. Fig. 5.6 shows in total eight branches of oblique solutions.

Another type of solution that becomes possible for H > Hc are checker-board states.

They bifurcate from the homogeneous solution at Lcb
m = mLcb

c [cf. Fig. 4.2 and

Eq. (4.52)]. ForH = 5, we only have states with n = 1/2, givingLcb
c = 10π/

√
25− π2 =

8.08 (see also the leftmost dispersion curve in Fig. 5.8 that crosses zero at kc = 0.78, i.e.,

results in a critical L of 8.06). The first checker-board branch is denoted by (1/2, 1/2)

and emerges at Lcb
1/2 = 4.04 (see Fig. 5.6 and rightmost concentration profile on sec-

ond row of Fig. 5.7). Note that the values obtained with the different methods do well
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Figure 5.9: Schematic bifurcation diagram for the various pitchfork bifurcations (marked
by black dots) involved in the transitions between the (0, 0) branch of homogeneous solu-
tions, the (1/2, 0) branches of laterally structured states, the O1/2 branches of oblique solu-
tions, and the (0, 1/2) branches of stratified states. The line styles correspond to the ones in
Fig. 5.6. The symbols “+” and “-” indicate the stability of the branches, and the small pic-
tograms indicate the various decomposition patterns on the branches (red: liquid 1, blue:
liquid 2)

agree. The (1/2, 1/2) states are invariant under the subgroup {I, πx, πz, πc} and un-

der translations T x2L by multiples of 2L and T z2L by multiples of 2H in the PBC sys-

tem. Their branch is connected to the (m, 0) branches (with m > 1/2) via branches

of oblique solutions (two profiles are given on row three of Fig. 5.7) that are all in-

variant under {I, πc} (branches J (1/2,1/2)
(1,0) and J (3/2,1/2)

(2,0) ) or {I, πz} (branch J (1/2,1/2)
(3/2,0) ) or

{I, ρxzc} (branch J (1,1/2)
(3/2,0) ). The checker-board branch is also connected to the layered

(0, 1/2) branch. The connecting J (0,1/2)
(1/2,1/2) branch is invariant under {I, πx} (see e.g.,

the rightmost profile on row three of Fig. 5.7). All the ones mentioned are invariant

under translations T x2L and T z2L in the PBC system. The relations between subgroups

corresponding to the various steady states for such films are given in Fig. 5.7. Note

that all the discussed branches emerge via pitchfork bifurcations. At each such bifur-

cation there emerge two branches that are related by the symmetry that is broken. The

schematic bifurcation diagram in Fig. 5.10 illustrates this for the secondary branches

emerging from the (1/2, 1/2) and (1, 0) branches. For each branch it also indicates the

stability and provides a pictogram of the corresponding decomposition pattern.

Due to the existence of vertical and horizontal liquid-liquid interfaces, the checker-

board solutions have a rather large energy. Note that all liquid-liquid interfaces of the

checker-board and laterally structured solutions meet the free surface at an angle of
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Figure 5.10: Schematic bifurcation diagram for the various pitchfork bifurcations (marked by
black dots) involved in the transitions between the (0, 0) branch of homogeneous solutions,
the (1/2, 0) branches of laterally structured states, the (1/2, 1/2) branches of checkerboard
state, the O1 branches of oblique solutions, and the (0, 1/2) branches of stratified states. The
line styles correspond to the ones in Fig. 5.6. The symbols “+” and “-” indicate the stability
of the branches, and the small pictograms indicate the various decomposition patterns on the
branches (red: liquid 1, blue: liquid 2).

π/2 corresponding to the zero energetic bias (a+ = 0). An exception are the oblique

solutions where two liquid-liquid interfaces meet the free surface at the same point.

This allows for an angle of π/4 (see Fig. 5.7, second profile on row three).

Finally, we discuss the importance of the various solutions in a real physical system

based on their energies (Fig. 5.6(B)). In contrast to the case of H = 2.5, here the trivial

state is always unstable: below Lc = π w.r.t. the vertical n = 1/2 instability mode

and above Lc additionally to the lateral m = 1/2 instability mode. Both, the stratified

(0, 1/2) branch and the laterally structured (1/2, 0) branch are linearly stable between

the pitchfork bifurcations that limit the range of existence of the O1/2 branch. The latter

consists of unstable threshold solutions that have to be overcome to switch between

the two stable branches. Note that the Maxwell point Lmaxw where the (1/2, 0) branch

and the (0, 1/2) branch are of equal energy lies well inside the interval. An estimate

determined in the limit of a sharp liquid-liquid interface gives Lmaxw = H/(1− a+) =

5, actually, a trivial result for a+ = 0. All other solutions are of higher energy and

might only occur as transient states during a coarsening process. They might also gain

importance for ratios S of interfacial tensions that are larger than one.



Chapter 5. Non-linear Analysis for Critical Mixture 76

5.3.2 Flat Films With Energetic Bias

Next, we study films with a linear energetic bias (a+ > 0) at the flat free surface. The

homogeneous state ||δc|| = 0 only exists in the neutral case (a+ = 0). When increasing

a+, the film becomes weakly stratified. The norm ||δc|| increases, whereas the energy

slightly decreases (cf. Figs. 5.1 and 5.2 above). Note that the energetic bias breaks

the σxz : c → −c symmetry. In consequence, the symmetry group under which the

equations and boundary conditions are invariant is smaller than the one for the system

without bias. It corresponds to Zx
2 (with elements {I, σzc}) and the translations T x∞. The

bias also results in an increasing distinction between many of the profiles that had before

emerged in a common pitchfork bifurcation. In the case of the two-layer stratified films

this is well visible in Figs. 5.1 and 5.2. Now, the solution with component 2 at the

free surface is energetically preferred. The second stratified solution (fluid 1 at the free

surface) annihilates with the weakly stratified state in a saddle node bifurcation at a+
sn

(Fig. 5.1).

Thin film of thickness H = 2.5 As the bifurcation diagram for biased flat films

with H = 2.5 looks rather similar to the one for the neutral case (Fig. 5.3) we only

mention the important differences: (i) The weakly stratified branch takes the role of the

trivial homogeneous branch in the neutral case. The corresponding profiles are invariant

under {I, σzc} and translations T x∞; (ii) The points Lmc where the laterally structured

branches bifurcate shift to larger L as a+ is increased, corresponding to a decreasing

critical wave number kc (Fig. 5.13). Laterally structured solutions are only invariant

under translations T xL/m and the identity {I} (2m odd) or {I, σzc} (2m even); (iii) The

angle between the diffuse liquid-liquid interface and the liquid-gas interface is not π/2

anymore as the preferred fluid 2 now occupies a larger part of the free surface than

fluid 1. Therefore, the notion “laterally structured film” is not literally correct anymore.

However, we continue to use it as it indicates to which solution at a+ = 0 the solution

at hand is related. (iv) For rather high a+ = 1, the bifurcation from the trivial state is

subcritical (see Fig. 5.11) and there exist (even for H < π) solutions with an oblique

liquid-liquid interface that represent a transition state between the weakly stratified and

laterally structured branches (see profiles of O1/2 and O1 in Fig. 5.12). The branch of

oblique solutions joins the laterally structured film in a saddle node bifurcation when

the diffuse interface passes the corners of the domain.
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Figure 5.11: The bifurcation diagrams for steady film solutions as a function of the domain
size L for flat films of thickness H = 2.5 and with energetic bias (a+ = 1). Shown are
(A) the L2-norm for the concentration field, and (B) the energy E. The (dash-dash-dot) line
corresponds to the weakly stratified (0, 0)-solutions, the red dashed lines correspond to the
oblique solutions O1/2, O1 and the solid blue lines are laterally structured (m, 0)-states for
m = 1/2, and 1.
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Figure 5.12: For the case of films of thickness H = 2.5 with energetic bias a+ = 1 we show
(i) typical steady concentration profiles on the various branches in the bifurcation diagram of
Fig. 5.11, (ii) the corresponding symmetry groups and (iii) the subgroup relations between
them that correspond to the various occurring pitchfork bifurcations. Translations are not
included in the scheme. The concentration profiles of branch (0, 0) is for L = 10, O1/2 for
L = 6.3, O1 for L = 12.5, (1/2,0) for L = 10 and (1, 0) is at L = 13.
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The linear stability of the stratified states is analysed for several a+ > 0 in Fig. 5.4

above. The maximal growth rate βmax and the critical wavenumber kc are given as

functions of a+ in Fig. 5.13(A) and (B), respectively. At a+ = 0 one has kc = 1

and βmax = 2.5. Both decrease as a+ increases. Overall the bias makes the films less

unstable, and correspondingly the bifurcation points Lmc = 2mπ/kc are shifted towards

larger domain sizes. Next we consider thicker films with H = 5 > π.

Film of medium thickness H = 5 Increasing a+ from zero for flat films of thickness

H = 5, results in significant changes in the bifurcation diagrams. Consider, e.g., the

points on the line a+ = 0.2 in Fig. 5.1. The two stratified solution branches (0, 1/2a)

and (0, 1/2b) now differ resulting from the broken symmetry σxz : c → −c. In conse-

quence, the related (four-fold) oblique branch Om (cf. Fig. 5.6) splits into two two-fold

branches. The solutions on the two that form each pair are related by σzc : x → −x.

For the resulting bifurcation diagram see Fig 5.14. The split oblique solutions branches

are called Oa
m and Ob

m and are given as dashed red lines. One of them now ends in

a (symmetry-conserving) saddle-node bifurcation together with the laterally structured

branch. The other one continues towards the weakly stratified solution. Correspond-

ing profiles, their symmetry groups and relations between them are given in Fig. 5.15.

The checker-board solutions do not split with increasing a+ because both branches be-

have identically (they are related by the translation T xL/2m). The oblique branches Oa
m

approach the stratified (0, 1/2a) branch but do actually not bifurcate from it (see be-

low). The oblique branches Ob
m bifurcate from the stratified (0,1/2b) branch in good

agreement with the linear results of Fig. 5.16.

A similar split occurs for all the J branches (that connect the various checkerboard

branches to other branches). For a+ = 0 they are four-fold (cf. Fig. 5.10), but for a+ > 0

each splits into two two-fold branches. However, the resulting difference between the

branches is very small and not well visible in Fig. 5.14. In consequence, the connection

between the J branches and the checkerboard branches is not a pitchfork anymore: It

is replaced by a saddle node between the left hand part of the checkerboard branches

and one of the two-fold J branches and a continuous transition between the other two-

fold J branch and the right hand part of the checkerboard branch. This agrees with

the fact that the J branches and the checkerboard branches they connect to, have the

same symmetry (see Fig. 5.15). In general, one may distinguish a high and a low
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Figure 5.13: Characteristics of the dispersion relations are given as functions of the energetic
bias a+ at the flat free surface for (A,B) homogeneous films of H = 2.5, (C,D) the (0, 1/2b)
branch for H = 5, and (E,F) the (0, 0), (0, 1/2a) branches for H = 5 (cf. Figs. 5.1, 5.4, 5.8
and 5.16). The left column gives the critical wavenumber kc (for line styles see legend) and
the wave number of the fastest growing mode while the right column gives the corresponding
maximal growth rate βmax (with the linestyles corresponding to the ones of kmax). The situ-
ation in the last row is involved as (i) two branches join in the saddle node at a+sn ≈ 0.47 and
(ii) there are two unstable modes that can have maxima and minima at k 6= 0 [cf. Figs. 5.8
and 5.16(B)]. The lines in (E,F) show the loci of maxima and minima employing the same
linestyles as used to track them in Fig. 5.8. In particular, the additional dashed (brown) and
dash-dash-dotted (magenta) line give kc and kmax for the checkerboard mode. For further
discussion see main text.

energy group of solution branches (Fig 5.14(B)). The high energy group consists of

the weakly stratified (0, 0), the stratified (0,1/2a), all checker-board (m, 1/2), and all

oblique Oa
m and J branches (see profiles left of dotted line in Fig. 5.15). All of them

are confined between the (0, 0) and (0, 1/2a) branch. Fig 5.1 shows that an increase

in the bias a+ increases the difference between the stratified (0, 1/2a) and (0, 1/2b)
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Figure 5.14: Bifurcation diagrams for steady state solutions in dependence of the lateral
domain size L, for flat film of thickness H = 5 with a moderate energetic bias at the free
surface (a+ = 0.2). Panels (A) and (B) give the L2-norm of the concentration field and
the energy, respectively. The (maroon) dash-dash-dotted line represents the trivial (weakly
stratified) solution, the (maroon) dash-dotted lines represent the stratified (0, 1/2a) and
(0, 1/2b) branches, the (blue) solid curves represent the laterally structured (m, 0) branches
(m = 1/2, 1), the (red) dashed lines represent the oblique branches Oa

m (m = 1/2, 1, 3/2, 2)
and Ob

m,m = 1/2, 1, and the (black) dotted curves represent the checker-board (m, 1/2)
branches (m = 1/2, 1, 3/2).



Chapter 5. Non-linear Analysis for Critical Mixture 81

(0,1/2  ) (0,1/2  )

O (1/2,1/2)1/2 1 O1
a bOa O1/2

b

J
(1/2,1/2)

1O
a

{I, zc}
{I, zc} {I, zc}

{I, zc}

{I, zc}

{I}

{I} {I}

(1,0)(1/2,0)

(0,0)a b

Figure 5.15: For the case of films of thickness H = 5 with energetic bias we show (i) typical
steady concentration profiles on the various branches in the bifurcation diagram of Fig. 5.14,
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to the various symmetry-breaking pitchfork and not symmetry-breaking saddle-node bifur-
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when relevant. Here, in two of the pitchfork bifurcation from the laterally invariant (0, 0) and
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The concentration profiles on the first row are on branches (from the left): (0, 1/2a), (0, 0),
and (0, 1/2b) all for L = 12, whereas the ones on the second row are on branches (from
the left) Oa

1/2 at L = 7, Oa
1 at L = 12, (1/2, 1/2) at L = 12, Ob

1/2 at L = 12, Ob
1 at

L = 12, the ones on the third row are on branches (from the left) J (1/2,1/2)
Oa

1
that joins Oa

1

and (1/2, 1/2) taken at L = 9, (1/2, 0), and (1, 0) both at L = 12. The vertical dotted line
separates solutions on the high (left) and low (right) energy group of branches (see main text).
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branches. However, the difference between the (0, 0) and (0, 1/2a) branch decreases.

They approach each other and annihilate at the saddle-node at a+
sn. In consequence,

the entire group of high energy solutions vanishes at a+
sn. Only the low energy group

remains for a > a+
sn. It consists of the stratified (0,1/2b) branch, the laterally structured

(m, 0) branches, and the oblique Ob
m branches that connect the other two (see profiles

right of dotted line in Fig. 5.15).
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Figure 5.16: Linear stability w.r.t. lateral perturbations for the stratified (A) (0, 1/2b) and (B)
(0, 1/2a) branch at H = 5 for various biases a+ as given in the legend. The thin dashed lines
are parameterized by a+ and follow the maxima (kmax, βmax) of the dispersion relations.

Next we consider how well the primary bifurcations in Fig. 5.14 agree with the linear

stability results. Nearly all stratified solutions become unstable to lateral perturbations

above some critical Lc (as discussed for a+ = 0). Fig. 5.8 above gives the dispersion

relations for the weakly stratified film for various a+. Figs. 5.13(C) and (D) show

as dotted lines kc, kmax and βmax as a function of a+. The two respective dispersion

relations for each a+ correspond to checker-board and lateral mode, respectively. For

a+ = 0.2, the growth rates cross zero (Fig. 5.8) at about kc ≈ 0.73, i.e., Lc = 8.6

(checker-board mode), and at kc ≈ 0.97, i.e., Lc = 6.5 (lateral mode). This agrees well

with the Lc = 2π
kc

values for the m = 1 branches in the bifurcation diagram Fig. 5.14.

Fig. 5.16 gives dispersion relations for the two stratified (0, 1/2) branches, whereas

Figs. 5.13(C) to (F) give kc, kmax and βmax for the two branches as thick solid and dashed

lines, respectively. The behaviour of the energetically favourable (0, 1/2b) branch is

straightforward [Fig. 5.16(A) and Figs. 5.13(C) and (D)]: The larger the bias the more

unstable w.r.t. lateral perturbations it becomes. Critical and fastest growing wavenum-

ber and maximal growth rate all increase with a+. At a+ = 0.2, we find kc = 0.19, i.e.,

Lc = 33.1. This agrees well with the point where the Ob
1/2 bifurcates from the stratified

(0, 1/2b) branch a bit above L = 16 (slightly beyond the right hand border of Fig. 5.14).



Chapter 5. Non-linear Analysis for Critical Mixture 83

The situation is more intricate for the (0, 1/2a) branch [see Fig. 5.16(B) and Figs. 5.13(E)

and (F)]. When increasing a+, first the critical wavenumber and maximal growth rate

decrease, the solution becomes stable against lateral perturbations at about a+ ≈ 0.05.

Note, that this part is not visible in Figs. 5.13(E) and (F) as growth rate and wavenumber

are very small. However, a further increase in a+ leads to a finite wavelength instability

slightly above a+ = 0.2 with kc ≈ 0.21 ]see Fig. 5.16(B), curve for a+ = 0.2 and folds

in Figs. 5.13(e,f)]. Therefore, at a+ > 0.2 there should be two more bifurcations of

solutions of period one at about Lc ≈ 30. In Fig. 5.14, it seems that the Oa
1/2 branch

bifurcates from the (0, 1/2a) branch at about L = 7.5. This is, however, not the case.

Upon inspection, the respective solutions on the two branches look still rather differ-

ent implying that the Oa
1/2 branch continues to exist for larger L. Our linear stability

results actually indicate that it exists for arbitrary large L as the (0, 1/2a) branch is

linearly stable. However, as the bifurcations come into being at slightly larger a+ our

numerical procedure is not able to capture the Oa
1/2 branch at larger L. At larger a+,

the (0, 1/2a) solution is only unstable w.r.t. the related lateral mode in a range of wave

numbers. For instance, at a+ = 0.3 the (0, 1/2a) film is unstable between k = 0.125

and k = 0.357 (see Fig. 5.16(B)). The band of unstable wave numbers widens till the

smaller one reaches zero (cf. curve for a+ = 0.4 and kc in Fig. 5.13(C)). Here, we will

not discuss these effects further. Finally, we briefly discuss the behaviour for a+ > a+
sn.

4 8 12 16 20 24 28

L

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

||
δ
c
||

O
b

1/2
O

b

1

(1/2,0)

(1,0)

(0,1/2
b
) a

b

c

d

(A)

4 8 12 16 20 24 28
L

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

E
n

er
g

y

O
b

1/2

O
b

1

(0,1/2
b
)

(1/2,0)

(1,0)

(B)

Figure 5.17: Bifurcation diagram for steady state solutions for flat films of thickness H = 5
with a free surface with a large energetic bias of a+ = 0.8. Given (A) the L2-norm of the
concentration field and (B) the energy as functions of the lateral domain size L.

Slightly above a+
sn the low energy group of branches does not change its appearance. At

large a+, however, additional structures appear, see the bifurcation diagram in Fig 5.17

for an example (a+ = 0.8). Although the laterally structured (1/2, 0) solutions ulti-

mately still annihilate at low L with the oblique Ob
1/2 branch, the branch has acquired
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(A) (B)

(C) (D)

Figure 5.18: Shown are the film and concentration profiles for flat films of mean height H =
5 and a+ = 0.8 that are marked by small squares in the bifurcation diagrams of Fig. 5.17 on
the line L = 16 ordered from bottom to top. Panel (A) shows the oblique solution O1

b in its
way to join to the stratified (0,1/2b) branch. Panel (B), (C), and (D) show how the stratified
solution (0,1/2b) changes appearance in a complex way.

an additional pair of saddle node bifurcations, i.e., in a small range in L there exist now

three stable and two unstable profiles.

The film profiles (A,B,C,D) shown in Fig. 5.18 correspond to the labels (a,b,c,d) shown

in Fig. 5.17(A), respectively. The profiles elucidate that the transition between the

oblique solutions Ob
m and the laterally structured solutions (m, 0), m = 1/2, 1, ... hap-

pens in a complex manner. The (1/2, 0) and Ob
1/2 branch connected passing through

four sub-branches with transitions occurring at the three saddle node bifurcations. In the

following discussion we explain how the profiles change in these transition. Fig. 5.18(A)

shows the concentration profile for the oblique film Ob
1/2 at the label (a). Note that, on

this sub-branch the interface between liquid 1 and liquid 2 straightens as we follow the

branch towards larger L and becomes straight horizontal line at the bifurcation point

where this branch joins the stratified branch (0, 1/2). At the saddle node bifurcation

between labels (a) and (b) (see Fig. 5.17) the interface between the components passes

through the lower left corner (lower right corner) of the domain to facilitate the transi-

tion between profiles (A) and (B) of Fig. 5.18. At the saddle node between labels (b)

and (c) (see Fig. 5.17) the interface between the components reaches the upper right

corner (upper left corner) of the domain (see transition between profiles (B) and (C)).

Along this branch the interface remains in connection with the corner until we reach to
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next saddle node bifurcation between labels (c) and (d) where the interface between the

components becomes completely disconnected from the corner of the domain. We can

then see the predominantly laterally structured film (see Fig. 5.18(D)).

5.3.3 Height-modulated Films Without Energetic Bias

Now we lift the restriction of an imposed flat free surface and study films with a surface

that is free to move. Practically, this is done by reducing the value of α to 1 in Eq. (3.49).

In consequence, solutions are then not only characterised by the energy E and norm

||δc|| of the concentration field, but also by the norm ||δh|| of the film thickness profile

h(x) [see Eq. (3.46)]. We start with an investigation of the behaviour without energetic

bias at the free surface (a+ = 0) for films with H = 2.5 and H = 5.

The case a+ > 0 is briefly treated in Section 5.3.4. The main difference to the case of

an imposed flat surface is that now the free surface reacts to non-homogeneous concen-

tration profiles. In the contact region of a diffuse interface between the two components

and the free surface the horizontal and vertical force components have to be balanced.

On the one hand this leads to changes in all solutions discussed above in the case of a

flat surface. On the other hand it allows for new solutions that only exist because of

the new degree of freedom. To illustrate the changes in the known solutions we show
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Figure 5.19: (colour online) Panel (a) shows the film and concentration profile of the surface
modulated film (1/2, 0) with energetic bias at the free surface with the forces acting at the
contact point. It also indicates the definitions of the non-dimensional tensions γ1, γ2 and
γd = 1. Panel (b) shows analysing the forces in a perpendicular directions at equilibrium.

in Fig. 5.19 a film from the (1/2, 0) branch. The concentration profile shows lateral

structuring where θi is the angle between the liquid-liquid interface and the free surface

of liquid i [58]. In the sharp interface limit cos(π − θ) = 1/(2S).
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In the presence of the energetic bias, the equilibrium of interfacial forces gives the

following two equations

γd = −γ1 cos θ1 − γ2 cos θ2, (5.1)

γ1 sin θ1 = γ2 sin θ2. (5.2)

Solving Eq. (5.1) and Eq. (5.2) for θ1 and θ2 one obtains the general relation

cos θ1 =
γ2

2 − γ2
1 − γ2

d

2γ1γd
=
−4S2αa+ − γ2

d

2Sγd(α + a+)
, (5.3)

cos θ2 =
γ2

1 − γ2
2 − γ2

d

2γ2γd
=

4S2αa+ − γ2
d

2Sγd(α− a+)
. (5.4)

For our case of a modulated free surface with α = 1 and γd = 1 we have

cos θ1 = − 1 + 4S2a+

2S(1 + a+)
(5.5)

cos θ2 = − 1− 4S2a+

2S(1− a+)
. (5.6)

However, for an imposed flat surface (α � 1) with γd = 1, the relations become

cos θ1 = −2Sa+ and cos θ2 = 2Sa+. Below, these relations will be checked against

our diffuse interface results. For the case without energetic bias (a+ = 0) if we assume

S = γd = 1 in Eqs. (5.3) and (5.4) then we obtain

θ1 = θ2 = cos−1(
−1

2
) = 2π/3. (5.7)

Resulting from these relations the energetic bias must satisfy the inequality |a+| < 0.5.

Fig. 5.20 shows how the angles θ1 and θ2 vary for positive energetic bias for α = 1 and

large α (α→∞).

Films of small thickness (H = 2.5) For H = 2.5, the bifurcation diagram in terms

of ||δc|| (see Fig. 5.21(A)) looks rather similar as the one for flat films (Fig. 5.3(A)). As

expected, the points Lmc where the laterally structured branches bifurcate are identical

to the ones in the flat case, however, the ||δc|| along the bifurcating branch is slightly

larger than in the flat case (at max≈ 5% for the parameter values we study). The energy

is lower than in the flat case (not shown) mainly resulting from the additional degree

of freedom that can be appreciated in Fig. 5.3(B) where ||δh|| is shown. On every
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Figure 5.20: Shown are the equilibrium liquid-liquid contact angles in radian in dependence
of the energetic bias. The dashed curves correspond to θ1 and the dot-dashed curves corre-
spond to θ2. The blue curves are at α = 1, and the red curves are at large α, i.e., α → ∞.
Here we consider S = 1.
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Figure 5.21: The bifurcation diagram for steady state solutions in dependence of the domain
size L for films with surface modulations of thickness H = 2.5, and without energetic bias
(a+ = 0). Shown are (A) the L2-norm for the concentration field Eq. (3.45), and (B) the L2-
norm for the surface modulations Eq. (3.46). The dot-dashed horizontal line corresponds to
the homogenous solution (0, 0) whereas the solid lines are the various laterally structured film
states.
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(1/2,0) (1,0)

(0,0)

 

{I, xz, xc, zc, x, z, c, xzc}

{I, z} {I, zc}

Figure 5.22: For the case of height modulated films of thickness H = 2.5 without ener-
getic bias we show (i) typical steady concentration profiles on the (0, 0), (1/2, 0) and (1, 0)
branches, (ii) the corresponding symmetries and (iii) the relations between the branches;
cf. bifurcation diagram Fig. 5.21. The concentration profiles for the (1/2, 0) and (1, 0) branch
are at L = 10. For remarks on symmetries and line styles see caption of Fig. 5.15.

laterally structured branch (m, 0), the surface modulation monotonically increases with

the lateral domain size. Typical profiles, their symmetries and the relations between

them are given in Fig. 5.22. The dispersion relation for the homogeneous solutions is

given below in Fig. 5.28 (case a+ = 0) and is identical to the one in the case of a flat

surface (cf. Fig. 5.4).

Note that the symmetry group for the homogeneous solution is identical to the one in

the flat non-biased case, whereas the ones of the laterally structured branches do not

agree (cf. Fig. 5.5). This is due to the fact that any lateral structuring causes a surface

modulation and therefore also breaks the z → −z symmetry. For fixed domain size,

the branches of higher mode number have a smaller surface modulation as more diffuse

interfaces ‘pin’ the free surface.

Films of medium thickness (H = 5) Increasing the film height to H > π, layered

solutions become possible, a situation analysed for neutral and bias flat films in sec-

tion 5.3.2. Allowing the free surface to change its profile, on the one hand modifies the

already known solutions. On the other hand, we find that a modulated surface allows

for additional large-amplitude solutions. The bifurcation diagram for H = 5.0 for
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Figure 5.23: The bifurcation diagrams for steady film solutions in dependence of the do-
main size L for modulated films of thickness H = 5 and without energetic bias (a+ = 0).
Shown are (A) the norm ||δc||, (B) the energy E, and (C) the norm ||δh||. The dot-dashed
horizontal lines correspond to the laterally homogenous (0, n)-solutions for n = 0 (dash-
dash-dot) and n = 1/2 (dash-dot); the blue solid lines are laterally structured (m, 0)-states
for m = 1/2, 1, 3/2 and 2; the black dotted lines are checker-board (m, 1/2)-states for
m = 1/2, 1 and 3/2; the red and purple dashed lines corresponds to various types of oblique
solutions. Finally, the green dot-dot-dashed curves (marked C1 and C3/2) represent solutions
of large surface modulation that have no counterpart in the case without surface modula-
tion (cf. Fig. 5.6). The fine black solid lines are hypothetical connections that shall serve as a
guide to the eye. For details see main text.
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Figure 5.24: For the case of films of thickness H = 5 without energetic bias and with height
modulations we show (i) typical steady concentration profiles on the various branches in the
bifurcation diagram of Fig. 5.23, (ii) the corresponding symmetries (excluding translations,
see main text) and (iii) the relations between the branches. The concentration profiles on the
second row are on branches (from the left): (1/2, 0), (1, 0), (0, 1/2) and (1/2, 1/2) all for
L = 10, whereas the ones on the third row are on branches (from the left) O1/2 at L = 7, O1

at L = 10, J (1/2,1/2)
(1,0) that joins (1, 0) and (1/2, 1/2) at L = 9. For remarks on symmetries

and line styles see caption of Fig. 5.15.

films of unbiased modulated surface is given in Fig. 5.23. A selection of correspond-

ing profiles, their symmetry groups and relations between them are given in Fig. 5.24.

Inspecting Fig. 5.23(A) and (B), i.e., the bifurcation diagrams in terms of ||δc|| and E,

respectively, one notes that it is rather difficult to discern differences to the case of a

flat surface (Fig. 5.6). All branches discussed for Fig. 5.6 are also present in Fig. 5.23

with slightly larger norm ||δc|| and slightly lower energy. Now all these solutions have

acquired a surface deflection that for the laterally structured solutions increases mono-

tonically with L, but behaves non-monotonically for the various branches of oblique

solutions [Fig. 5.23(C)]. The most important qualitative change is the appearance of

solutions with large surface modulation that have no counterpart in the case of flat sur-

faces (neither without nor with surface deflection). In Fig. 5.23 they are marked by the

green dot-dot-dashed lines, that we name C1 and C3/2. In terms of ||δc|| and E they
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Figure 5.25: Shown are further profiles from the branch O1 and also from the branch C1

that bifurcates from O1 shown in Fig. 5.23. The figure extends Fig. 5.24. Anti-clockwise, the
profiles are on O1 at L = 8.2, on Ca

1 at L = 9 and L = 9.5, and back on O1 at L = 12. For
remarks on symmetries and line styles see caption of Fig. 5.15.

stay rather close to other already known branches (what makes their numerical detec-

tion rather cumbersome). However, they are strikingly different in terms of ||δh||: The

surface modulation strongly increases with L. For instance, one part of the C1 branch

emerges at about L = 8 from theO1 branch, then continues till L = 10 where its surface

modulation is more than three times stronger than that of the other branches. There is

another part of theC1 branch that emerges at about L = 11.7 also from theO1 branch. It

continues towards smaller L and also reaches at L = 9 a ||δh|| about three times larger

than that of the other branches. Both branching points on the O1 branch are period dou-

bling bifurcations related to the suppression of a coarsening mode of instability, and the

two parts of the C1 branch have the same symmetries.

A schematic is given in Fig. 5.25 where this time we also indicate the translational sym-

metries. These considerations allow us to deduce that the two parts of the C1 branch are

actually connected via two saddle node bifurcations. The resulting hypothetical branch

that we are not able to get with our numerical method is indicated in Fig. 5.23 by a fine

black line that may serve as a guide to the eye. We expect similar behaviour for the C3/2

branch that bifurcates from the O3/2 branch. It is also remarkable that the C1 branch is

locally the one of lowest energy, when comparing to the other branches involved in the

transition [i.e., O1, (0,1/2), (1,0)]. The agreement between the bifurcation points from

the laterally homogeneous solutions and the predictions of the dispersion relation (not
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shown) is good. However, note that there is some room for interpretation as to where

exactly some of the bifurcations are in Fig. 5.23 as some of the branches approach each

other rather slowly [e.g., O1 and (0, 1/2)].

Note finally, that here as in the case of a flat surface, the absence of an energetic bias

implies that most branches are actually two-fold or even four-fold with the different

instances being related by the symmetry c → −c (see Section 5.3.1). In particular, the

‘new’ large surface modulation C1 branch is two-fold. This degeneracy is lifted in the

case with energetic bias at the free surface that we consider next.

5.3.4 Height-modulated Films With Energetic Bias

The fourth and final case we investigate, are modulated films with surface bias. Our

focus lies on an explanation of the differences to the other cases for the selected film

heights H = 2.5 and H = 5.0. In particular for H = 5.0, we restrict our attention

to the relatively low energetic bias of a+ = 0.1 because otherwise we are restricted by

problems with the convergence of our numerical procedures. This is not the case for

the smaller height of H = 2.5. There we discuss the case of a+ = 0.4. For much

larger energetic bias the surface tension contrast between the two components becomes

unphysically large. Even before, at a+ = 1/2S configurations with three phase contact

regions cease to exist.

Even for an imposed flat surface, the liquid-liquid interface is not any more perpendic-

ular to the free surface if an energetic bias is considered. If the free surface is free to

move, three curved interfaces meet in the three phase contact region. The angles θ1

and θ2 of the diffuse interface between the two fluids and the left and the right part of

the free surface can be estimated in the sharp interface limit. They are given above in

Eqs. (5.5) and (5.6). For S = 1 and a+ = 0.1 one has approximately θ1 = 1.91 and

θ2 = 2.26, values that well agree with the angles seen in Figs. 5.30 and 5.31, below. At

a+ = 0.4, θ1 = 1.04 and θ2 = 2.76 in agreement with Fig. 5.27 below.

Films of small thickness (H = 2.5) The bifurcation diagram for H = 2.5 for height-

modulated films with an energetic bias of a+ = 0.4 is given in Fig. 5.26. A selection

of corresponding profiles, their symmetry groups and relations between them is given

in Fig. 5.27. Dispersion relations for various a+ can be found in Fig. 5.28. Compared

to the other cases with H = 2.5, an energetic bias of a+ = 0.4 leads to significant
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changes in the film profiles. The horizontal dot-dashed line in Fig. 5.26 corresponds to

the weakly stratified state (for a profile see first row of Fig. 5.27) that is unstable w.r.t.

lateral perturbations for L > L1/2 ≈ 3.7. This value results from the linear stability

analysis: The dispersion relation for a+ = 0.4 in Fig. 5.28 gives kc = 0.85 implying the

laterally structured (1, 0) branch bifurcates at about L1 = 7.4. However, a close inspec-
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Figure 5.26: The bifurcation diagram for steady modulated films for energetic bias a+ = 0.4
and H = 2.5 in dependence of the domain size L. Shown are (A) the norm ||δc||, and (B)
the norm ||δh||. The dot-dashed horizontal line corresponds to the (0, 0) branch, the solid
lines are the laterally structured (m, 0) branches, and the green dot-dot-dashed lines represent
the C1 branch of solutions with strong surface modulations. The fine black solid lines are
hypothetical connections that are discussed in the main text.

tion of the laterally structured branches indicates that they end at an L slightly smaller

than the respective Lc with an amplitude larger than zero. This indicates that the pri-

mary bifurcations are subcritical and a very short unstable branch is missing from our
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bifurcation diagram. Note that the energetic bias shifts all primary bifurcations towards

larger L, in good agreement to the dispersion relations (Fig. 5.28, cf. also Fig. 5.21).

Remarkably, the surface deflection does not increase monotonically along the (m, 0)

branches. From the saddle-node bifurcation, it first increases rapidly, then goes slightly

down again, before increasing nearly linearly (Fig. 5.26(B)). Examples for profiles on

the laterally structured branches can be found on the second row of Fig. 5.27. Another

(1/2,0) (1,0)

(0,0)

C1

C1

{I}

{I} {I, σzc}

{I, σzc}

Figure 5.27: For the case of height modulated films of thickness H = 2.5 with energetic bias
a+ = 0.4 we show (i) typical steady concentration profiles from the (0, 0), (1/2, 0), (1, 0)
and C1 branches in Fig. 5.26 (indicated there by small symbols), and (ii) the corresponding
symmetries (excluding translations) and (iii) the relations between the branches. The concen-
tration profiles for the (1/2, 0) and (1, 0) branch are at L = 14. For the branch C1 they are at
L = 10, and L = 14. For remarks on symmetries and line styles see caption of Fig. 5.15.

major difference is the appearance of a branch C1 of solutions (green dot-dot-dashed

lines in Fig. 5.26) with large surface modulation similar to the ones described for mod-

ulated films of medium height without bias (see Figs. 5.23 and 5.25). Here, however,

they are not related to any oblique Oi branch as there exists none, but our hypothe-

sis is that they are related to the ‘oblique’ solutions on the subcritical piece of the (1, 0)

branch that we could not obtain. Considering the symmetries of the solutions (Fig. 5.27)

and the dispersion relation (Fig. 5.28) that only indicates one instability mode it seems
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Figure 5.28: Linear stability for thin films (H = 2.5) with modulated free surface (α =
1). The dispersion relation has taken at different energetic biases at the free surface for the
homogeneous branching (n = 0) solution as a function of the wave-number k. Different
energetic biases are considered as it has been shown in the legends as energetic biases result
to positive surface tension, energetic biases result to non-logical surface tension where the
behaviour of the dispersion relation becomes strange. The solid black (in colour) curve as a
function of the wave-number k represents the local maxima of the growth rate βmax whereas
the thin dashed light-green curve joining to it starts following the local minimum when the
local maxima is no longer exist. The critical wave-number is not exist for higher energetic
bias. The thin dashed line is parameterized by a+ and follow the maxima (kmax, βmax) of the
dispersion relations.

clear that the C1 branch does not emerge from the ‘weakly’ modulated (0, 0) branch.

Most probably it emerges from the laterally structured (1, 0) branch in a period doubling

bifurcation close to the primary bifurcation. This particular feature is better visible for

H = 3.5 shown bellow. We expect that the (1, 0) branch beyond this period doubling

bifurcation is stable w.r.t. to coarsening. This is remarkable as it is an effect that only

appears due to the possible modulation of the free surface, i.e., it is due to the coupling

of two rather different degrees of freedom. However, at this point the effect remains

hypothetical. Reduced models are needed to investigate it further. On the C1 branch the

surface modulation strongly increases with L. It seems to undergo two further saddle-

node bifurcations at about L = 12 where we introduce a fine black line in Fig. 5.26

that indicates the hypothetic connection of the two parts of the C1 branch that we have

determined.

In Fig. 5.27 relations between the various branches are indicated as solid and dashed

straight lines if they are symmetry-breaking pitchfork and not symmetry-breaking saddle-

node bifurcations, respectively. As for simplicity we do not include translations in the

given scheme, we need to add that in the pitchfork bifurcation between the (0, 0) and the

(1, 0) branch it is actually the translational symmetry T x∞ that is broken. Note also that
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all parts of the dot-dot-dashed C1 branches are connected by saddle-node bifurcations

implying that all profiles have the same symmetries.
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Figure 5.29: Bifurcation diagram for modulated film solutions with energetic bias a+ = 0.1
for H = 5.0 as function of the domain size L. Shown are (A) the norm ||δc||, and (B) the
norm ||δh||. The dot-dashed horizontal lines correspond to the laterally homogenous (0, n)-
solutions for n = 0 (dash-dash-dot) and n = 1/2 (dash-dot); the blue solid lines are laterally
structured (m, 0)-states for m = 1/2, 1; the black dotted lines are checker-board (m, 1/2)-
states for m = 1/2, 1; the dashed lines correspond to various types of oblique solutions.
Finally, the green and purple dot-dot-dashed curves (marked Ca

1 and Cb
1) represent solutions

of large surface modulation that do not exist for flat films (cf. Fig. 5.14). The fine black solid
lines are hypothetical connections that are explained in the main text.

Films of medium thickness (H = 5) Finally, we increase the film height to H >

π where layered solutions become possible, a situation analysed for modulated films

without bias in Section 5.3.3, and for flat films with bias in Section 5.3.2. We expect
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Figure 5.30: For the case of modulated films of thickness H = 5.0 with energetic bias
a+ = 0.1 we show (i) typical steady concentration profiles on the various branches in
Fig. 5.23, (ii) the corresponding symmetries except translations (see main text) and (iii) the
relations between the branches. The profiles left [right] of the vertical dashed line belong to
the high [low] energy group of solutions. The Ci

1 solutions are not included (see Fig. 5.31).
The profiles from the (0, 0), (0, 1/2a), (0, 1/2b), (1/2, 0), and (1, 0) branches are for L = 10;
the Oa

1/2 and Ob
1/2 profiles are for L = 6 and L = 7, respectively; the Oa

1 and Ob
1 profiles

are for L = 12; the J1 profile is for L = 13.5. For remarks on symmetries and line styles see
caption of Fig. 5.15.

this final most ‘complex’ situation to reflect elements of both these previously studied

cases.

The bifurcation diagram for H = 5.0 for height-modulated films with a small energetic

bias of a+ = 0.1 is given in Fig. 5.29, whereas a selection of corresponding profiles,

their symmetry groups and relations between them are given in Figs. 5.30 and 5.31.

For dispersion relations for the various stratified solutions we refer the reader to Ap-

pendix B.

A first inspection of Fig. 5.29(A), i.e., the bifurcation diagram in terms of ||δc|| shows

that much of the basic structure is very similar to Fig. 5.14, i.e., a similar case with a flat

free surface. All layered [(0, 0), (0, 1/2a), (0, 1/2b)], laterally structured [(m, 0)], and

oblique [Oa
m, O

b
m] branches behave qualitatively similar. A quantitative comparison is

not possible as Fig. 5.29 is for a+ = 0.1 while Fig. 5.14 is for a+ = 0.2. In the

case of modulated free surface for a+ = 0.2 we are not able to obtain all parts of all

the branches presented in Fig. 5.29 due to numerical convergence problems. However,

from the partial results we have, one deduces that in the case with surface modulation,
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Figure 5.31: Shown are profiles from the large surface modulation branches Ca
1 and Cb

1 that
bifurcate from Oa

1 and Ob
1, respectively (cf. Fig. 5.29). Left of the vertical dashed line we

show anticlockwise from top left profiles from Oa
1 at L = 8, Ca

1 at L = 8.4 (left half of
branch), L = 8.4 (right half of branch) and 9.7 and from Oa

1 at L = 12. Right of the vertical
line we show anticlockwise from the top left profiles from Ob

1 at L = 9.1, Cb
1 at L = 9.7 and

11. and finally Ob
1 at L = 14.5. The middle profile In the second row on the left hand side is

from a point close to the saddle node bifurcation and illustrates the transition between the two
neighbouring profiles. For remarks on symmetries and line styles see caption of Fig. 5.15.

secondary bifurcations are shifted to slightly larger L, the norms [energies] of all these

branches are slightly higher [lower] than in the case of a flat surface, in accordance to

previous observations. All solutions have acquired a surface deflection [Fig. 5.29(B)].

For the laterally structured solutions (m, 0) it increases monotonically after a small

decrease near the saddle-node bifurcation where the (m, 0) branches emerge together

with the Ob
m branches. However, most other branches behave non-monotonically.

Comparing with the case of a modulated film without bias [Fig. 5.23], one notices that

again there are solutions with large surface modulation present that do not exist for

flat surfaces. In Fig. 5.29 they are marked by the green and purple dot-dot-dashed lines.

There are two sets of them that we nameCa
1 (green) andCb

1 (purple). Both result through

the breaking of the c→ −c symmetry from the (two-fold) C1 branch in the case without

energetic bias [cf. Fig. 5.23]. As before, they stay rather close to other already known

branches in terms of ||δc|| andE. Their surface modulation strongly increases in a small

range of L. The Cb
1 reaches the largest amplitudes. The various pieces of the Ca

1 and

Cb
1 branches emerge from the Oa

1 and Ob
1 branches, respectively. All related branching

points on the Oi
1 branches (i = a, b) are period doubling bifurcations related to the

suppression of a coarsening mode of instability. The two respective parts of the two

Ci
1 branches (i = a, b) have the same symmetries, as schematically shown in Fig. 5.31.

Again we deduce that the pieces of the Ci
1 branches are actually connected via two



Chapter 5. Non-linear Analysis for Critical Mixture 99

saddle node bifurcations. The resulting hypothetical branch is indicated in Fig. 5.29 by

a fine black line.

Another important qualitative change is related to the checkerboard solutions [see (1/2, 1/2)

branch]. Without energetic bias [Fig. 5.23] they continue to large L. However, we know

already from the case of flat films that an energetic bias results in a re-connection with

some of the J branches (see Section 5.3.2). The effect is visible more clearly here:

The (1/2, 1/2) branch emerges at about L = 4.2 from the weakly stratified branch.

Then its surface deflection increases until L ≈ 8 where it starts to decrease quickly, it

passes a saddle-node and joins the Oa
1 branch at slightly lower L. We have not been

able to obtain the small subcritical part of the branch numerically and indicate its hypo-

thetical path by a fine black line in Fig. 5.29. Increasing the energetic bias makes the

behaviour more pronounced and shifts the subcritical bifurcation of the checkerboard to

the oblique branch towards larger L.

Note finally, that in Fig. 5.30 some of the solutions seem to have the same symmetries

although they are connected by a symmetry-breaking pitchfork bifurcation. This results

from the exclusion of translational symmetries from our schemes. In particular, the

transitions from the (0, 0) to the Oa
1 branch, and from the (0, 1/2b) to the Ob

1 branch,

both break the translational symmetry T x∞.

With this we end the presentation of our results for the four selected cases, i.e., flat and

modulated films with and without energetic bias at the free surface. The next section

concludes, situates our results in the wider context and gives an outlook onto future

work.

Medium films with relatively large bias. In the previous examples where films of

thickness H = 5 with modulated surface have been investigated, the case where a+ is

higher than the saddle node bifurcation a+
sn has not been mentioned. This is because of

a convergence problem encountered for films of thickness H = 5. Instead, we intro-

duce films of medium thickness H = 3.5 with energetic bias a+ = 0.2 where solutions

are well converged. For such film thickness this energetic bias is located beyond the

saddle node bifurcation (see the points a+
sn in Fig. 5.1, and Fig. 5.2 for H = 3.5). This

enables us to study the behaviour of the medium films behind the saddle node bifurca-

tion. As in the flat film case, the weakly stratified branch (0,0) and the stratified branch

(0,1/2a) merge at the saddle node bifurcation. However, beyond a+
sn the checkerboard

and oblique solutions Oa
i do not exist any more and the only remaining solutions are
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Figure 5.32: Bifurcation diagrams for steady state solutions representing the energy, L2-norm
of the concentration field, and the L2-norm of the surface deflection as functions of the lateral
domain size L, for modulated free surface film of thickness H = 3.5, and energetic bias
a+ = 0.2.. The (Maroon-dashed-dotted) solution represents the stratified layered solution
(0,1/2b). The (Red-dashed) curves represent the oblique Ob

i , i = 1, 2, 3, solutions that join
to the stratified solution indicated by (0,1/2b). The (Indigo double-dotted dashed) curves
represent the very high surface deflection branches. The (Blue-solid) curves represent the
lateral layered solutions.

the set of branches that are energetically lower, i.e., the stratified (0,1/2b), Ob
i , and lat-

erally structured branches. The horizontal dotted-dashed branch in Fig. 5.32 represents

the (0,1/2b) branch. As in all the previous cases, the L2-norm of surface modulations

is identical to zero. The oblique solutions Ob
i , that bifurcates from (0,1/2b) joins the

laterally structured branches (mi, 0) at a saddle node bifurcation. The branch Cb
1 bi-

furcates from the oblique branch at the point where the reflection symmetry σzc and

the translation T xL are broken. The behaviour of the L2-norm of surface modulation is
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quit similar to the corresponding branches for films of thickness H = 5. Results of the
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Figure 5.33: Linear stability for films with flexible deformable free surface of medium thick-
ness H = 3.5, at different energetic biases as it is shown in the legends. The stratified n=1/2b

branch is considered. The solid curve (green in colour) represents the local maxima of the
growth rate as a function of the wavenumber k.

linear stability analysis are depicted in Fig. 5.33. They show the stability for different

energetic biases for the branch (0,1/2b). For a+ = 0.2, the value of kc is about 0.61

which indicates that the bifurcation point of the branch Ob
1 from the branch (0, 1/2b) is

at about Lc = 10.36 which means the oblique solutions convergence slowly to the strat-

ified film near the bifurcation point (see Fig. 5.32). For further dispersion relations for

this film we refer to Appendix B. Panel (C) of Fig. 5.32 shows complex perturbations

at the free surface in the neighbourhood of the saddle nodes where the oblique and the

laterally structured branches join. In panel (A) of Fig. 5.35 we show the critical wave

number kc and the kmax corresponding to the maximal growth rate βmax that is shown in

panel (B) for the weakly stratified branches (0, 0) and the stratified branches (0, 1/2a)

and (0, 1/2b). In Fig. 5.34 we show film profiles at the points marked on the branches in

Fig. 5.32(B). The L2-norm of surface modulation for the branch Cb
1 increases rapidly.

This branch must ultimately connect to another branch. Unfortunately, the surface mod-

ulation is very high and the initial solution is difficult to find. In fact, we do not know

how this branch behaves after that point. From our point of view, the translation sym-

metry which has been broken must be recovered in some way and the branch has to join

another branch which has that translation symmetry.
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Figure 5.34: Film and concentration profiles for film of medium thickness H=3.5, with en-
ergetic bias a+ = 0.2 at the free surface. According to the the small squared marked in the
bifurcation diagram for the concentration field Fig. 5.32(B). Panel (A) represents the profile
at the point A. Panel (B) represents the profile at the point B on the branch (1,0). Panel (C)
represents the profile at the point C on the C1 branch. Panel (D) represents the profile at the
point D on the branch (1,0).
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Figure 5.35: Shown in panel (A) are kc and kmax, and panel (B) shows βmax. All are for
flexible film of mean height H = 3.5 and for the branches that shown by the legends, and as
functions of the energetic bias a+.
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5.4 Summary

In this chapter, we have investigated in parallel the linear stability of the stratified films,

the bifurcation diagrams, and relations between the bifurcations and symmetry groups.

First we have introduced results in 1d for three different film thicknesses. More such

results have been given by the authors of [87]. We have used these results as a guide

line of our study in 2d system. Studying the steady state in two dimensions has involved

investigations of the bifurcation diagrams of the energy and the L2-norm(s) of concen-

tration and surface deformation for the modulated surface case. The symmetry groups

and their relation with the bifurcations are also included in the study. Furthermore, sta-

bility investigations have been involved using the full time dependent model-H. This

has been used to study the linear stability of the system and to determine the bifurcation

points of the branches that bifurcate from the (0,0) branches and the stratified branches

(0,1/2). Films with flat surface and others with free surface modulations are introduced.

In the flat film case, the surface is imposed to be flat by introducing a very high surface

tension at the free surface. This has been avoided in the films with height fluctuations.

In the flat film case we have been able to introduce relatively high energetic biases. Re-

sults for two different film thicknesses have been introduced with their linear stability

results for the particular branches (0,0) and (0,1/2), as well as their symmetry groups.

Thereafter, attention focused on the case with surface modulations. In this part, the

results have included also the bifurcation diagrams for surface modulations ||δh||. The

energetic bias for this case has been kept small to avoid convergence difficulties. An-

other film thickness (H = 3.5) has been introduced to study the case where the saddle

node bifurcation a+
sn is exceeded (a+ > a+

sn). The results have shown an interesting

behaviour for the flat films and films with surface modulations. Further studies of the

dispersion relation is included in Appendix B. In the next chapter we introduce our

analysis of the bifurcations in the case of off-critical mixtures.



Chapter 6

Non-linear Analysis for Off-critical
Mixture

6.1 Introduction

In the previous chapter we have presented results for a critical mixture (c̄ = 0) consid-

ering flat and surface modulated films. In systems studied experimentally, the binary

mixture is more likely to consist of an off-critical mixture (c̄ 6= 0) [96]. In this chapter

we introduce results for the case c 6= 0 in the form of bifurcation diagrams for L2-norms

of concentration, surface deflection, and the free energy when varying the mean con-

centration c̄ whereas the lateral domain size, mean film thickness, and energetic bias are

kept fixed. Neutral and biased free surfaces are considered. As in the critical case the

substrate is assumed to be energetically neutral. For the off-critical case we considered

only the bifurcations for c̄ 6= 0. Here however, the energetic bias breaks the symmetry

(c→ −c) of the bifurcation diagrams. Therefore, we investigate solution for c̄ > 0 and

for c̄ < 0.

If a branch passes through the concentration c̄ = 0 of the critical case then we call

it by the name introduced in the critical case but we do not give specific names to

those branches that do not exist in the critical case. Here we do consider the case of

an imposed flat surface and consider only films that are free to modulate their surface

(α = 1). For the thin film case (H < π) when there is no vertical layering inside the

film, we study films of thickness H = 3. However, for the off-critical films of medium

thickness we study films of thickness H = 5 where one may observe more structuring

types.

104
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In the first part of this chapter, we introduce the bifurcation diagrams for neutral films

of thickness H = 3 and H = 5 and in the second part we investigate the bifurcation

diagrams for the same film heights for small energetic bias at their free surface. In fact,

this part involves a large number of branches and we will restrict our study to the limited

number of branches that also exists in the critical case or is closely related.

6.2 Neutral Thin Films of Thickness H = 3

We analyse first the solutions for a film of thicknessH < π with neutral surfaces, where

no layered film state exists for c = 0 [57]. We choose H = 3 as a representative value

of this range of parameters. As for the lateral domain size, we choose L = 10 to allow

for lateral structures of modesm = 1/2 andm = 1. Therefore, only the following three

branches do exist: the homogeneous branch (0,0), and the laterally structured branches

(1/2, 0) and (1, 0). Now we proceed to discuss each of these branches. The bifurcation

diagrams are given in Fig. 6.1.

In the critical case the branch (1/2, 0) corresponds to a vertically homogeneous state

with a composition field with period 2L in the lateral direction. The L2-norm of surface

deflection starts with ||δh|| ≈ 0.32 at critical composition, increases with mean con-

centration to reach an absolute maximum at c̄ ≈ 0.7, then it decreases and the branch

turns back at a saddle-node at c̄ ≈ 0.723, beyond the spinodal limit at c̄ = 1/
√

3 but far

below the binodal for infinite systems at c̄ = 1. One may see the location of this saddle-

node as the binodal of the studied finite system. The lower part of the branch bifurcates

subcritically from the homogeneous branch (0,0) at about c̄ = 0.548. This result can be

obtained also from the analysis of the linear stability of this film see Eq. (4.63). Initially,

we call this branch the weakly laterally structured branch. Notice the closeness of the

critical value to the spinodal boundary at c̄ = 1/
√

3. Fig. 6.2 illustrates the transforma-

tions that the states on the branch (1/2, 0) undergo as we follow the branch from a state

with strong surface deflection and lateral composition gradients in the middle of the

film at c̄ = 0 up to a perfectly flat and homogeneous base state as this branch connects

with (0, 0). Notice that this transition happens with the point of least height of the film

moving always in the same direction (leftwards in the panels), and reaching the lowest

value at the saddle node ( point c in Fig. 6.1(A)).

The states of this branch change qualitatively when the saddle node at c̄ ≈ 0.723 is

passed, beyond this point ||δc|| decreases rapidly as regions of a single phase disappear
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Figure 6.1: Shown are, panel (A) L2-norm for surface deflection, panel (B) L2-norm for the
concentration field, and panel (C) the energy for the branches (0, 0), the brown solid curve;
(1/2, 0) branch, the blue dashed curve; and (1,0) branch, the red dotted dashed curve; as func-
tions of the mean concentration c̄. The lateral domain size is fixed at L = 10 and the film
thickness fixed at H = 3. The film surface is assumed neutral (a+ = 0).
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as we follow the branch (more notorious in the disappearance of the dark blue regions

of Figs. 6.1(D), (E) and (F) ), preparing a continues transition to the homogeneous

base state. Overall the norm of the concentration (||δc||) declines from ||δc|| ≈ 0.88

at the critical composition to ||δc|| ≈ 0.45 at the saddle node bifurcation, and then as

we follow the branch it decreases up to merging to the homogeneous state (0, 0) with

||δc|| = 0 at c̄ = 0.548. This is a qualitatively different behaviour than found for the

norm of surface modulations that changes non-monotonically.

As has been discussed in the previous chapter, the branch (1, 0) corresponds to verti-

cally homogeneous states with period L along the lateral direction. This state does only

exist within the spinodal region. Its L2-norm reaches a maximum at ||δh|| ≈ 0.18, and

then decays monotonically, merging with the branch (0,0) at c̄ = 0.449 in a supercritical

pitchfork bifurcation (see section 4.6). A sequence of selected profiles (black dots in

Fig. 6.1(A)) for this state is shown in Fig. 6.3. The maximum of the L2-norm of surface

deflection corresponds to local minima of the thickness of the film. As for the concentra-

tion norm, at c̄ = 0 the norm ||δc|| ≈ 0.67 is maximal, and then declines monotonically

as the mean concentration increases to join the (0, 0) branch. The decrease of ||δc|| for

the (1/2, 0) and (1, 0) branches is consistent with the interface widening that occurs as

we approach the single phase region of the phase diagram of binary mixtures.

Notice that the local minimum in the thickness of the film corresponds to the position

of the three phase contact line. Greater deflections of the free surface are possible for

the branch (1/2, 0) with only a single contact line than for the branch (1, 0) with a

depression of the surface at each of the two contact lines. This leads to the higher

||δh|| for the (1/2, 0) branch with respect to the (1, 0) branch. If we now consider that

the largest variations of composition are at the diffuse interfaces a similar reasoning

explains why ||δc|| for the (1/2, 0) is higher than for the (1, 0) branch.

Finally, Fig. 6.4(A) and (B) show the dependence of the L2-norms as a function of the

lateral extension of the film for various values of the mean concentration. For small c̄,

the primary bifurcation is supercritical and then at some value c̄∗ the bifurcation changes

its character and becomes subcritical. Here the state with lower ||δh|| and ||δc|| is the

one with wider diffuse interface, as discussed above. For higher c̄, there is a region

between the saddle-node bifurcation at L∗ and critical length Lc where two branches

exist. Note that Lc increases monotonically with c̄c and goes to infinity at the spinodal

line.
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(C) (D)
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Figure 6.2: Shown are the film and concentration profiles for the branch (1/2, 0) at the corre-
sponding points in Fig. 6.1(A). Panels A,B,C,D,E and F correspond to the labels a,b,c,d,e and
f, respectively.

If one only considers systems of lateral domain size L = 10, the change from the

supercritical to the subcritical transition discussed above is not seen for the film (1, 0).

However, it appears for larger lateral domain size (see Fig. 6.5). One may refer to the

dispersion relation in Fig. 4.3 to compare the bifurcation points for particular values of

the lateral domain size L, film thickness H and the critical mean concentration c̄c.

The branch (1, 0) only exists within the spinodal region and for lateral domain sizes

beyond L = 2π, as shown in Fig. 6.5. It is always supercritical for the range of L ex-

plored, and its L2-norm of concentration field decreases, for fixed L, when approaching

the spinodal. The branch joins the homogeneous branch in a pitchfork bifurcation at

c̄ = 0.449. This result is supported by analysing the linear stability of the homogeneous

film (see Eq. (4.63)). The L2-norm of the surface deflection only increases with c̄ for
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(A) (B)

(C) (D)

Figure 6.3: Shown are the film and concentration profiles for the branch (1, 0) taken at the
points in Fig. 6.1(A). Panel (A) corresponds to the label (g), panel (B) corresponds to the
label (h), panel (C) corresponds to the label (i) and panel (D) corresponds to the label (j).

lateral domain sizes large enough, where the system has more freedom to deform the

interface in the contact region.

The energy per unit of length of the three branches is compared in Fig. 6.1(C). The

homogeneous branch (0, 0) has neither deflection nor composition variation and the

associated L2-norms are zero for all mean concentrations (Fig. 6.1(A) and (B)). How-

ever, this branch has a larger energy than the (1/2, 0), (1, 0) branches and therefore is

energetically unfavourable. This is due to the fact that inside of the binodal line, for a

given mean concentration, the homogeneous state has greater free energy than the phase

separated states. The smaller energy of the (1/2, 0), (1, 0) branches shows that the de-

crease of the total free energy by phase separation is larger than the cost of producing

a deformed free surface. The energy per unit length of the branch (0, 0) is maximal

at c̄ = 0 and decreases monotonically with c̄ reaching its minimum at the binodal line

(Fig. 6.1(C)). This monotonous decrease accounts for the lower energetic cost to mix

two species when the relative amount of one of them diminishes. The main contribu-

tion to the difference of energy between (1/2, 0) and (1, 0) branches comes from their

different number of internal diffusive interfaces, and therefore from the energetic cost

required to build them.
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Figure 6.4: For the laterally structured film (1/2, 0) of thickness H = 3, shown are panel
(A), the L2-norm of concentration field, and panel (B), the L2-norm of surface modulations,
as functions of lateral domain size L. Different average concentrations are considered (see
legends). The film surface is assumed neutral (a+ = 0).
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Figure 6.5: For the laterally structured film (1, 0) of thickness H = 3, shown are panel (A),
the L2-norm of concentration field, and panel (B), the L2-norm of surface modulations, as
functions of lateral domain size L. Different average concentrations are considered (see the
legends). The film surface is assumed neutral (a+ = 0).

6.3 Neutral Thin Films of Thickness H = 5

ForH > π, layered solutions fit inside a flat film with critical composition (see Fig. 4.2)

and are laterally invariant solutions in addition to the homogeneous film. In particular,

for π ≤ H = 5 < 2 π the possible layered states have mode number n = 1/2, which

corresponds to configurations with two layers.
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6.3.1 Layered Films Solutions

Layered stratified solutions (0, 1/2) are characterised by flat surfaces, i.e., zero ||δh||.
This is due to the diffuse interface of the polymers being entirely inside of the bulk of

the film. There exists no contact line and therefore no deflection of the free surface.
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Figure 6.6: Shown are, panel (A) the L2-norm for the concentration field, and panel (B) the
energy, for the branches, (0, 0) which depicted by brown-solid curve and the stratified (0, 1/2)
depicted by the red-dashed curve, as functions of the mean concentration c̄. The film surface
is assumed neutral (a+ = 0). The film thickness is given by H = 5, and the lateral domain
size is fixed at L = 10.

As shown in Fig. 6.6(A), the branch (0, 1/2) exists only within the spinodal region, its

concentration L2-norm is maximal at critical composition, and decreases monotonically

with the average composition up to c̄ = 0.449, where it merges through a pitchfork

bifurcation with the homogenous solution. This can be obtained from linear stability

analysis for the off-critical case (see Eq. (4.63) by substituting m = 0, n = 1/2, H =

5, L = 10). It is interesting to observe that the energy of this branch is lower than that

of the homogeneous state (c.f. Fig. 6.6(B)), showing that the energetic cost to produce

the horizontal diffuse interface is not as large as the energy gained by separating the two

components.

As the average concentration c̄ increases, the position of the diffuse interface shifts

towards the substrate (as in Fig. 6.7) or towards the free surface, decreasing the maximal

vertical gradient in composition once c̄ is close enough to the value at the bifurcation,

leading in such a way to a continuous transition towards the homogeneous state.
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(A) (B)

Figure 6.7: Shown are film and concentration profiles at the points depicted in Fig. 6.6(A).
Panel (A) is the profile at label (a), and panel (B) is the profile at label (b).

6.3.2 Checkerboard Like Films

We now proceed to study states arising from the combination of laterally structured and

vertical modes. For H = 5 and L = 10 the checkerboard states (1/2, 1/2) and (1, 1/2)

fit into a flat film at critical composition (see Section 5.3.1).

The checkerboard branch (1/2, 1/2) In the neutral critical case the checkerboard

film (1/2, 1/2) can be seen as a superposition of the laterally structured films (1/2,0) and

the vertically stratified film (0,1/2). As the mean concentration increases, the difference

in the concentration between the two components increases. Liquid 2 becomes the

minority component that for a+ > 0 is preferred at the free surface. Increasing c̄ from

c̄ = 0 first results in a decrease in the L2-norm of the surface modulations until c̄ ≈
0.14, i.e., between the points (a) and (b) in Fig. 6.8(A) caused by a decreasing contrast

between the two phases. Beyond this point the rich area of liquid 1 disappears and

the norm of surface modulation declines to be a perfectly flat homogeneous film at the

bifurcation point (c̄ = 0.411). This result can be obtained from analysing the linear

stability for the neutral off-critical mixture introduced in section 4.6 by substituting

m = n = 1/2, L = 10 and H = 5 in Eq. (4.63). During this process (see Fig. 6.8(B)),

the L2-norm of the concentration field decrease monotonically up to the homogeneous

state.

Energetically, the checkerboard film (1/2,1/2) is lower energetically as compared to the

homogeneous state and the checkerboard film (1, 1/2) (see Fig. 6.8(C)). The energy

of this film shows a slight increase until the maxima at about c̄ = 0.125 and then it

decreases towards the energy of the homogeneous state. Panels A,B,C,D of Fig. 6.9
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Figure 6.8: Shown are: panels (A), the L2-norm for surface deflection, panel (B) the L2-
norm for the concentration field, and panel (C) the energy, as a functions of the mean con-
centration c̄. Branch (0, 0) corresponds to the brown-solid line, the checkerboard branch
(1/2, 1/2) corresponds to the blue-solid, and the checkerboard (1, 1/2) corresponds to red-
dashed line. The film surfaces are assumed neutral (a+ = 0). The lateral domain size is fixed
at L = 10 and film thickness H = 5.
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show the concentration profiles at the points indicated by labels a, b, c, d in Fig. 6.8(A),

respectively.

The checkerboard branch (1, 1/2) The branch (1, 1/2) can be pictured at critical

composition as the superposition of three laterally structures (m = 1) and two vertical

layers (n = 1/2). This branch exists within the spinodal region, with the deflection and

composition norms decreasing monotonically with c̄ (c.f. Fig. 6.8).

(A) (B)

(C) (D)

Figure 6.9: Shown are film and concentration profiles of checkerboard branch (1/2, 1/2).
Panels (A,B,C,D) are the profiles at the labels (a,b,c,d) shown in Fig. 6.8(A), respectively.

The lateral mode gives rise to two contact lines on the upper surface and the energy per

unit of length is larger than that of the (1/2, 1/2) branch, as expected due to the cost of

an additional lateral interface. A look at the film profiles along this branch in Fig. 6.10

shows how the transition from the checker-board structure to the homogeneous state

at the pitchfork bifurcation at c̄ ≈ 0.24 is driven by the progressive widening of the

vertical and horizontal interfaces.
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(A) (B)

Figure 6.10: Shown are film and concentration profiles of checkerboard branch (1, 1/2).
Panel (A) is the profile at label (e), and panel (B) is the profile at the label (f) shown in
Fig. 6.8 (A), respectively.

6.3.3 Laterally Structured Films

In contrast to the thin film case, the laterally structured films of medium thickness (π ≤
H < 2π), are able to produce structures that consist of droplets either attached to the

free surface or to the substrate as well as oblique states that join the laterally structured

(m, 0) and the layered films (0, n). In the following paragraphs we investigate the

laterally structured and the oblique films for lateral domain size L = 10.

Laterally structured solution (1/2, 0) and related sub-branches A film thickness

of H = 5 allows for more freedom for the internal diffuse interfaces, in particular, far

from the critical mixture (c̄ = 0). At the pitchfork bifurcation of the branch (1/2, 0)

two new sub-branches emerge in addition to the one observed in the thin film case.

Each of the three branches represents a different transition to the homogenous state as

we follow the branch. In Fig. 6.11 we show the bifurcation diagrams for the norms of

surface modulations and concentration profiles as well as the total free energy of the

system. The points (a - i) introduced in Fig. 6.11(A) correspond to the profiles (A-I)

shown in Fig. 6.12, respectively.

At c̄ = 0 we recover the results discussed in the previous chapter (see profile A in

Fig. 6.12). Increasing c̄ from the label (a) in Fig. 6.11(A) , as we follow the (1/2, 0)

branch we go through the point (b) that corresponds to the profile in panel (B) of

Fig. 6.12. Panel (C) of Fig. 6.12 that corresponds to the point (c) in Fig. 6.11(A) shows

the transition through a weakly laterally structured film which is as described for films
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Figure 6.11: Shown are, panel (A) L2-norm for surface deflection, panel (B) L2-norm for
the concentration field, and panel (C) the energy, as function of the mean concentration c̄.
Branch (0, 0) is shown with a brown-solid line, (1/2, 0) with doted–dashed curves. The film
thickness is H = 5 and the lateral domain size L = 10. The film surfaces are neutral (a+ =
0).
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of thickness H = 3 (see Figs. 6.1 and 6.2). Close to the bifurcation from the homoge-

nous state the weak branches are characterised by an energy which is even higher than

the energy of the completely homogeneous film. This indicates that this subcritical part

of the (1/2, 0) branch represents threshold solutions that need to be overcome by finite

size disturbances to go from a homogeneous film to a laterally structured one.

The panels (D), (E) and (F) of Fig. 6.12 that correspond to labels (d), (e) and (f) in

Fig. 6.11(A) display selected profiles corresponding to one of the branches that bifur-

cates at c̄ ≈ 0.723 from the (1/2, 0) branch. Advancing along this branch, from (b)

towards (d) the internal interface is displaced and the contact point moves along the

substrate towards the corner leading eventually to a detachment of the diffuse interface

from the substrate, and to the creation of a droplet of liquid 2 at the upper surface sur-

rounded by liquid 1. The droplet is situated either in the left or right corner of the film.

Notice that advancing further on the branch squeezes the droplet up to its disappearance

when the branch merges with the homogeneous state at c̄ = 0.548. From the profiles

(D), (E) and (F) in Fig. 6.12 it can be observed that the inclined internal interfaces are

normal to the free surface at the contact point. This is due to Young’s equation that

relates the contact angles at the three phase contact. The loop structure of the branch

is related to a hysteresis between solutions with a contact point on the substrate (as in

profile B) and droplets detached from the substrate (as in profile E).

The panels (G), (H) and (I) of Fig. 6.12 that correspond to the points (g), (h) and (i) in

Fig. 6.11(A), respectively, exhibit states corresponding to the other branch that emerges

at c̄ = 0.723 from the (1/2, 0) branch. This branch follows an “opposite” evolution

compared to the previous one, with the upper contact point shifting towards the left or

right border until it detaches from the free surface leading to a drop of liquid 2 attached

to the substrate and surrounded by liquid 1. Finally, the drop shrinks and disappears. As

an example, the state (I) shows a state close to the smooth transition to the completely

homogeneous state.

Laterally structured solution (1, 0) and related oblique films The laterally struc-

tured (1, 0) branch is shown as a dot-dashed blue line in Fig. 6.13(A). This branch

behaves differently from the one in Fig. 6.1 for H = 3 where it shows no saddle node

bifurcations and ends supercritically. Advancing through this branch starting from c̄ = 0

(Profile K in Fig. 6.14), one passes through profiles F, G, H and I (Fig. 6.14). The con-

tact points of the original (1, 0) solution approach each other, until they merge giving
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Figure 6.12: Shown are film and concentration profiles for the branch (1/2, 0) and related
sub-branches taken at the corresponding labels in Fig. 6.11(A), respectively. Panels (A,I) cor-
respond to labels (a,i), respectively and lie on the same branch. Panels (A,B,C) correspond
to labels (a,b,c), respectively and lie on the same branch. Panels (D,E,F) are profiles corre-
spond respectively to labels (d,e,f) that lie on the second branch which also bifurcates from
the laterally structured film at the saddle node bifurcation. Panels (G,H,I) are profiles corre-
spond respectively to labels (g,h,i) that lie on the third branch which also bifurcates from the
laterally structured film at the saddle node bifurcation.

rise to a droplet at the lower substrate (compare the labels (g) and (h) in Fig. 6.13(A)

to the profiles (G) and (H) in Fig. 6.14), respectively. The transition is hysteretic and

comes with two saddle-node bifurcations on the (1, 0) branch. This branch ends subcrit-

ically on the homogeneous branch after passing through another saddle node bifurcation

that is well visible in Fig. 6.13(B) (compare the label (i) in Fig. 6.13(A) to the profile

(I) in Fig. 6.14). Note that, there is no weakly laterally structured film similar to the one

observed in films of thickness H = 3 shown in Fig. 6.3(C), (D). In the critical case

without bias, the oblique films Oa
1 and Ob

1 are related by a (c → −c) symmetry. Once

we move to the off-critical case these two branches become different (see e.g. the red
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Figure 6.13: Shown are, panel (A) L2-norm for surface deflection, panel (B) L2-norm for the
concentration field, and panel (C) the energy for the branches. Branch (0, 0) is shown with
brown-solid line, (1, 0) with blue dot-dashed lines. The oblique solutions O1 depicted by
the red dashed curves. The black dotted branch is not existed in the critical case (has not got
name), all as functions of the mean concentration c̄. The film thickness is given by H = 5 and
the lateral domain size is fixed at L = 10. The film surfaces are neutral (a+ = 0).
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(G) (H) (I)

(J) (K)

Figure 6.14: Shown are film and concentration profiles for the branch (1, 0) and
related branches taken at the corresponding points in Fig. 6.13(A). I.e., panels
(A,B,C,D,E,F,G,H,I,J,K) are taken at the corresponding labels a,b,c,d,e,f,g,h,i,j,k), respec-
tively.
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dashed lines in Fig. 6.13, and the profiles A, B in Fig. 6.14). As the mean concentration

increases the surface deflection for the two branches declines and they follow different

paths, but eventually merge to the homogeneous film at the same point (c̄ = 0.449) (see

the red dashed lines in Fig. 6.13). The norm of the surface modulations for the Oa
1 film,

i.e., fluid 1 on the top (see Fig. 6.14(B)), first declines fast towards the homogeneous

state but then approaches it slowly until reaching the bifurcation point at c̄ = 0.449. The

norm of the surface deformations of the oblique film Ob
1 (fluid two on top Fig. 6.14(A))

first increases with c̄, starting from c̄ = 0 until it reaches a maximum at c̄ = 0.055.

Then it overall declines, with a small non-monotonous part, towards the homogeneous

state until they meet at the bifurcation point at c̄ = 0.449.

There is a related branch which does not exist in the critical case. It seems to describe

a complete loop starting and ending at the same bifurcation at c̄ = 0.449 point on the

homogeneous branch (see the black dotted line in Fig. 6.13). To describe the behaviour

of the films on this loop, we start from the bifurcation point c̄ = 0.449 following the

lower part of the branch (clockwise), on the interval [0.26,0.449], where the film is

characterised by low surface modulations. Here, liquid 2 (the minority phase) is spread

over liquid 1 and this layer vanishes at the bifurcation point. Between the saddle node

bifurcation at c̄ ≈ 0.12 and the point c̄ = 0.26, we observe a rapid decrease in ||δh||.
This is caused by the rising of a droplet of liquid 2 that sits at the free surface (see

Fig. 6.14(C)). This process ends at the saddle node bifurcation. Now, as the mean con-

centration increases again on the upper most part of the branch the droplet shrinks with

a slight decrease in the norm of the surface modulations (see Fig. 6.14(D)). Eventually,

the droplet gradually disappears as the branch passes another saddle-node bifurcation

while it comes closer to the homogeneous state. Fig. 6.14(E) shows the film profile at

the label (e) in Fig. 6.13(A).

The L2-norm of the concentration field for the solutions is shown in Fig. 6.13(B), and

the L2-norm of the energy is shown in Fig. 6.13(C). Note that, the subcritical parts of the

branches near the bifurcation point from the homogeneous state have a higher energy

than the homogeneous film indicating their role as threshold solutions.

6.4 Films with Energetic Bias

Next we study the off-critical case for films with energetic bias at the free surface. As

we have seen in the critical case (Chapter 5), switching on the energetic bias divides the
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bifurcation diagrams into two groups of branches. A group of higher energy and another

one of lower energy. The group of higher energy consists of the weakly stratified branch

(0, 0), the stratified branch (0, 1/2a), the checkerboard films and connecting branches.

In the off-critical case, these branches only exist for c̄ ∈ [−0.365, 0.4] (upper branch

in Fig. 6.15(C)). The group of lower energy consists of the stratified branch (0, 1/2b),

the laterally structured branches (1/2, 0), (1,0) and the connecting branches. The group

exists for a larger range of the mean concentration. In the following discussion we

introduce those branches in detail for biased films of thickness H = 5. The energetic

bias is fixed at a+ = 0.1. Here we restrict our study to particular films such as the

weakly stratified film (0,0), the stratified films (0, 1/2a,b), the laterally structured films

(1/2, 0) and (1, 0), the oblique films Oa,b
1 , and the checkerboard branches (1/2, 1/2)

and (1, 1/2). We fix the lateral domain size at L = 12. In fact, the lateral domain size

L = 12 allows for new branches which enrich the picture. Here we will not consider

more than the films mentioned above.

6.4.1 Weakly Stratified and Stratified Films

In the critical case we have observed that with energetic bias the homogeneous film can

not exist any more. Instead, it becomes a weakly stratified film. Also the two identical

branches of stratified solutions that are related by a (z → −z) symmetry for a+ = 0

separate into two different branches one of them with higher energy than the other one.

Following these branches in the off-critical case one finds one branch that consists of

the weakly stratified (0, 0) and the stratified (0, 1/2a) states joined to each other at a

saddle node bifurcation (see solid brown and dot-dashed red lines in Fig. 6.15). This

structure spans the range c̄ ∈ [−0.365, 0.4]. In contrast, the branch of the stratified

(0, 1/2b) state exists in all the considered c̄ range (see Fig. 6.15)(C). Note that, all the

other branches are joined in some way to these three main branches. Therefore we

include them in all the subsequent bifurcation diagrams for the biased case. The profile

of the weakly stratified (0, 0) branch at label (a) shown in Fig. 6.15(C) is given by profile

A in Fig. 6.16 and the profiles of the stratified (0, 1/2a) and (0, 1/2b) at the labels (b)

and (c) in Fig. 6.15(C) correspond to panels B and C in Fig. 6.16, respectively.

Close to the saddle node bifurcations, the concentration profiles of the weakly stratified

and the stratified films are very similar to each other and and become exactly the same

at the saddle node bifurcation.
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6.4.2 Laterally Structured Films

The increase of the lateral domain size to L = 12 for the film with thickness H = 5

does not affect the laterally structured films (m, 0). The films still exist and they behave

similarly as for L = 10.

Laterally structured solution branch (1/2, 0) and related branches The behaviour

of the laterally structured branch (1/2, 0) for the energetically biased films can be dif-

ferent from the neutral case. As the symmetry (c→ −c) of the bifurcation diagrams is

broken, the pitchfork bifurcations are not symmetric any more. The separation into the

stratified films (0, 1/2a) and (0, 1/2b), must affect the laterally structured film in some

way. Here we describe the differences by comparing the neutral case to the biased case

through Fig. 6.15 and Fig. 6.11. In the neutral case on each side (positive and negative

c̄) two branches bifurcate from the (1/2, 0) branch at large c̄, i.e., three branches in total

connect to the homogeneous state. In the biased case one of these three branches (the

weakly laterally structured) disappears completely. However, also of the other two only

one is kept on each side (c̄ > 0 and c̄ < 0). This remaining branch joins the stratified

branch (0, 1/2b) in a subcritical bifurcation. For the stratified branch with positive

c̄ we observe that liquid 2 forms a minority layer at the free surface (see profile C in

Fig. 6.16). This is only consistent with a branch (1/2, 0) that shows a droplet of liquid

2 on top of liquid 1. At the pitchfork bifurcation the droplet on top spreads completely

over liquid 1.

For negative c̄ the stratified branch (0, 1/2b) consists of a thick layer of liquid 2 on top of

a thin layer of liquid 1 attached to the substrate. Here the transition becomes consistent

for a film with a droplet of liquid 1 attached to substrate which finally (near the bifur-

cation point) will spread along the substrate and becomes the minority layer. Note that,

the droplet only appears close to the saddle-node bifurcations at large |c̄|. However, in

the middle part the branch shows “normal” laterally structured states. Some hysteresis

between the two solution types results in the saddle-node bifurcation on the (1/2, 0)

branch. Looking at Fig. 6.15, the overall comparison shows that the modulations in the

bifurcation diagrams are larger for positive c̄ than that for negative c̄. For instance, the

energies and the L2-norms of the surface modulations for most branches are higher at

c̄ > 0 than at c̄ < 0.
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Figure 6.15: Shown are: Panel (A) L2-norm for surface deflection, panel (B) L2-norm for
the concentration field, panel (C) the energy, as functions of the mean concentration c̄. The
weakly stratified branch (0, 0) is depicted by brown solid curve. The red dot-dashed curve
represents the stratified branch (0, 1/2a). The dashed red curve represents the stratified
branch (0, 1/2b). The blue dot-dashed curve corresponding to the laterally structured branch
(1/2, 0). The energetic bias is given by a+ = 0.1. The film with surface modulations and of
thickness H = 5 where the lateral domain size is fixed at L = 12.
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(A) (B)

(C)

Figure 6.16: Shown are the film and concentration profiles of the weakly stratified (0, 0) at
the c̄ = 0.38, and the stratified branches (0, 1/2a,b) at c̄ = 3.5 and c̄ = 4.5, respectively.
Profiles A,B,C correspond to the labels a,b,c in Fig. 6.15(C).

Laterally structured solution (1, 0) and related branches The bifurcation diagrams

of the branch (1, 0) and related branches are shown in Fig. 6.17. We have included the

weakly stratified and the stratified (0, 1/2a) and (0, 1/2b) branches as they represent the

main branches in the bifurcation diagrams. The (1,0) branch becomes rather complex

and involves several saddle-node bifurcations. If we follow the branch (1, 0) starting

from c̄ = 0 for increasing c̄ the film first behaves similarly to the neutral case. I.e.,

liquid 2 is squeezed inbetween two regions of liquid 1. When the two contact regions

approach a hysteretic transition occurs to a central droplet that tends to detach from the

substrate (see profile H in Fig. 6.18). Beyond the second saddle node bifurcation the

droplet floats to the free surface producing a relatively large mound of liquid 2. Liquid

2 is strongly preferred at the free surface which causes the largest deformation at the

free surface (see label (i) in Fig. 6.17(A) that corresponds to profile I in Fig. 6.18).

Following the branch further the droplet shrinks monotonically (see for instance profile

J in Fig. 6.18) before it spreads completely along the free surface producing a thin layer

on top of liquid 1 as we reach the pitchfork bifurcation from the stratified (0, 1/2b)

branch at c̄ ≈ 0.547.

As we follow the laterally structured film (1, 0) starting from c̄ = 0 and decreasing

in c̄ (in negative c̄), liquid 1 is squeezed inbetween two regions of liquid 2. The two
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Figure 6.17: Shown are: Panel (A) L2-norm for surface deflection, panel (B) L2-norm for
the concentration field, panel (C) the energy, as functions of the mean concentration c̄. The
weakly stratified branch (0, 0) is depicted by brown solid curve. The red dot-dashed curve
represents the stratified branch (0, 1/2a). The dashed red curve represents the stratified
branch (0, 1/2b). The black doted curve corresponds to the laterally structured branch (1, 0).
The green dashed and orange dashed correspond to the oblique branches Oa

1 and Ob
1, respec-

tively. The curves which are not crossing c̄ = 0 are not named and can be recognised from the
profiles. The energetic bias is a+ = 0.1. The film with surface modulations and of thickness
H = 5 where the lateral domain size is fixed at L = 12.
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regions of liquid 2 are strongly attracted to the free surface producing large mounds

around liquid 1 (see Fig. 6.18(E)) which corresponds to label (e) in Fig. 6.17(A). Once

the first saddle node bifurcation is passed liquid 1 disconnected from the surface and

sinks inside liquid 2 producing a droplet attached to the substrate. The small distance

to the free surface causes a small depression (see profile D in Fig. 6.18 that corresponds

to label (d) in Fig. 6.17(A)). This droplet is not completely detached from the free

surface until we reach the next saddle node bifurcation. Beyond this point, the droplet

of liquid 1 is completely inside liquid 2 and the norm of the surface modulations declines

dramatically. As we follow the branch further the droplet of liquid 1 spreads completely

producing a thin layer of liquid 1 along the substrate preparing to join the stratified

branch (0, 1/2b) at the pitchfork bifurcation at c̄ ≈ −0.53. On the left hand side of

the panels of Fig. 6.17, we show a loop as a blue dashed curve. In fact it is not clear

where this branch bifurcates from and where it ends. It might actually be a closed

loop. We show this branch in this figure as we suspect it is in some way related to the

branch (1, 0). On this branch a droplet of the minority phase (liquid 1) is attached to

the free surface of a film of liquid 2. The concentration profiles at the labels (c) and

(b) in Fig. 6.17 correspond to panels C and B in Fig. 6.18, respectively. Also the dash-

dotted branch (magenta) seems to bifurcate from the branch (1, 0). A film profile on

this branch is shown in panel A in Fig. 6.18 that correspond to label (a) in Fig. 6.17.

The long-dashed green and short-dashed orange branches in Fig. 6.17 correspond to the

oblique films Oa
1 and Ob

1 (see Fig. 5.29 and the corresponding profiles in Fig. 5.30),

respectively. In the critical case the symmetry (c → −c) of the oblique solutions is

broken by the energetic bias as is as well the symmetry (c̄ → −c̄) of the bifurcation

diagram. As a result the two branches have different behaviour. We describe first the

oblique branch Ob
1 and then return to the branch Oa

1 . Following the branch Ob
1 with

increasing c̄ starting from c̄ = 0 the interface between the two components gradually

straightens and simultaneously the concentration of liquid 2 is reduced (see profile G

in Fig. 6.18 that corresponds to label (g) in Fig. 6.17(A)). Finally, at the bifurcation

point the interface between the two components becomes horizontal and liquid 1 is

completely covered by a thin layer of liquid 2 when the branch joins the branch (0, 1/2b)

of stratified films at c̄ = 0.26.

Following the branch when c̄ is decreased (towards negative c̄), the concentration of

liquid 1 reduces and also the interface between the two components gradually straight-

ens (see profile F in Fig. 6.18 that corresponds to label (f) in Fig. 6.17). At c̄ = −0.3
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Figure 6.18: Shown are film and concentration profiles for the branch (1, 0) and related
branches taken at the corresponding points in Fig. 6.17(A). Panels (A,B,C,D,E,F,G,H,I,J)
are taken at the corresponding labels (a,b,c,d,e,f,g,h,i,j), respectively.

the branch reaches the bifurcation where it joins to the stratified film (0, 1/2b). The be-

haviour along the branchOa
1 is quite similar to that at the branchOb

1 but with less surface

modulations. The difference is that the branch Oa
1 ends at the stratified film (0, 1/2a) at

the bifurcation points c̄ = 0.26 and c̄ = −0.16. Note that, the thickness of the strati-

fied layers of the minority and majority liquids at the bifurcation points depends on the

position of the bifurcation point of the branch (c̄c of the stratified branch).
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6.4.3 Checkerboard Films

As well as the other films, the individual checkerboard solutions break the (c → −c)
symmetry because of the energetic bias. However, the branch is still two-fold as the

two instances are still related by the (x→ −x) reflection symmetry. The checkerboard

films are in the high energy set of branches (see Fig. 6.19). The more internal interfaces

the checkerboard structure has the higher is the energy and the lower is the surface

modulation. Note that, the norm of surface modulations for the film (1/2, 1/2) is three

times higher than that for the film (1, 1/2). All the checkerboard branches bifurcate

form the weakly stratified film. The large changes in the surface modulations of the

checkerboard films normally occur when the contact regions between the two phases

and the domain boundary passes through the corners of the rectangular domain.

The checkerboard (1/2, 1/2) branch The profile of the checkerboard film (1/2, 1/2)

in the critical case can be seen in Fig. 5.30. With energetic bias the maximal surface

modulation is not found at c̄ = 0 but at a slightly higher c̄ ≈ 0.05 (compare to the neutral

case given in Fig. 6.8). As we follow the branch starting from c̄ = 0 increasing the mean

concentration we observe first a decrease and then a small non-monotonous perturbation

in ||δh|| before it rapidly approaches zero and joins the weakly stratified branch. Here

the minority phase (liquid 2) collects at the bottom (attached to the substrate) when

it joins the weakly stratified branch (see profile A in Fig. 6.20). Following the branch

starting at c̄ = 0 decreasing towards negative c̄ the film joins the weakly stratified branch

after a very steep descent that we have only in part obtained numerically. The minority

phase (liquid 1) forms a layer on top of the majority phase (liquid 2). As we can not

follow the branch numerically, we completed the missing branches hypothetically by a

thin solid black curve (see Fig. 6.19) Profiles of this branch at the labels (a) and (b) in

Fig. 6.19 are given by panels (A) and (B) of Fig. 6.20. The branch (1/2, 1/2) emerges

in pitchfork bifurcations from the weakly stratified branch.

The checkerboard (1, 1/2) branch The checkerboard branch (1, 1/2) exists in a

smaller c̄ range than the branch (1/2, 1/2). The highest surface modulation occurs at

c̄ ≈ −0.12, in contrast to the branch (1/2, 1/2) where it occurs at c̄ > 0. The checker-

board branch (1, 1/2) ends on the weakly stratified one in pitchfork bifurcations. The
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Figure 6.19: Shown are: Panel (A) L2-norm for surface deflection, panel (B) L2-norm
for the concentration field, panel (C) the energy, as functions of the mean concentration c̄.
The weakly stratified branch (0, 0) is depicted by brown solid curve. The red dot-dashed
curve represents the stratified branch (0, 1/2a). The dashed red curve represents the strati-
fied branch (0, 1/2b). The orange dashed and green dashed correspond to the checkerboard
branches (1/2, 1/2) and (1, 1/2), respectively. The energetic bias is given by a+ = 0.1 and
a− = b± = 0. The film with surface modulations and of thickness H = 5 where the lateral
domain size is fixed at L = 12.
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(A) (B)

(C) (D)

Figure 6.20: Shown are Panel (A) the film and concentration profile at c̄ = −0.08, panel (B)
the film and concentration profile at c̄ = 0.35 for the checkerboard film (1/2, 1/2) denoted by
the labels (a) and (b) in Fig. 6.19. Panels (C) and (D) show the film and concentration profiles
for the checkerboard film (1, 1/2) at c̄ = −0.2 and c̄ = 0.2, respectively

.

concentration profiles at labels (c), (d) shown in Fig. 6.19 correspond to panels C and D

of Fig. 6.20

6.5 Summary

Films in the off-critical case with modulated free surface (α = 1) have been studied

fixing the lateral domain size and film thickness at particular values. First we have

investigated films of thickness H = 3 without energetic bias for lateral domain size

L = 10. We have analysed the difference in the film behaviour of the branches (1/2, 0)

and (1, 0) by looking at the bifurcation diagrams varying the lateral domain size for

several values of the mean concentration c̄. We observed changes in the bifurcations for

the laterally structured film (1/2, 0) from subcritical to supercritical. The branch (1, 0)

behaves differently as for the chosen domain size it does not reach the point where the

character of the bifurcation changes. Then, attention has been focused on neutral films

of thickness H = 5 where the picture becomes rather crowded as many more branches

exist. Therefore we have studied the branches in separate figures. For this type of
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film we have first introduced the stratified films, checkerboard films and the laterally

structured films (1/2, 0) and (1, 0). Finally, we have introduced the oblique films and

the laterally structured film (1, 0). Next, we have investigated films with energetic bias

a+ = 0.1 and for this case we have considered films of lateral domain size L = 12 and

film thickness H = 5. As the symmetry (c̄→ −c̄) of the bifurcation diagram is broken,

we have investigated the branch structure for c̄ > 0 and c̄ < 0. Here we have also

separated the bifurcation diagrams of the various branches to be studied individually.

The study included the laterally structured films (1/2, 0) and (1, 0) with their related

oblique branches and also the checkerboard films (1/2, 1/2) and (1, 1/2). To clarify the

behaviour of the films along the bifurcation diagrams we have supplemented the study

of the bifurcation diagrams by concentration profiles at selected points. In fact, in the

off-critical case there exist more branches that should be investigated in a future work.



Chapter 7

Conclusion and Outlook

We have studied films of binary mixtures of immiscible liquids. In particular our in-

terest has focused on determining film thickness and concentration profiles for a two-

dimensional system in the two-phase region. The film is situated on a solid energetically

neutral substrate that is assumed to be perfectly smooth and horizontal, i.e., no lateral

driving forces occur. The upper surface of the film is open to the atmosphere i.e., it is

a free surface that may become modulated due to effective forces. The modulation of

the free surface and the concentration field are coupled through a pair of the non-linear

evolution equations using model-H. The model couples the transport equations of the

concentration, the convective Cahn-Hilliard equation, and of momentum, the Navier-

Stokes equations, to describe phase separation of a binary liquid mixture or a liquid-gas

mixture. In this model, the mixture components are characterised by their concentration

gradient. In the past, model-H has mainly been employed to study fluid dynamics in the

bulk and simplified by assuming an isothermal setting.

To obtain solutions of the mathematical model we have employed a number of mathe-

matical methods. For the steady states, the finite element method has been used to dis-

cretise the domain into a finite number of elements. We have used triangular elements

with linear edges. The shape functions are fixed for all the unknown values (Isoparamet-

ric coordinates) and written in the natural coordinate system. The free energy functional

has been rewritten using a finite element discretisation. An initial solution is built using

a coarse meshing which has been used as an indicative solution. Then in subsequent

calculations the coarse mesh is refined, especially at the interfaces and the modulated

free surface.

133
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The calculations of the layered base states and of their linear stability are performed

using numerical continuation techniques (AUTO) [25]. The problem takes the form a

system of ordinary differential equations, together with the boundary conditions at the

substrate and at the free surface in addition to one integral condition (mass conservation)

discretised in space. The equations for the steady state and for the real linear perturba-

tions can be rewritten as a ten-dimensional dynamical system. The resulting algebraic

system of equations is solved using an iterative method, starting from known solutions

using a combination of Newton and Chord iterative methods. The technique allowed us

to follow known solutions when a given set of control parameters is changed.

In the main body of work we have extensively studied non-linear steady state solutions

and their bifurcations as a function of several control parameters, such as film thickness,

energetic bias at the free surface (corresponding to a linear Marangoni effect), lateral

domain size, and the mean concentration of the mixture. We have introduced two types

of film surfaces: (i) Flat films where we imposed a strong surface tension at the free

surface to keep the surface flat and (ii) films with deformable free surface. We have

grouped our results in two parts: in chapter 5 we have discussed critical films i.e., as-

suming the mean concentration is zero while in chapter 6 attention has been given to

off-critical films i.e., when the average mean concentration in the system differs from

zero. For the critical films, we have recalculated the one-dimensional results for the

bifurcation diagrams for the concentration field and the energy, whilst varying the en-

ergetic bias for particular film thicknesses [87]. We have used the 1d results to guide

our parameter selection in the 2-dimensional case, in particular, for the energetic bias at

the free surface. In the 2d case we investigated neutral flat films and also flat films with

energetic bias considering two different film thicknesses, H = 2.5 and H = 5. For thin

films (H = 2.5 < π) only films that are the laterally stratified or homogeneous films

can exist which is consistent with the study in Ref. [44] (see Fig 1.2 (vi)). However,

for films of medium thickness (π < H = 5 < 2π) the phase separation can results

in other types of film structuring such as stratified layers, checkerboard structuring and

oblique solutions. Some of the oblique solutions are also observed experimentally (see

Fig 1.2 (iii)-(vi)). Our results showed also a coarsening solution which coarsens from

a higher period to lower period. For the case of a film with a modulated surface, we

have found more solutions than in the case of flat films. These additional solutions are

characterised by their rapid changes in surface modulations. After studying the neutral

case, we turned our attention to films with an energetic bias at their free surface. In

fact, the stratified solutions play an important role in our results. When the mixture is

at the critical total concentration and the free surface is neutral, the two stratified film
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solution branches (liquid 1 above liquid 2 and vice versa) are related by symmetry and

so lie on the same branch in the bifurcation diagram. This makes the bifurcation dia-

grams simpler than the ones in the biased surface case where this symmetry is broken.

The observations in the biased case show that the stratified solution branches separate,

as confirmed by the study of the one-dimensional case. As a consequence of the sepa-

ration of the stratified film solution branches, the entire bifurcation diagram splits into

two groups of branches containing respective laterally stratified films, oblique films and

also checkerboard films. We call one group of branches the energetically low group and

the other one the energetically high group (see for instance in Fig. 5.14(A)). For the

energetically biased films, increasing the energetic bias as the continuation parameter

leads to a convergence of the branches (0, 0) and the stratified (0, 1/2a) until they join

at a saddle node bifurcation a+
sn. When the energetic bias exceeds a+

sn, these solutions

disappear and only one stratified solution remains which we denote (0, 1/2b). For flat

films of thickness H = 5 we have shown results for energetic bias less than a+
sn and also

results beyond the point a+
sn. However, for the films with modulated surface we have

faced some convergence difficulties at high energetic bias. Therefore, we have chosen

to present results for thinner films (H = 3.5) beyond the saddle node bifurcation and

without convergence problems.

The linear stability analysis of homogeneous and vertically stratified steady critical

films with respect to harmonic disturbances in the lateral direction has been performed.

The eigenvalue problem for infinitesimal perturbations of the base state solution has

been considered. The evolution of the corresponding normal modes determines the

growth rate of the disturbances as a function of the lateral wave number k. The linear

stability analysis of the system has been carried out in the general case and the long-

wave limit of the general dispersion relation is derived. The stability of the system is

investigated in the absence of flow, and in the presence of the Marangoni effect, and

the influence of Korteweg stresses on the stability has also been introduced. In partic-

ular the system of equations is linearised in the small amplitude of the perturbations ε,

the pressure is eliminated and the linearised model-H is written as an eigenvalue prob-

lem. The linearised boundary conditions are also determined. The base states c0(z) and

solutions c1(z), w1(z), β of the eigenvalue problem are all obtained employing the nu-

merical continuation algorithms of AUTO [25]. The results show that almost all of our

stratified solutions are linearly unstable above a critical domain size. We have also been

able to determine the critical wave number kc which is used to specify the bifurcation

points for the branches that bifurcate from the homogeneous and vertically stratified
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branches. These support the results gained using the bifurcation diagrams (see the ta-

bles introduced in Appendix B). In fact, the comparison is valid only for low energetic

bias (a+ < 0.5), and for the case of higher energetic bias the results of the two ap-

proaches show differences which we believe is due to the fact that our model reaches

its limit of applicability, where the surface tension becomes negative (an unphysical

phenomenon of course).

The symmetries of the solutions and boundary conditions for the critical films have

been investigated. We have observed that the symmetries of the cuboid (box-shaped

object) contains all of our solutions. The three dimensions of the box map to the lateral

coordinate x, the vertical coordinate z and the average concentration c of our system.

The results show differences in the symmetry groups for the flat films and films of

surface modulations, resulting from breaking the symmetry of the boundary conditions

at the free surface. Although the translation symmetries can also be considered for our

solutions and boundary conditions, these are only discussed here briefly and we intend

to focus on this aspect further in future studies.

Off-critical films of a binary mixture have been introduced in chapter 6, where we con-

sider only films with modulated free surfaces and restrict our study to determining the

bifurcation diagrams for the energy and the L2-norms of the concentration and surface

modulations as functions of the mean concentration c. First, we have studied the neu-

tral films where we fixed the lateral domain size at L = 10. Here we have considered

two film thicknesses, thin (H = 3) and medium (H = 5). As in the critical case, for

thin films the only solutions that exist are the homogeneous and the laterally stratified

solutions (1/2, 0) and (1, 0). As the stratified structuring is not allowed for such film

thickness, no other profile configurations can exist and following the solution branches

we find modulations in the concentration and the free surface as well as the energy be-

fore they terminate at the homogeneous solution branches which they join at the saddle

node bifurcation. However, for neutral films of thickness H = 5 the laterally struc-

tured solution branches terminate at the homogeneous one, through several branches

that show various different profile configurations, which bifurcate at saddle node bifur-

cations.

In the experimental results from Ref. [30] for the off-critical films of a binary mixture

that are shown in Fig. 1.4, mounds are produced by droplets and holes of one liquid

inside the other are clearly observed. Our results show similar mounds and holes for

average concentrations far from the critical state, we find new branches of solutions that
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do not exist in the critical case. Many of these new branches bifurcate at saddle node

bifurcations from the branches that are present in the critical case.

In the work presented in this thesis, we have discovered that liquid films of binary mix-

ture of immiscible liquids can undergo phase separation to form very many different

structures. The phase separation can be influenced by many factors, such as the film

thickness, the lateral domain size, the mean concentration of the mixture, the energetic

bias at the free surface of the film, that corresponds to the Marangoni effect. Depend-

ing on these factors the film profiles can take different structures such as a completely

homogeneous film, laterally stratified, horizontally stratified, checkerboard structuring,

oblique structuring, coarsening solutions and many other structures. The difference in

the concentrations of the mixtures plays an important role in producing droplets of the

minority species rich phase, producing mounds or holes inside the majority species rich

phase. The structures formed in the off-critical film are more complicated than in the

critical case. We also noted that most of the bifurcations for the off-critical compositions

far from the critical composition, are saddle node bifurcations.



Appendix A

Symmetry Group

A.1 Symmetries of Cuboid

A symmetry operation may be visualised geometrically by its invariant geometric ele-

ment, usually called symmetry element. The symmetry element may be a point, line, or

plane depending on the symmetry operation. It may correspond to the centre of inver-

sion (point), the rotation axis (line), or the reflection (mirror) plane. Only the identity

operation I and the translations T do not define such a symmetry element. The sym-

metry element of a symmetry operation is uniquely defined, however, more than one

symmetry operation may belong to a symmetry element. In fact there exists a confusion

concerning the terms “symmetry element” and “symmetry operation”. It is caused by

the fact that symmetry operations are the group elements of the symmetry groups. Sym-

metry operations can be combined resulting in other symmetry operations and forming

a symmetry group. Symmetry elements can not be combined such that the combination

results in a uniquely determined other symmetry element. As a consequence, symmetry

elements do not form groups, and group theory can not be applied to them. Neverthe-

less, the description of symmetry by symmetry elements is very useful, as will be seen

in the following discussion.

Here we give an example that illustrates the way how to extract the symmetry groups of

our solutions in the critical case. Consider the planes xz, xc, zc that are perpendicular

to the axises c, z, x, respectively. We assume the origin in the centre of the cuboid (see

Fig. A.1). Let the symbol I indicate the identity element of the symmetry group (no

action) and the symbols σxz, σxc and σzc indicate the reflections at the planes xz, xc and

138
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x
z

c

Figure A.1: Shown is the the profile of the branch (1/2,0). The figure shows how the symme-
tries of the profile have been extracted.

zc, respectively, the symbols πx, πz, πc indicate the rotation about x, z and c axes by the

angle π radian, respectively, and ρxzc indicates the inversion through the origin. Then

the solution profile shown in Fig. A.1 which represents the solution branch (1/2, 0) for

a film with a flat free surface can be used as an example to illustrate how the symme-

tries of our solutions are extracted. If we reflect this solution profile at the plane xc we

obtain exactly the same solution (surface) which indicates that this solution is invariant

under the operation σxc. Another operation is the rotation of the solution profile about

the z axis which yields the same solution, i.e., it is invariant under the operation πz.

The solution is also invariant under inversion through the origin in addition to identity

operation. Note that, the resulting set {I, σxc, πz, ρxzc} is a group. Therefore, the solu-

tion (1/2, 0) for flat film is invariant under the symmetry group {I, σxc, πz, ρxzc}. That

is a subgroup of the symmetry group of the cuboid (given in Table A.1) Note that, the

Table A.1: Group table for cuboid that in our case is spanned by two spatial dimensions
(x, z) and concentration c.

I σxz σxc σzc πx πz πc ρxzc
I I σxz σxc σzc πx πz πc ρxzc
σxz σxz I πx πz σxc σzc ρxzc πc
σxc σxc πx I πc σxz ρxzc σzc πz
σzc σzc πz πc I ρxzc σxz σxc πx
πx πx σxc σxz ρxzc I πc πz σzc
πz πz σzc ρxzc σxz πc I πx σxc
πc πc ρxzc σzc σxc πz πx I σxz
ρxzc ρxzc πc πz πx σzc σxc σxz I

symmetry groups of all the other solutions for different films are extracted in the same

way as we have compared all the symmetries of the cuboid with our solutions.
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A.2 Translation Symmetries

If we consider the translations of solutions within an extended (periodically closed) do-

main of size 4L, where L is our computational domain then the maximal symmetry

group consists of the translations L, 2L, 3L, 4L = 0 denoted by T xL , T
x
2L, T

x
3L, T

x
4L = I

(see Fig. A.2), respectively. All the translation symmetries of our solution are contained

in this symmetry group. The group table is given as Table A.2. The only proper sub-

group is the group {I, T x2L} and the group table is given in Table A.3. Note that, the

translation symmetry can be applied on all the results shown in Chapter 5 and every

solution has either the full symmetry group {T xL , T x2L, T x3L, I} or the proper symmetry

subgroup {I, T x2L}.

2L
xT

L
xT

3L
xT

4L
xT = I

Figure A.2: Sample shows a n = 1 profile translated by L, 2L, 3L and 4L = I . This profile
is invariant under all the translations.

Table A.2: Translation symmetry group table.

I T x3L T x2L T xL
I I T x3L T x2L T xL
T x3L T x3L T x2L T xL I
T x2L T x2L T xL I T x3L
T xL T xL I T x3L T x2L

Table A.3: The table for the only proper translation symmetries subgroup. The element T x
2L

corresponds to translation by 2L and T x
4L = I .

I T x2L
I I T x2L
T x2L T x2L I

The only proper subgroups of this group are the identity and the group presented by the

following group table. We do not consider here the complete group containing beside
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2L
xT

L
xT

3L
xT

4L
xT = I

Figure A.3: Sample shows a n = 1/2 profile translated by 2L and 4L = I . This profile is
invariant under these translations.

others all the elements of table A.1 and A.2 as the present consideration are sufficient

to order all the solution branches we have found numerically.



Appendix B

Additional Linear Stability Results

Additional linear stability results have been calculated for flat films and films with mod-

ulated free surface in the critical case. Below we complete the picture for cases for

which the bifurcation diagrams are not shown in Chapter 5. We present the dispersion

relations and also tables that show the critical lateral domain size of the system and

the corresponding critical wavenumber for various films depending on the film thick-

ness and the energetic bias. This allows for a quantitative comparison of the different

employed methods.

B.1 Linear Stability for Films of Thickness H = 3.5

We studied films of thicknessH = 3.5 in Chapter 5, without showing the linear stability

analysis for layered film. This is done here for both flat films and films with modulated

free surface for the homogeneous (weakly stratified) and stratified films. Here we show

only the dispersion relations that have not been introduced in chapter 5.

B.1.1 Flat Films

In this section we show the dispersion relation for flat films of thickness H = 3.5. The

dispersion relation for the branches (0,0) and (0,1/2a) are introduced in Figs. B.1(A) and

(B) respectively, whereas the dispersion relation for the branch (0,1/2b) is introduced in

Fig. B.2 considering different energetic biases. We consider the neutral film and films

with energetic biases a+ = 0.05 and with energetic bias a+
sn ∼ 0.0677.

142
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As the film is of medium thickness, the branches (0,0) and (0,1/2a) annihilate at the

saddle node bifurcation at a+
sn ∼ 0.0677 Beyond that point there remains only the solu-

tion branch (0,1/2b) (see also Figs. 5.1 and 5.2 in the main text). As we consider films

with an imposes flat surface, we can go further towards higher energetic bias. Here the

dispersion relations are given for a+ = 0.05, 0.1, 0.2, 0.3, 0.4, 0.6 and 1.
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Figure B.1: Shown are the dispersion relations for flat films of thickness (H = 3.5). Panel
(A) are dispersion relations for the branch (0,0). Panel (B) are dispersion relations for the
branch (0,1/2a). The dispersion relations are for the neutral case, at the energetic bias a+ =
0.05 and at the saddle node bifurcation a+sn = 0.0677 as shown in the legends.
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Figure B.2: Linear stability for flat film of thickness H = 3.5 for different energetic biases at
the free surface for (0,1/2b) branch. The curves represent different energetic biases as given
in the legend. The thin solid curve follows the local maxima of the growth rate βmax.

In panel (A) of Fig. B.3 we show the critical wave number kc and the wavenumber of

the fastest mode kmax, i.e., the value of k that corresponds to βmax. In panel (B) we

show the maximal growth rates of various branches as functions of the energetic bias.
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Figure B.3: Panel (A) shows the critical wavenumber kc and fastest growing wavenumber
kmax. Panel (B) shows local maxima of the growth rate βmax for flat film of thickness H =
3.5 as functions of the energetic bias at the free surface a+. The individual lines correspond to
the various branches as indicated by the legends.

B.1.2 Films with Surface Modulations

The dispersion relations for films of thickness H = 3 with surface modulations given

in Fig. B.4. We show the dispersion relation for the homogeneous branch (0, 0) and for

the branch (0, 1/2a) in Fig. B.4(A) and (B), respectively. The black thin line follows

βmax for different energetic biases.
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Figure B.4: Shown are the dispersion relations for surface modulated films of thickness H =
3.5 for the neutral film, film with energetic bias a+ = 0.05 and at the saddle node bifurcation
a+sn as shown in legends. Panel (A) depicts the dispersion relation for the branch (0,0). Panel
(B) depicts the dispersion relation for the branch (0,1/2a).
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B.2 Linear Stability for Films of Thickness H = 5

Here we introduce the linear stability for films with surface modulations of thickness

H = 5. Compared to the case of flat films, there are some differences in the dispersion

relation particularly for higher energetic bias. These differences appear as a shift in the

points of critical lateral domain size Lc towards larger values. For modulated surface

films we consider α = 1 in Eq.3.49. This implies that the surface tension reaches values

where it lose the physical meaning (negative surface tension) at smaller a+ than that for

flat films particularly for the branch (0, 1/2b). Thin curves shown in Figs. B.5 and B.6
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Figure B.5: The linear stability of the (0, 0) branch for surface modulated film of thickness
H = 5.0. Shown are the cases without (a+ = 0) and with (a+ > 0) energetic bias at the free
surface for a+ as given in the legend. Given are two sets of dispersion curves: for the lateral
instability mode (larger kmax at a+ = 0), and for the checker-board instability mode (smaller
kmax at a+ = 0). The thin dotted and dashed lines are parameterized by a+ and follow the
maxima (kmax, βmax) and minima of the dispersion relations.

are following the local maximal growth rate βmax (or local minimum growth rate). They

show also some differences to the flat film case. Note that, the dispersion relation for the

branch (0, 1/2b) shown in Fig. B.6 behaves in a different way particularly for relatively

high energetic bias. In Fig. B.7(A) we show the critical wavenumber kc and kmax that

corresponds to βmax and in Fig. B.7(B) we show the βmax as a function of the energetic

bias a+.
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Figure B.6: Linear stability for films of thickness H = 5 with modulated free surface. The
dispersion relation of the branch (0,1/2b) is considered for different energetic biases as de-
picted in the legends. The thin solid curve represents the local maxima of the growth rate
(βmax) in terms of the energetic bias a+.
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Figure B.7: Shown in panel (A) are the critical wavenumber kc and the fastest growing wave
number kmax as functions of the energetic bias a+. Panel (B) shows local maxima of the
growth rate βmax in terms of the energetic bias a+ for film with modulated free surface of
thickness H = 5.

B.3 Tables of the critical domain size and the correspond-

ing critical wave number

Here we introduce tables that collect our results for the critical domain size Lc and the

corresponding critical wave number kc as obtained from the linear stability analysis
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Table B.1: The critical wavenumber kc and the related system size Lc where one expects
a steady state bifurcation for (0,0) branch at different energetic biases and for different film
thicknesses. The symbols kLc and LL

c indicate the critical wavenumber and the corresponding
lateral domain size for the laterally stratified branches, respectively. The symbols kCh

c and
LCh
c indicate to the critical wavenumber and the corresponding lateral domain size for the

checkerboard branches, respectively.

Mean Height Energetic Bias Flat Film Height-Modulated Film
H a+ kLc LLc kLc LLc

0.0 1.000 2π 1.000 2π
0.1 0.985 6.379 0.988 6.360

2.5 0.2 0.945 6.649 0.958 6.559
0.3 0.893 7.036 0.903 6.958
0.4 0.835 7.525 0.850 7.392

kLc kChc LLc LChc kLc kChc LLc LChc
0.0 1.000 0.443 2π 14.183 1.000 0.443 2π 14.183

3.5 0.05 0.979 0.369 6.418 17.028 0.980 0.370 6.411 16.990
∼ a+

sn 0.932 0.107 6.742 58.721 0.937 ∼ 0.099 6.706 ∼ 63.467
0.0 1.0000 0.7788 2π 8.0678 1.0000 0.7774 2π 8.0823
0.1 0.9950 0.7685 6.3148 8.1759 0.9944 0.7682 6.3186 8.1791

5 0.2 0.9729 0.7317 6.4582 8.5871 0.9720 0.7336 6.4642 8.5649
0.3 0.9391 0.6656 6.6906 9.4399 0.9394 0.6674 6.6885 9.4144
0.4 0.8847 0.5479 7.1021 11.4678 0.8830 0.5448 7.1157 11.5330
∼ a+

sn 0.7597 8.2706 0.7618 8.2478

Table B.2: The critical wavenumber kc and the related domain size Lc for the stratified
branch (0,1/2a) with different film heights H and energetic bias a+, calculated from the lin-
ear stability results

Mean Height Energetic Bias L.S for Flat Film L.S for Height-Modulated Film
H a+ kc Lc kc Lc

0.0 0.7727 8.1315 0.7948 7.9054
3.5 0.05 0.8585 7.3188 0.8708 7.2154

∼ a+
sn 0.9333 6.7322 0.9370 6.7056

0.0 0.1235 50.8760 — —
0.1 — — — —

5 0.2 — — — —
0.3 0.3780, 0.1200 16.6222, 52.3599 — —
0.4 0.5360 11.7224 — —
∼ a+

sn 0.7618 8.2478 — —

(Chapter 5) for flat films and films with surface modulations at different mean thick-

nesses and for various energetic biases at their free surface.
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Table B.3: The critical wavenumber kc and the related domain size Lc for the stratified
branch (0,1/2b) with different film heights H and energetic bias a+, calculated from the lin-
ear stability results

Mean Height Energetic Bias L.S for Flat Film L.S for Height-Modulated Film
H a+ kc Lc kc Lc

0.0 0.7731 8.1273 0.7954 7.8994
0.05 0.7094 8.8570 0.7402 8.4885

3.5 0.1 .06555 9.5853 0.6922 9.0771
0.2 0.5652 11.1167 0.6068 10.3546
0.3 0.4967 12.6499 0.5287 11.8842
0.4 0.4476 14.0375 0.4537 13.8488
0.0 0.1235 50.8760 0.2866 21.9232
0.1 0.1749 35.9244 0.2555 24.5917

5 0.2 0.1939 32.4043 0.2244 27.9999
0.3 0.2074 30.2950 0.1555 40.4063
0.4 0.2185 28.7560 — —
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