

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

OPERATOR INTERFACES FOR THE
LIFECYCLE SUPPORT OF COMPONENT

BASED AUTOMATION SYSTEMS

A Doctoral Thesis Submitted in Partial Fulfilment of the Requirements for the

Award of Doctor of Philosophy of Loughborough University

By

Vishal .A. Barot

1st June, 2012

Wolfson School of Mechanical and Manufacturing Engineering

Loughborough University

United Kingdom

© Vishal Barot 2012

P a g e | i

Dedication

To my encouraging parents Mr and Mrs A. Barot, my wife Tanvi and my son

Kian

P a g e | ii

Acknowledgements

During the course of my research at the Wolfson School of Mechanical and

Manufacturing Engineering, I have learnt many lessons and acquired many

skills. The most invaluable asset is the knowledge and experience I have

obtained working within the MSI group under direct research supervision of

Professor Robert Harrison. I would like to thank my supervisor for his kind

support and advice throughout my research.

When carrying out a research study, one is bound to face many challenges and

this requires support from various sources to achieve the end result. I would like

to sincerely thank my colleagues at the MSI group for their technical expertise,

guidance and professionalism.

For my financial support and case studies, I would like to thank EU FP7

SOCRADES, EPSRC, IMCRC and BDA projects, and their collaborators,

especially the Ford Motor Company.

I feel indebted to my father Mr. Arun Barot and my mother Mrs. Rekha Barot for

their unconditional love and patience.

Finally, I deeply wish to thank Tanvi, my wife and my best friend, for the

psychological support, tenderness and care she steadily provided me with

throughout the years. It is for her that I try everyday to become not only a better

engineer / scientist but a better person.

P a g e | iii

Abstract

Current manufacturing automation systems (specifically the powertrain sector)

have been facing challenges with constant pressures of globalisation,

environmental concerns and ICT (Information and Communication Technology)

innovations. These challenges instigate new demands for shorter product

lifecycles and require customised products to be manufactured as efficiently as

possible. Manufacturing systems must therefore be agile to remain competitive

by supporting frequent reconfigurations involving distributed engineering

activities.

The most agile components within any industrial system are the human

personnel involved in controlling and monitoring production machines using

operator interface systems. Current operator interface systems are proprietary

and machine-dependent i.e. they offer poor connectivity to other manufacturing

systems, and locks end users to costly and difficult to modify support solutions.

Furthermore, they do not provide support at various key phases of the machine

lifecycle to closely monitor and control its activities. These factors unnecessarily

increase machine lifecycle costs and complicate its support process.

The emphasis of this research is a novel operator interface system

implemented within a system components architecture that can better support

lifecycle usage requirements of powertrain manufacturing machines engineered

using the Component Based automation approach, and enable different classes

of users throughout the supply-chain to more efficiently interact with these

systems. Specifically, the research focuses on automatic generation of vendor-

independent web-based operator interface systems with integrated diagnostics

and remote support functionalities developed using open standard technologies.

The research of this innovative approach to operator interface system design,

development and implementation has been prototyped and evaluated using

case studies based on the Ford-Festo test rig (programmed using the web

services-based FTB control devices), Oil Pan Rundown engine assembly

machine simulation and theoretical plant layout to system architecture mapping,

identifying strengths and weaknesses for its industrial application.

P a g e | iv

Keywords: Operator Interface System, Component Based Automation,

Machine Lifecycle, System Architecture, Agile Manufacturing, Manufacturing

Automation Systems.

P a g e | v

Table of Contents

Dedication.. i

Acknowledgements.. ii

Abstract...iii

Table of Contents... v

List of Figures.. xi

List of Tables... xv

Chapter 1 : Introduction .. 1

1.1 Research Inspiration ... 1

1.2 Problem Description .. 3

1.3 Research Questions.. 5

1.4 Research Formation.. 6

Chapter 2 : Manufacturing Systems Review 8

2.1 General Overview ... 8

2.1.1 Preliminary Explanation .. 8

2.1.2 Paradigm Shift .. 9

2.1.3 Factors Driving the Change .. 11

2.2 Part A: Manufacturing Trends ... 16

2.2.1 Agile Manufacturing .. 16

2.2.2 RMS (Reconfigurable Manufacturing System) 19

2.3 Part B: Existing Manufacturing State... 23

2.3.1 Hierarchical Levels of Operations in Manufacturing Facility 23

2.3.2 Operator Interface – PLC System Architecture 25

P a g e | vi

2.3.3 Operator Interface System Scope within Machine Life Cycle 29

2.3.4 Operator Interface Supporting Machine Maintenance 37

2.3.5 Operator Interface Roles in Control and Monitoring Machines 42

2.4 Manufacturing Review Analysis .. 45

Chapter 3 : Research Context and Focus 49

3.1 External and Internal Automation Research .. 49

3.1.1 Research Centre at the University of Michigan 49

3.1.2 Rockwell Automation .. 51

3.1.3 ITEA SIRENA and SOCRADES ... 51

3.1.4 Other Miscellaneous Research in the Academia 53

3.1.5 MSI Research Institute ... 54

3.2 Component Based (CB) Automation ... 55

3.2.1 General Description .. 55

3.2.2 CB Application .. 56

3.3 Focused Attributes .. 60

3.4 Research Aim and Novel Contributions .. 63

3.4.1 Aim ... 63

3.4.2 Novel Contributions .. 64

Chapter 4 : Enabling Technologies and Methods 65

4.1 General Overview ... 65

4.2 User Interface Modelling and Engineering .. 65

4.3 User Interface Implementation .. 71

4.4 Real-Time Machine Data Transmission Options and Issues 75

4.5 Communication Mechanisms .. 80

4.5.1 Communication Queues ... 80

4.5.2 System Interaction Styles ... 84

P a g e | vii

4.6 Architectural Patterns .. 85

4.6.1 Model View Controller (MVC) ... 86

4.6.2 Layered Architecture .. 87

4.6.3 Repository .. 88

4.6.4 Client – server Model .. 89

4.7 Technological Review Analysis ... 90

Chapter 5 : Architectural Design .. 92

5.1 General Overview ... 92

5.2 Requirements Design.. 92

5.2.1 Design Guidelines .. 92

5.2.2 Design Capture... 96

5.3 System Components Architecture ... 104

5.3.1 Architectural Evolution .. 104

5.3.2 Architecture Justification ... 109

Chapter 6 : System Components Detailed Design 112

6.1 Blackboard-based Methodology .. 112

6.1.1 General Description .. 112

6.1.2 Blackboard ... 116

6.1.3 Knowledge Source ... 118

6.1.4 Controller .. 119

6.2 System Components Design ... 120

6.2.1 Overall Design Description ... 120

6.2.2 Broadcaster Blackboard Model .. 123

6.2.3 Marshaller Blackboard Model ... 128

6.2.4 Web-HMI Blackboard Model ... 133

6.2.5 BB Component – Knowledge Source Structure 138

P a g e | viii

6.2.6 BB Component – Controller Operation 140

Chapter 7 : System Components Implementation 145

7.1 General Overview ... 145

7.2 Overall System Runtime Operation ... 145

7.3 Broadcaster Implementation ... 147

7.3.1 I / O Outline .. 147

7.3.2 Process Runtime Implementation ... 148

7.3.3 Interface Description ... 150

7.3.4 Reconfigurable Memory Buffer ... 154

7.3.5 Graphical User Interface View .. 155

7.4 Marshaller Implementation .. 157

7.4.1 I / O Outline .. 157

7.4.2 Process Runtime Implementation ... 158

7.4.3 Top-level Database Schema .. 159

7.4.4 Machine Control Sharing Mechanism ... 161

7.4.5 Graphical User Interface View .. 166

7.5 Web-HMI implementation .. 167

7.5.1 I / O Outline .. 167

7.5.2 Process Runtime Implementation ... 168

7.5.3 Operator Interface Template to Configuration Mapping 171

Chapter 8 : Industrial Case Studies .. 175

8.1 General Overview ... 175

8.1.1 Operator Interface Context within CB Machine Lifecycle 175

8.2 Stage 1 Case Study: Ford-Festo Test Rig .. 177

8.2.1 Test Rig Description ... 178

8.2.2 Case Study Setup ... 180

P a g e | ix

8.2.3 Research Attributes Assessment.. 182

8.2.4 Reconfigurability and Reuse Support ... 182

8.2.5 Information Transparency and Mobility 186

8.2.6 Loose Mapping of HMI to Actual Machine or its Control Logic ... 188

8.2.7 Real-time Remote Control, Monitoring and Maintenance 192

8.3 Stage 2 Case Study: Oil Pan Rundown Machine Simulation 196

8.3.1 Oil Pan Rundown Description ... 197

8.3.2 Case Study Setup ... 201

8.3.3 Research Attributes Assessment.. 202

8.3.4 Virtual Machine Validation .. 202

8.3.5 Early HMI Verification ... 204

8.3.6 Early HMI Training .. 207

8.4 Stage 3 Theoretical Case Study: Fox Assembly Plant Layout 208

8.4.1 Production Plant Architecture Description 208

8.4.2 System Components to Plant Architecture Mapping 211

8.4.3 Considerable Issues ... 213

Chapter 9 : System Components Evaluation 215

9.1 General Overview ... 215

9.2 Safety .. 215

9.2.1 Configuration Whitelisting and Token Sharing 216

9.2.2 Command Execution Confirmation and Handshaking 218

9.3 Security ... 219

9.3.1 Authentication and Authorisation .. 220

9.3.2 Data Encryption .. 223

9.4 Reliability ... 226

9.5 Robustness ... 227

9.5.1 Application Heartbeat ... 228

P a g e | x

9.5.2 Data Filtering .. 230

9.6 Performance ... 231

9.6.1 System Throughput .. 231

9.6.2 Response Times ... 233

9.7 Scalability .. 235

9.7.1 Proposed Plant Architecture Mapping Strategy Evaluation 237

Chapter 10 : Discussion, Conclusion and Future Work 238

10.1 Research Discussion and Conclusion ... 238

10.1.1 Contribution to Knowledge .. 238

10.1.2 Fulfilling the Industrial Requirements 239

10.1.3 Benefits to the Powertrain Manufacturing Lifecycle 241

10.2 Future Work Recommendations .. 242

10.2.1 Remote Data Transmission ... 242

10.2.2 Operator Interface Functionality .. 244

10.2.3 Application to a PLC-based Control System 245

10.2.4 General Work Areas .. 245

10.2.5 Application to Other Industries .. 246

References.. 248

Appendices... 268

P a g e | xi

List of Figures

Figure 1-1: Research Plan Stages ... 7

Figure 2-1: Globalisation Demanding Faster Design, Build and Ramp Up 13

Figure 2-2: Key Agile Enablers... 17

Figure 2-3: Hierarchical Levels of Operations in Manufacturing Facility 25

Figure 2-4: Generalisation of Existing HMI - Control System Architecture 26

Figure 2-5: Machine Lifecycle Process with HMI System Usage Requirements

 ... 32

Figure 2-6: Comparison of Existing and Required Approach to Control Logic -

HMI Integration ... 36

Figure 2-7: Existing Machine Maintenance Procedure 38

Figure 2-8: Required Machine Maintenance Procedure 41

Figure 2-9: User Roles Providing Control and Monitoring Support in Machine

Lifecycle ... 44

Figure 3-1: RMS Implementation at University of Michigan 50

Figure 3-2: SOCRADES Approach .. 52

Figure 3-3: Component Based Automation Approach 58

Figure 3-4: Author's Involvement in CB Automation Implementation 59

Figure 3-5: Focused Attributes Addressed within this Research 63

Figure 4-1: Iterative User Interface Design Approach 71

Figure 4-2: User Interface Implementation Tools ... 72

Figure 4-3: RemoteIMS Tool Implementation at Ford Motor Company, U.K 78

Figure 4-4: Point-to-Point Communication Queue System 81

Figure 4-5: Publish / Subscribe Communication Queue System 82

Figure 4-6: Message Bus Communication Queue System 83

Figure 4-7: MVC Pattern .. 87

Figure 4-8: OSI Layer Architecture ... 88

Figure 4-9: Client – server Model ... 90

Figure 5-1: Implemented Transline HMI Screen Example 94

Figure 5-2: HMI Screen Structure Division - Transline Standard...................... 94

Figure 5-3: Machine Component Screen Convention - Transline Standard 96

Figure 5-4: Use Cases Supporting HMI User Roles 100

P a g e | xii

Figure 5-5: Example Storyboard Capturing Fault Details Navigational Structure

 ... 103

Figure 5-6: Evolution of Control and Monitoring System Architecture in this

Research .. 105

Figure 5-7: Proposed Control and Monitoring System Architecture 107

Figure 6-1: Overall Blackboard Systems Model ... 114

Figure 6-2: Indirect Communication and Ease of Reconfigurability in Blackboard

Methodology... 116

Figure 6-3: Knowledge Source Basic Configuration 119

Figure 6-4: Overall System Components Design Model 122

Figure 6-5: Broadcaster Model ... 126

Figure 6-6: Marshaller Model ... 132

Figure 6-7: Web-HMI Model ... 136

Figure 6-8: Knowledge Source Structure ... 139

Figure 6-9: Controller Division .. 141

Figure 6-10: Runtime Catalogue Logic Element's Record 142

Figure 6-11: Runtime Scanner Logic Element’s Record 143

Figure 6-12: Blackboard Processing Example ... 144

Figure 7-1: System Components Runtime Operation 146

Figure 7-2: Broadcaster I / O Overview .. 148

Figure 7-3: Broadcaster Process Runtime Implementation 149

Figure 7-4: Broadcaster KS1 Interface Representation 151

Figure 7-5: Broadcaster KS1 “SystemLoader” Class 151

Figure 7-6: Broadcaster Control Interfaces .. 153

Figure 7-7: Reconfigurable Circular Queue .. 155

Figure 7-8: Broadcaster System Component Graphical User Interface 156

Figure 7-9: Marshaller I / O Overview .. 157

Figure 7-10: Marshaller Process Runtime Implementation 159

Figure 7-11: Top-level Database Schema .. 160

Figure 7-12: Dual-level Control Safety Mechanism .. 162

Figure 7-13: Machine Control Sharing Mechanism .. 165

Figure 7-14: Marshaller System Component Graphical User Interface 166

Figure 7-15: Web-HMI I / O Overview .. 168

Figure 7-16: Web-HMI Process Runtime Implementation 170

P a g e | xiii

Figure 7-17: Web-HMI Template Representation and Configuration Population

Process .. 172

Figure 7-18: Operator Interface Template to Configuration Mapping at Runtime

 ... 174

Figure 8-1: Ford-Festo Test Rig ... 178

Figure 8-2: Ford-Festo Test Rig Illustrating Major Components..................... 179

Figure 8-3: Ford-Festo Test Rig Case Study Setup 181

Figure 8-4: Reconfigurability and Reuse Scenario Case Study 185

Figure 8-5: Schematic Setup for SAP xMII Demonstration 187

Figure 8-6: SAP xMII Tool Integration in SOCRADES 188

Figure 8-7: Machine Independence Scenario Case Study 191

Figure 8-8: Real-time Control and Monitoring Scenario Case Study 193

Figure 8-9: Remote Maintenance Scenario Case Study 195

Figure 8-10: Example of Engine Assembly Plant ... 197

Figure 8-11: Oil Pan Rundown Machine .. 198

Figure 8-12: Op 1900 Process Time Chart .. 200

Figure 8-13: Op 1900 Machine Case Study Setup ... 201

Figure 8-14: Virtual Machine Validation Case Study Demonstration 204

Figure 8-15: Machine Ramp up Activities Within this Research 206

Figure 8-16: Early HMI Verification Case Study ... 207

Figure 8-17: Fox Production Program Plant Architecture 209

Figure 8-18: System Components to Auto Station Mapping 212

Figure 8-19: System Components to Manual Station Mapping 213

Figure 9-1: Web-HMI IP Whitelisting Strategy Implementation 217

Figure 9-2: Command Execution Confirmation and Handshaking Strategy

Evaluation .. 219

Figure 9-3: ASP.NET Web Configuration Tool for Web-HMI System Component

 ... 221

Figure 9-4: Web-HMI Authentication Strategy Evaluation 223

Figure 9-5: HTTPS Data Encryption Session Setup 224

Figure 9-6: Web-HMI Data Encryption Evaluation Using Wireshark Protocol

Analyser ... 225

Figure 9-7: System Components Heartbeat Strategy Evaluation 229

Figure 9-8: Broadcaster’s Data Filtering Strategy Evaluation 230

P a g e | xiv

Figure 9-9: Broadcaster's System Throughput Strategy Evaluation 232

Figure 9-10: Response Time Strategy Evaluation .. 233

Figure 9-11: Broadcaster's Scalability Evaluation Process 235

Figure 10-1: Potential Research Directions .. 243

Figure 10-2: RemoteComm Conceptual Illustration 244

Figure 10-3: Research Application to Other Industries 247

P a g e | xv

List of Tables

Table 2.1: Key RMS Characteristics .. 22

Table 2.2: Manufacturing - HMI Requirements Summary 48

Table 4.1: User Interface Modelling Components .. 70

Table 4.2: Attributes and Shortcomings of Model Based User Interface

Development .. 73

Table 4.3: Examples of Common Interaction Styles ... 85

Table 5.1: Operational Requirements .. 98

Table 5.2: Scenario-based Design Capture ... 102

Table 5.3: Summary Justifying the Proposed System Architecture Benefits .. 111

Table 8.1: Reconfiguration and Reuse Scenario .. 184

Table 8.2: Virtual Machine Validation Demonstration 203

Table 8.3: Considerable Issues when Implementing System Architecture at

Ford's Plant .. 214

Table 9.1: Whitelisting and Token Sharing Strategy Evaluation 217

Table 9.2: Web-HMI Authentication Strategy Evaluation Results 222

Table 9.3: Reliability Evaluation Results .. 227

Table 9.4: Broadcaster’s System Throughput Evaluation Results.................. 232

Table 9.5: Response Times Evaluation Results ... 234

Table 9.6: Scalability Evaluation Results for Ford-Festo Test Rig 236

Table 9.7: Plant Architecture Mapping Strategy Evaluation Results 237

P a g e | 1

Chapter 1 : Introduction

Chapter Contribution to this Thesis:

Contributions of this chapter to this thesis are to identify the main inspiration for carrying out this research

and to highlight the scope of work involved within this thesis. A description of research is introduced,

research questions are raised and the overall formation of the research is mapped out.

1.1 Research Inspiration

Automotive industry (specifically powertrain manufacturing process) has been

facing challenges with constant pressures of globalisation [1], environmental

concerns [2] and ICT (Information and Communication Technology)

innovations [3]. Globalisation has resulted into manufacturers to geographically

distribute their activities and deliver wide variety of high quality customised

products at lower prices [1, 4]. Environment regulations are proceeding towards

strict regulations regarding waste discharge and fugitive carbon dioxide (CO2)

engine emissions and energy consumptions [5], and ICT development is

pushing the boundaries of accessing machine critical information regardless of

the location and distribution of the implemented system [6]. These factors

impact product lifecycles and its manufacturing lead times, all of which need to

be shorter.

Enterprises are changing their manufacturing paradigms and systems towards

mass customisation to improve the efficiency and the support required by

current agile trends, which have evolved from mass production, beyond lean

manufacturing, into agile manufacturing [7]. There is a strong need for

manufacturing industries to change their attitudes towards machine design and

building process, and their maintenance structure, to accommodate agile

changes. Designing and building manufacturing machines for producing vehicle

engines, and their maintenance, are key areas in the lifecycle of manufacturing

machines [8, 9]. A project initiated by the Manufacturing System Integration

(MSI) Research Institute at Loughborough University has successfully

examined a Component Based (CB) Approach to design and implementation of

vehicle engine production machines to support reconfigurability and reuse

requirements of the agile manufacturing paradigm. This research is based

Chapter 1: Introduction

P a g e | 2

within automotive domain with Ford Motor Company as a primary industrial

collaborator in the United Kingdom.

The most agile components within any industrial system are the human

personnel involved in controlling and monitoring production machines

throughout their lifecycle. Control and monitoring in automation is a high

investment industrial sector worth around 188 billion Euros, with an annual

estimated growth of 7.8% (prior to worldwide recession). Control and monitoring

of factory automation systems (manufacturing and process industries

combined) represents €62 billion of the European market [10], consisting of

segments like application design, simulation, manufacturing, installation and

maintenance [11]. This demonstrates the importance of this sector in

contributing to the overall world economic stability.

To adopt and implement the CB approach in industries, it would be essential

and beneficial to design a web interface between the human and the machine,

and to have system architecture in place, that can support control and

monitoring of production machines throughout their lifecycles, in order to:

• provide more flexibility and promote sustainability in terms of

reconfiguration, remote operation and maintenance,

• support more natural human machine interaction and recover from

failures at a lower cost regardless of machine types or locations,

• save costs and encourage innovation opportunities by providing an

integration framework where third-party solutions can easily be

accommodated (i.e. vendor-independent (“open”) resource integration),

and

• increase confidence in the employment of manufacturing practices by

enabling virtual machine validation prior to its actual implementation,

leading to a faster ramp up.

Chapter 1: Introduction

P a g e | 3

1.2 Problem Description

Competitive markets of today require industries to respond quickly to changes

in order to maintain their competitive edge. These changes are usually driven

by global, environmental and ICT factors which impact manufacturing product

lifecycles such that their development and lead times need to be shorter [4, 12].

Industries are tremendously pressurised to market their products faster and

achieve a quicker machine build, requiring a shift of existing manufacturing

paradigms towards agility. Agile manufacturing requires machines to be flexible

to changes and easier to manage through their lifecycles to provide more

intuitive human machine interaction and recovery from failures at a lower

investment.

A critical component of any manufacturing automation system is the control

system and how operators interface to it. It is essential that the interface

between the operator and the machine is designed and implemented to meet

the demands of agility. Machine critical information needs to be retrieved and

utilised at real-time through the lifecycle phases to support faster machine ramp

up, maximise its operational effectiveness and decrease its downtime.

The existing approaches to operator interface system implementation and

utilisation are not suitable to the current trends and business needs as they do

not support key lifecycle phases of manufacturing machines. Specifically, a

number of limitations can be identified as follows:

• They are vendor-specific and implemented on vendor-provided panels.

This prohibits machine information to be collected freely from variety of

control devices and locks end users to expensive but closed support

solutions, creating support islands on the shop-floor and introducing

unnecessary additional burdens such as license management issues and

separate maintenance contracts. Furthermore, it restricts implementation

of innovative approaches to machine monitoring and support.

• The interface screens are not automatically generated from the machine

control description. Any change to a machine component is programmed

Chapter 1: Introduction

P a g e | 4

(and not configured) on the screens using proprietary software tools. This

causes unnecessary expense and can lead to introduction of new errors

to the system. Moreover, this activity requires specialised skills and

knowledge to modify operator interface system codes.

• Machine builders cannot evaluate the machine logic using virtual

simulation prior to the actual build event. This adds to the costs and time

associated with any product engineering changes that may be required

later as the design matures.

• The operator interface system is specified and implemented in machine-

specific form such that the screens are uniquely tied up with the machine

components. This creates lack of portability in terms of reusing or

reapplying the same operator interface system to other machines within

an engine programme.

• There is no provision of remotely controlling, monitoring and maintaining

machines to save unnecessary costs, time and efforts incurred in travel

and troubleshooting machine issues.

• Operators can only be trained after the machine has been physically

installed at the end user’s site. This delays production and can lead to

improper training due to time constraints.

There is a need for more flexible and scalable next-generation operator

interface system that can handle variability at moderate cost and within

acceptable time. The research addressed within this thesis looks at the

powertrain manufacturing lifecycle, specifically use cases in the context of

automotive domain particularly engine assembly.

Chapter 1: Introduction

P a g e | 5

1.3 Research Questions

To articulate the research problems descried in the section 1.2, a number high-

level research questions have been raised, each addressed in its respective

chapters as follows:

• What is the existing practice of utilising operator interface systems for the

lifecycle support of the powertrain manufacturing machines? What key

phases of the lifecycle are not currently supported by the operator

interface systems and why does the powertrain automation need to

address this issue? - (refer to the chapter 2)

• What other researches in academia and industry are working upon to

address some of the lifecycle usage requirements obtained from the

existing state-of-the-art? What automation design approach can be used

within the operator interface system solution to satisfy these

requirements and what are the desired attributes of this system that are

needed to be supported to provide lifecycle usage of the selected

automation design approach? – (refer to the chapter 3)

• What are the enabling technological opportunities and methods that can

provide a materialising platform for designing and developing operator

interface systems that can satisfy the research requirements? – (refer to

the chapter 4)

• Are there any design guidelines used within the industry which govern

the operator interface system screen structure and its navigation? How

can these design requirements be captured and represented to enable

operator interface system implementation to comply with the required

industrial standard? What system architecture is needed for the operator

interface system to be integrated with the automation approach (i.e. CB

paradigm) to support these design and lifecycle requirements in

industry? – (refer to the chapter 5)

Chapter 1: Introduction

P a g e | 6

• How can various components of the system architecture be designed

and implemented such that operator interface system supports the

machine lifecycle requirements? (refer to the chapter 6 and chapter 7)

• Are the research requirements qualitatively and quantitatively evaluated

to realise the industrial adoption of the proposed solution? (refer to the

chapter 8 and chapter 9)

• To what extent this research fulfils its requirements and what is the

visionary impact of this solution on the powertrain manufacturing

lifecycle? How can this operator interface system research be applicable

to other industrial sectors? (refer to the chapter 10)

1.4 Research Formation

The general research methodology conducted and described within this thesis

is illustrated in the figure 1.1. The plan pursued during the course of this

research has been split up into six research design stages. The first stage deals

with exploration which involves reviewing the current state-of-the-art in

powertrain manufacturing lifecycle to establish the need for this research

(covered in the chapter 2). The second stage deals with formalisation where a

conceptual solution to the industrial requirements and opportunities identified in

the previous stage is addressed using set of implementation features (covered

in the chapter 3). This stage also involves reviewing technological trends in

operator interface systems design and engineering (covered in the chapter 4).

The third stage (covered in the chapter 5 and 6) deals with interpretation where

a hypothetical solution to the formalised features identified in the previous stage

is designed. This solution entails developing a theoretical HMI operational

requirements model and specification of the overall control and monitoring

system architecture. Forth stage deals with instantiation where the conceptual

theories and associated system architecture is implemented in the form of a

proof-of-concept demonstration system (covered in the chapter 7). The

Chapter 1: Introduction

P a g e | 7

penultimate stage is evaluation where the research systems approach is

qualitatively and quantitatively examined and validated (against research

needs) to understand its effectiveness using a set of scenarios (covered in the

chapter 8 and 9). The last stage is conclusion which formulates the knowledge

accumulated, identifies the research strengths and proposes future

opportunities within this research (covered in the chapter 10).

Contributes

Implements

Drives

Supports

HMI State-of-the-art in

Powertrain Sector

Implementation Features

and Technological Trends

HMI Requirements Model

and System Architecture

Proof-of-concept HMI

Demonstration

HMI Examination and

Validation

Research Design

Chapter 2

Formalisation Chapter 3

Interpretation Chapter 5 Chapter 6

Instantiation Chapter 7

Exploration

Evaluation Chapter 8 Chapter 9

Conclusion Chapter 10

Chapter 4

Figure 1-1: Research Plan Stages

P a g e | 8

Chapter 2 : Manufacturing Systems Review

Chapter Contribution to this Thesis:

From manufacturing systems’ aspect of automation, the main contribution of this chapter is to demonstrate

an engineering need to address the implementation process for operator interface systems, effectively

providing the required level of control and monitoring support to production machines through their

lifecycle phases.

2.1 General Overview

To appreciate demands and various challenges in the engineering process of

production machines, it is fundamental to initially provide an explanation of

frequently used concepts within this chapter and identify various factors that

drive the change. Subsequently, a background literature of traditional and

existing manufacturing practices is carried out to determine research

requirements of next-generation operator interface systems for the lifecycle

support of machines. In conclusion, a review analysis is carried out to

summarise the need for this research.

2.1.1 Preliminary Explanation

Throughout this chapter, a number of concepts have been referred. Author

preliminarily explains some of the essential terminology in this section of the

chapter.

Manufacturing Automation: It is any system which automates the process of

transforming resources (such as raw materials) into a finished product to gain

profits and / or to capture a market [13], by satisfying customer demands. The

final product is usually an assembly of basic parts which are designed and

manufactured prior to putting them together [14]. To operate any manufacturing

system, two management actions are required such as production planning and

production control [15].

Chapter 2 : Manufacturing Systems Review

P a g e | 9

Operator interface: Operator interface is defined as a user interface which

enables interaction between a human (i.e. typically a machine operator, a

diagnostic engineer or a maintenance engineer in manufacturing automation

environment) and a manufacturing machine [16]. In industries, this interface is

usually termed as a HMI (Human Machine Interface), thus it is also

interchangeably used to describe operator interface within this thesis. HMI acts

as a front-end to gather information, monitor and diagnose industrial systems

[17]. From machine operator’s perspective, this interface monitors current

machine status, accepts input (such as button pushes or keystrokes) and

enables controlling of a machine using a set of actions.

PLC (Programmable Logic Controller): It is a widely used industrial

microprocessor-based control system in manufacturing automation. It is able to

store machine instructions to implement its functions such as sequencing,

timing, counting, arithmetic, data manipulation and communication, to control

industrial machines and processes [18]. It usually incorporates a number of

input/output terminals for interfacing to machines [19].

Supply-chain partners: In this thesis, they correspond to end user (vehicle

manufacturer), machine builder and technology vendor. An end user designs

and produces vehicle engines using a production machine and subsequently

assembles a complete vehicle. A machine builder is responsible for the design,

manufacturing and installation of a production machine for the end user. A

technology vendor is responsible to providing required components and

technology to implement a machine for an end user. The participating entities

(i.e. end user, machine builder and technology vendor) in a machine lifecycle

are also termed as the stakeholders. In this thesis, technology vendor is also

termed as controls vendor.

2.1.2 Paradigm Shift

During the industrial revolution in the late 19th century, mass production was

presented as an approach to support high volumes of customer demands with

minimum variety and cost [20]. Manufacturers were producing more per worker-

Chapter 2 : Manufacturing Systems Review

P a g e | 10

hour, eventually lowering the cost of the end product. This was a successful

paradigm due to the stability provided by the markets in terms of established

customer demands, limited varieties and fewer competitions. Profits were made

by manufacturing large product batches in order to minimise costs associated

with the production process [21].

Today’s market requires accommodating customers in terms of offering different

variety of products (or its variants), for example, Mazda 323 vehicle model

came in 180 different colour palettes, including four shades of black [22]. The

cost of offering product variety includes the actual cost of customising or

configuring products, all the setup costs, excessive inventory costs, operational

costs, and procedures and process costs. Under mass production paradigm,

this cost increases exponentially with an increase in product variety in the

market [23]. Owing to these variation requirements and factors, Dean [24]

reports that the mass production is not an effective approach to mass

customisation production process. Mass customisation is a paradigm where

individually designed products and services are provided for every type of

customer through process agility, flexibility and integration [25].

Modern production systems must be able to handle changes and manufacture

highly customised, design-to-order products, where additional services and

value added benefits such as product upgrades and any future changes are as

important as the product itself [26]. A paradigm shifting process is thus required

to be adopted by manufacturers in order to fabricate their business models to

be compatible with today’s agility requirements such as reconfigurability,

flexibility and efficient use of resources [13, 27-29]. Reconfigurability can be

achieved through increasing interoperability between shop-floor devices and

reducing design, build, installation, and programming efforts. Flexibility can be

enabled by both compatibility and cross-company communication (regardless of

geographical locations), and legacy system support. In order to efficiently use

resources, human errors are required to be reduced and machine maintenance

needs to be optimised [27].

In response, a number of organisations and research institutions have proposed

agile manufacturing solutions to these rapid, continuous and unpredicted

Chapter 2 : Manufacturing Systems Review

P a g e | 11

changes [30, 31]. The concept and enablers of agile manufacturing are covered

in the section 2.2.1 of this thesis; however the author has identified number of

major factors that are driving this change resulting into a paradigm shift from

mass production to mass customisation, eventually affecting the overall

machine lifecycle process. These factors are detailed in the next section of this

chapter.

2.1.3 Factors Driving the Change

Changes to manufacturing automation practices are occurring more frequently

in this era compared to the past. In this research, the term “change” means

those that occur at machine production and engineering level. The MASCADA

report as described in [28], distinctly defines two types of changes namely,

production change and production disturbance. A production change is usually

planned and refers to intentional adjustments to production machines where as

a production disturbance is an unexpected adjustment experienced by

production machines, and it is usually reacted upon.

A number of factors are driving the requirements for a change in current

manufacturing machine design and build processes, eventually impacting upon

implementation of operator interface systems to support next-generation trends

(described in the chapter 3.3). These are as follows:

Globalisation

In the 21st century, globalisation is not a new concept as the process of

integrating activities in an international scale has been underway for decades;

however, this era has seen an unprecedented growth on the grounds of

domestic and international competitions, higher market share needs and low

volume product customisations. A number of firms are selling vehicles to mature

economies such as USA, Germany and Japan [32], and a wave of assembly

plants in low wage economies have emerged due to the rising costs of

resources and better opportunities.

Chapter 2 : Manufacturing Systems Review

P a g e | 12

Companies are off- shoring (and sometimes outsourcing) their manufacturing

activities (such as design, production, marketing, distribution) and needs to (and

sometimes from) overseas emerging global markets (such as Brazil, China,

India and Russia) to survive these competitions. Motivation for this action is not

only to lower the upfront capital investment but to lower the labour costs too,

enabling industries to produce low-cost high quality innovative products [18].

Since these markets have emerged as high quality automotive producers as

well as low-cost centres, many supply-chain partners have begun moving their

production activities into these areas to search for more customers. As a

consequence, a number of new suppliers, including Mexico, South Korea and

Spain, have been very successful in penetrating world automotive market [33].

This has created a business world where manufacturing activities are globally

distributed for the need of acquiring better skills, market coverage and reducing

costs [18, 34, 35]. In the light of these issues, it is essential that vehicle

manufacturers offer products to customers in a shortest possible time, thus a

prevailing trend is to shorten a product lifecycle [36].

Figure 2.1 illustrates how shorter product lifecycles are demanding faster

design, build and ramp up of manufacturing machines [37]. Figure 2.1 (a) shows

a traditional manufacturing sequential approach where the initial development of

a product (i.e. vehicle engine) is followed by the design and build of a

production machine. This machine is then ramped up to its full production

capacity (where the product is then produced). However, the current global

market trends (such as shorter product lead-times, more variants, low and

fluctuating volumes, and low price, in addition to quality and durability [13])

demand rapid introduction of new, upgradeable, customised products to remain

competitive. Machines must be quickly ramped up to full production capacity

and readily reconfigured to meet the manufacturing requirements of new

products of the same family (as shown in the figure 2.1 (b)). This requires

providing careful attention to the existing machine lifecycle phases and the

process through which operator interface systems are implemented within a

production programme.

Chapter 2 : Manufacturing Systems Review

P a g e | 13

(Adopted from [37])

Environmental Concerns

The environment is deteriorating at an enormous rate as resources like raw

materials are diminishing, waste discharge sites are overflowing and pollution is

increasing [38]. For adopting an environmental thinking approach to production

of vehicles, major revisions are usually required throughout the entire supply-

chain management, including material sourcing and selection, product design,

manufacturing processes, final product delivery and end-of-life of the product

Figure 2-1: Globalisation Demanding Faster Design, Build and Ramp Up

Design & Build of Manufacturing

System

Produce Product A Ramp Up

Develop Product A

Time System Lead Time

(a) Traditional Approach

Market

Product A

Design & Build of

Manufacturing

System

Develop Product A

Ramp

Up

Produce

Product

A

Develop Product B

 Ramp

Up

Produce

Product

A & B

Develop Product C

 Ramp

Up

Time

Market

Product A

(b) Required Approach

Reconfigure

Produce

Product

B & C

Product A, B and C

are of the same

family

Chapter 2 : Manufacturing Systems Review

P a g e | 14

[38]. Sullivan [39] has found that material production and manufacturing stages

contribute up to 65% of particulate emissions and consumes around 14%

energy. This may sound like energy consumed by manufacturing process is a

tiny portion of the overall utilised energy; however, it has to be noted that the

rest of the energy used during vehicle usage (around 86%) is distributed over

10-15 years period, while the manufacturing energy demand (and

accompanying CO2 emissions) occur over a much smaller period. This requires

one to have a closer look at the powertrain subsystem of a vehicle

manufacturing lifecycle.

Presently, vehicles are expensive for most people in developing economies like

China and India; however, with an increase in standard of living of these

countries, this situation may no longer remain stagnant. As the demand for

vehicle increases, more vehicles are going to be manufactured and used,

eventually deteriorating the environment. All these facts indicate that drastic

amount of changes are required in the design and build of manufacturing

machines to produce more efficient vehicle engines [2]. Efficient engines require

less fuel, saving the customer money and reducing negative effect on the

environment. To produce environmental friendly vehicles, it is extremely

fundamental to review and rectify existing manufacturing practices to manage

resources like costs, raw materials, energy and ultimately the environment. A

number of global vehicle manufacturers, such as Ford Motor Company, General

Motors and Toyota are aware of these issues and have started addressing them

for improving environmental performance [40].

ICT (Information and Communication Technologies)

ICT has developed at an exponential pace in the last decade. Likewise,

opportunities and pressures of implementing innovative ideas at industrial levels

have increased. With improved speeds of communication networks such as

standard Ethernet (e.g. 100Mbps, 1Gbps) making its way to the shop-floors

[41], and improvements in communication paradigms such as SOA (Service

Oriented Architecture) - based web services and the WWW (World Wide Web

Chapter 2 : Manufacturing Systems Review

P a g e | 15

[42, 43], firms are now having opportunities to deploy state-of-the-art in ICT for

their day-to-day manufacturing design, build and support process using the

Internet [18, 44]. In the field of software engineering, modern programming

frameworks (for example, Microsoft dot Net [45]) are able to provide smart and

secure support tool functionalities which were unrealistic before. Coupled with

the performance capabilities offered by today’s personal computers (PC), ICT is

surely finding its way at all the phases of a manufacturing machine lifecycle.

Within manufacturing automation industry, ICT can be used at any number of

different levels and stages such as simulation, data acquisition and display,

control system, robotic design, etc [46].

Large and complex manufacturing systems cannot be efficiently and safely

managed without flexible control and monitoring support applications. ICT

provides flexibility to manufacturing industries and enables them to closely

monitor and carefully control their activities [44], and thus drastically alter their

production practices by increasing production rates, improving production

quality, reconfiguring production lines, reducing energy consumption and

shortening production machine lifecycle, to save resources and obtain a

competitive edge [47]. In order to achieve such targets, human resources and

technological opportunities should be used effectively for providing a timely

response to increasing customer demands. While currently, most of these

applications are proprietary, huge savings and innovative approaches to

designing operator interface systems can be obtained if ICT opportunities are

properly deployed through the machine lifecycle with vendor-independence in

mind.

To cope up with these above described factors, agile manufacturing concept is

a proposed solution in the academia. Next section identifies manufacturing

trends and existing manufacturing state to justify a need for this research.

Chapter 2 : Manufacturing Systems Review

P a g e | 16

2.2 Part A: Manufacturing Trends

2.2.1 Agile Manufacturing

Though the concept of agile manufacturing was first introduced by Yusuf [48] in

1991, it has been widely disseminated as representing essential requirements

for next-generation manufacturing automation systems. It can be defined as an

adaptive capability to survive and succeed in a competitive environment of

continuous and unpredictable changes, by quickly reacting to changing markets

which are driven by customer-designed products and services [49]. Agile

manufacturing facilitates re-allocation of production line capacity to higher than

expected demanded products and quickly launches new products, yet retaining

the production ability for other lower than expected demanded products.

Automotive industry is attracted to agile manufacturing as it potentially offers

equipment reuse and investment cost-reductions over time [50].

With reference to multi-facet description of agile manufacturing as discussed by

Gunasekaran [30], focus of this thesis surrounds the production and system

integration facet. The production facet is characterised by flexibility and

reconfigurability of production systems to shorten machine lifecycle [51]

whereas system integration facet is characterised by collaborative

methodologies in integrating various supply-chain applications for supporting

efficient productivity and performance of manufacturing systems [52].

The main aim of this research is to provide lifecycle support using operator

interface systems that function in flexible and reconfigurable production lines to

encourage creation of varying product types / volume. The conceptual model

illustrating enablers of agile manufacturing has been studied and modified to fit

the previously mentioned research aim as shown in the figure 2.2. From the

production system facet, the key agile enablers are modularisation and change

capability. From the system integration facet, the key agile enablers are

business-production system integration and information retrieval and utilisation.

Chapter 2 : Manufacturing Systems Review

P a g e | 17

Modularisation and Change Capability

Introducing modularity increases system functionality in terms of flexibility and

reconfiguration, when conditions demand changes. Modularisation allows

changes to be made to a few isolated functional elements of production without

necessarily affecting the design of other elements [53]. Modular production

system design research has proposed solutions for both, reconfigurable

mechanical structures and control software applications, enabling quick

changeovers in decentralised automation systems to improve flexibility and

adaptability of machine systems as presented in [54].

Key modularisation concepts are distributed machine control and integration

tool for flexible and reconfiguration support. In distributed machine control,

industrial control devices (such as a PLC) are connected through

communication networks, distributed throughout shop-floor. The control

functionality is decomposed and distributed to individual controllers to match the

required physical modularity of the machine [54]. Any modification of device

control functionality is independent of the functionality of the others since they

are interlocked using configuration data and internal state variables.

Consequently, any change to the implemented system is carried out through

reconfiguration rather than reprogramming. In order to support adoption of

Figure 2-2: Key Agile Enablers

Agile
Manufacturing

Modularity

Change
Capability

Distributed Machine

Control

Integration Tools

Simulation Tools

CB Approach

Production Facet

Integrated
Business-
Production
Information

System

System Integration
Facet

Information
Retrieval

and
Utilisation

Information Sharing

Seamless Connection

Diagnostic System

Operator Interface (HMI)

Chapter 2 : Manufacturing Systems Review

P a g e | 18

modular control systems, integrated engineering tools (as described in the

chapter 3.2.2) are required for building, changing and managing machine

applications, for example, synchronisation and close monitoring of control

devices.

For rapidly changing and commissioning automation system (i.e. change

capability), concurrent design of manufacturing activities are needed to be

supported using new engineering automation design approaches. One such

approach (adopted within this thesis) is a Component Based (CB) design

(described in the chapter 3.2). This integrates and validates individual machine

components (using, for example, simulation tools) in early machine lifecycle

phases to detect failures and deviations from requirement specification as early

(and hence economically) as possible.

Business-Production Integration System, and Information Retrieval and
Utilisation

Integrated business-production information systems are needed to enhance

flexibility and reconfigurability of shop-floor devices by increasing information

transparency and data mobility across heterogeneous platform systems [55].

Critical information distributed across manufacturing enterprise (for example,

status of machine components, production capability) has to be shared between

various automation levels (described in the section 2.3.1) for added benefit, for

example, documentation sharing can shorten design life cycle of products and

manufacturing machines [56].

Applying information sharing approach to other manufacturing activities, such

as machine maintenance, can support learning from outcomes of previous

projects, consequently, reducing and resolving new problems [57]. Maximum

benefit from information sharing can be obtained when the content is

characterised in a standard way that can be accessed and understood by

others (seamless connection) [30, 56].

Current manufacturing trends recognise the strategic importance of collecting,

disseminating and analysing production operation information. With the high-

speed data communication of the Ethernet and field bus technologies,

Chapter 2 : Manufacturing Systems Review

P a g e | 19

distributed shop-floor devices can be monitored, analysed and configured /

upgraded in real-time. This provides opportunities for having manufacturing

support systems that are more open, flexible, distributed and extensible.

Information from the shop-floors can be utilised in diagnostic systems and

operator interfaces (HMI). Utilisation of collected data (such as temperatures,

pressures, flow rates, RFID tags, etc) from shop-floor devices can be monitored

and visually analysed to identify any issues (such as process downtime, parts

degradation, faults, throughput, etc).

Furthermore, plant managers need information systems support for product

planning and scheduling. HMI’s and Supervisory Control And Data Acquisition

(SCADA) systems are the traditional proprietary tools which provide control and

performance visualisation at the shop-floor level. Currently, these systems are

the main interfaces typically transferring significant amount of data to be

converted into information that is utilised by the production management

systems. Emerging trend is towards more open (vendor-independent) systems

which allow machine information to be collected freely from variety of vendor

control equipments and preventing manufacturers from being locked into

proprietary solutions (as identified in the section 2.3), ultimately increasing

flexibility significantly.

The focus of agile manufacturing is on the manufacturing enterprise and the

business practices needed to adapt to ever changing global uncertain market.

Any operational techniques or any engineering solutions are not provided by

agile manufacturing. As a consequence, agile manufacturing compliments

reconfigurable manufacturing (described next) owing to the share of focus on

the objective of manufacturing responsiveness (i.e. agility) [58].

2.2.2 RMS (Reconfigurable Manufacturing System)

In manufacturing, especially discrete manufacturing, changes occur frequently

in the production lines with every change made to a product [27]. In

manufacturing automation, a new product is introduced every 6 to 9 months,

which in turn requires modifications to existing production lines. When

Chapter 2 : Manufacturing Systems Review

P a g e | 20

compared to the past practices where production lines were usually sold after

being used for a specific product, there is a need for these lines to stay

operational (through reconfiguration) to manufacture any new product [27].

Machines from production lines have to be reconfigured and reused more

efficiently in order to maximise the return on investment [59]. This has motivated

new paradigms within the research community, such as RMS.

In contrast to agile manufacturing, reconfigurable manufacturing does not deal

with the entire enterprise, but only with the responsiveness of the production

machine system to new product demands in a globally competitive environment

with niche market production. RMS methodology of rapid system design and

ramp up, as well as the capability to dynamically increment the capacity and the

functionality in response to market demands, is one aspect of agility (i.e. agile

manufacturing) [58]. Instead of providing general flexibility through the use of

equipment (with built-in high functionality), RMS provides customised flexibility

for a particular part-family through scalability and reconfiguration [60] to improve

or upgrade a system rather than completely replacing it.

RMS is designed at the outset for quick change in structure, as well as,

hardware and software components [13], where changes do not affect rest of

the system. A manufacturing machine system can be created by integrating

basic process components, both hardware and software, that can be

rearranged or replaced rapidly and reliably [37]. Any adjustment to production

capacity or functionality can be carried out through reconfiguration (and not

reprogramming), thus enabling addition, removal or modification of specific

process capability, control, software, or machine structure. Open-architecture

control (i.e. reconfigurable software), modular machines (i.e. reconfigurable

hardware) and early operator training are RMS key enabling technologies [61].

Overall, RMS aims at [60]:

• reducing lead time for launching new systems and reconfiguring existing

systems, and

Chapter 2 : Manufacturing Systems Review

P a g e | 21

• rapidly modifying and quickly integrating new technology and new

functionality into existing systems through rearrangement of basic

components (hardware and software).

For a manufacturing machine system to be readily reconfigurable (and achieve

desired reduction in lifecycle cost and time), it must possess certain RMS key

characteristics as prerequisites, summarised in the table 2.1 below [37, 58, 60-

63]:

Key Characteristic

Summarised Description

Modularity

All the major components (for example;

mechanical structural elements, control

systems, software and tooling) have to be

designed in a modular fashion. Manufacturing

machines (and its peripherals) can be quickly

built and ramped up, if its software and

hardware is designed with modularity in mind.

Integrability

The machine system has to be engineered

from a pre-designed set of components for

ready integration, and any future introduction

of new technologies has to be accommodated.

Customisation

By utilising the concepts of customised

flexibility and customised control, RMS can be

configured to meet the requirements of a

whole part family. Customised flexibility means

that the dominant features of the part family

being manufactured, has to determine the

overall machine configuration. Customised

control can be achieved by integrating control

components with the help of open-architecture

technology which can provide the exact

control functionality needed.

Chapter 2 : Manufacturing Systems Review

P a g e | 22

Table 2.1: Key RMS Characteristics

A project initiated by the Manufacturing System Integration (MSI) Research

Institute at Loughborough University has successfully examined a Component

Based (CB) Approach (described in the chapter 3.2) to engineering machine

control. This approach enables design and implementation of production

machines to support next-generation reconfigurability requirements discussed

earlier. Since the primary focus of this research is the operator interface system

(i.e. HMI) aspect of these machines that provide control and monitoring

Convertibility

System has to permit easy conversion

between existing products, which enables

rapid calibration of the machines after

reconfiguration. Furthermore, machine system

should be adaptable for future products.

Scalability

RMS is highly scalable which enables rapid

capacity change, incrementally and

economically. Machines may require, for

example, addition of spindles to increase their

productivity. This requires machine systems to

be as scalable as possible, especially in

product volume.

Diagnosability

RMS enables quick identification of reliability

and quality issues that occur in machine

systems throughout their lifecycles. Machine

information (i.e. machine status and

manufacturing process) has to be distributed

using web-based technologies (in the form of

web-based HMI’s) for organisations to closely

(and remotely) monitor and control their

manufacturing activities (using flexible system

architecture). These features are very critical

in reducing machine ramp up time for RMS

(hence the main focus of the research

described in this thesis).

Chapter 2 : Manufacturing Systems Review

P a g e | 23

throughout their lifecycles (as described in the chapter 3.4.1), a review of

existing manufacturing practice is covered next to identify the state-of-the-art in

manufacturing automation practices.

2.3 Part B: Existing Manufacturing State

To appreciate the state-of-the-art in discrete manufacturing, this section initially

depicts the hierarchical levels of operations generally found in a manufacturing

facility followed by the existing operator interface to PLC architecture. The

scope of operator interface system within manufacturing machine lifecycle and

existing maintenance procedure is then described. An overview of operator

interface users (i.e. roles) is provided to integrate requirements of various users

within next-generation operator interface system design and implementation for

control and monitoring machines. Lastly, major limitations (which eventually

instigate the research need) are summarised.

2.3.1 Hierarchical Levels of Operations in Manufacturing Facility

Figure 2.3 shows a typical manufacturing hierarchy based on the ANSI/ISA

standard-1995 [64], ISA-1999 [65], Purdue reference control model [66] and

Ford Motor Company’s Fox programme assembly layout (chapter 8.4). It

depicts the integration levels and zones describing a link between a typical

shop-floor manufacturing system and business systems. This depiction is useful

for exchanging machine-critical information consistently and securely between

manufacturing systems and business systems, and forms basis for their

integrations. It comprises of a number of hierarchical levels described as

follows:

Enterprise Zone: This zone’s level is concerned with systems supporting

enterprise resource planning and distribution, supply-chain management,

factory production scheduling, order management, business planning and

operational management. In terms of network, this forms part of corporate

Chapter 2 : Manufacturing Systems Review

P a g e | 24

network which is usually isolated from the other levels. This level typically

interfaces downward to the level 3.

Manufacturing Zone: This zone’s level is where all the key applications

needed for collecting data for analysing and logging purposes are found.

Typically, Ford UK implements production monitoring system called POSMON

[67] and other quality assurance systems at this level. Collected data (from the

level 1) can be displayed in various formats (for example, Microsoft Excel) and

can be accessed from various locations throughout the plant. In terms of

network, this level is typically found in an intranet network zone.

Cell / Area Zone: This zone has three levels. Level 0 is termed as a field level

which comprises of sensors and actuators that perform various operations

(based on commands from the level 1) and propagates its states to higher level.

Devices operating at this level are usually connected using field bus networks

[68].

Level 1 is responsible for processing data and directly influencing machine

operations [69]. At this level, PLCs and microcontrollers are implemented.

Applications at this level require cyclic transport functions which enables source

information to be transmitted at regular intervals due to strict timing constraints

[70]. The size of machine status data is usually very small where as the data

representation is as compact as possible to reduce message transfer time [71].

This level can sometimes be further decomposed into a group level and a unit

level. A group level controller coordinates activities of several unit level

controllers. This level contains the true heart of the automation system [72].

Level 2 is where operator interface system is usually found within the hierarchy.

It is this level where machine data is actually displayed to a human operator,

which in turn may aid in decision making and carrying out of necessary

operational and maintenance tasks on manufacturing machines. Next section

illustrates the existing operator interface to PLC control system architecture

currently implemented in powertrain manufacturing automation.

Chapter 2 : Manufacturing Systems Review

P a g e | 25

2.3.2 Operator Interface – PLC System Architecture

Operator interface system has evolved, from being just an entity supporting

simple requirement for monitoring an activity to a sophisticated tool, for

controlling and monitoring complex processes in manufacturing systems [73].

The future of HMI is certainly deviating from its existing implementation trend

where anytime anywhere access to shop-floor information is no longer

considered impractical.

The discrete manufacturing hierarchy described in the section 2.3.1 showed an

overview of manufacturing system’s architectural level integration to business

systems. Drawing from the existing literature and Ford Motor Company’s

existing setup (chapter 8.4), typical system architecture in terms of data control

and monitoring using operator interface system is conceptually shown in the

figure 2.4 [17, 19, 47, 72, 74-77]. This common architecture is independent of

the technology and can be mapped to any implemented networks, servers and

applications in a physical world.

In the setup below, control device 1 and control device 2 correspond to PLC

devices. PLC is the most widely used industrial control device; its logic can be

programmed using languages like Instruction List, Structured Text, Function

Block Diagram, Ladder Diagram and Sequential Function Charts, confirming to

the IEC 61131 / 61499 international standards [78]. The implemented control

Level 4 Enterprise Zone ERP and MES

Level 3 Manufacturing Zone POSMON, QLS, Application Server, HMI

Level 0

Level 1

Level 2

Cell / Area Zone

Sensors, Actuators, Drives, Robots

PLC Controller and Remote IO

Full Control HMI

Figure 2-3: Hierarchical Levels of Operations in Manufacturing Facility

Chapter 2 : Manufacturing Systems Review

P a g e | 26

program is usually referred to as the machine control logic. This logic contains

the production machine’s sequencing and interlocking reasoning that supports

real-time cyclic communication with the operator interfaces and I/O (Input /

Output) signals at the field level for handling sensors and actuators.

The common language for data transfer within this architecture is through the

OPC (OLE for Process Control) gateway. OPC gateway is the communication

link which has become a defacto standard for retrieving data from PLC

applications to the operator interface system [17, 76].

Operator Interface system is a software system usually programmed using

vendor’s proprietary software tools, and installed within an industrial vendor-

supplied panel that interfaces to the machine’s control logic. Two types of data

can usually be visualised within the HMI system, i.e. soft real-time and historical

machine status. Multiple HMI panels can usually be implemented to

simultaneously monitor machine’s records from various locations around the

machine. To accommodate this functionality, PLC controls the access of various

HMI clients to operate and monitor the machine. Furthermore, HMI system

Figure 2-4: Generalisation of Existing HMI - Control System Architecture

Network

PLC Control
Device 1

PLC Control
Device 2

Sensors Actuators

OPC Gateway

OPC Client

OPC Server

HMI System Data Server, for example POSMON

Look up

Database

Level 0

Level 1

Level 2 /
3

Chapter 2 : Manufacturing Systems Review

P a g e | 27

interfaces with the control network to transfer low-level control device’s register

information which is used to describe the machines’ real-time status. The HMI

system contains a look up database that converts machine information into

human readable machine descriptions and propagates it to the HMI screens.

Limitations of the Current Approach

The current approach of PLC-HMI architecture implementation has a number of

problems as discussed next. All these factors ultimately increase machine

lifecycle costs and complicate its support process.

• Supply-chain vendors (such as machine builders) tend to use proprietary

technologies to retain their customers for obtaining maximum benefits

when any changes are required. A change is not only costly but also

requires a specialist knowledge base (or skill set) to develop and edit

HMI programs due to difficulties in understanding the implemented

solution [27]. End users and machine builders have found that when

changes are required to such systems, the diagnostic engineers would

spend large amount of time learning the programmer’s individual coding

style before diagnosing the actual machine faults. Difficulties occur in

maintaining consistency between machine control system and HMI. The

HMI and diagnostics are usually difficult to follow as they are not linked to

the main control program and may not follow the same program

sequence. The result is that when the PLC program itself is altered the

HMI program may not be updated and hence the displayed messages

soon fail to be correct or useful for an operator [79-81]. Thus, the HMI

software must be updated with consistent naming and messaging data in

order to display the correct message to an operator. A large effort is

therefore required to accurately maintain the accuracy of any updates

and control software releases.

• Data interoperability issues exist because machine support systems (or

solutions) adopted and implemented by end users are provided by

Chapter 2 : Manufacturing Systems Review

P a g e | 28

various vendors [11]. A single supplier (i.e. controls vendor) may not

provide all the control equipments and software required in an engine

production programme. Technically, the goal is to connect automation

components from different vendors in order to obtain the most efficient

and cost-effective solution. Since each vendor adopts a different

approach to their data model and communication protocol

implementation, interoperability issues between the control device and

HMI application still may exist. Owing to these interoperability issues,

end user’s are usually locked to a specific supplier to keep the overall

implementation complexity lower.

• While existing HMI system is traditionally used for control and monitoring

industrial machines, the greatest disadvantage of these packages are

their high costs to companies and the restrictions imposed by the limited

types of controllers and monitoring devices they support [47]. Often end

users are tied up with a specific vendor for a production machine owing

to the closed support solutions they offer. Since control systems and their

associated operator interface systems are usually generated by the

same vendors, this increases isolated islands at the shop-floors.

Presence of these isolated islands requires drawing out separate

machine maintenance contracts for various vendors.

Emerging Trends and Issues

While traditionally, operator interface systems have been functioning on a panel

around immediate vicinity of a production machine, current advancement in the

field of ICT has created an opportunity of operating a web-based HMI which can

enable anytime, anywhere access to the shop-floors. This has resulted into

possibilities of driving operator interfaces beyond just being user interfaces by

accommodating advanced capabilities easily. To address security aspects of

implementing remote connectivity, a firewall can be usually setup. The firewall

isolates the internal network from the external network (i.e. internet) by allowing

specific connections to pass while blocking others, protecting the internal

Chapter 2 : Manufacturing Systems Review

P a g e | 29

network from any unauthorised access. Additional mechanisms such as user

credential logins and data transfer encryptions can also be implemented by

vendors for added peace-of-mind.

In addition, applying web services for defining control devices is attractive both

to manufacturers and system vendors as it simplifies device installation through

reconfiguration and enables high-level control and monitoring applications to

easily integrate with the control system [82]. A typical example of this is the

design of FTB (Field Terminal Block) by Schneider Electric (more information is

regarding this device is provided in the chapter 8.2). The traditional PLC

implementation uses OPC gateway for communication, which in turn is made up

of an OPC server (proprietarily designed and provided by control vendors such

as Siemens, Schneider Electric, etc) and an OPC client (can be programmed by

anyone to link the PLC’s OPC server to third-party engineering tools). When

comparing this approach to the web services-based approach, the later

promotes open standards through the use of XML over the web. Since XML

presents data in a uniform format, it encourages open system implementation

and makes it a good fit for distributed web architecture, where as PLC-based

systems are characterized by their lack of agility and are often difficult to modify

and extend due to their proprietary nature, and therefore do not provide the high

degree of flexibility that is required for today’s production machines.

However, web services use SOAP (Simple Object Access Protocol) as a

message envelope for data transmission which potentially contributes to higher

network bandwidth usage owing to its large size of 1 kilobyte per message. This

may lead to system integrity issues especially when web services are employed

at both levels of the system architecture (i.e. control device level and web-

based operator interface system level).

2.3.3 Operator Interface System Scope within Machine Life Cycle

Since global production systems have become more important, machine

lifecycle support (and its maintenance) has become an integral part of

manufacturing systems [11]. With demands triggering frequent product

Chapter 2 : Manufacturing Systems Review

P a g e | 30

changes, their lifecycles are often measured in months rather than years. This

trend of shorter product life is forcing production machine development lifecycle

to be ever-shorter. Concurrent engineering of the product and the production

machine through compressing timescales may be the only possible solution to

bringing products rapidly in the market [54]. Though product development time

has been significantly reduced by usage of Computer Aided Design (CAD)

tools, this reduction is not paralleled in the design and development of

production machines [60].

Presently, a development and implementation project for a new product typically

takes 42 months (i.e. twice as long as the targeted time) in car manufacturing

[83]. It begins with conceptualisation of a new vehicle (i.e. car) model and the

engine associated with it, which in turn leads to the product design process.

Midway through the product conceptualisation process, an end user contacts a

machine builder to begin the process of the machine design and build for the

vehicle engine system. The process of machine design and build normally takes

53 weeks to complete as shown in the figure 2.5 and it is deemed to be the

riskiest process since it is extremely hard to modify the software and the

hardware in existing systems, especially later within the lifecycle. Furthermore,

since the engineering activities are resourced by distributed partners with

different foci of concern, expertise and goals, ad hoc integration methods and

mechanisms are currently utilised. It is essential to provide support at various

key phases of the machine lifecycle to closely monitor and control its activities.

To appreciate the extent of problems associated with the life cycle of a

production machine, specifically from the operator interface systems’

perspective as it is the focus of this research, an insight to the design and build

process has been described in this section of the thesis (see accompanying

figure 2.5). This discussion has been determined from the available literature,

interviews with a number of industrial collaborators (i.e. Schneider Electric,

Siemens, Ford Motor Company, Krause and SAP) and research projects (i.e.

SOCRADES and BDA) [11, 80, 83-90]. The main aim is to institute application

engineering requirements for next-generation operator interfaces, implemented

Chapter 2 : Manufacturing Systems Review

P a g e | 31

within suitable system architecture, for control and monitoring of production

machines throughout their lifecycles.

HMI Requirements for Machine Design and Build Process Support

The engineering process of designing and building a production machine

involves an end user, a machine builder and a controls vendor. It is almost

entirely a sequential process. Initially, end users have a requirement for a new

production machine which addresses a set of business needs, for example,

production capacity needs to increase or a new product has to be

manufactured. HMI aspect of the production machine is not given any attention

at this phase (i.e. concept phase in the figure 2.5). Machine builder is

responsible for looking after the machine related aspects of the project where

as the controls vendor is responsible for providing a suitable proprietary control

technology (i.e. software) and hardware, and proposing network architectures

which can meet the project requirements. Subsequent phase is the specification

formalisation phase of the lifecycle where technology for the machine (including

the required number and locations of the HMI stations within a production line)

is specified. This phase (i.e. specification phase in the figure 2.5) is a result of a

combined effort from the end user, the machine builder and the controls vendor.

HMI specification is defined by drawing a schematic (either through manual

sketches or stand-alone graphical screen layout tools) of each individual screen

detailed with its associated view and buttons for navigational, monitoring and

control purposes. This process cannot begin until the machine has been roughly

designed as HMI screens relate specifically to the particular machine’s

configurations. These configurations (with the associated process cycle charts)

describe timings for machine movements. The requirements specification is

then agreed upon and approved by supply-chain partners. It has to be noted

that the HMI specification (and thus the final HMI system) is machine-

dependent, i.e. its design is uniquely tied up with the machine components and

cannot be reused or reapplied to other production machines within an engine

programme.

Chapter 2 : Manufacturing Systems Review

P a g e | 32

Figure 2-5: Machine Lifecycle Process with HMI System Usage Requirements

Major Partner Involvement

Key:

End User E

Machine Builder M

Controls

Vendor
C

53 Weeks

Job 1 (Machine Lead Time)

 Existing: HMI System Usage

Required: Web-based HMI System Usage

with 3D Visualisation and Simulation

1 Concept Business Requirements E

2 Specification
Technical

Requirements,
Behaviour and Control

M C E

TI
M

E
Machine Design and Build Lifecycle

Process

 6 Install and
Commission

Machine Evaluation
and HMI Training

M C E

8 Reconfigure
and Reuse

Reprogram
Everywhere

M C E

7 Maintenance Ongoing Support M C E

5 Try-out Witness Team Visit
Evaluation

M E

4 Build Physical Build and
Local Commission

M C

3 Design Machine – Mechanical,
Electrical and Control

HMI System M C E

42 Months time

Jo
b

1

Product Development

Product Requirement

Product Design

Machine Design & Build

Installation

Chapter 2 : Manufacturing Systems Review

P a g e | 33

The design phase of the machine lifecycle (i.e. machine design, and HMI design

and development) is a sequential process, beginning with mechanical

engineering followed by electrical and hydraulic system design. Due to inherent

characteristics of conventional approaches to HMI system implementation, its

development cannot be completed until the control system’s logic mapping

information is available, the mechanism which allows the HMI to interface to the

machine’s control system (i.e. PLC system). The control software is engineered

by specialist programmers and implemented to the end user required standard

as per the specification. Associated HMI system is then added later on with the

required monitoring and control functionalities by experts having participated in

previous similar projects. Usually this process involves copy-paste coding

techniques where PLC control logic codes are duplicated in the HMI side for it

to reflect the machine configurations. This sequential approach of performing

activities contributes significantly to the machine development efforts and time –

critical metrics in today’s manufacturing environment. It is necessary to

compress the time for these activities where possible through concurrency and

use of previous designs with the aid of engineering tools.

The next phase is the build phase of the lifecycle as shown in the figure 2.5

where the machine is physically built and commissioned at the machine

builder’s site prior to delivery to the end user. At this phase, sections of the

machine are tested in order to reduce costs and to reduce time needed later to

commission the complete machine system at the end user’s site. The physical

machine design and the control system design remain isolated from one

another prior to this phase. In practical powertrain commissioning process,

machine builder cannot currently evaluate commission activity in a virtually

simulated environment prior to the actual machine build. Simulation can enable

physical machine manufacturing to be delayed as long as possible which is

beneficial as product engineering changes impact on the specification and build

of the machines. Cost and time savings can be made if the machine can be built

later when the product design has matured.

The next phase is the try-out where end users’ witness team travels to the

machine builder’s site for evaluating the to-be commissioned system. Presently,

Chapter 2 : Manufacturing Systems Review

P a g e | 34

the whole system cannot be validated as there is large number of components

and no tool practically exist supporting runtime evaluation of every component.

Furthermore, the cost incurred for the end users in travelling and subsistence is

significantly huge. At this phase, there is no provision of remotely monitoring

and controlling production machines within Ford production programme to

reduce or to avoid unnecessary costs incurred in visiting machine builder’s site.

After this visit, the machine builder ships the machine to the end user’s

production facility. The machine builder’s engineers come to the end users site

to install and test the machine (i.e. install and commission phase in the figure

2.5). Simultaneously, the HMI system is implemented for the first time and any

required support becomes the responsibility of the controls vendor. It is not until

the machine has been installed and commissioned at the end user’s site that

the machine operators can be trained on the HMI system usage. This

significantly delays and sometimes compromises the machine operator training

process. It is often in the initial ramp up periods of a machine’s production and

operation when this training occurs, generally reducing the efficiency of the

production machine. Once the machine has been installed and fully tested, the

end user is ready to produce the first car engine (i.e. Job1 also known as the

machine lead time). At this phase, production rates are monitored to ensure that

the machine is ramping up satisfactorily and system reliability targets are being

met. Although end users are trained to maintain these machines, it is a very

common practice of consulting machine builders when machine problems are

not readily resolved. Existing machine maintenance process is problematic and

better opportunities are available to provide a cost-effective maintenance

solution (described in the next section of this chapter).

Due to the translation required between the process engineers, who define the

requirements, and the system engineers, who implement the systems, quite a

few problems can often occur, for example;

• Process engineers cannot change or modify the control logic in installed

systems easily on incremental basis at a later date without involving a highly

specialist skilled system engineer who is familiar with the control logic and

Chapter 2 : Manufacturing Systems Review

P a g e | 35

HMI software. This is because the HMI system is tightly coupled with the

machine control logic.

• The usability and suitability of the operation of the new HMI system remains

largely unknown to end user until the physical machine has been built,

controls have been wired up, the HMI software implemented and the system

is finally tested. This is because the lifecycle is sequential and thus the HMI

software is immediately developed after the control logic has been designed

and programmed.

• HMI system is not integrated with production machine’s process and control

logic; therefore often the same information is entered many times into

different systems through copy-paste coding techniques. In some cases, end

users have reported that the assigned machine component names in the

control logic and the HMI are not consistent which consumes more time and

leads to confusions, when operating and troubleshooting a machine system.

The manner in which production machine is currently engineered is a traditional

top down approach that does not support simultaneous engineering, is not

reversible, uses proprietary techniques and often errors cannot be found until

the system is completely installed. Moreover, commissioning and maintenance

requires experts owing to the complex hard-coded programming and vendor

specific technology implementation. These factors raise data interoperability

issues, contributes to the implementation complexity and performance

degradation, and increases process ramp up time [82]. According to Haq [11],

20 million Euros can be saved in a typical European production line if the ramp

up is done twice as fast. Any machine reconfiguration activity needs additional

programming efforts at the HMI side. Figure 2.6 (a) describes the existing

sequential process of integrating control logic with the HMI system in a machine

lifecycle, and any subsequent modification requirement accommodation. Figure

2.6 (b) shows the required process of integrating control logic with the HMI

system within the machine lifecycle. It can be clearly seen that the required

process is much more efficient than the existing approach to integration and

reconfiguration.

Chapter 2 : Manufacturing Systems Review

P a g e | 36

Figure 2-6: Comparison of Existing and Required Approach to Control Logic - HMI Integration

Control Logic

Implement machine
logic into a control
device e.g. PLC

1

Re-program
everywhere 6

(a) Existing Approach

Control Logic HMI

Now program and tightly
map the HMI to the
control logic through

copy-paste techniques

2

Control Logic HMI POSMON

Then program a link to an end user specified
functionality requirement e.g. analysis tool called
POSMON (used by Ford Motor Company). So

re-program at both sides; the HMI and the
control logic

3

Inconsistencies / errors?
Then repeat the process

1-3
4

Upgrade or reconfigurability
requirement: Physically add a

screen to the HMI through
additional copy-paste

techniques 5

Machine

Lifecycle

(b) Required Approach

Implementation of the

machine logic

automatically generates

HMI system screens at

runtime. The HMI system

should be loosely

mapped to the control

logic. No need for

additional coding

Control Logic

1

HMI

No inconsistencies or errors

between the HMI and the

control logic. This is due to

dynamic population of the logic

from the control to the HMI

system. No skill set for coding

required. HMI system runs

using open standards on a PC

3
4

Any reconfigurations or

upgrades at the control side will

automatically be mirrored at the

HMI side. Thus less effort is

required in doing so and the HMI

will be ready for training and

operation before the machine is

physically built Machine
Lifecycle

Control Logic

HMI

POSMON

2

Adding POSMON

functionality to the

control will update

the HMI system

screen with the

required functionality

at runtime

Chapter 2 : Manufacturing Systems Review

P a g e | 37

Summarising the illustration shown in the figure 2.5, HMI is only utilised from

the commission phase onwards but there is a need and potential for extending

the scope of its usage to support additional key machine lifecycle phases such

as design, build, try-out and reconfiguration.

2.3.4 Operator Interface Supporting Machine Maintenance

A maintenance process is usually regarded as an expensive activity, which

never create profits [91]. Machine maintenance is the most efficient way of

keeping its functional and physical level as per the business requirements and

environmental regulations. A well-maintained production machine is more likely

to produce quality products; where as poorly maintained machine may lead to

regular equipment failures, delayed production schedules and lower availability

[92]. While maintenance can be planned, most of the machines are usually

repaired when unexpected changes occur, owing to the limitations in trained

manpower and production running costs. Any unexpected changes at the shop-

floor level such as introduction of a new process or product, detection of

missing parts or breaking down of the machine causes a ripple effect to the

entire production and maintenance budget [28]. Any downtimes caused by such

changes need to be reduced to keep the overall manufacturing cost as lower as

possible.

As production has become more complex and globalised, it is becoming more

difficult to maintain machines cost-effectively. Due to geographical distribution

of supply-chain partners and manufacturing activities, and competition among

vendors to market their products quickly, Mean Time To Repair (MTTR) the

machines need to dramatically decrease. In automotive sector, maintenance of

production machine is usually carried out by vehicle manufacturers (i.e. end

users) with the help from the machine builders. An existing machine

maintenance procedure between an end user and a machine builder is depicted

as a typical scenario in the figure 2.7 [79, 80]. Drawing from this typical

maintenance process, when an end user (for example, Ford Motor Company)

identifies any problem with a machine (for example, an Oil pan rundown

machine as described in the chapter 8.3) operating in a production line (for

Chapter 2 : Manufacturing Systems Review

P a g e | 38

example, Fox program’s Craiova line as described in the chapter 8.4), their

maintenance team will attempt to establish root cause of the problem and

solutions for it using a vendor-specific operator interface. If the problem cannot

be solved or it is completely new, then the end user seeks the machine builder’s

help (for example, ThyssenKrupp Krause). This consultation process is carried

out using telephone and email conversations since the end user’s machine

operator interface (designed and implemented by the machine builder) cannot

be remotely accessed by the machine builder’s maintenance team. In most of

the cases, machine builder’s maintenance engineers rely on the archived

machine records (usually paper-based representation) of the machine’s control

logic (e.g. written in ladder logic language). In doing so, machine builder’s

engineer tries to understand the remote situation based on verbal descriptions

provided by the end user’s engineer, and generate a possible solution.

Figure 2-7: Existing Machine Maintenance Procedure

Ford Motor Company
 (End User)

Identify
problem and

establish
solution (s)

onsite

1

Assess, validate
and try

solutions

Trigger
external

consultation 2

Verbal and

textual
communication

5
Do I have the right

resources and
information?

ThyssenKrupp Krause
(Machine Builder)

Maintenance Engineer

travels to site 4

“Visualise”, Diagnose and
Communicate

3

Experience

Mental
Model

Machine
Logic

Not Solved?

Not Solved?

Chapter 2 : Manufacturing Systems Review

P a g e | 39

The engineers, relying on their personal experiences in the area of problem

diagnostics coupled with the available information (i.e. archived machine logic

and email/telephone messages); try to form mental models of the machine by

“visualising” the problems. A great deal of time is required in establishing the

current state of the machine. The problem solving process involves suggestion

of various probable solutions to on-site maintenance engineers to attempt on

the faulty machine. This process of recovering from a problem by means of

verbal instructions is highly problematic. If the problem cannot be solved, then

the machine builder’s maintenance engineer(s) have to travel to the end user’s

production plant, which is costly in terms of resources. Sometimes,

maintenance engineer(s) do not have accurate problem description beforehand

(due to lack of visualisation) when they arrive onsite, leading to having

inappropriate tools to solve the actual problem. In this case, further valuable

time is wasted waiting for the required resources to reach the site. In some

cases, machine builders negotiate contracting a control’s vendor engineer at

end user’s site for certain time for troubleshooting control issues. This

negotiation costs lots of money to the machine builders.

HMI Requirements for Remote Control and Monitoring Support

There is a need for maintenance teams to visualise remote machines at real-

time by accessing machine’s operator interface to focus on analysing the cause

of the problem accurately rather than attempting to establish the current state of

a machine, in order to reduce its downtime. As identified from these research

materials [51, 93], every minute of delay or malfunctioning in a machine

production line, costs up to 6000 Euros for the end users. With the increasing

complexity of production lines and strong market competitions, maintenance

teams (and machine builders) are under a lot of pressure to ensure high

machine availability and productivity throughout its lifecycle [94].

In response to these issues, remote maintenance is a solution which can

provide high-quality, cost-effective and quick response service [95]. This refers

to maintenance, repair and diagnosis of the machine over a spatial distance,

Chapter 2 : Manufacturing Systems Review

P a g e | 40

and through ICT, to enable real-time assessment of its performance and

reliability. In order to provide such a service, engineering tools are needed that

can closely monitor its performance and effectively control it remotely, while

documenting its behaviour for best practices [79, 96]. Some attempts have been

made by machine builders to remotely logon to the end user’s machine;

however, they are only able to access the status of the machines’ control logic,

under tight supervision of the onsite maintenance team. They do not have

access to end user’s operator interface with integrated three-dimensional

simulation of the machine’s control logic and physical representation of the

machine in real-time at their home site [80].

Feedback from machine builders and end users demonstrates the importance

of remotely accessing operator interface with integrated virtual representation

and emulation of the machine at real-time through its lifecycle [29, 79, 80, 83].

Machine simulation would provide a facility to evaluate the physical machine

behaviour against current operation of the machine’s control logic, consequently

reducing the effort involved in machine diagnosis. Furthermore, since machines

are required to be designed and built with reconfigurability in mind, stakeholders

are looking for remote engineering solutions which support reconfigurability, can

provide cost-effective maintenance capabilities, and meet the challenges of

globalisation, security, safety and environmental regulations [1, 96, 97]. Current

engineering tools and solutions used by supply-chain partners do not facilitate

these functionalities [12]. There is a strong need to utilise and implement

opportunities provided by the ICT (especially web-based technologies) in

suitable shop-floor system architecture to support the requirements identified in

this research. Figure 2.8 presents the required procedure to maintaining

production machines and compares it with the existing process as described in

the figure 2.7.

In summary, having an integrated remote support solution within a machine’s

operator interface will be beneficial to all the partners involved in the lifecycle of

a machine, as it would support its design, build, try-out, commissioning,

maintenance and reconfiguration processes as described in the section 2.3.3.

Firstly, the machine builder will be able to assign man power accordingly when

Chapter 2 : Manufacturing Systems Review

P a g e | 41

delivering a machine and training maintenance engineers on their home site

using operator interface. This will improve both the cost and time efficiency for

the machine builder. Secondly, this facility will save maintenance engineer’s

travel time when troubleshooting machine problems. Even if they travel to the

end user’s site, these engineers will be able to go with a detailed knowledge of

the problems. Thirdly, all the involved parties will be able to remotely monitor

the machine status (throughout its lifecycle) to be able to evaluate its

performance (for example, when an actuator wears out), plan periodical repairs

and predict machine degradation, ensuring that machine maintenance is

scheduled accordingly. Such a service will enable end users to reduce their

inventory of components and acquire them if and when required.

Figure 2-8: Required Machine Maintenance Procedure

1) Identify problem and
establish solution, locally.

2) Trigger external
consultation

3) Visualise, diagnose and
communicate

4) Machine Builder’s
Engineer travels to site

5) Do I have the right
resources?

Using machine’s operator interface (with integrated virtual
simulation), locally:

- Locate the actual fault (i.e. problem)
- Playback machine events

This is to identify root cause of the problem.

Provide external monitoring access to machine builder’s
maintenance team to remotely identify the actual fault and
visualise it.

Provide external control access to machine builder’s
maintenance team to remotely operate machine events
(under strict security and safety practices).

Travel to site very rarely, only under exceptional
circumstances.

Maintenance engineer will always have a detailed
knowledge of the problem and the correct resources to
solve the issue (if travel is needed).

Existing Procedure Required Procedure

Chapter 2 : Manufacturing Systems Review

P a g e | 42

2.3.5 Operator Interface Roles in Control and Monitoring Machines

With manufacturing trends focusing on the global markets, application of remote

control and monitoring support functionality throughout the machine lifecycle (as

described in the section 2.3.3 and 2.3.4) involves a number of user roles. Figure

2.9 illustrates various user roles participating in providing local / remote control

and monitoring support in a typical production machine lifecycle [74, 79, 80, 82,

83, 87, 96]. Figure 2.9 has been divided into three parts namely; A, B and C.

Part A shows the actual setup for a typical production machine line

implemented at either an end user’s shop-floor site or a machine builder’s

commissioning site. Part B corresponds to the local machine monitoring and

control functionality implementation where as part C presents the remote aspect

of monitoring and control support.

In this setup, the role of “Value-Added Service” is to mediate the interaction

between the local site and the remote site using any communication mechanism

(for example, Ethernet). Furthermore, it may perform complex data analysis and

manages access security. In implementation practice, these functions may

typically be carried out in a server or a network of servers. Users connect to the

servers through the Internet or a company Intranet; however, the data content

and the communication character may be different based on the user location /

profile. That is the reason to show two “clouds of communication” in the figure

2.9. The roles of various users can be briefly described as follows:

(a) Local Machine Operator: A local machine operator currently monitors

and controls a machine using a proprietary HMI panel usually located in

a centralised control room or close to the actual machine. His / Her

access proximity is local to the machine system after its implementation

at the end user’s site. The required approach is to support similar tasks

but using vendor-independent, cost-effective and portable HMI system.

(b) Remote Machine Operator: A remote machine operator has tasks

similar to a local operator but with remote access proximity enabling him

/ her to access system without any geographical constraints. In existing

implementation, there is no provision of this role owing to the limitations

Chapter 2 : Manufacturing Systems Review

P a g e | 43

explained in the lifecycle description (section 2.3.3 and 2.3.4) of this

thesis. The required approach is to enable a remote machine operator

role to monitor and control a production machine, firstly during its build

and commissioning at the machine builders site to speed up the operator

training process, and secondly to remotely view a machine’s operational

status at runtime (i.e. after its implementation at an end user’s site).

(c) End User Diagnostic Engineer: An end user diagnostic engineer is the

first point of contact for local machine diagnostics, should a machine

fails. His / Her access is usually local to the machine when it is fully

implemented at the end user’s shop-floor. He / She may use the same

type of HMI screens as the local / remote machine operator. It is not

practical to remotely support this role since there is a need for end user

diagnostic engineer to always be physically available at a local site.

(d) Machine Builder Diagnostic Engineer: Since a machine builder

supplies the production machine, they are responsible to provide an

after-sales service to an end user by supporting the maintenance

activities, if the end user’s maintenance team are unable to troubleshoot

any faults in the machine system. It is the responsibility of the machine

builder diagnostic engineer to step into this role (in some situations this

role may be sub-contracted to controls vendor engineer). In the current

practice, his / her access proximity is local to the machine which forces

unnecessary travel and associated costs (if the engineer is not locally

available). Furthermore, if machine builder sub-contract this work to a

controls vendor engineer (who is locally based on end user’s premises),

he / she may not be familiar with programming issues which may arise

when troubleshooting problems during maintenance. The requirement is

to use generic auto-generated HMI screens throughout the lifecycle so

that the HMI system can be remotely shared for overall efficiency in the

maintenance process.

Chapter 2 : Manufacturing Systems Review

P a g e | 44

(e) Controls Vendor Engineer: Currently, a controls vendor engineer

usually supports the HMI system (which is tightly mapped to the

corresponding machine control logic and installed in control vendor’s HMI

Li
fe

cy
cl

e
C

on
tr

ol
 a

nd
 M

on
ito

rin
g

Su
pp

or
t

HMI Display (1....n)

Controller (1....n)

Machine (1....n)

Sensors Actuators

End user’s shop floor site

or machine builder’s

commissioning site

Part B

Local Network (a)

(c)

(d)

(e)

(f)

Part C

Value Added Service

Inbound / Outbound Network

(b)

(d)

(f)

(g)
 (h)

Part A

Key:

(x)

X =

a = Local Machine Operator

b = Remote Machine Operator

c = End User Diagnostic Engineer

d = Machine Builder Diagnostic Engineer

e = Controls Vendor Engineer

f = Operator Trainer

g = End User Witness Team Member

h = Enterprise and Management Level User

Figure 2-9: User Roles Providing Control and Monitoring Support in Machine Lifecycle

Chapter 2 : Manufacturing Systems Review

P a g e | 45

panels) best suited for the application and plant location. The required

approach is to have a loose coupling between the control and the HMI

system such that HMI can be installed on PC’s using standard open

technology. Access proximity for this role is local to the machine.

(f) Operator Trainer: An operator trainer is responsible for training machine

operators using HMI system to perform daily control and monitoring

activities. Currently, their access proximity is local to the machine such

that they train operators after the machine has been physically

implemented at an end user’s shop-floor. The required approach is to

provide them remote access proximity to enable them to train operators

on the machine prior to the machine build and commissioning phase.

(g) End User Witness Team Member: End user witness team member

evaluates a machine by travelling to a machine builder’s site during its

build and commissioning phase. Their access proximity is local as they

test machines by physically travelling to the machine location. It is a

requirement to provide this role remote access proximity enabling one to

evaluate machine’s operational status using the HMI without incurring

additional time and costs in travelling and subsistence.

(h) Enterprise and Management Level User: The primary interest of this

user role is targeted towards asset management and production

planning; hence they do not directly access remote monitoring and

control functionality using HMI screens throughout the machine lifecycle;

however, they do indirectly analyse the collected operational information

for strategic business actions. This is why they are not linked to any of

the access levels in the figure 2.9.

2.4 Manufacturing Review Analysis

In this chapter, the major limitations and requirements from the manufacturing

aspect of automation research have been derived from examining the current

Chapter 2 : Manufacturing Systems Review

P a g e | 46

literature. As identified and discussed, the demands for a change in

manufacturing practices have been driven by factors such as globalisation,

environmental concerns and ICT opportunities. To address global pressures

web-based technological opportunities are further pushing the operator

interface system’s access boundary to easily accommodate remote control and

monitoring functionality within current shop-floor system architecture. Existing

HMI-PLC control system architecture has a number of issues which clearly

demonstrate that they contribute to the overall unnecessary costs and

complexities experienced throughout machine lifecycle process; owing to

driving factors like rigidity and closeness of the implemented solutions. A web

services-based control description is practical, attractive and the way forward;

however, owing to the SOAP packet overheads, system integrity issues may

arise especially if web services define the entire system architecture.

This chapter also discussed various types of HMI user roles involved within

machine lifecycle to identify their needs. Their immediate needs are to have a

solution that supports generic, vendor-independent, portable and cost-effective

HMI screens which are loosely coupled to the implemented control logic. The

existing limitations and the need to address next-generation operator interface

system requirements (with its associated benefits) have been summarised in

the table 2.2 below. This summary justifies a research need to having an

operator interface system, implemented within suitable system architecture,

which can provide effective control and monitoring support to production

machines throughout their lifecycles.

No Research Requirement (s) Major Benefit (s)
1 Faster machine design, build and

ramp up or support for rapid machine

reconfiguration.

• Rapid introduction of a new product hence

shortens its lifecycle.

• Saves time and costs associated with

duplication of efforts.

2

Increase information transparency

and data mobility across

heterogeneous platform systems.

• Information sharing shortens the product

lifecycle and encourages innovation.

• Eases the machine maintenance process

Chapter 2 : Manufacturing Systems Review

P a g e | 47

through learning from past documented

information (i.e. lessons learned),

consequently, reducing the MTTR of

machine systems.

• Establishes relationship between supply-

chain partners by integrating various

applications of suppliers, machine tool

builders and end users. Linking production

with the business enterprise will enable

utilisation and sharing of machine critical

information which aims at reducing cost

and improving the throughput of a

production system. This will improve

business collaboration and support,

through effective data sharing,

visualisation, control and monitoring

system integration.

3

Locally or remotely collect,

disseminate and analyse production

operational information at real-time,

regardless of the machine control

type or its geographical location.

• Prevents manufacturers from being locked

into proprietary solutions that are costly

and functionally limited.

• Improves system performance owing to

lack of heavy vendor-dependent protocol

implementations.

• Close, but flexible monitoring improves

overall system productivity.

• Any development or modification doesn’t

heavily rely on the availability of

experienced engineers.

4

Implement a machine independent

HMI solution which doesn’t relate to

the actual machine or its control

logic.

• Usage of common HMI system screens

throughout various machines (or even an

entire engine production program).

• Reduces system implementation

complexity as devices from different

vendors can easily be integrated into the

control and monitoring architecture.

• Saves efforts, time and costs associated

with duplication of laborious activities.

Chapter 2 : Manufacturing Systems Review

P a g e | 48

5

Evaluating machine commissioning

processes (at machine builder’s site)

in a virtual environment prior to the

machine build.

• Verifies the control logic and the machine

design prior to the physical machine

manufacturing.

• Enables the product design to mature thus

delaying the actual hardware build process.

This saves costs and time associated with

frequent reconfigurations to the machine, to

match the updated product design.

6

Early verification of the HMI system.

• Rapid machine design and quick ramp up

to full production capacity.

7

Early training of the machine

operators (before the actual

commission) or transfer an operator

directly from other machine with the

common HMI.

• Efficient use of human resources.

• Production begins immediately after the

machine has been installed and

commissioned at the end user’s production

plant.

Table 2.2: Manufacturing - HMI Requirements Summary

P a g e | 49

Chapter 3 : Research Context and Focus

Chapter Contribution to this Thesis:

This chapter concentrates on reviewing a number of research approaches to obtain some background

knowledge in order to provide design and focus direction to this research. The major contribution is to

highlight the aim and novelty of this research.

3.1 External and Internal Automation Research

A large amount of research has been carried out in the academia and in

industry to address the requirements summarised in the chapter 2.4. The

domains of these researches surround distributed machine system, the

component based design approach, business-process application integration

and the development of engineering tools. In this section, some of these

research approaches are reviewed to identify their achievements and obtain

some background knowledge in developing the next-generation operator

interface system solution that supports previously identified research

requirements.

3.1.1 Research Centre at the University of Michigan

Engineering Research Centre at the University of Michigan has implemented

the concept of reconfigurable manufacturing system. Their implementation

consists of both real and virtual machines that are controlled over a

communication network and coordinated through the systems unified software

architecture [98]. Figure 3.1 illustrates the implemented primary components as

described below [99]:

• Hardware Testbed: It consists of two manufacturing machines linked

through a conveyor system. These machines operate in parallel and the

conveyor carries pallets which transport the parts to be processed from

one machine to the next.

Chapter 3 : Research Context and Focus

P a g e | 50

• Virtual Factory: Factory simulation software simulates both the real

machine and virtual parts that do not exist in the actual hardware. The

virtual factory is controlled in the same manner as the actual hardware.

• Database and Middleware: Data-centric software infrastructure connects

all the aspects of the machine system to provide rapid prototyping,

integration, and transfer of newly-developed software systems.

• Remote Viewing and Collaboration Tools: These tools are implemented

in the form of vendor-specific web-based HMI’s that provide an operator

with detailed information about the machine’s status. Internet-based

implementation enables remote access of the HMI screens. External

partners user interface (i.e. HMI) tools are adopted and integrated within

the RMS approach. While machine components are implemented with

reconfigurability in mind, this approach is not paralleled when

implementing operator interface systems as they are adopted from

external partners having vendor-specific solutions.

 Figure 3-1: RMS Implementation at University of Michigan

Database and
Middleware

Ethernet Network

Software System Level
Controller

Modular Logic
Control

Virtual Factory Web-based HMI

Hardware Testbed

Chapter 3 : Research Context and Focus

P a g e | 51

3.1.2 Rockwell Automation

Rockwell Automation has focused on developing a flexible and reconfigurable

distributed platform which supports plug-and-play automation systems based on

agent-based technologies. The agent-based approach is implemented with real-

time control agents, and information transfer between agents is implemented on

PLC’s Logix™ control (i.e. its flagship product). The controls interface for the

agents can store and share data using tags. Outside resources access these

tags using an OPC communication bridge and their proprietary Java-based

interface. The existing industrial visualisation solutions based on operator

interface panels also operate with these PLC tag values using their proprietarily

implemented solution [100, 101]. As identified in [102], drawbacks of tag-based

representation requires re-compiling and reloading of the HMI application when

reconfiguration process is undertaken.

In terms of HMI system, shop-floor operations can be monitored over the web

using their FactoryTalk™ studio proprietary package. While this enables

configuring and runtime of web-based HMI that monitors machines having

consistent screens and navigational support, it is not integrated with the

machine lifecycle process in terms of providing early operator training and

machine validation. Furthermore, this product is tightly integrated with

Rockwell’s Logix control platform, ultimately limiting and locking its users to its

flagship products [103].

3.1.3 ITEA SIRENA and SOCRADES

ITEA SIRENA was an award winning collaborative project with Schneider

Electric. It proposed a novel approach of using web services, based on a SOA

standard, to create an open, flexible and agile environment with plug-and-play

connectivity at the device level. It applied the XML-based web services

paradigm for interconnecting distributed components through the use of

Ethernet TCP/IP, which demonstrated the possibility of a universal, platform,

and language-neutral connectivity among various shop-floor components. ITEA

SIRENA proposed the idea of building advanced functionality, embedded into

Chapter 3 : Research Context and Focus

P a g e | 52

devices, to enable new distributed application paradigms based on self-reliant

smart devices [42, 104].

The results of ITEA SIRENA were used as foundation for the SOCRADES

project. This project’s aim was to develop new methodologies, technologies and

tools for modelling, design, implementation and operation of networked

hardware and software systems in industrial automation by exploring SOA at

both, the device level as well as the application level as shown in the figure 3.2

[27, 87]. Initial exploitation of SOA-based web services was carried out using

distributed control devices called FTB (designed by Schneider Electric) in the

car engine manufacturing domain (using the Component Based automation

approach described in the section 3.2 of this chapter) through the use of an

orchestration engine (further information in the chapter 8.2.5). These FTB

devices were programmed to communicate using web services. The future map

of SOCRADES is to implement SOA-based web services in traditional PLC-

based control devices or completely replace these conventional controllers with

fully-distributed high-efficient control devices [27, 87].

Figure 3-2: SOCRADES Approach

Chapter 3 : Research Context and Focus

P a g e | 53

Implementing a SOA web services-based system within a PLC environment can

lead to problems in its real-time control capabilities due to excessive slowness

of the SOCRADES technologies. These technologies represent an increase in

the communication flow between controllers programmed using web services.

Owing to the openness of web services standard (compared to the proprietary

closeness of the PLC’s), currently, it provides a heavy communication

mechanism at shop-floor levels. HMI system implementation along the lines of

SOCRADES technologies would be very beneficial for having a truly open

support framework across the entire supply-chain, however, to successfully

adopt and implement a web service model throughout vertical levels of plant

support would need further protocol compression mechanisms which are

currently being addressed [27].

3.1.4 Other Miscellaneous Research in the Academia

This section reviews examples of some academic researches currently

undertaken within the manufacturing industry. These research approaches are

organised into their respective contribution sections to identify the gap in the

existing manufacturing automation domain.

Remote Control, Monitoring and Maintenance of Machines using Open
Web Standards

When reviewing development of remote control, monitoring and maintenance of

manufacturing machines, open standards (to a certain extent through web

technologies) are usually employed. A number of examples of successful

applications and researches can be found in the literature and in industry.

Among them, Muto [105] presents @factory XML system that provides remote

machine surveillance for information display, video camera monitoring and data

analysis for machines. Sahin [47] implemented an approach to remotely control

and monitor DOPC (Distributed OPC) system where data from multiple

controllers are propagated through the internet in its pure I/O format. Shi [106]

has developed a remote monitoring system for diagnosing faults using an

Chapter 3 : Research Context and Focus

P a g e | 54

expert system implemented on the standard web architecture (through ActiveX

control mechanism for performance improvisation). Kirubashankar [107]

proposes a remote monitoring system for a manufacturing plant where security

of data transfer is managed via VPN (Virtual Private Network) where as

Campos [108] provides an extensive review of application of ICT in the field of

remote monitoring and maintenance of systems. These systems are not

integrated with lifecycle engineering process, thus their usefulness can only be

realised after a machine (and its associated operator interface system) has

been physically implemented at the end user’s site.

Early Training and Machine Validation using 3D Representation

In the manufacturing industry, training is usually realised on the job where

experienced operator or the machine builder engineers train novice operators

after machine commissioning phase using the implemented HMI. New

machines are more likely to have process faults in the early phases and

operators need to be trained for these scenarios. In fact, training is insufficiently

carried out in some instances [109]. Pantforder [110] evaluates a process to

training machine operators using historical records with 3D representation

integrated within the HMI. While this approach enables early training (i.e.

through commissioning phases), it is solely based on combination of old

machine transactions with scenarios which may not reflect the new machine

specification, for example, the sequencing and interlocking logic are unique to

each machine implementation therefore operators need to be trained on the

actual machine that is going to be implemented for them to understand its

operation and any recovery practice. Moreover, there is neither a simulation

process nor integration with the lifecycle engineering process equipped with

real-time data connectivity in the current practices (which is a must for next-

generation HMI [111]). This approach requires machine data from a comparable

machine programme to be available for training the operators, which may be

difficult to obtain.

3.1.5 MSI Research Institute

The MSI Research Institute at Loughborough University has focused on the

lifecycle support of distributed automation systems by replacing the traditionally

Chapter 3 : Research Context and Focus

P a g e | 55

centralised PLC control solution with distributed vendor-independent solution

using a component based (CB) design approach (discussed in the section 3.2),

where the control functionality is embedded into the components [59]. The CB

design has been evaluated using industrial system case studies to create the

design of generic and modular device components, and to determine industrial

feedback regarding its performance and capabilities [51]. This distributed

system implementation has been conceived as a key approach towards an agile

manufacturing system.

The work carried out within this research domain has been usually funded by

the United Kingdom’s Engineering and Physical Research Council (EPSRC),

Innovative Manufacturing and Construction Research Centre (IMCRC) and

European grants, and spans numerous projects such as COMPAG [85], BDA

[112] and SOCRADES [87]. The major industrial collaborators within these

projects have been Ford Motor Company, ThyssenKrupp Krause, Schneider

Electric and Bosch-Rexroth. The ultimate aim of these projects has always been

to research, develop and implement next-generation engineering tools that

support powertrain manufacturing machines throughout their lifecycles.

3.2 Component Based (CB) Automation

3.2.1 General Description

To increase flexibility and reconfigurability in manufacturing systems, modularity

is typically introduced as an agile enabler as discussed in the chapter 2.2.1.

Modularity concept can be found in many related manufacturing areas such as

RMS. A number of research approaches have developed modular

manufacturing production techniques, specifically focusing on rapidly adaptable

and reusable machine systems that support their lifecycle needs [11, 51, 113-

115]. Implementing modular techniques in industrial control engineering enables

dissection of the automation system solution into a set of mechatronic modules

(also known as components) such that if pre-developed and pre-validated, can

be reused within a system with reduced efforts as long as their interface

specification is agreed upon [59, 116]. In the field of software engineering, this

Chapter 3 : Research Context and Focus

P a g e | 56

concept is usually referred to as Component Based (CB) development which

structures a solution around components and their interfaces.

A component is a piece of software which is self-contained and reusable in the

design of large distributed system solution. The construction of any system can

be undertaken through integrating various components using their well-defined

interfaces, which may contain services, attributes, events and times to show

what the component can deliver [116, 117]. Using CB is advantageous since

systems can be developed faster within reasonable budget, and can provide

better usability and encapsulation of best practices. In powertrain

manufacturing, CB approach has been researched and implemented through a

novel engineering method which supports lifecycle requirements of

manufacturing machines, as described next.

3.2.2 CB Application

With respect to machine lifecycle support in the field of manufacturing

automation, research at MSI Institute (Loughborough University) has

investigated (through the COMPAG project [85]) and implemented a CB

automation framework to engineering industrial machine’s control (in the

SOCRADES project [27, 82]) using modular mechatronic devices (i.e.

components) [118]. This automation framework aims to replace the existing

PLC-based (or a PC-based) system architecture (described in the section 2.3.2)

by developing control systems using components which reside within

component libraries. CB automation approach promotes control engineering

through configuration data represented in a uniform format, which ultimately

becomes the application logic of a control system, rather than through

programming the application code using any of the IEC 61131 / 61499

languages (section 2.3.2) for example, ladder diagram [59].

The basic idea of this approach is that new control system is composed from

components that have already been developed, tested, validated and

implemented in the past using an engineering environment (explained later in

this section). Any new system development process requires developing and

Chapter 3 : Research Context and Focus

P a g e | 57

testing only new components while using majority (almost 70%) of the pre-built

and pre-tested components from the library to rapidly construct a system. This

reduces the costs and efforts in developing a system. Furthermore, this reduces

the time to market a new product to meet customer demands quickly [11, 29,

59, 119].

A simplified representation of this approach is shown in the figure 3.3, where a

“system” corresponds to a complete production machine which consists of one

or more “components”. A component in CB automation hierarchy is any input or

output device (for example, sensor, actuator or a complex drive) which can be

configured with a unique finite state machine that defines its “control logic”

within a system. The lowest granularity level for this approach is a component

which can be configured to operate in new circumstances using an engineering

environment (described next), investigated at the author’s premises [1, 29, 54,

59, 120, 121].

Major elements that facilitate implementation of CB automation approach are:

• An engineering environment: This consists of an engineering toolset that

can be used by globally distributed supply-chain partners throughout the

entire machine lifecycle. This toolset (called Core Component Editor

(CCE) [122]) supports the production process planning, machine design

and sequencing, interlocking logic and provides simulation tools to

validate behaviour of the entire machine system prior to its actual build.

The toolset enables creation of a new component (or reconfiguration of

an existing one), simulation of its behaviour and storage of it in a library

for future re (use). Therefore, a new machine system can readily be

constructed through configuring, combining and installing these

components to drive a physical (i.e. a real) or a simulated machine.

• A common machine data model which consistently stores all the machine

information avoiding its fragmentation across different systems (such as

machine control system and support system such as operator interface).

This acts as a central repository housing all the configurations that are

shared throughout a typical machine lifecycle.

Chapter 3 : Research Context and Focus

P a g e | 58

• Machine components which can be either real or modelled. Modelled

components are simulated using 3D VRML representation. Real machine

components are physical modular machine parts (such as sensors and

actuators) containing embedded interlocking and sequencing logic.

• Runtime support environment that facilitates close control and monitoring

of machines through their lifecycles using vendor-independent operator

interface system templates, reconfigured at run-time to present real-time

machine status, regardless of machine’s geographic location, or its

implementation type or its state (i.e. real, simulated or hybrid machine).

This integration aspect of the CB automation approach is the main focus

of research covered within this thesis. Figure 3.4 shows author’s

research involvement with respect to contributing towards CB automation

implementation.

System

Component

Control Logic
State Transitions

Fcom = {X, t, E}
E = {e, i}

Compiled
Library

Engineering Tools

Create / Edit

Simulate

Install

Components
Drag ‘n’ Drop

prewritten and verified
components. Only

configuration required.

Machine Design

New component –
“Configure” and

“Verify” – No
programming

Figure 3-3: Component Based Automation Approach

Fcom = finite state of a component
X = All the states in a finite state machine
t = transition, E = set of events that triggers t

Chapter 3 : Research Context and Focus

P a g e | 59

 Existing
Manufacturing

System
Approach

CB
Manufacturing

System
Approach

HMI Requirements

Existing Process Review

Opportunity Identification

External

Drivers

HMI Analysis

Case Study Specification

Architecture Mapping

Demo and Presentation

HMI Research

CB Machine Component

Machine Data Collection and

Distribution Architecture

Engineering Toolset

Business Process Modelling

THESIS

HMI Research
Control Logic

Virtual CB Modelling

Virtual Model Integration

Operator Interface System

HMI Research

Implementation

Scenario Testing

Requirements

Evaluation

Denotes Author’s Contribution

Figure 3-4: Author's Involvement in CB Automation Implementation

Chapter 3 : Research Context and Focus

P a g e | 60

3.3 Focused Attributes

All the major requirements identified from the state-of-the-art in powertrain

manufacturing and operator interface system’s review (chapter 2) have

presented with a set of desired attributes which drive a need to provide an

operator interface system that supports them. These focused attributes have

been summarised in the figure 3.5. Each attribute has one or more

“implementation feature (s)” associated with the approach employed to satisfy

identified attributes. Description of these features is as follows:

(i) Reconfigurability and Reuse Support: This attribute requires both,

industrial machines and their associated operator interface systems to be

reconfigurable and reusable across various machine programmes and

throughout their lifecycles. Automation approach to accomplishing this

identified attribute is through modularisation of control components using

CB automation approach (described in the section 3.2). Furthermore,

developing generic reconfigurable operator interface screens (chapter

7.5), implementing the overall system within a suitable control and

monitoring system architecture (chapter 5.3), and support for real and

virtual machines are additional essential implementation features.

(ii) Information Transparency and Mobility: This attribute requires addressing

a number of things. Firstly, scalability is required by allowing machine

changes to be made more efficiently by simply adding or removing

machine components (for example, sensors) at will without causing any

disruptions to data control and monitoring applications. Secondly, the

research solution must accommodate different types of support systems

regardless of their source vendors thus avoiding any licensing issues.

Thirdly, legacy machine system support should be incorporated within

the information exchange architecture. Automation approach to

accomplishing this identified attribute is through better business to

production information system integration using an open (vendor-

independent) and distributed system architecture implementation that

supports “plug-and-play” components integration functionality.

Chapter 3 : Research Context and Focus

P a g e | 61

Furthermore, representing data in a uniform format (such as an XML

standard) and separation of machine control and monitoring functionality

are essential implementation features for data transparency and its

mobility (chapter 5.3.2).

(iii) Loose Mapping of HMI to Actual Machine or its Control Logic: This

attribute requires the HMI to be de-coupled from the machine type or its

control logic such that any changes to the machine (or its logic), or the

entire machine replacement should not require any re-programming to be

carried out to the operator interface systems. Automation approach to

accomplishing this identified attribute is through modularisation of control

components using CB automation approach. Furthermore, developing

generic operator interface template-based screens which are simple,

cost-effective and machine-neutral (or control logic-neutral), and

implementing the overall system within a suitable control and monitoring

system architecture that supports this attribute requirement are additional

essential implementation features.

(iv) Real-time Remote Machine Control, Monitoring and Maintenance: This

attribute requires operator interface systems to display machine

information at real-time on the HMI screens regardless of their

geographical locations. Furthermore, operator interface systems should

support machine maintenance at real-time. Implementation features such

as web-based technologies (i.e. web-based HMI), suitable control and

monitoring system architecture, 3D machine representation support and

various non-functional system requirements (evaluated in the chapter 9)

such as security, performance, reliability and safety are essential

features addressing this attribute.

(v) Virtual Machine Validation: This attribute requires operator interface

systems to support machine validation in a virtual environment such that,

the HMI system can be driven from the virtual machine model to verify its

behaviour prior to the actual build. Automation approach to

Chapter 3 : Research Context and Focus

P a g e | 62

accomplishing this identified attribute is through modularisation of control

components using CB automation approach. Furthermore, integration of

3D VRML simulation functionality and suitable system architecture are

additional essential implementation features.

(vi) Early HMI Verification: This attribute requires HMI system to be verifiable

before the actual machine has been built. Automation approach to

accomplishing this identified attribute is through modularisation of control

components using CB automation approach. Furthermore, integration of

3D simulation functionality and suitable system architecture are

additional essential implementation features.

(vii) Early HMI Training: This attribute requires HMI system to enable

operator training prior to the actual machine build. Automation approach

to accomplishing this identified attribute is through modularisation of

control components using CB automation approach. Furthermore,

implementing the overall system within a suitable control and monitoring

system architecture, and support for real and virtual machines are

additional essential implementation features.

Chapter 3 : Research Context and Focus

P a g e | 63

3.4 Research Aim and Novel Contributions

3.4.1 Aim

The primary aim of this research is to design, develop and evaluate next-

generation operator interface solution that can be applied to locally as well as

remotely control and monitor machine lifecycle phases. The research outcome

has to be integrated to the Component Based automation approach for agile

automation systems to allow different classes of users through the supply-chain,

to efficiently interact with the manufacturing systems.

Figure 3-5: Focused Attributes Addressed within this Research

Next-Generation
Operator Interface

System Research

Early HMI

Verification (vi)

Early HMI

Training (vii)

Reconfigurability and

Reuse Support
(i)

Information
Transparency and

Mobility
(ii)

Loose Mapping of HMI
to Actual Machine or its

Control Logic
(iii)

Real-time Remote
Control, Monitoring

and Maintenance
(iv)

Virtual
Machine

Validation
(v)

Chapter 3 : Research Context and Focus

P a g e | 64

3.4.2 Novel Contributions

To accomplish the primary research goal as identified in the section 3.4.1, major

contributions established during the course of this research would be:

• Review of the current approaches to operator interface system

implementation and its utilisation in the context of lifecycle support of

powertrain machines, determining limitations and inadequacies in

supporting next-generation industrial requirements.

• A novel system architecture that provides new ways of using operator

interface system for control and monitoring of machine lifecycle phases,

and incorporates all functional and non-functional industrial requirements

within a well-defined framework (i.e. CB automation approach).

• Description of the design and development of the operator interface

system solution for implementing this research to powertrain

manufacturing machines engineered using the CB automation approach.

• Evaluation of this research in an attempt to demonstrate a proof-of-

concept system, identifying its benefits and any significant improvements

when adopting CB operator interfaces system solution.

P a g e | 65

Chapter 4 : Enabling Technologies and Methods

Chapter Contribution to this Thesis:

The main contribution of this chapter is to identify various technological opportunities which can effectively

support local / remote control and monitoring of manufacturing machines through their lifecycle phases

using state-of-the-art methods in operator interface system design.

4.1 General Overview

This chapter reviews the current state-of-the-art in HMI system engineering and

implementation. Moreover, it describes the enabling technological opportunities

for remote support and next-generation operator interface system design and

development, which can satisfy the identified manufacturing requirements

established in the chapter 2 of this thesis, providing a platform onto which this

research can be materialised.

Although web-based operator interface system is considered as a key enabler

for reconfigurable manufacturing systems (as in chapter 2, table 2.1), no

published literature within the RMS domain has concentrated on the

engineering aspect of the operator interface system that addresses the need of

HMI user roles to support machine lifecycle requirements. Furthermore, with

frequent reconfigurations to the manufacturing machines, their associated

operator interface systems have a requirement to be rapidly created and

deployed. The next two sections focus on the modelling, engineering and

implementation technology which is not necessarily dedicated to only

manufacturing machine applications.

4.2 User Interface Modelling and Engineering

Over the last decade, a substantial amount of research has been carried out in

the area of user interface systems, addressing various aspects of interface

modelling and system engineering.

Chapter 4 : Enabling Technologies and Methods

P a g e | 66

Interface Modelling

User interface modelling provides a notation which represents an end user’s

functionality and describes the user-machine interaction process [123]. This

process is determined by the machine behaviour, user’s operational goals and

expectations, and the actual interface system [124]. Modelling allows the

designer to think about the underlying concepts of the interface design instead

of just focusing on the appearance of the interface [125], for example, a

machine operator may require certain types of machine error information,

current machine state and interaction with the mode control of the machine.

This information must be comprehensively specified using models so an end

user interface can be developed. A well documented specification using various

modelling notations is therefore required to ensure consistency in the end user

requirements being met in the design and implementation of the user interface

system. Different aspects of user interface are described using different

declarative models [126-128]. Table 4.1 presents four major types of declarative

models with a superficial description of each.

Declarative

Model

Description

Task Model

This model describes how users do their tasks in a certain application, as well

as the relationship between various tasks in user interface interaction [127].

Producing a usable interface requires a thorough understanding of the

underlying user goals [128]. Task analysis is used to determine a task model

as it contributes to the design of the interface interaction by understanding the

relevant tasks in a system domain using techniques such as interviews,

observations, documentation and training [129]. In software engineering, task

analysis is useful to gathering user requirements where as task model is useful

in the design and evaluation of a system. Traditionally, interfaces are

ineffectively started by describing the static visual screens (i.e. interfaces) with

certain structural or control objects often called widgets [130]. Designers must

think the description in functionality context by starting to think about the user’s

task and subtasks which can better support the idea of user-centred design. If

Chapter 4 : Enabling Technologies and Methods

P a g e | 67

the flow of the tasks and its subtasks is clear, it is easier to choose the

appropriate visual layout and widgets to provide a user with concrete tools to

complete a task [131].

For describing the requirements which satisfy the needs of the user, use cases

are commonly used [132]. One use case can call upon the services of another

use case achieving a hierarchical order to system design. The following

example shows a website use case for project management within an

organisation [133]. The use case contains 2 users, an external user and an

employee. The external user’s task and its interaction are just to read about

projects. The employee can read, add, remove and edit projects. This example

illustrates that use cases can be used to describe the user tasks and its

interaction but it does not capture the user’s task flow.

Similarly, use cases have been used within this research to capture low-level

operator-interface system requirements as described in the chapter 5.2.2.

Dialogue

Model

This model describes the particular objects within a user interface and their

possible states (i.e. sequence or flow) [134]. It represents the actions that the

user may initiate through the interface, as well as the reactions that the

application may execute. In simple terms, the description depicted by a task

model is refined by a dialogue model by specifying the behaviour of the user

interface in terms of user interactions and system feedback [135]. State

transition diagrams are commonly used to capture the sequence of either a

complete or particular aspect of a user interface system [125]. These diagrams

model objects as finite state machines. They show the various states of an

object, the conditions that trigger the transition from one state to the other, and

the actions that result from this transition, as shown below. They only provide

a model of the user input (action) and the result (interface states), and do not

Read

Add

Remove

Edit

Project Management

External User

Employee

Chapter 4 : Enabling Technologies and Methods

P a g e | 68

provide any information regarding the visualisation or the layout of the user

interface.

Within this research, state transition diagrams are used to model various

object’s states such as navigational buttons, component state activations, etc.

User Model

This model describes the characteristics of various types of users. Its purpose

is to create personalised interfaces at design time [136]. Firstly, for each type

of user, it defines a set of tasks he/she can perform. Secondly, for each type of

user, a projection on the actions within a concrete task that he/she can

perform is established. Finally, depending on a user’s attributes (skill level,

experience); the interaction information provided by a dialogue model to show

the information in the domain model is adapted to the user [137]. In summary,

it provides an approach to model user interface preferences by defining

attributes and roles of specific users of an interface system. User models are

described vaguely in the available literature and are present in very few user

interface implementations [123, 127].

This technique is usually preferred in profiling user interfaces and thus is not

directly applicable to HMI system research covered in this thesis, however,

various user role requirements (as described in the chapter 2.3.5) are catered

for using user modelling to generate one HMI system layout (as described in

the chapter 5.2 and chapter 7.5).

Presentation

Model

This model represents the visual layout and navigational structure provided to

the user by the interface [128]. It is basically a static collection of elements with

attached stylistic attributes such as font size, colours [138]. Software modelling

techniques such as Unified Modelling Language (UML) notation seems to

have no support to specifying the layout of user interface systems [139],

State 1

State 2

State n

Condition(s)

Action(s)

Object “A”

Chapter 4 : Enabling Technologies and Methods

P a g e | 69

although researchers at Ludwig-Maximilians-University (Munich) have

proposed using collaboration diagrams for modelling the navigation and

presentation of the user interfaces [140]. In designing a web application, a web

designer usually proposes a sketch of each interface view which shows rough

drawings of a couple of relevant elements of each navigational object.

Although this informal sketching technique is frequently used by designers, it

does not have a precise notation of representing the layouts and its

navigational links [140].

Storyboarding, on the other hand, is used to provide users with a

“walkthrough” of the interface system by creating a series of screens and

widgets, and depicting the screen navigation using arrows. A storyboard model

only defines the structural organisation of the presentation given by interface

objects such as texts, images, forms and menus, and not the layout

characteristics, in terms of fonts, special formats, colours which are

determined at the implementation phase of the user interface development.

However, it may still be able to provide a hint on the position and the size of

the interface objects relative to each other [141-143].

After designing the interface views they are combined using navigational links

in the storyboarding model, showing sequences of user interface in the order

in which a user can navigate from one view to the next. This helps in

visualising the organisation of a web application structure in a more intuitive

manner than using standard UML notations. Furthermore, storyboard models

provide a useful means for communicating between stakeholders involved in

the lifecycle of a user interface system, enabling them to be validated with the

use cases identified during the analysis phase of the interface development

lifecycle [142, 143]. An example storyboard model is illustrated below.

Home View

Payroll View

HR View Student View

University Web Application

Chapter 4 : Enabling Technologies and Methods

P a g e | 70

Within this research, storyboarding technique has been used to deduce

navigational structure of HMI system screens as described in the chapter

5.2.2.

Table 4.1: User Interface Modelling Components

Interface Engineering

The main goal of engineering a user interface is to make a user’s interaction

experience with a machine as enjoyable as possible, in terms of satisfying

identified requirements. A well engineered user interface system increases the

productivity of the user and the machine. Furthermore, it increases the system

uptime and provides a consistent product quality output. Therefore, it is critical

to engineer interfaces that take the “usability” criteria into account when

coordinating user interface development [144]. A number of engineering

methods have emerged trying to contribute new ideas in this field. Mayhew

[145] proposes a “Usability Engineering Lifecycle” structured in three stages

namely requirements analysis, design/testing/development and installation. This

development process follows the waterfall lifecycle and thus cannot be

considered as an iterative approach. Owing to the sequential development

approach, this method focuses on user interface software development and not

user centred design [137].

Constantine and Lockwood [146] propose a user centred design approach

which consists of a set of usability-oriented coordinated activities. They include

task analysis and user modelling (as described in the interface modelling

section of this chapter). The fundamental concept of applying user centred

design to user interface engineering is that it is an iterative process where the

tasks and user requirements are defined, analysed, implemented in the form of

the user interface and then evaluated. Once evaluated through usability testing,

user reactions can be feedback into the user requirements and domain

analysis. Feedback is performed on each development process by introducing

the information collected in the tests performed by the users in the user

interface usability testing [137]. This way, the usability of the designed

Chapter 4 : Enabling Technologies and Methods

P a g e | 71

interfaces improves notably [147]. Figure 4.1 shows the iterative development

process which is fundamental to user centred design approaches [137].

Taken from [137, 148]

4.3 User Interface Implementation

Obtaining a desired interface system requires the use of appropriate

implementation method which can transform an interface model into a piece of

software system that meets an end user’s functional and non-functional

expectations [149]. In this section, brief description of different tools used for

implementing user interface is covered. These tools are primarily used to

support the interface design, implementation, evaluation and maintenance

processes. The two main approaches to implementing a user interface system

are shown in the figure 4.2 below:

Figure 4-1: Iterative User Interface Design Approach

Chapter 4 : Enabling Technologies and Methods

P a g e | 72

Model Based Development Approach

Using this approach, a user interface is automatically generated from a series of

user interface models [116]. The process of developing a user interface within

this approach is through iterative development and refinement of a set of

declarative models using graphical editor tools or high-level specification

languages. Once these models are developed, they are transformed according

to the ergonomic rules and / or style guidelines into an interface specification.

Consequently, this specification is coupled with the underlying application code

to generate an executable application [150, 151]. Table 4.2 summarises major

attributes and shortcomings associated with the model based user interface

development approach [116, 123, 128, 144, 151].

Model 1

Model 2

Model n

User Interface

 Engineer

Source Code

Generator

Compiler and Loader

Model Based Development

Application

Requirements

Simple Domain-based Tool

+ Coding

Widgets

Development Toolkit

Application

Design Tools

Figure 4-2: User Interface Implementation Tools

Chapter 4 : Enabling Technologies and Methods

P a g e | 73

Attributes

Shortcomings

The higher level of abstraction for developing

user interface allows a designer to concentrate

on the design issues rather than low level

system code generation.

With user interfaces increasing in functionality,

the complexity of the models and their

required notation is considered as a major

limitation for these systems.

It is a well structured development method

followed by a user interface designer. This

strictly enforces best practices that the

designer must follow, for example, applying

ergonomic design rules and using formal

notation to specify the interface ensures that

there is no obscureness in the requirements.

It is difficult to model relationships between

models (i.e. mapping problems) using this

approach.

User interface system is quickly developed

due to the system architecture automating the

lower level implementation details. This

enables a designer to develop user interfaces

without relying on software engineers’ input.

Mostly, this approach only supports a very

simple user interface system, typically a form

based interface system. This is the reason

why it has not been widely adopted within the

commercial sector.

The interface is always consistent with the

requirements specified in the model due to the

direct relationship the system provides

between the user interface model and the

implemented user interface.

The capacity of the user interface developed

using this approach is often very limited and

does not support a broad enough scope to be

applied successfully in practical commercial

areas.

Table 4.2: Attributes and Shortcomings of Model Based User Interface Development

User Interface Design Tools

Schneiderman [147] defines user interface design tools as a software

development environment that simplifies and assists implementation of a user

interface by programming through graphical or textual based approaches.

These developer-centred environments provide sufficient support in using and

managing widgets, organising and arranging interface layouts, and evaluating

Chapter 4 : Enabling Technologies and Methods

P a g e | 74

interfaces [128]. User interface design tools can further be divided into two

different categories; user interface toolkits and user interface application tools.

• Toolkits

These provide software libraries containing common widgets such as

windows, scroll bars, pull down menus, buttons, dialog boxes, etc. Though

programming languages with these common widgets can provide great

flexibility in the user interface design, skilled programmers are usually

required to develop the user interface. The main advantage of using them is

the provision of extensive control and flexibility in creating the required

interface system [116, 147].

Development environments such as Microsoft’s Visual Basic / C# are easy

to get started with yet they have excellent set of features. Visual Studio®, as

well as Visual Web Developer tools, coupled with dot Net framework,

provides a remarkable distributed object oriented application platform which

is robust, easy to learn, cost-effective and performance driven. The other

example of toolkit is the Java Development Toolkit™, which supports

implementation of Java based technologies in user interface

implementations [147, 152]. These toolkits provide a general purpose

programming environment to prototype and develop equivalent packages

found in commercial HMI system design, thus used in this research (chapter

7).

With respect to designing and implementing HMI within automotive domain,

commercial off-the-shelf (COTS) packages such as Siemens WinCC® and

Schneider’s Vijeo® products are available to support the process of

designing and implementing operator interfaces; however, these COTS are

proprietary, encrypted (i.e. machine control dependent), expensive (i.e. need

licenses) and difficult to learn and troubleshoot without formal training.

Furthermore, they support HMI implementation in vendor-specific

operational panels only and not on standard computer monitors / touch

screens [153-156].

Chapter 4 : Enabling Technologies and Methods

P a g e | 75

Toolkits such as Visual Studio®, is not comparable to the COTS in this

regard as application engineers at manufacturing plants never use

programming toolkits, instead they use COTS to develop operator interface

systems. With the flexibility offered by these programming toolkits such as

Visual Studio®, HMI configuration tool (equivalent to COTS) can be

developed and implemented in manufacturing machine programme to

overcome shortcomings identified in the COTS packages.

• Application Tools

Application tools provide more constraints than toolkits. Using these design

tools, user interfaces are developed for a particular application area which

maybe for example; a web page developed using Adobe Dreamweaver™ or

Microsoft Expression Web™, or the National Instruments Labview™ where

a user interface is designed for an engineering application.

This type of user interface application tool provides faster development due

to the constraints of developing the user interface for a particular application

area. Often they are What You See Is What You Get (W.Y.S.I.W.Y.G) based

and very little or no programming is required (generally scripting level

languages are used) which supports lower skilled designers and leads to

faster development time.

4.4 Real-Time Machine Data Transmission Options and Issues

As established in the chapter 2, remote control and monitoring support is an

essential requirement when addressing existing machine lifecycle issues, this

instigates a need to transmit data from manufacturing machines to locally /

remotely implemented operator interface systems. This section reviews various

approaches available to transmitting data for real-time control and monitoring of

production machine’s processes. Furthermore, it describes number of issues

that needs to be addressed when propagating information at real-time to remote

locations. In this thesis, the term “real-time” corresponds to soft real-time (or

event-based having no strict time deadlines).

Chapter 4 : Enabling Technologies and Methods

P a g e | 76

Transmission Options

In manufacturing environment, large amount of data is continuously generated

from operating production machines, which can either be transmitted in “raw

form” to drive remotely implemented engineering tools (for example HMI), or

through accessing locally implemented HMI screens using “remote sharing

sessions”.

Raw Data Transmission: This transmission corresponds to distributing

unprocessed data directly from an operational machine to remote locations. Any

processing on this data is carried out remotely using supply-chain partner’s

engineering tools or third-party resources. This is more efficient approach to

transmitting data over a network as only raw machine status is actually sent

enabling direct data exchange between systems in (soft) real-time, beneficial for

high-performance and flexible applications. Any resource, for example, 3D

visualisation tool or a HMI system at machine builder’s site can be deployed

and operated remotely (with additional functionality and performance this

approach provides) [157]. Nonetheless, this approach to transmission requires

relaxing security of an existing network infrastructure to tunnel raw data from

local site to remote locations. A typical example for this would be to open up

additional firewall ports, which is dangerous to organisational security if not

carefully thought. Implementing this approach can be outsourced; however,

organisations prefer to carry out its in-house implementation.

Screen Sharing Sessions: This corresponds to a technology which enables a

user interface screen to be shared with collaborating partners in a remote

session. Each participant (for example, a machine builder and / or a controls

vendor) can remotely view the local screens (for example, an end user HMI

screen) and possibly control it (if given necessary permissions to do so by the

source initiator, in this case the end user). This technology is also known as

desktop sharing approach [158]. The process requires software to be loaded or

accessed from the local point of termination. From a remote location, a user can

navigate to a specific web address that functions as an access portal through

which it is possible to use a set of login credentials to reach the local screen.

Chapter 4 : Enabling Technologies and Methods

P a g e | 77

Screen sharing is a less efficient approach owing to the large overheads

associated with distributing an entire graphical screen over a network compared

to lightweight raw machine data. Furthermore, it requires local execution and

support of engineering tools such as 3D visualisation and other applications.

Nevertheless, this approach requires a standard internet browser at remote

locations to view (and possible control) local screens. This is useful when

working with limited resources remotely. This approach can be outsourced as

well as developed in-house; however, most organisations prefer outsourcing

owing to data transfer compromisation safety delegated to a solution provider.

A number of desktop sharing solution providers exist in the market offering

various features. A detailed review of providers is described in the appendix

section B of this thesis [158-164]. One provider in particular, known as Cisco

WebEx is a market leader offering impressive remote sharing performance

thanks to its MediaTone network [165]. Furthermore, this provider offers

integration API’s (Application Programming Interfaces) where external hooks to

its remote services can be established from any third-party system. In the light

of this provision, a support tool called RemoteIMS (Issue Management System)

is implemented at Ford Motor Company, UK that provides web-based real-time

desktop sharing interface (using WebEx API calls) to collaborate on various

machine issues using multimedia tools like SMS and email [166] as shown in

the figure 4.3 below.

Chapter 4 : Enabling Technologies and Methods

P a g e | 78

Taken from [166]

Transmission Issues

Improved operator interfaces are required in the context of local production

support and of remote support from supply-chain partners [1]. In order to

transmit machine operational information to remote locations for driving or

sharing with supply-chain partner’s tools such as operator interface systems,

visualisation tools or commercial support packages provided by third-party such

as SAP business suite [167], a number of issues must be considered as

discussed next (evaluation of these issues is covered in the chapter 9).

Security: With increase in web-based remote data transmission approaches

being adopted by manufacturing automation partners, security of business

information is the primary concern as it increases vulnerability of industrial

processes [3, 19]. Concerns like data authenticity and confidentiality are part of

this data transmission issue. Providing remote access to partners like machine

Local User

Remote User

Figure 4-3: RemoteIMS Tool Implementation at Ford Motor Company, U.K

Chapter 4 : Enabling Technologies and Methods

P a g e | 79

builder to controlling and monitoring end user’s production plant using web-

based HMI, needs implementation of good security strategies [79]. In industrial

setups, mechanisms like firewalls (for example, Scalance S612 security switch

[168]), secure protocols (for example; VPN, HTTPS over TCP/IP) and access

controls (for example, username / password credentials, audit trails) are usually

used to authenticate and manage incoming and outgoing traffic [169].

Safety: Transmitting real-time data to and from remote locations requires safety

procedures to be strictly followed to protect against hazards [3, 170]. Enabling

remote HMI to control industrial machines is a very risky issue. The control logic

of a production machine needs to be intelligent enough to establish the current

state of the machine and decide on the execution of control commands issued

using remote operator interfaces. In a recent interview with Ford production

engineering team, they stressed the importance of implementing control safety

procedures and layers of access control within next-generation operator

interface systems, for example only one instance of the HMI should remotely

control its corresponding machine at a time to ensure safety of both the

technological and human resource [79].

Robustness and Reliability: To address measureable issues like robustness and

reliability, information transmission architecture should support features like

failure recovery and data transmission handshakes [169]. Some of the

frequently experienced evils of transmission affecting a system’s reliability and

robustness are packet losses and data corruptions, which can be resolved

using connection-oriented protocols like TCP [171]. Handshaking using

acknowledgement messages is a widely used approach to ensure the reliability

of data transfer; however, these mechanisms add to the required network

overhead and thus decrease the overall network performance [99]. It is obvious

that the reliability is governed by different types of implemented hardware and

networks, the designed software and the machine operator’s input to the system

[116].

Data Uniformity: Representing data in the format that promotes openness is a

very important issue to be aware of. If data is encoded and presented to

engineering partner resources in a proprietary format, which cannot be

Chapter 4 : Enabling Technologies and Methods

P a g e | 80

deciphered or decoded by third-parties, it discourages lifecycle partner’s

involvement and complicates the machine support process. XML is a uniform

de-facto transmission format that can be decoded by any system as long as

interface specification is agreed and followed upon [42, 172] (see its evaluation

in the chapter 8.2.5).

Performance: Achieving high-performance data transmission is vital to today’s

agile business requirements. It is greatly affected by network bandwidth and

design choices made during system development, for example choices like data

size and its representation [169, 173]. Features like data latency and system

throughput are key measurement performance metrics for transmission systems

[116]. Performance in propagating machine information within powertrain

system domain is evaluated by comparing the implemented solution against an

existing response time benchmark of half a second for local HMI and one

second for a remote HMI [174].

Scalability: The architecture adopted for transmitting data should be scalable

enough to support high volatility of engineering tools, as these tools join and

leave the network on ad hoc basis [79, 80]. This is usually achieved through

implementation of a flexible system architecture that supports simultaneous

nodes’ access on-the-fly.

4.5 Communication Mechanisms

4.5.1 Communication Queues

Implemented software components (i.e. distributed applications such as HMI)

exchange machine data over industrial networks. With complexity of distributed

system components increasing, careful attention should be given when

communication queues (or channels) for information sharing among these

network nodes are implemented. Four main categories of these logical

pathways to communication have been identified such as point-to-point, publish

/ subscribe, guaranteed delivery and message bus.

Chapter 4 : Enabling Technologies and Methods

P a g e | 81

Point-to-Point

This provides a dedicated one-to-one communication channel that links two

systems or processes over a network. It ensures that only one receiver

consumes any given message. If the channel has multiple receivers, only one of

them can successfully consume a particular message. If multiple receivers try to

consume a single message, the channel ensures that only one of them

succeeds, so the receivers do not have to coordinate with each other as shown

in the figure 4.4. The channel can still have multiple consumers to consume

multiple messages concurrently, but only a single receiver consumes any one

message. This is a simple approach that provides high-bandwidth but scales

poorly with multiple nodes [175]. A typical example of such a communication

model is implemented in file transfer applications where the request for

information is directed from one sender to only one receiver at the other end

[176]. Within this research, the Marshaller system component implements this

channel to pass on the machine control tokens to various clients (as described

in the chapter 7.4.4).

Publish / Subscribe

This provides one-to-many, many-to-many or many-to-one communication

channel where a source can transmit message to interested receiver (s) without

the knowledge of the number or the location of receiver (s). Receivers (s)

Sender Receiver 1

Receiver 2

Point to
Point

Figure 4-4: Point-to-Point Communication Queue System

Chapter 4 : Enabling Technologies and Methods

P a g e | 82

specify their interests by subscribing to asynchronous notifications of events

generated by the source (i.e. publisher). The publisher produces a message

(i.e. event) which explicitly specifies its type and if it matches with the

subscriber’s interest, it receives the message without knowledge of what, if any,

publishers there are. A broker acts an intermediary which forwards each

message from the publisher to the interested subscriber as shown in the figure

4.5. Three variations of the Publish/Subscribe system one can use to create a

mechanism that sends messages to all interested subscribers are List-Based

Publish/Subscribe, Broadcast-Based Publish/Subscribe, and Content-Based

Publish/Subscribe [116, 157, 177]. Broadcast-Based Publish/Subscribe is the

adopted mechanism when propagating machine events within the Broadcaster

system component (as described in the chapter 6 and chapter 7 of this thesis).

Guaranteed Delivery

This provides a persistent approach to communication transfer by using a built-

in data store to persist messages in each participant node on which the system

has been implemented. The default system storage media (i.e. memory) works

well as long as the queue works reliably, but if the system crashes, all the

stored messages are lost from the memory. With guaranteed delivery, local

storage disk space safely stores messages until they are successfully delivered.

This queue system increases reliability, but at the expense of performance as it

Publisher

Subscriber 1

Subscriber 2

Subscriber 3
Type B

Type A

Broker

Figure 4-5: Publish / Subscribe Communication Queue System

Chapter 4 : Enabling Technologies and Methods

P a g e | 83

involves considerable numbers of I/O and consumes a large amount of disk

space [157, 177].

Message Bus

This provides an integration solution where applications from different vendors

coexist and transfer messages asynchronously among themselves using a

logical component called a message bus. An application that sends a message

no longer has individual connections to all the other recipient applications that

must receive the message. Instead, the sender merely passes the message to

the message bus, and the message bus transports the message to all the other

receivers that are listening for bus messages through a shared infrastructure

such as a message router.

Likewise, an application that receives a message no longer obtains it directly

from the sender; instead, it takes the message from the message bus as shown

in the figure 4.6. An application that sends messages through the bus must

prepare the messages so that the messages comply with the type of messages

the bus expects (i.e. common data model and command messages). Similarly,

an application that receives messages must be able to understand the message

types. An application can be added or removed without affecting communication

to other applications when using this queue system [116, 157, 176].

 Message Bus

Application 1 Application 2

Application 3 Application 4

Figure 4-6: Message Bus Communication Queue System

Chapter 4 : Enabling Technologies and Methods

P a g e | 84

4.5.2 System Interaction Styles

Nowadays, systems are developed and implemented in more and more

distributed ways, scattered over an industrial network. Table 4.3 briefly

describes two most common examples of interaction styles found in systems

and automation technology from the functional and non-functional system

requirements point of view [116, 178, 179]. This description does not make

assumptions about application design or its implementation. Their design can

be governed by any architectural pattern (described in the section 4.5.3) and

their implementation can use any of the communication channels (described in

the section 4.5.1).

Interaction Style

Description

Continuous data distribution

mechanism

A connection between a source and a receiver is

“wired up” in this interaction style. The receiver always

maintains an up-to-date copy of the data and the

source can handle any number of receivers. An

illusion of this wiring within a system implementation is

created by making the source transmit fresh data

cyclically to receiver(s). This is an efficient approach if

small size data values change frequently. The other

approach of implementing this mechanism is to

transmit new data after an application has exceeded a

specific threshold value (i.e. when the data value

changes significantly). This approach is preferable if

the data structures are large.

The required frequency of data transfer depends on

the process dynamics for example, in discrete

automation many tasks have frequency periods of

several seconds. Usually, multiple receivers of the

same data are serviced by the data source using

either data broadcasting or point-to-point

transmissions. In this thesis, interaction between

system components uses data broadcasting services

(more information is described in the chapter 5 and 6).

Source Receiver

A, B, C -

Data A, B -

Data

C

Chapter 4 : Enabling Technologies and Methods

P a g e | 85

Event-driven data distribution

mechanism

Data ports between a source and receiver(s) are wired

up as in continuous data distribution style; however,

the transmitted data is an event instead of a data

message (or a signal). An incoming event usually

triggers the execution of an algorithm associated with

the input data port. This algorithm may usually process

some input data which might be carried by the event

message or wired to other input ports. Missing an

event (due to intermittent network connections) may

have serious consequences, in the worst case; a

critical task would never be executed since it waits

forever for an event that was lost in translation.

An updated flavour of this mechanism implements

event notification and acknowledgement style where

events (in the form of alarms or critical messages)

require handshaking at the application level. The

major benefit of this flavour is that it de-couples the

event producer (i.e. source) and the event consumer

(i.e. receiver) by sending the events to a channel or a

manager, from where the receiver(s) can retrieve or

filter events as required. If the receiver is unavailable,

the manager can store the event for future use

(depending on design constraints). Sometimes, the

channel can be substituted by a common data

repository (i.e. shared memory area) from where

notifications can be sent about new events. This is

mostly applicable in repository pattern (see section

4.6.3).

Table 4.3: Examples of Common Interaction Styles

4.6 Architectural Patterns

Very few systems are designed totally from scratch; in general, systems are

designed using a single or collection of architectural patterns. Architectural

patterns provide the fundamental structural organization or schema for software

systems. It is a way of presenting, sharing and reusing best practices about

Event

Producer

Event

Consumer

Channel Filter

Chapter 4 : Enabling Technologies and Methods

P a g e | 86

software systems where rules and guidelines for designing subsystems and

organising relationships between them are provided [180]. This section briefly

covers relevant architectural patterns commonly used in different types of

systems within this research implementation.

4.6.1 Model View Controller (MVC)

This pattern is the basis of managing interactions in many web-based

applications [116]. It modularises a user interface of an application by

separating the business logic (i.e. the domain logic), the presentation logic (i.e.

the display for the user) and the actions based on the user input (i.e. the

application logic) into three separate objects namely; model, view and controller

respectively as shown in the figure 4.7. The “model” manages data and

behaviour of the application domain, responds to requests for information about

its state (usually from the view), and responds to instructions to change state

(usually from the controller). The “view” manages the display of information by

defining how the data is presented to the user where as the “controller” converts

the actions from the user, informing the model and/or the view to change as

appropriate [179, 181].

It is important to note that both the view and the controller depend on the model,

in fact, the view is created from the model data. However, the model depends

on neither the view nor the controller. This is one of the key benefits of the

separation. This separation allows the model to be built and tested independent

of the visual presentation resulting into better application management and

faster development [116]. Web-HMI system component within this research has

been designed using this pattern (illustrated in the chapter 7.5.2).

Chapter 4 : Enabling Technologies and Methods

P a g e | 87

4.6.2 Layered Architecture

In this pattern, a system’s functionality is organised into individual layers. Each

of which relies on the facilities and services offered by the layer immediately

beneath it [116]. This promotes incremental development such that once a layer

has been developed; some of the services provided by that layer can be

released to users. Furthermore, it is changeable and portable where a layer can

be replaced by another, equivalent layer without any issues so long as the

interface is unchanged. When layer interfaces change or new services are

added to a layer, only the adjacent layer is affected and not the entire system.

The most beneficial intent of this pattern is to divide a task into groups of

subtasks such that each group of subtasks is at particular level of abstraction

having its own set of responsibilities [180]. Within this research, layered

architecture is used to organise the required security mechanism in the Web-

HMI system component (chapter 9.3). As an example of this pattern

implementation, OSI (Open Systems Interconnect) seven layer networking

Controller

Access Control

Components

MV Management

Control

....

View

HTML

CSS

Java scripts

....

Model

API

Web Services

OOP Classes

....

The controller can directly manipulate the view and the model. The view can directly manipulate the
model only. The dotted lines show indirect manipulation through additional patterns such as an

observer pattern.

Figure 4-7: MVC Pattern

Chapter 4 : Enabling Technologies and Methods

P a g e | 88

model breaks the overall network communication task into a number of

subtasks, each is carried out by an individual layer as shown in the figure 4.8

below [182].

4.6.3 Repository

The above two previously described patterns deal with presenting the

conceptual organisation of a system but give no indication of how the system

components could share data. Repository pattern describes how a set of

interacting system components can access data in a shared fashion. This

pattern is suitable to applications in which data is generated by one source and

used by another. Majority of systems that use large amount of data are

organised around a shared data source or a repository. An example of this

system is a management information system. In a practical implementation, it is

usually difficult to distribute a repository over a number of computer systems;

however, it is possible to divide a logically centralised repository though data

redundancy and inconsistency issues may arise in doing so. To overcome this,

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 4-8: OSI Layer Architecture

Chapter 4 : Enabling Technologies and Methods

P a g e | 89

data can be shared between systems using a controller mechanism which

generates and propagates events to various components when data becomes

available. Systems do not interact directly, only through the repository. This

pattern should be applied to data-driven systems where the inclusion of data in

the repository triggers an action or a tool. This mechanism of triggering

components using a shared repository structure is also known as blackboard

model (described in the chapter 6) [116, 179].

4.6.4 Client – server Model

A repository pattern does not demonstrate run-time organisation of a web-

based system but only shows its static design structure [116]. In distributed

applications, client – server model is a very commonly used pattern showing its

run-time organisation and it is useful when implementing a data sharing system

where the actual data has to be accessed from a range of locations. In this

pattern, a set of clients with limited functionality, access a set of servers which

manage data. In fact, this model is often a generic umbrella term for any

application model that divides processing among two or more processes, often

implemented on two or more computers. In a client – server model, a client

(implemented as a program) initiates a communication session with a separate

server program (usually on a different computer) for a specific function or

purpose through a network. This model is the basis for WWW applications

where the client (i.e. a web browser such as an Internet explorer®) accesses

remote web servers where web pages are browsed from. Typically on the

server, information is stored in a database that the web server accesses to

retrieve information for the user. The user can write information to the database

by submitting this information using the HTTP request / response mechanism

which is a standard internet technology [183].

Figure 4.9 shows a widely implemented three-tier (also known as multi-tier),

web application client – server model where client(s) implement the

presentation logic (i.e. thin client front-end). The business logic is implemented

on an application server and the data resides on a database server. The Web-

Chapter 4 : Enabling Technologies and Methods

P a g e | 90

HMI system component has been implemented using this pattern as described

in the chapter 7.5.2.

4.7 Technological Review Analysis

In this chapter, major methods for the operator interface system design and

development aspect of the automotive research were examined. Since no

published literature within the RMS domain has concentrated on the user

interface engineering aspect of the HMI system which addresses the needs of

the identified HMI user roles involved within a machine lifecycle, a section on

modelling and engineering (i.e. combining the models together) was covered.

Moreover, the engineered model can be transformed into a workable system

using various implementation approaches such as model based development

and design tools.

Model based development suffers from relationship modelling complexity where

as design toolkits provide extensive control and flexibility in creating the

required user interface system. Since HMI systems are currently developed

Figure 4-9: Client – server Model

Client 1

Client 2

Client 3

Client n

Server

Web Server

Application
and Business

Logic

Data

Response Query

Search

Chapter 4 : Enabling Technologies and Methods

P a g e | 91

using proprietary toolkits (for example, Siemens WinCC®), they are expensive,

difficult to learn and cannot be transferred to other vendor’s machine control

systems (i.e. they are machine control dependent). There is a need to have a

system platform that allows integration of different vendors’ machine

components.

A review of machine data transmission options and their associated issues

(such as security, safety, robustness and reliability, data uniformity,

performance and scalability) were documented in this chapter. Two approaches

to remote data transmission identified are raw data transmission (which drives

remotely implemented HMI) and remote sharing sessions (which copies the

entire HMI screen from the local site to the remote site). Both approaches to

remote data transmission can be employed depending on the supply-chain

partner’s data propagation implementation model.

Information sharing requires careful understanding of the underlying

communication mechanisms. This chapter identified four major communication

pathways to exchanging data in distributed applications such as point-to-point,

publish / subscribe, guaranteed delivery and message bus. In addition to this,

two common examples of data interaction styles are described to be continuous

data transmission and event-driven data distribution. The discussion of this

chapter ended with a review of relevant architectural patterns commonly used in

distributed systems, such as MVC (for separation of the presentation view from

the underlying domain model), layered architecture (for managing system

access levels), repository (for describing how a system shares data) and client

– server model (for simultaneous remote access to resources over the web).

Next chapter details the architectural design for next-generation operator

interface system implementation supporting machine lifecycle.

P a g e | 92

Chapter 5 : Architectural Design

Chapter Contribution to this Thesis:

The major contribution of this chapter is the evolution and layout of a novel system architecture that

enables remote control and monitoring of production machines by supporting a set of operational

requirements identified and justified within this chapter.

5.1 General Overview

This chapter describes general design guidelines which govern the operator

interface system screen structure and describes the design capture process

undertaken within this research. The design capture process gathers a set of

operational requirements which drive a novel control and monitoring system

architecture, an evolution of which is also covered within this chapter. Lastly, a

number of benefits with respect to the system architecture implementation in

powertrain manufacturing domain are detailed.

5.2 Requirements Design

5.2.1 Design Guidelines

The purpose of design guidelines is to define and promote consistency and

completeness in the operator interface. These guidelines provide rigid

standards and accepted practises for the design of the user interface within the

desired domain of its implementation [147]. A good operator interface screen

design requires careful use of layout logic, colours and contents (such as

navigational routes, icons, menus, buttons, etc) that provide the correct level of

usability. If something is inappropriately presented on the HMI screens, the

operator may miss critical production information, business can lose money, or

worse, someone may get injured [184].

For operator interface system to be industrially accepted, it needs to follow a

particular set of display standard [185, 186] to provide the familiar “look and

feel” experience to operators who have been accustomed to traditional vendor-

Chapter 5 : Architectural Design

P a g e | 93

specific HMI systems [79, 80]. Since the human machine interface design

within this research is driven by supply-chain partner requirements (summarised

in the chapter 2.4 and chapter 3.3), it makes perfect sense to adopt useful

principles from a set of design guidelines (presented as standard) directly from

the powertrain manufacturing domain. Consequently, various features from the

Siemens Transline standard [187] are utilised within this research when

designing the operator interface system screens for control and monitoring

machine lifecycle, as described next.

Siemens HMI Transline Standard

Siemens Transline [187] is a proprietary design guideline for Siemens PLC /

HMI products. It supports traditional shop-floor functionalities such as operation,

visualisation and diagnostics in their Simatic family of products using their HMI

panels. The operation functionality typically supports general screen setup,

operational modes, navigation routes and standard controls for a production

machine. The visualisation functionality provides process specific display (in this

research, process is usually termed as a machine component), and diagnostics

provide message display, machine components and hardware diagnostics. An

example of an implemented Transline HMI screen at Krause plant, Germany is

shown in the figure 5.1. While detailed explanation of various features available

within this guideline standard is outside the scope of this thesis, adopted

principles from this standard and other ergonomic principles are detailed next

[79, 80, 184-188].

• Background Colour

Muted toned colours such as grey and blue are best for backgrounds as

they provide good contrast for the brighter colours such as red, yellow

and green which may be used for important dynamic data such as

machine component state change. To immediately identify different

groups of screens on the HMI display, various shades of the muted toned

colours can also be used.

Chapter 5 : Architectural Design

P a g e | 94

• Screen Structure and Textual Information

The screen should be structured such that a dedicated section for

component status change and fault detection is always at the top and

highly visible. Any critical machine operational mode information should

be at the upper section too along with any universal screen icon / logo.

Any component specific status change details, faults and diagnostics

descriptions should appear at the central section of the screen. The

navigational routes and machine control actions should be at the very

bottom as shown in the figure 5.2.

Text is the most versatile way of conveying information to an operator.

<Machine Critical Messages and Faults> + <Machine Operational Modes> +

<Universal or Critical Logo / Icons>

<Component Specific Details> + <Faults and Diagnostics Descriptions>

<Navigational Routes> + <Machine Control Actions>

Figure 5-2: HMI Screen Structure Division - Transline Standard

Figure 5-1: Implemented Transline HMI Screen Example

Chapter 5 : Architectural Design

P a g e | 95

The font style and size selection are critical aspects of the HMI screen

design. A san-serif font style such as Arial is better owing to its lower

resolution requirements which can easily be rendered by wide range of

computer displays. Font size should be selected in a way which can

enable reading machine critical information from several feet away such

as size 12 points and onwards.

• Faults and Component Status Data Display Conventions

Dynamic machine data is the key aspect of the HMI display. There are

two types of dynamic data such as faults and component status data.

Fault status for the overall machine, preferably organised into groups,

should be visible on every operator interface screen and there should be

a simple navigational route to access the screen containing additional

information about the fault. The fault colour should have a red

background making it visible to an operator several feet away. As 1 in 12

men have some form of colour-blindness, which can affect the perception

of red, colour cannot be used as the sole indicator of faults. Any colour

change must be supplemented with a pictorial change such as

appearance of an indicator. Whatever convention is used, faults should

be placed where they can be easily seen, preferably along the top of the

operator screen.

Component status data display should follow the traffic lights colour

convention where a red / grey colour means an out-of-state message

status (or stopped), yellow colour corresponds to an intermediary or

transitional phase and green corresponds to in-state message status (or

running). Apart from the colour display, the organisation of all the

components should follow a standard display convention as shown in the

figure 5.3. Since the number of components varies according to the

nature and complexity of a manufacturing machine, the machine can only

be monitored and controlled through a series of successive

representations, one after the other, using screen browsing mechanism.

Chapter 5 : Architectural Design

P a g e | 96

• Navigational Routes and Control Actions

An operator must be able to navigate from one HMI screen to the next

one quickly and easily using a logical tree structure presentation

consistently located at the lower part of the screen. A navigation link to

browse to the home screen should always be available in all the screens

preferably located at the far bottom right of the interface. Next section

explains the navigational route design capture using the storyboarding

technique.

Control action buttons should be hidden and displayed only when

machine control is initiated and acquired by the appropriate operator

interface screen. Any control command execution should have action

confirmation mechanism to avoid its accidental activation.

5.2.2 Design Capture

This section describes the process of capturing the design in terms of

identifying various end user HMI roles’ operational requirements and the

navigational structure (i.e. navigational routes) for the operator interface

screens. Some operational requirements have been captured using use case

descriptions (as introduced in the chapter 4.2) while others have been obtained

through numerous end user / machine builder interviews, demonstration,

S1 S2

Identity

S3

S1 S2

Identity

Actuator-based

Component

Sensor-based

Component

Figure 5-3: Machine Component Screen Convention - Transline Standard

Chapter 5 : Architectural Design

P a g e | 97

meetings, site visits, and the available literature. Navigational structure which

enables transition from one HMI screen to the next is captured through the

storyboarding technique (concept described in the chapter 4.2).

Operational Requirements

Operational requirements correspond to functional and non-functional

requirements for the required operator interface system implementation.

Functional requirements describe what the HMI system implementation should

achieve where as the non-functional requirements are related to the emergent

system properties such that they define constraints on the overall design of the

HMI system implementation [116]. The operational requirements are shown in

the table 5.1. As shown, functional requirements are further categorised into

research domain requirements (i.e. high-level requirements) and the HMI user

role to machine interaction requirements (i.e. low-level requirements).

Operational requirements collectively drive the HMI design, and the overall

control and monitoring system architecture.

Operational Requirements

Functional Requirements – drive the

application control and monitoring

architecture

Non-functional Requirements – drive the

technical control and monitoring

architecture

High-level requirements:

• Real-time control and monitoring

support.

• Separation of control and

monitoring functionality.

• Global accessibility of the operator

interface system (i.e. remote

access).

• Reconfiguration and reuse

support.

• Reliability and robustness of machine

information i.e. provide it accurately

through the use of a common

repository which is not fragmented

across multiple systems with poor

integration.

• System performance i.e. real-time

machine information must be

propagated to the user in a

deterministic manner, preferably within

1.5 seconds through separation of

Chapter 5 : Architectural Design

P a g e | 98

• Machine lifecycle support.

• Legacy system support for control

and monitoring applications.

• Support machine-to-machine

communication over the network.

• Three-dimensional simulation

support.

• Cost-effective HMI system

implementation (i.e. no associated

licensing costs and auto-screen

version update features).

Low-level requirements:

• Request machine commands.

These commands can control the

machine’s position or operational

mode.

• Request real-time machine

information, for example, current

machine error information.

• Display real-time machine events.

These events are time-critical and

must be delivered in real-time in

order for the operator interface

system to reflect the current state

of the machine.

• Display machine configuration

information. This information may

be the number of machine

components with their states, and

diagnostic information for

identifying machine faults.

interface.

• Safety against common hazards

should be implemented through correct

level of procedures especially when

supporting remote control operations.

• Scalability of the architecture such that

it supports different machine

automation applications for example,

engineering tools and third-party

analysis packages.

• Security of machine information

transmission is of paramount

importance. Remote data transmission

over the web should be implemented

through proper security strategies.

Table 5.1: Operational Requirements

Chapter 5 : Architectural Design

P a g e | 99

Low-level functional requirements have been captured using use case

descriptions which describe the high-level interaction between the HMI user

roles and the HMI system. Use case diagrams based on standard UML notation

[189] are applied to represent use cases. Scenarios are then applied to each

use case which describes generalised sequences of how the system processes

the use case.

• Use cases

Use case illustrates HMI user role to machine interaction. As defined in the

chapter 4.2, use cases capture a set of interactions between external actors

and the system under consideration. Actors are outside the system, in this

case HMI user roles. It captures who (actor) does what (interaction) with the

system and for what purpose (goal) without dealing with the internal working

of the system itself [133, 189]. In the use case diagram figure 5.4, only one

actor (i.e. general HMI user role) is shown, the purpose of which is to outline

all the interactions that all the user roles may have with the operator interface

system to enable its implementation to meet these requirements.

As shown in the figure 5.4, there are four types of low-level functional

requirements (i.e. use cases) identified which describe all the possible

common interactions HMI user roles have with the operator interface system.

The machine can be either simulated or real, transferring real-time machine

information or machine configuration information to the HMI system to be

displayed on its screens. User role requests machine commands which can

be propagated to either the real or the simulated machine.

• Scenarios

Scenarios are applied to each of the use case. These scenarios provide a

walkthrough of what the operator interface system is expected to do and how

it responds for each use case. Extracted information from this practice can

enable operator interface system implementation (chapter 7) to support the

functional requirements identified in the table 5.1, and supports designing of

the overall control and monitoring system architecture (chapter 5.3). Table

5.2 details four set of scenarios (one for each use case).

Chapter 5 : Architectural Design

P a g e | 100

Assumption: Some general elements are assumed to exist to explain an initial

abstract executable process. These elements are a machine server (that contains

application logic associated with the user role to machine interaction) and an

operator interface screen (i.e. client browser) which enables interaction with the

machine.

Scenario
Use Case

Use Case
Example

Scenario Description

Request a

Request to

(i) HMI user role requests a machine command using the

HMI User Role

Request Machine Commands

Request Real-time Machine

Information

Display Real-time Machine

Events

Display Machine

Configuration Information

R
ea

l

Si
m

ul
at

ed

Machine

Figure 5-4: Use Cases Supporting HMI User Roles

Operator Interface System

Chapter 5 : Architectural Design

P a g e | 101

Machine

Command

change

machine

operational

mode

operator interface screen.

(ii) This request is transferred to the machine server.

(iii) Machine server logic checks if the command can be

executed by the requester.

(iv) If yes, the command is processed and propagated to the

machine for its execution (i.e. either real machine or

simulated machine). The real / simulated machine logic

decides the validity of the command based on the

current state of it.

(v) Response is returned to the requester to confirm

command execution.

NB: Multiple levels of safety measures can be implemented

as shown in the chapter 7.4.4.

Request real-

time machine

information

Request

actual

machine

error

information

(i) HMI user role requests particular type of machine

information using the operator interface screen.

(ii) Machine server retrieves the requested real-time

machine information from its live repository and

configuration repository.

(iii) The requested information is processed and returned to

the operator interface screen where it is displayed to the

user role.

Display real-

time machine

events

Display a

machine

component

state change

(i) When a machine component’s state changes, it

generates an event.

(ii) The event is propagated to the machine server that

stores real-time machine events.

(iii) The machine server broadcasts this event in real-time to

all the operator interface screens.

(iv) Operator interface screens receive the event and

display it for the HMI user role.

Display

machine

configuration

information

Display all

the machine

components

for a

(i) An operator interface screen makes a request to the

machine server for a particular type of machine

configuration information to be displayed.

(ii) The machine server retrieves the requested information

Chapter 5 : Architectural Design

P a g e | 102

particular

machine

station

from its configuration repository.

(iii) The requested machine configuration information is

processed and returned to the requester operator

interface screen, where it is finally displayed.

Table 5.2: Scenario-based Design Capture

Navigational Structure

The correct level of navigational structure is vital to enable HMI user roles to

efficiently carry out their day-to-day tasks. This requirement is specified using a

storyboarding technique [190, 191] which comprehensively describes the

operator interface system’s functionality in terms of its navigational structure

(see chapter 4.2). This approach to specification can provide sufficient

information to design and implement operator interface system’s navigational

flow. By definition in this context, a storyboard is a way to tell a story through

the use of discrete static diagrams (represented on individual boards or sub

boards) that can be strung together to tell a story of the HMI system. These

diagrams express the structure of the operator interface screens with their

potential navigational routes, providing a roadmap of the HMI system’s usability.

Expected navigational routes are detailed using arrows with a textual

description of the action or method that associates the link between the

screens.

The generic functionality required within all the HMI screens is the screen to

screen navigation. With reference to the Transline layout as in the figure 5.2,

example storyboard screen navigation is shown in the figure 5.5. In this

example, four operator interface screens have been shown where the

navigation from a source screen (i.e. machine fault details screen) to the

respective target screens (i.e. current fault details, solved fault details and fault

history details) is represented using an arrow with the description of the

navigational action written on it. The direction of the arrow shows the

corresponding navigational route. In this figure, current fault details screen can

be navigated from the machine fault details screen using current fault navigation

action. The same is applicable to other navigational routes.

Chapter 5 : Architectural Design

P a g e | 103

This section of the chapter has captured operational requirements and identified

the navigational structure to design operator interface system. For the HMI

system implementation to successfully support manufacturing machine lifecycle,

the rather lengthy list of requirements (described in the table 5.1) must be

satisfied. This actually boils down to a novel system architecture suitable for

complimenting CB automation approach implementation to supporting machine

lifecycle (described next).

<Navigation>

<Machine Fault Details>

<Navigation>

<Fault History Details>

<Navigation>

<Solved Fault Details>

<Navigation>

<Current Fault Details>

Current Fault

Fa
ul

t H
is

to
ry

 Solved Fault

Machine Fault

Machine Fault
M

ac
hi

ne
 F

au
lt

Figure 5-5: Example Storyboard Capturing Fault Details Navigational Structure

Chapter 5 : Architectural Design

P a g e | 104

5.3 System Components Architecture

5.3.1 Architectural Evolution

In this section, the evolution of novel system architecture for operator interface

system implementation to support the identified requirements is described. The

architecture of a system provides a well defined structure of the different

components in the overall system solution and their interconnections [183]. This

overall arrangement helps development of software components (incorporating

the rules and regulations) in the detailed design stage of system engineering

[116].

Figure 5.6 shows the process through which the system architecture has

evolved within this research to support the operational requirements described

in the table 5.1. For ease of understanding, this figure is divided into five

architecture versions with varying complexity levels such that level 1 is the most

elementary system architecture (with its limitations) whereas level 5 is the

evolved architecture (highest level) supporting all the identified requirements.

The lower the level, the further it is away from satisfying the actual research

requirements.

The simplest architectural solution is shown in the level 1 where HMI screens

are directly linked to the manufacturing machine (i.e. real and simulated

machine components). Inherent with the simplicity of the solution, there are

functional limitations such that only direct proprietary link is supported where by

machine components (implemented through its logic) are physically mapped to

the operator interface screens’ interaction elements. In this case, interaction

elements are used for transferring information from the machine components to

the HMI screens for example, set of action or display buttons on the screens.

Chapter 5 : Architectural Design

P a g e | 105

•
Figure 5-6: Evolution of Control and Monitoring System Architecture in this Research

Direct Link

• Only supports single

machine

• Proprietary monolithic

system communication

Level 1

Real Virtual

HMI Screens (Views)

HMI User Role

Operation

Interface

Level 2

Real Virtual
Standard Interface

• Supports many machines

Data Storage

• Increases information

transfer reliability and

traceability, and provides

efficient information sharing
Interface

Level 3

Real Virtual

Storage

Interface Web Server

Client / Server Architecture

• No specialist software

required

• Global accessibility

Level 4

Real Virtual

Storage

Web Server

Separation
of Interface

Level 5

Real Virtual

Storage
Separation of Interface

• Builds additional

functionality

• Improves performance

Chapter 5 : Architectural Design

P a g e | 106

Changing a machine (or its logic) requires modification of the screens. With an

additional system tier i.e. a standard interface between the HMI screens and the

machine components (as in the level 2), any machine component that meets

the interface standard can be incorporated within the system architecture.

Modification to machine logic does not necessitate change of individual screens

as the interaction is through a defined interface standard. With an additional tier

supporting storage of configurations and information in a repository (as in the

level 3), it increases the reliability of the information transferred within this

architecture as the information is retrieved, stored and then used instead of

retrieving and using it directly. Furthermore, this enables efficient sharing of

information between various machine and system components, and provides

traceability of the information for both HMI user roles and machine component

status which can be useful for future use for example running simulation of

machine components using stored configurations.

Linking individual screens to the actual machine is limited in terms of supporting

portability and global accessibility. Level 4 shows an additional system

component (i.e. a web Server component) which partitions the system such that

distributed services can be called upon by HMI clients (i.e. HMI screens running

on standard browsers) and processed at the server side. The server component

contains the necessary logic to control the execution of operational commands

from various HMI clients on the manufacturing machine and propagate

information from the machine to the HMI clients.

To build additional functionality and improve the performance of the overall

implementation, a separation of the standard interface is shown in the level 5.

Each separated interface can be implemented as a standalone system

component (i.e. sub-system) to support required control and monitoring

functionality. The system architecture described in the level 5 of the figure 5.6 is

elaborated and represented as a block diagram in the figure 5.7. This shows the

implementable system architecture which can be taken by system engineers to

develop and implement it in the powertrain manufacturing domain (as shown in

the chapter 7 and 8) to support remote control and monitoring of machines

throughout their lifecycles. It has to be noted that the architecture assumes the

Chapter 5 : Architectural Design

P a g e | 107

machine control to be engineered using the CB automation approach (as

described in the chapter 3.2).

The system architecture in the figure 5.7 shows a decomposition of the overall

system into three architectural system components for data control and

monitoring. It is inherently distributed i.e. Broadcaster, Marshaller and Web-

HMI. In a typical configuration, these components may physically be deployed

either on a single PC, on networked computers, or within actual control devices.

A superficial description for each of these system components is given next,

prior to justifying the architectural layout in the next section of this chapter. A

Web-HMI

Local HMI Browsers

Remote HMI Browsers

Third-party Tools e.g. POSMON Data Server

Real Machine Virtual Machine

PLC / Other Control Device

Communication Middleware Interface e.g. OPC Gateway

Broadcaster

CB
Model

Global

Access

Marshaller

Network Direction of Data Flow

Figure 5-7: Proposed Control and Monitoring System Architecture

Chapter 5 : Architectural Design

P a g e | 108

detailed explanation of its implementation is covered in the chapters 6 and

chapter 7.

Broadcaster: a system component responsible to continuously collect status

data from shop-floor machines / virtual machines, process and propagate this

information, in timely fashion, to range of distributed resources, regardless of

their system mechanisms or their geographical locations. This system

component is independent of the machine control type or the distribution

strategy adopted by supply-chain partners. It acts as a central hub serving data

monitoring functionality within the system architecture where real-time machine

component’s status information is held regardless of the machine’s

implementation state (i.e. real, simulated or hybrid (part real and part

simulated)). Any third-party tools for example, POSMON used by Ford Motor

Company can be linked to the Broadcaster component on-the-fly to gather

machine’s current operational status.

Marshaller: a system component acting as a channel (or bridge) responsible to

controlling the communication between either the Web-HMI system component

(serving various HMI client browsers), or other resources (for example another

machine on the same production line) and the shop-floor machine / virtual

machine. Furthermore, it is responsible to managing historical transactions

associated with the machine events and its control operations using a static

data repository.

Web-HMI: a server-side system component which serves many HMI client

browsers regardless of their locality, to enable them to control and monitor

production machines (real / simulated) using the Marshaller and the

Broadcaster system component’s assistance. The Web-HMI collects real-time

machine information published by the Broadcaster system component and

displays it on various connected HMI client browsers. This enables an HMI user

role to monitor the status of real / simulated machines at real-time. Furthermore,

Web-HMI supports control functionality through the use of its application logic

which is directly (but internally) linked to the Marshaller system component’s

logic in order to implement necessary safety control procedures in a shop-floor

Chapter 5 : Architectural Design

P a g e | 109

setup. This component has VRML model integrated to enable various

simulation features such as machine live mimic, playback support, etc.

Broadcaster and Marshaller enable the Web-HMI to carry out its functionalities

and are a value added benefit to the overall system architecture. These

components collectively resolve limitations with the existing architecture

(chapter 2.3.2), and satisfy focused system attributes and operational

requirements identified earlier (chapter 3.3 and section 5.2 respectively). The

justification of adopting this system architecture in powertrain manufacturing

domain is detailed in the next section.

5.3.2 Architecture Justification

This section justifies benefits offered by the proposed control and monitoring

system architecture (shown in the figure 5.7) over existing architecture (shown

in the figure 2.4) through a summarised description of its uses as demonstrated

in the table 5.3.

Benefits

Justification

Assumption: Applicable to CB engineered systems only.

Reconfigurability and Reuse

Support. For example,

reconfiguring machine by

adding a new component

such as an actuator.

Machine configurations can be shared throughout the system

architecture using Broadcaster system component. Any

modifications to the machine (or its control logic) governed

through CB engineering tools, is dynamically reflected by the

HMI screens through the Web-HMI system component. Since

the HMI screens are generic, any changes are easily

accommodated at run-time as evaluated in the chapter 8.2.4.

Machine Lifecycle Support.

For example, control and

monitor virtually simulated

machines before their actual

build.

The architecture is independent of the machine’s

implementation state (i.e. it does not differentiate between real,

virtual or a hybrid machine). The Web-HMI has an integrated 3D

VRML model which supports virtual validation of machines to

identify their behaviour prior to their build process as shown in

Chapter 5 : Architectural Design

P a g e | 110

the chapter 8.3.4. Furthermore, the same features are useful

during maintenance process where virtual machine

representation can be used to identify actual faults (described in

the chapter 8.2.7).

Real-time Remote Control

and Monitoring Support. For

example, an end user

remotely monitors production

machine evaluated at a

machine builder’s site.

Broadcaster takes real-time feed from a machine and

propagates it to Web-HMI component. Since Web-HMI supports

remote HMI clients, remote monitoring is easily supported. Any

operational commands (i.e. control commands) are propagated

from remote HMI clients to Web-HMI system component which

in turn needs Marshaller’s assistance to execute the command

on the machine. This enables remote machine control as shown

in the chapter 8.2.7.

Information Transfer

Transparency and Mobility.

For example, support third-

party engineering tools.

Broadcaster transfers information in uniform XML format to its

clients thus legacy systems (and third-party systems) can easily

be plugged-in (on ad-hoc fashion) within the system architecture

as shown in the chapter 8.2.5. This is beneficial in terms of

extending the lifetime of a legacy system as it can be integrated

with the existing infrastructure.

Furthermore, since Web-HMI supports web standards, there are

no licensing costs associated with version updates; in fact any

version update is automatically propagated owing to the

distribution nature of the system components within this

architecture.

Rapid Machine Design and

Early Machine Ramp up. For

example, train machine

operators before the actual

machine implementation at

the end user’s shop-floor.

As stated earlier, the architecture is independent of machine’s

implementation state (i.e. it does not differentiate between real,

virtual or a hybrid machine). The Web-HMI has an integrated 3D

VRML model which supports virtual validation of machines to

identify their behaviour prior to their build process. Therefore,

the Broadcaster takes feeds from a virtual machine and updates

Web-HMI during the training process (evaluated in the chapter

8.3.6). Any control operation is supported by the Marshaller

component which interacts with the virtual machine.

Separation of Control and

The system architecture decomposes the control and monitoring

Chapter 5 : Architectural Design

P a g e | 111

Monitoring Functionality. For

example, implement one

production machine with only

monitoring support (and

avoid control functionality).

functionality into two distributed system components; namely

Marshaller (for control) and Broadcaster (for monitoring). Each

solution (i.e. control and monitoring) can be implemented

independently based on the support required by an individual

machine implementation.

Reactively Support Machine

to Machine Communication.

For example, if a production

machine has some fault

within a production line, it

should be possible to

immediately connect to

another machine so that the

product can be redirected to

it (if they have common

operation). In other

circumstances, a machine

can be instructed by another

machine to carry out a

specific operation by reading

the RF tag.

For example, the machine # 10 in the diagram below can

immediately connect to the Marshaller and Broadcaster system

component of a machine # 13 to instruct it accordingly. Based

on the available machine’s operational status, a new product

can be directed to it from the machine #10 and monitored at

real-time.

Table 5.3: Summary Justifying the Proposed System Architecture Benefits

In a bigger picture, this system architecture supports integration of widely

accepted industrial standards like OPC, XML, HTTP, HTTPS, Ethernet, web

services, etc. Furthermore, it enables heterogeneous co-existence of various

industrial controllers such as PLC, FTB, Lonworks, etc. The operational

requirements capture and its specification described within this section deals

with the type of information and interactions HMI user roles require, and do not

specify the detailed design of how the operator interface system implementation

processes machine data to support the overall control and monitoring

functionality through the lifecycle. This aspect of the research is described in the

chapter 6 using the blackboard-based methodology of processing data within

the system components.

Machine #10 Machine #13

Broadcaster Marshaller

Web-HMI

P a g e | 112

Chapter 6 : System Components Detailed Design

Chapter Contribution to this Thesis:

The major contribution of this chapter is a detailed design for each of the system components using the

blackboard-based methodology. The described models validate that the overall system has correct data

interaction and processing mechanism to provide required control and monitoring functionality.

6.1 Blackboard-based Methodology

Nowadays, operator interface application requirements are getting more and

more complex and their design is not getting trivial either. Their design requires

a model which can enable a smooth transition from the engineered

requirements to a detailed solution that can easily be transformed into a working

system [149]. This chapter describes the blackboard systems design models for

the system components identified in the chapter 5.3 that offer a new approach

to next-generation operator interface system implementation.

6.1.1 General Description

This section introduces the concept of blackboard-based methodology and the

benefits observed from adopting this methodology within this research. The

subsequent sections describe each of the major components of this

methodology in detail.

Concept

This methodology is a task independent architectural design approach which

can be explained using a problem scenario providing a simple metaphor that

gives insights to how this approach actually works, adopted from Corkill [192].

“Imagine a group of human specialists seated next to a large blackboard. The

specialists are working cooperatively to solve a problem, using the blackboard

as the workplace for developing the solution. Problem solving begins when the

problem and initial data are written onto the blackboard. The specialists watch

the blackboard, looking for an opportunity to apply their expertise to the

Chapter 6 : System Components Detailed Design

P a g e | 113

developing solution. When a specialist finds sufficient information to make a

contribution, he or she records the contribution on the blackboard, hopefully

enabling other specialists to apply their expertise. This process of adding

contributions to the blackboard continues until the problem has been solved”.

The above group problem solving metaphor is a natural way for teams to solve

problems. In general, the blackboard methodology involves the design of three

principal components (known as BB-components in this thesis) namely

blackboard, knowledge sources and controller. Each of the BB-components can

easily be identified from the scenario metaphor described above [193]. In the

scenario, the workplace onto which the initial set of problem, intermediate

solutions and the final solution is written to corresponds to the blackboard BB-

component of this methodology. The specialists who are responsible to apply

their expertise in solving the problem correspond to the knowledge sources of

this methodology. In order to control the flow of the problem solving process

and schedule the contributions of each of the specialist onto the workplace, the

controller BB-component of the blackboard methodology is required.

Figure 6.1 shows an overall blackboard systems model where a set of

resources (i.e. knowledge sources (KS)) share a common global database (i.e.

the blackboard) and the access to this shared resource is managed by a control

shell (i.e. controller or manager). As shown, the knowledge sources can be

internal (e.g. functions, procedures, modules, etc) or external (e.g. complete

systems such as an operator interface (HMI)). The blackboard can be a single

publicly accessible region or subdivided into regions or panels (explained in

section 6.1.2). The controller can be implemented as a separate entity

(centralised) or can be partly implemented in the blackboard and partly in the

knowledge sources (distributed).

Chapter 6 : System Components Detailed Design

P a g e | 114

Benefits

This research requires distributed partner resources to efficiently interact with

shop-floor machines. This poses a need to have a methodology which supports

soft real-time communication and implements loose coupling of various

systems, while providing up to-date view of the machine status, regardless of

what mechanisms the partner resource systems implement or where the

systems are actually located. Since large numbers of loosely coupled

components require access in shared fashion to the published machine data,

repository is the best approach to modelling the architecture in software

engineering as mentioned in the chapter 4.6.3. In the field of software

architectures, blackboard-based systems are also known as repositories [116,

194].

Centralised

Controller

Distributed

Controller

 OR

External KS 7

(e.g. HMI)

External KS 8

(e.g. Machine Controller)

External KS

“n”

Single

Blackboard

Panel

1

Panel 2

Panel

3

Panel “n”

 OR

KS1

KS2

KS3

KS4 KS “n”

Any KS can

be

incorporated

into the

existing

design

ALL KS

updates to the

blackboard

done via the

controller

Figure 6-1: Overall Blackboard Systems Model

Chapter 6 : System Components Detailed Design

P a g e | 115

Furthermore, the distributed partner resources and the communications among

them are usually not static; therefore the associations between them are indirect

and cannot be predetermined until specific data values become known at run-

time. As identified by Corkill [195] any direct interaction among resources may

encourage the use of private communication protocols between the distributed

resources. Though these private protocols can be made efficient, any changes

to the communication strategy and / or addition of an extra resource may

require changes to the existing communication strategy. The approach needed

in this research needs to provide a model which provides reconfigurability and

indirect communication among resources via an intermediary such as a

blackboard data repository (as shown in the figure 6.2). This methodology

allows parallel execution of processes to improve system’s effectiveness over

traditional message-based transfer systems.

Blackboard-based approach is a highly modular way of building problem solving

systems [116]. This is because modularising the BB-components allows

interactions between them to be regularised [196]. Furthermore, it allows clear

and rigid interfaces to be defined through which the BB-components can be

accessed. Firstly, the knowledge sources are independent of each other and

communicate only via posting and modifying entries on the blackboard. Any

functionality addition or modification to an existing knowledge source can have

no effects on the other BB-components of the system. In addition to this, any

new knowledge source BB-component can be added to the existing model

without causing adverse effects to the system as shown in the figure 6.2. Thus it

allows dynamic reconfiguration as the resources can join or leave the systems

at runtime, promoting a system to be more reusable and maintainable [197].

Secondly, as the blackboard BB-component is organised into abstraction levels,

problem solving activity at one level is independent of the reasoning at the

other. This is because objects on two levels are not the same and interactions

between these levels can only be indirect. Since the hierarchy of abstraction

exists, this implies that the inferences made at one level do not interact with

those at another unless they are required to do so by some knowledge source.

One can regard the contents of one abstraction level as being separate from the

Chapter 6 : System Components Detailed Design

P a g e | 116

contents of another. Moreover, the architecture requires a controller to be a

special component which is independent of the knowledge sources that

represent the problem solving functionality. Therefore given the same set of

knowledge sources, a number of different control strategies can be

implemented, and a number of different controllers can be constructed. This

makes the control behaviour easy to be modified or replaced without affecting

other BB-components. This justifies the choice adopted by the author to select

the blackboard systems methodology to tackle this research problem.

6.1.2 Blackboard

Blackboard is a globally accessible region in a system organised into linear

hierarchy composed of abstraction levels that forms an outline plan for problem

solving [193]. Blackboard mediates all the communication within a system and

Resource 1

Blackboard

Resource 2

Resource 3

Control

Dynamic communication or resource modifications

e.g. new resource addition to the system

Schedule access for contribution

View status for contribution
Register interest for contribution

Resource 1

Blackboard

Resource 2

Resource 3

Control

New Resource (N, N+1, etc)

Figure 6-2: Indirect Communication and Ease of Reconfigurability in Blackboard Methodology

Chapter 6 : System Components Detailed Design

P a g e | 117

holds intermediary results by recording the machine information in the form of

entries. In simple terms, any item placed or modified on the blackboard is called

an entry. These entries are often expressed as sets of attribute-value pairs,

placed onto the repository (blackboard) by the knowledge sources. Each entry

is linked to the next in the form of a graph structure which represents

intermediate results’ configurations bearing some relation to each other [198]. A

complete solution to the problem under consideration consists of a collection of

entries which reside at different levels of abstraction.

If the problem being solved by the knowledge sources is complex and the

number of contributions made on the blackboard begins to grow, quickly

locating relevant information becomes a problem. In a good design, a

knowledge source should not scan an entire blackboard to see if a particular

item has been placed on it by another knowledge source [192]. Efficient

retrieval mechanisms are normally needed to support the use of a blackboard

as a group memory, for contributions generated by earlier knowledge sources’

executions.

It is advised in the literature to divide the blackboard to not only abstraction

levels, but also into non-overlapping regions or panels as shown in the figure

6.1 earlier. A panel is a distinctive region of the blackboard which has its own

set abstraction levels. Each panel is dedicated to solving a different part of the

original problem. Depending on the problem tackled, a panel can be designed

to support a read only, write only or read / write operation. Any communication

between the panels is carried out by the knowledge sources. This is because

these panels do not share storage when information from one panel is to be

passed to another. This makes a blackboard system an extremely flexible

model for problem solving. In addition to panel division, pre-programming the

flow of machine information through the blackboard system can achieve

substantial performance enhancements [199].

Chapter 6 : System Components Detailed Design

P a g e | 118

6.1.3 Knowledge Source

Knowledge sources represent the problem-solving knowledge essential to

operate a system [196]. In contrast to the blackboard BB-component, a

knowledge source corresponds to the long-term memory of the system as it

possesses the necessary knowledge / expertise about some aspect of the

domain, which can be applied and re-used as necessary. They respond to the

blackboard state by adding new entries or modifying existing ones. When a

particular state changes on the blackboard, an event is raised that can be used

to trigger the knowledge sources for their contributions. Knowledge source can

then carry out concurrent reads and writes on the blackboard BB-component.

As mentioned earlier, they may only communicate with each other (e.g. pass

parameters, results, etc) via the blackboard. Knowledge sources are

anonymous as they neither communicate directly with each other nor know

what other specific knowledge sources are present in the system, instead they

communicate indirectly by altering the contents of the blackboard database. The

knowledge sources can be widely diverse in their computational techniques as

they can be represented as a procedural routine, function or an entire complex

external system in any implementation language [197]. Each knowledge source

in the model can be designed and programmed using different techniques such

as object-oriented technique, web services technology, etc. Knowledge sources

can be designed to execute on separate threads or on separate processes on

the same or different computers. If knowledge sources are supposed to be

executed using separate threads, each threaded knowledge source can access

the blackboard because the threads share the same address space. If it

executes on separate processes (possibly different computers), technology like

Remote Procedure Calls (RPC) etc, can be used for communication between

the knowledge source and the blackboard [200].

Knowledge sources have two major parts (besides other) in its configuration as

shown in the figure 6.3, a precondition and an action. A precondition monitors

the state of the blackboard to determine the circumstances in which it can make

a contribution to the existing problem solving process. Only those knowledge

sources, whose preconditions have been satisfied by blackboard events, can be

Chapter 6 : System Components Detailed Design

P a g e | 119

executed. When the precondition gets satisfied (i.e. preconditions equals to

true), its action(s) is / are used to either add or modify an entry on the

blackboard. This may lead to a transformation of entries of one level into entries

at another. The process of adding entries by various knowledge sources onto

the blackboard continues until the overall problem has been resolved. It is

possible for a knowledge source action to alter the blackboard at more than one

abstraction level (as illustrated in the section 6.2.5), e.g. add an entry to level

one and modify an entry at level two of the blackboard simultaneously, when

executed.

6.1.4 Controller

In order to effectively converge on a solution, the methodology requires a

complex controller implementation. This is because the blackboard model uses

different kinds of knowledge, and to determine the application of a specific

knowledge source at a specific time poses a challenge to the design of the

system. The controller handles this complex runtime problem-solving strategy in

order to allow a smooth flow of events in the implemented model. This is done

by examining the state of the solution on the blackboard (which is represented

by the state of the blackboard database at any one time) and selecting the

available knowledge source that can be applied at that particular blackboard

state.

Figure 6-3: Knowledge Source Basic Configuration

Interface from

Blackboard

Preconditions

(Input(s))

Actions

(Output(s))

True?

KS 1

Configuration

Execute

Interface to

Blackboard

e.g. KS1 triggered by an event, and if executes then posts a new entry

Chapter 6 : System Components Detailed Design

P a g e | 120

Summarising, the controller provides a mechanism of organising the use of

knowledge sources in most effective and coherent fashion. The controller can

adapt a range of strategies based upon the task under consideration. It might,

for example, schedule knowledge sources in a bottom-up manner, top-down

fashion, or a combination of both.

Controller can be centrally implemented in the blackboard system or distributed.

If the blackboard is divided into panels then a separate controller can exist for

each panel or a controller can manage the executions across all the panels.

When an event occurs on the blackboard, the controller uses the event

parameters (such as abstraction level, panel, event type, etc) to traverse

through the lists of registered knowledge sources for this particular event and

redirect their activities to different regions of the blackboard as illustrated in the

section 6.2.6. Furthermore, it triggers the registered knowledge source(s) for

this specific event in order to execute the knowledge source. The next section

details individual components of the control and monitoring system architecture

by describing their respective blackboard design models.

6.2 System Components Design

6.2.1 Overall Design Description

Each system component within the system architecture (shown in the figure 5.7)

is architecturally designed and described using Blackboard-based methodology.

The result of which is a detailed description for each component which validates

that the system has correct data interaction and processing mechanism to

provide overall control and monitoring functionality. In fact, these models show

how these components are operating to process machine data in powertrain

manufacturing systems. These models can be directly transformed into

workable systems using various implementation techniques (for example,

object-oriented implementation as shown in the chapter 7).

These three system components (i.e. Broadcaster, Marshaller and Web-HMI)

can be overall identified working as a distributed multiple-blackboard system

Chapter 6 : System Components Detailed Design

P a g e | 121

model, where each major external knowledge source to other system

component is a complete system node in a network, incorporating its own set of

internal knowledge sources, blackboard and controller to function correctly. The

central system component (i.e. the Broadcaster) provides access as a main

public blackboard system enabling various other system components (major

external knowledge sources such as Web-HMI and Marshaller) to monitor the

state of Broadcaster’s blackboard. The overall model design is shown in the

figure 6.4. It has to be noted that the internal structure of the blackboard and

movement of entries within it, as shown in the figure 6.4, does not correspond to

the actual model design. Each system component design model is described in

detail in the subsequent sections with the exact type of knowledge sources,

blackboard structure, input and output data flows and control strategies

adopted.

Since the research aim is to offer a new approach to operator interfaces which

support control and monitoring functionality, the overall designed model shown

in the figure 6.4 decomposes the research task and delegates it to three

separate system components, each carrying out its own responsibility to solve

the overall problem in a distributed environment. Author’s approach in this

research is to divide the problem so that an architecturally intact blackboard

system can be discovered at each node in the distributed problem-solving

network. This causes the grain-size of each node on the network to be a

substantially large complete blackboard system. If the unit of distribution is a

complete blackboard system, each node can solve complicated problems

efficiently [201] and the problems tackled by each node can be completely

different. It has to be noted that when the unit of distribution is smaller (unlike

the model shown in the figure 6.4), nodes are frequently forced to cooperate in

solving subtasks and the communication requirements are increased

accordingly. Since operator interfaces can operate in a geographic location or

with mechanisms, which can have some network communication constraints

such as limited bandwidth, the approach to divide the nodes into smaller units is

practically unrealistic. Next section describes each system component’s

blackboard model with their KS and control structure providing the overall

control and monitoring support throughout production machine lifecycle.

Chapter 6 : System Components Detailed Design

P a g e | 122

Figure 6-4: Overall System Components Design Model

Web-HMI Component
Type: Operator Interface

External Model Support: CB and VRML

External Database: History and Config

Role: KS to Broadcaster and Marshaller

but complete functional blackboard system

component

Multiple HMI views act as multiple KS

to other system components

Each view may have extra KS for

remote authentication and session

management

KS1 KS2

KSn

Server
Blackboard

Marshaller Component
Type: Control Interface

External Model Support: CB

External Database: History and Config

Role: KS to Broadcaster and Web-HMI but

complete functional blackboard system

component

Manager

KS1

KSn

Blackboard

Broadcaster Component
Type: Monitor Interface

External Model Support: CB

External Database: Config

Role: Complete functional blackboard system component

Controller

KS1 KSn

KS2

Blackboard

All the models access the CB-expressed machine model

R
ea

l

/
 V

irt
ua

l M
ac

hi
ne

Chapter 6 : System Components Detailed Design

P a g e | 123

6.2.2 Broadcaster Blackboard Model

Broadcaster system component model is divided into five distinctive panels to

avoid performance bottlenecks. Each panel deals with a completely different

task delegated to its respective hierarchy. The entire blackboard acts as a

gateway through which all the events in the system pass. This blackboard

model is shown in the figure 6.5. The required functionality within this system

component is to collect machine data (in soft real-time) and propagate it to a

number of system components (locally and remotely implemented) for

monitoring purposes.

Reflecting to this functionality, the blackboard is organised in such that the

incoming machine information is progressively transformed into a simpler

uniform message structure ready for transmission. Blackboard division into

various panels enables the system to deal with variety of manufacturing

information which needs to be filtered accordingly, based on the type and

nature of the received data. In reasonable terms, these panels could not be

combined into a single blackboard due to data filtering, preparation and

propagation strategy. Within each panel a number of levels exist, where each

level represents a specific problem to be solved. Any interaction between

panels (through knowledge sources) is purely event-based implemented within

the controller of the Broadcaster system component. Following is an

explanation for each panel with their associated knowledge sources within the

Broadcaster model.

In-Load Panel

This panel is responsible for collecting and analysing input data from a machine

and propagating that data to the appropriate panel for further processing. The

hierarchy of this panel consists of two abstraction levels namely, “Boots” and

“Filters”. KS1 is a dedicated source whose “Signal” is never turned to “No” as it

is responsible to receive data from machine source continuously (more

information on this “signal” parameter is given in the section 6.2.5).

Furthermore, the same KS1 is responsible for loading configurations (i.e. CB

Chapter 6 : System Components Detailed Design

P a g e | 124

and system configurations) and initiating Broadcaster system component. Since

any reconfiguration to a manufacturing machine is engineered by and

represented in the CB approach, dynamic changes can easily be

accommodated within the Broadcaster system at run-time. Any incoming

machine data is always written (i.e. posted) to the “Boots” level by this KS1,

creating a new “Add” event type.

Posting on the “Boots” level triggers KS2 to read the message format and check

if it conforms to the CB configurations. Furthermore, KS2 discriminates data

according to its type, i.e. any incoming message can either be a machine state,

machine error, machine operation or corrupt / unfiltered information. KS2

distinguishes this information at this level and posts the resultant outcome onto

the “Filters” level. This creates a new event on the “Filters” level as new

information is being written on it. KS3 is responsible to propagating the filtered

information to “Machine-State” panel (machine states), “Diagnostic” panel

(machine errors), “Operation” panel (machine operational commands and

modes) or “Unfiltered Logs” (corrupt information) based on the message type.

When data appears on the “Filters” level, the logic of the KS3 directs it to its

corresponding section of the system component. KS3 plays a role of

transmitting data from In-Load panel to the most suitable message formatting

panel. Each of these panels deals with completely different type of machine

data. Within each panel, each level accepts information (i.e. entries) in a

specific format where each entry can only reside at a specific level if its object

has the properties required by that level.

Machine-State Panel

This panel is responsible for preparing machine state information delivered by

the KS3 in a format ready to be stored within the Broadcaster system. The

hierarchy of this panel consists of three levels namely “ST-Extracts”, “ST-

Refers” and “ST-Prepares”. As soon as information is posted on “ST-Extracts”

level, KS4 reads and extracts the necessary machine state information, and

Chapter 6 : System Components Detailed Design

P a g e | 125

collects any necessary reference from the CB configurations. It posts the

referenced information to the next level below.

Once the extracted machine state information is posted on the “ST-Refers”,

KS5 is triggered. Since the original obtained machine data needs to be

propagated further to remote sources, it has to be stored within the system. This

level prepares the machine state information in a specific format which makes it

an ideal unit to be stored efficiently within the system. The prepared unit of

storage is posted to the “ST-Prepares” level. KS6 is responsible to propagate

the ready-to-be stored state unit to the “Out-Load” panel. The information flow in

this panel is top-down in nature as information on the higher level is

decomposed, and then extracted and prepared into a lower simpler state unit

ready to be stored within the system runtime.

Diagnostic Panel

This panel is responsible for preparing machine fault information delivered by

the KS3 in a format ready to be stored within the Broadcaster system. The

hierarchy of this panel consists of three levels namely “ERR-Extracts”, “ERR-

Refers” and “ERR-Prepares”. As soon as information is posted on “ERR-

Extracts” level, KS7 reads and extracts the necessary machine fault

information, and collects any necessary reference from the CB configurations. It

posts the referenced information to the next level below.

Once the extracted machine state information is posted on the “ST-Refers”,

KS8 is triggered. Since the original obtained machine data needs to be

propagated further to remote sources, it has to be stored within the system. This

level prepares the machine fault information in a specific format which makes it

an ideal unit to be stored efficiently within the system. The prepared unit of

storage is posted to the “ERR-Prepares” level. KS9 is responsible to propagate

the ready-to-be stored fault unit to the “Out-Load” panel. The information flow in

this panel is top-down in nature as information on the higher level is

decomposed, and then extracted and prepared into a lower simpler fault unit

ready to be stored within the system runtime.

Chapter 6 : System Components Detailed Design

P a g e | 126

Figure 6-5: Broadcaster Model

Blackboard

CB
Configurations

Local
Configurations

Logs

External Source
Real /
Virtual

Machine

Local /
Remote

Resource
Tools

To: Panel 2, 3 or 4

IN-LOAD

Boots

Filters

KS1

KS2

KS3

1

MACHINE-STATE

ST-Extracts

ST-Refers

ST-Prepares

2

KS3

KS4

KS5

To: Panel 5

KS6

DIAGNOSTIC

ERR-Extracts

ERR-Refers

ERR-Prepares

3

KS3

KS7

KS8

To: Panel 5

KS9

OPERATION

CMD-Monitors

CMD-Prepares

4
KS3

KS10

To: Panel 5 KS11

OUT-LOAD

Propagates

Assembles

Subscribers

Publishes

5

KS6

KS9

KS11

KS12

KS13

KS15

KS14

KS16

Chapter 6 : System Components Detailed Design

P a g e | 127

Operation Panel

This panel is responsible for preparing machine operation information delivered

by the KS3 in a format ready to be stored within the Broadcaster system. The

hierarchy of this panel consists of two levels namely “CMD-Monitors” and

“CMD-Prepares”. As soon as information is posted on “CMD-Monitors” level,

KS10 reads and extracts the necessary machine operational information, and

collects any necessary reference from the CB configurations. It also refers to

the local configurations for necessary processing. It posts the referenced and

processed information to the next level below i.e. “CMD-Prepares”.

Once the prepared machine operation unit is posted on the “CMD-Prepares”

level, KS11 transmits it to the “Out-Load” panel for necessary storage. The

information flow in this panel is top-down in nature as information on the higher

level is processed into a lower simpler operation unit ready to be stored within

the system runtime.

Out-Load Panel

This panel is responsible for storing machine information posted by KS6, KS9 or

KS11 and propagating it to a number of remote clients on soft real-time basis.

Its hierarchy consists of four levels namely “Publishes”, “Subscribers”,

“Assembles” and “Propagates”. The “Publishes” level is the storage level where

any incoming data unit is checked by the KS12 before it is stored in a circular

buffer location. All the information units (i.e. machine states, machine faults and

machine operation) are stored in this reconfigurable structure for easy and

prompt access by remote partner resources. In order to provide a high-

performance data access system, information needs to be written to the

memory and not to a disk space [116]. Using a main memory as a repository

rather than a traditional database allows KS contributions to be made at

memory rather than at disk speed (more information on this storage mechanism

implementation is provided in the chapter 7.3.4).

Chapter 6 : System Components Detailed Design

P a g e | 128

As soon as KS12 stores information units, two types of events are raised. One

event triggers KS13 by informing it of the new information stored within the

buffer. KS13 activates all the currently connected partner resource tools. All the

remote clients’ connections are checked and activated at “Subscribers” level by

KS13 and necessary client information is posted onto the “Assembles” level.

The second event triggers KS14 to transmit the current state / fault / operation

information of the machine from the buffer to the “Assembles” level. At this

level, KS15 converts all the stored information units and CB configurations

(obtained from the KS14’s execution) into a uniform XML structure ready to be

transmitted to all the resource tools (information obtained from the KS13’s

execution).

The prepared XML machine information and connected resource tools status

details are posted onto the “Propagates” level by KS15. As soon as the

machine information becomes available, KS16 manages and propagates this

data to all the partner resources connected to the broadcaster system

component including the Web-HMI and Marshaller system. This process

enables the current machine information to be monitored by remote parties

regardless of their mechanisms or geographic locations. The movement of

information across this blackboard panel follows the bottom-up progression

because the information stored as a simple unit in the lower level is converted

into an XML structure to be propagated to the clients in the highest level of the

hierarchy.

6.2.3 Marshaller Blackboard Model

Organisation of the Marshaller system component model is influenced by two

major target requirements supporting the required level of functionality within

this system. These are:

• The component is mainly targeted to provide control functionality in the

system architecture by managing a communication channel between the

partner resource tools (for example, operator interface system) and the

machine. Furthermore, it is responsible to managing this control

Chapter 6 : System Components Detailed Design

P a g e | 129

functionality by implementing a logic that governs any safety conditions

under which a particular resource tool and machine can communicate.

• The component provides a repository service by logging all the machine

transactions in a static structure for future use, for example, provision of

machine playback functionality on the operator interfaces.

These requirements clearly identify two main features this system component

has to support i.e. control and storage. Based on this, the gross structure of

Marshaller’s model is divided into two different blackboards namely “Historic”

and “Channel” as shown in the figure 6.6. The “Historic” blackboard is used to

perform buffering and repository processes on the captured data from the

Broadcaster system component. The “Channel” blackboard is further sub-

divided into two distinctive panels responsible to managing communication and

control processes within the system. Since both of these panels deal with a

separate task, it seems logical to avoid combining them into one. Within each

panel a number of levels exist, where each level represents a specific problem

to be solved. Following is an explanation for each blackboard and its panels

with their associated knowledge sources within the Marshaller model.

Historic Blackboard

This blackboard is responsible for capturing machine transaction information

from the Broadcaster system component and buffering this prior to storing it into

a static database. The hierarchy of this blackboard consists of three abstraction

levels namely, “Collects”, “Constructs” and “Buffers”. KS1 is a dedicated source

whose “Signal” is never turned to “No” as it is responsible to receive data from

the Broadcaster source continuously (more information on this “signal”

parameter is given in the section 6.2.5). Any machine transaction message is

always written (i.e. posted) to the “Collects” level by KS1, creating a new “Add”

event type.

This triggers KS2 to interpret the message, extract important information and

sort it based on a time stamp accompanied within the received data. Incoming

Chapter 6 : System Components Detailed Design

P a g e | 130

data can be machine states, machine faults or machine operational information.

Any transformation of this data to comply with the database design format is

carried out at this level (database schema shown in the chapter 7.4.3).

KS2 posts the resultant outcome of these processes onto the “Constructs” level.

This creates a new event on this level, where by the data is buffered in a FIFO

structure by the triggered KS3, based on the timestamp of every machine

message. As soon as the data is buffered up, an event is triggered on the

“Buffers” level. KS4 monitors the buffer and saves this machine information to a

static database based on its scheduler’s process preconfigured time. In order to

reduce any communication overheads involved when performing necessary

database IO operations, KS4 can be preconfigured with a specific time which

manages the transfer of machine information from the system buffer to the

static database.

Channel Blackboard

This blackboard is responsible for managing communication channel between

partner resource tools and a manufacturing machine. Furthermore, it is also

responsible to processing the safety logic which enables only one resource tool

to control the machine at one time (algorithm described in the chapter 7.4.4),

while enabling simultaneous machine querying from all the tools. This

functionality is handled through two panels namely “Client” and “Machine”

panel.

Client Panel

As the name suggests, this panel deals with the communication and control

processes associated with the clients (i.e. partner resource tools). The hierarchy

of this panel consists of four abstraction levels namely, “Inputs”, “Filters”,

“Verifies” and “Propagates”. KS5 is a dedicated source whose “Signal” is never

turned to “No” as it is responsible to receiving data (i.e. client’s token) from

client resource continuously. KS5 carries out necessary authentication of

Chapter 6 : System Components Detailed Design

P a g e | 131

resource clients in order to implement required security regime. Any incoming

information is always written (i.e. posted) to the “Inputs” level by KS5, creating a

new “Add” event type.

KS6 is triggered to interpret this incoming client token and discriminate it into its

type, i.e. any incoming token from a client resource can either be a control

request, control message or a unit query. A control request corresponds to the

request sent by any client to the Marshaller component with an intention to

controlling a machine. A control message corresponds to the message a client

can send once it acquires the control of the machine. A unit query corresponds

to the query message that can be sent by any number of clients to query a

specific machine unit (i.e. component).

As soon as KS6 performs necessary interpretation, it posts its outcome onto the

“Filters” level. If the token type is a unit query then KS7 is triggered which

prepares and transfers the query information to the “Machine Panel”. If the

token type is a control request, KS11 is triggered which applies a safety logic on

the token request and attempts to verify the control process. KS11 posts the

outcome onto the “Verifies” level. Since the token type is a control request,

KS12 gets triggered and performs its actions and prepares the response

message for the control request token prior to posting an entry to the

“Propagates” level. Anything posted on this level, is always propagated to the

client it is destined for, by the KS5. If the KS12 posts a reply for the control

request token at this level, KS5 propagates it to the client which generated the

request.

If the token type is a control message, KS11 first verifies whether the client has

already acquired control of the machine and posts the outcome on the “Verifies”

level. If the client controls the machine and needs to propagate this token then

KS7 works on it and transfers the control message to the “Machine” panel. If the

client does not control the machine (KS11 decides this) then KS12 prepares the

reply message and KS5 propagates the denial message to the original client

source.

Chapter 6 : System Components Detailed Design

P a g e | 132

External Source

CB
Configurations

Local
Configurations

Static
Database

Local /
Remote

Resource
Tools

Real /
Virtual

Machine B
ro

ad
ca

st
er

C

om
po

ne
nt

Blackboard

HISTORIC BLACKBOARD

Collects

Constructs

Buffers

1

KS1

KS2

KS3

KS4

CHANNEL BLACKBOARD

Verifies

Filters

Inputs

CLIENT

Propagates

2

KS6

KS11

KS12

KS5

KS7

KS10

Returns

Transmits

Prepares

MACHINE
3

KS8

KS9

Figure 6-6: Marshaller Model

Chapter 6 : System Components Detailed Design

P a g e | 133

Machine Panel

As the name suggests, this panel deals with the communication and control

processes associated with the machine (i.e. real and / or simulated). The

hierarchy of this panel consists of three abstraction levels namely, “Prepares”,

“Transmits” and “Returns”. KS7 is responsible to transferring information from

the “Client” panel to this panel. There are two types of information transferred

by KS7 onto the “Prepares” level, either a control message or a unit query.

Presence of both this information triggers KS8 which distinguishes them and

posts the entry on the “Transmits” level of the hierarchy accordingly.

KS9 is responsible to transmit these tokens from “Transmits” level to the

machine source in their required format. Machine source replies with

information related to the type of request message sent by KS9. The same

knowledge source collects the responses and posts them back onto the

“Returns” level. Since responses need to be transmitted to the client resource

tool that generated a request, KS10 transfers the token response to the “Client”

panel - “Propagates” level. As mentioned earlier, KS5 keeps track of the client’s

requests on this level, therefore, it makes the decisions as to which client

generated the request and thus replies accordingly. All the request-response

tokens are transmitted in the uniform XML format making the implementation

independent of the actual targets (i.e. clients and machine).

6.2.4 Web-HMI Blackboard Model

Organisation of the Web-HMI system component model is also influenced by

some target requirements supporting the required level of functionality within

this system. These are:

• The component is mainly targeted to provide machine playback support

by integrating its logic with a simulation model (represented using VRML

techniques). The simulation model provides a 3D representation of a

manufacturing machine.

Chapter 6 : System Components Detailed Design

P a g e | 134

• The component seeks to monitor machine status by subscribing to the

live feeds published by the Broadcaster system component. Any updates

to the machine’s status need to be reflected on the operator interface

screens.

• The component controls access of various HMIs to the Marshaller

system component by implementing local access logic, and handling any

bidirectional communication involved in doing so.

Based on this, the structure of Web-HMI’s model is divided into three different

panels namely “Monitoring” panel, “Control” panel and “View” panel as shown in

the figure 6.7. Following is an explanation for each panel with its associated

knowledge sources within the Web-HMI model.

Monitoring Panel

This panel is responsible for handling all the tasks associated with machine

monitoring by subscribing to the live feeds published by the Broadcaster. The

hierarchy of this panel consists of three levels i.e. “Inputs”, “Processes” and

“Updates”. KS1 is a dedicated source whose “Signal” is never turned to “No” as

it is responsible to receive data from the Broadcaster source continuously (more

information on this “signal” parameter is given in the section 6.2.5). Any

machine transaction data is always loaded (i.e. posted) onto the “Inputs” level

by the KS1, creating a new “Add” event type. This triggers KS2 to carry out

necessary processing by interpreting and extracting important real-time

information from the received machine xml structure. Incoming data from the

Broadcaster component can be machine states, machine faults, machine

operational information and CB configurations. The resultant simplified form of

the data is written onto the “Processes” level by the KS2.

Availability of the processed data triggers KS3 to further sort it in order to

update the corresponding Web-HMI operator interface screen(s) or its records.

Based on the type of the simplified data and the internal system logic, KS3

arranges data for its corresponding HMI screens. The outcome is posted on the

Chapter 6 : System Components Detailed Design

P a g e | 135

“Updates” level by KS3. KS4 updates all the operator interface client screens

simultaneously when any information is written on the “Updates” level. The

information flow in the “Monitoring” panel is top-down in nature as machine

information on the higher level is processed, extracted and prepared into a

lower simpler form ready to update the corresponding HMI client screens.

View Panel

This panel supports a 3D view of a machine using a VRML simulation model

integrated within the Web-HMI component, and any request to display historical

information on the screens. Its hierarchy consists of two levels namely,

“Instructions” and “Representations”. In order to view machine simulation

representation (for example, view machine fault), an operator initialises a

session on the operator interface client screen and KS5 loads the necessary

instruction type and additional request parameters on the “Instructions” level.

The instruction type can be a machine fault view, machine playback view,

machine live mimic view or historic information view. Machine fault view

displays 3D machine fault location on the simulation model. Machine playback

view supports playback of machine transactions within this system. Machine live

mimic view displays machine’s execution state at real-time on its 3D machine

simulation model. Historic information view displays historic fault information on

the operator interface screens, for example error history. As explained earlier,

simulation functionality is a very useful feature which supports maintenance

process and early machine system verifications.

Presence of new instructions triggers KS6 to refer to the corresponding

information from the static database and write the resultant outcome on either

the “Representations” level of this panel or “Monitoring” panel – “Processes”

level. If the outcome is posted on the “Representation” level, KS7 reads the

extracted information and passes necessary display parameters to the VRML

simulation model for display. If the instruction is of the type historic information,

it gets propagated to the “Machine” panel – “Processes” level only to be

processed by KS3 and sent to the operator interface client screens using KS4.

Chapter 6 : System Components Detailed Design

P a g e | 136

Figure 6-7: Web-HMI Model

Blackboard

CB
Configurations

Local
Configurations

Static
Database

Operator
Interface Client

Screens

Broadcaster

Component

VRML
Model

Marshaller

Component

External Source

Inputs

Processes

Updates

MONITORING
1

KS1

KS2

KS3

KS4

KS6

KS9

VIEW
2

Representations

Instructions

KS5
K

S6

To: Panel 1

KS7

CONTROL
3

IN-Signals

OUT-Signals

Responses

KS8

KS9

To: Panel 1

KS10

KS11

To: Panel 1
KS9

Chapter 6 : System Components Detailed Design

P a g e | 137

Control Panel

This panel handles the required control mechanism for this system component.

All the operator interface client screens (i.e. clients) are served by the Web-HMI

component, which acts as a server processing many simultaneous connections,

regardless of the nature of the clients or their locality. This panel plays an

important role in controlling the access of all the clients, by managing any

conflicts which arise when a client expresses interest to the Marshaller for

controlling and querying a machine, and acquires necessary responses in

return.

Its hierarchy consists of three levels namely, “IN-Signals”, “OUT-Signals” and

“Responses”. Any incoming signal in the form of a token received from an

operator interface client screen is processed by KS8. This knowledge source

applies the authentication regime on the clients in order to determine the

permissions associated with them. As described earlier in section 6.2.3,

communication messages between the Web-HMI component (or any other

client resource tool) and the Marshaller component can be of three types, i.e.

control request, control message or unit query.

If the incoming signal is of the type control request then KS8 applies a local

logic to determine if the operator interface client screen can control a machine

or not. If not, in a situation where other operator interface client currently holds

the machine control, then KS9 gets triggered. KS9 transfers the necessary

denial information to “Monitoring” panel – “Updates” level, KS4 updates the

client screen which generated the request. If none of the connected operator

interface screens control the machine, KS10 is triggered by an event on “IN-

Signals” level which in turn processes the request and posts it onto the “OUT-

Signals” level with the control request parameters. KS11 propagates the

message to the Marshaller component. Any response from the Marshaller is

posted by KS11 onto the “Responses” level. This triggers KS9 to transfer the

response to “Monitoring” panel.

Suppose the incoming signal from the operator interface screen is of type

control message, KS8 checks if this HMI controls the machine. If it does then

Chapter 6 : System Components Detailed Design

P a g e | 138

KS10 propagates the message to the next level and KS11 transfers to the

Marshaller. If this HMI does not control the machine then KS9 gets triggered

(instead of KS10) and the resultant denial is sent to “Monitoring” panel by KS9.

Suppose the incoming token is of type unit query then KS10 is triggered and the

output is sent to the Marshaller via KS11. Any replies from the Marshaller will be

handled in the “Responses” level by KS11. KS9 transfers the responses to the

“Updates” panel for propagating the message to the HMI client which generated

the token.

6.2.5 BB Component – Knowledge Source Structure

Sections 6.2.2, 6.2.3 and 6.2.4 covered BB components design model for each

system component from the blackboard BB component perspective, but did not

demonstrate how the knowledge sources have been structured to enable

machine data to be transmitted from one blackboard level or system to the

other. This section shows the generic configuration (structure) of a knowledge

source which acts as a template with which all the knowledge sources (within all

the system components) have been designed and implemented.

Since every KS is specialised to contribute knowledge for a specific task, its

implementation is either procedural (i.e. procedure or function) or a complete

system. The generic structure of KS is shown in the figure 6.8 where its

configuration is divided into two groups, accommodating six fields in total. The

description of each field is given as follows.

The first field (“UType”) is universal type identification for the knowledge source

which specifies its domain, and a unique id made up of its name and a unique

tag number, for example, WKS1. WKS1 shows that it works on a Web-HMI

component and its name is KS with an id of 1. The second field (“Signal”) is an

activation switch which corresponds to either being “Yes” or “No”. If the signal

switch value is “No”, it means that this knowledge source cannot be executed

and if “Yes” then vice versa. These first two fields make up group1 and are

declared only once in the knowledge source’s configuration. Group1 cannot be

duplicated across the system.

Chapter 6 : System Components Detailed Design

P a g e | 139

The third field (“Source”) specifies the source address of the blackboard where

this knowledge source is interested. For example, 132.217.83.209/B1/P2/L3

can be a source address which shows that this knowledge source is interested

in the blackboard B1 panel P2 level L3. Every source address is preceded by

an IP address of the system where the system component is operating. This

promotes distributed operation of the knowledge source over a Wide Area

Network (WAN) such as the Internet.

The fourth field (“Conditions”) comprises of the conditions and sub-conditions

joined by Boolean operators like AND, OR, etc, if needed. The fifth field

(“Actions”) correspond to the procedures and / or functions that must be

executed when the conditions are satisfied. The seventh field (“Destination”)

specifies the address of the destination where the output of the computation will

be written to. The format of this field is similar to the previously described

example for the source field.

For every group1 within the knowledge source “n”, there exist a number of

further groups 2 consisting of four fields each. Since a knowledge source can

Group 1
Ex

ec
ut

er

In
te

rfa
ce

 Knowledge Source “n”

UType Signal Source Conditions Actions Destination

Source Conditions Actions Destination

N – Level

implementation

Group 2

Group 2

Knowledge Source Template

Figure 6-8: Knowledge Source Structure

Chapter 6 : System Components Detailed Design

P a g e | 140

operate on 1 or more levels therefore every knowledge source has an N-level

implementation of group 2 fields. This means that a knowledge source “n” can

for example, operate on 2 different blackboard sources executing different

actions at once. Every knowledge source has a well-defined “Interface” which

promotes to its modularity. Each knowledge source has an “Executer” logic

element which is explained in the section where the controller’s operation for

the blackboard system is detailed.

6.2.6 BB Component – Controller Operation

Sections 6.2.2, 6.2.3 and 6.2.4 covered BB components design model for each

system component from the blackboard BB component perspective, but did not

demonstrate how the controller operates to schedule knowledge sources to

contributing their speciality at the required blackboard panel’s level. Controller

of each system component (i.e. namely server for the Web-HMI, controller for

the Broadcaster and manager for the Marshaller) operates using event-

invocation scheduling [202] (using publish / subscribe communication

mechanism as described in the chapter 3). Since this is an open-ended problem

where the goal cannot be determined owing to the continuous execution nature

of the application, event-invocation scheduling technique is the best suited

approach [116, 197]. With this approach, the publisher and the subscriber (both

being KS BB component) are decoupled using the broker (i.e. blackboard and

controller BB component) [157].

Structurally, the controller mechanism has been separated into three logic

elements namely “Catalogue”, “Scanner” and “Executer” as shown in the figure

6.9. In order to clarify the responsibility of each logic element of this controller

mechanism, and to understand the interaction of knowledge sources with a

blackboard BB component, an example has been given in the figure 6.10.

Chapter 6 : System Components Detailed Design

P a g e | 141

Example in the figure 6.10 assumes that that a blackboard BB component with

multiple panels (each having a well-defined distinctive hierarchy) exists.

Furthermore, a number of unique knowledge sources also exist in the system

component. When a blackboard system starts operating, the “Catalogue” logic

element’s responsibility is to register all the KS in a dynamic tabular record with

their details at runtime as shown in the figure 6.10.

When the state of a blackboard changes (i.e. a new entry appears), an event is

generated and this can be used to trigger the KS. Instead of all the KS scanning

the blackboard continuously, each KS registers an interest by informing the

“Scanner” indirectly (i.e. via “Catalogue”) on the type of information (i.e. event) it

would like to contribute to. The “Scanner” has the responsibility to continuously

monitor the blackboard and record all the events being raised at runtime, and

populate its dynamic tabular record as shown in the figure 6.11. When a specific

event type is detected by the “Scanner”, it is registered in its dynamic tabular

record (figure 6.11). Its logic immediately scans the catalogue’s record (figure

6.10) to find all the corresponding knowledge source(s) registered for this event

based on the “Source” address. As soon as it finds the corresponding

knowledge source(s), “Catalogue” immediately changes the knowledge source’s

“Signal” to “YES”. This triggers the knowledge source causing their respective

“EXECUTER” logic element to read any necessary parameters (i.e. entry

represented as objects) from the source blackboard.

Executer Scanner Catalogue

Blackboard Controller

Implemented centrally in the blackboard system
Implemented in each knowledge

source (distributed)

Figure 6-9: Controller Division

Chapter 6 : System Components Detailed Design

P a g e | 142

The executer’s logic applies its conditions on these parameters. If the

condition(s) is / are satisfied (based on the event type), the corresponding

action(s) are executed by the executer logic and the output is written to the

destination field’s address. When this output is successfully written to the

blackboard, the executer switches its “Signal” back to “No” and updates this in

the catalogue’s record shown in the figure 6.10. When the output is written to

the blackboard, new event occurs (based on the entry type) and the same cycle

continues until the system is halted. This approach is beneficial in terms of

addressing system-level properties like performance, reusability, reliability and

security. This overall process is clearly shown in the figure 6.12 for incoming

entry of the type X1.

Runtime Tabular Record – Catalogue Element

Cat #

UType

Source

Signal

CT1

WKS1

132.217.83.209/B1/P2/L3

NO

CT2

WKS1

132.217.83.209/B1/P1/L1

YES

CT3

WKS2

132.217.83.209/B1/P2/L3

NO

...

....

....

....

Note:
- One knowledge source can operate on one or more levels as shown in CT1

and CT2. In this case, group 2 of knowledge source “WKS1” will have 2
configurations, each corresponding to each source.

- One or more knowledge source(s) can operate on the same level as shown
in CT1 and CT3. In this case, CT1 and CT3’s corresponding knowledge
source’s group 2 configurations may or may not be similar.

- By default, all the knowledge sources’ signals are switched to “NO”, meaning
they cannot execute at this time. The only KS whose signal is always “YES”
deals with posting the original entry on the blackboard when new data arrives
from an external source as shown in CT2. The main KS will never switch its
signal to “NO” as it needs to collect data from external source for the system
to continue processing.

Figure 6-10: Runtime Catalogue Logic Element's Record

Chapter 6 : System Components Detailed Design

P a g e | 143

A simplified expression for comparing the “Source” and switching the signal to

“Yes” is pseudo-coded as shown below:

For each record in “Catalogue” corresponding to “Source”
 If Runtime.Source = Catalogue.Source then
 SWITCH Catalogue.Signal=”YES”
 End If
Next

All the knowledge sources in the system execute in parallel and can read

entries from the blackboard simultaneously. In order to avoid deadlock, only one

knowledge source is allowed by the controller to write data (i.e. an entry) in the

same panel’s level at one time. The concept of executing knowledge sources in

parallel applies to the overall blackboard system but not to individual panel,

meaning, the controller executes the knowledge source in sequence at each

panel but in overall, multiple knowledge sources can execute simultaneously

provided that they do not operate and write on the same blackboard panel. If

they operate on the same panel then sequential execution constraints are

Runtime Tabular Record – Scanner Element

Scan #

Source

Entry

Event Type

S1

132.217.83.209/B1/P2/L3

X1

e1

S2

132.217.83.209/B1/P1/L1

X2

e2

S3

132.217.83.209/B1/P2/L3

X3

e3

...

....

....

....

Note:
- An entry can only exist on one level at a time.
- One or more entries can exist at one level at the same time as shown in S1

and S3.

Figure 6-11: Runtime Scanner Logic Element’s Record

Chapter 6 : System Components Detailed Design

P a g e | 144

applied onto them and write access is given to only one knowledge source per

panel. Next chapter describes the overall runtime operation for the system

components corresponding to a runtime architectural description of the solution,

and their respective implementations.

Figure 6-12: Blackboard Processing Example

“Scanner”

Source: 132.217.83.209/B1/P2/L3 Event Type: e1

UType: “WKS2”

Condition: If event type=”e3”....

“Catalogue”

Source: 132.217.83.209/B1/P2/L3

UType: WKS1

UType: WKS2

UType: “WKS1”

Condition: If event type=”e1”.... Action: Take entry X1, perform
action and provide output

Destination: Post new entry to the correct source

Cycle Continues

Incoming Entry “X1”

P a g e | 145

Chapter 7 : System Components Implementation

Chapter Contribution to this Thesis:

This chapter’s main contributions are the process runtime implementation description for each system

component and the Web-HMI’s templates representation layout that maps to a machine’s CB model

description at runtime, providing reconfigurable and consistent display to all the stakeholders through the

machine lifecycle.

7.1 General Overview

This chapter describes a detailed runtime implementation process for the

Broadcaster, Marshaller and Web-HMI system component. An overall system

runtime operation is outlined first followed by detailed implementation

descriptions for each system component, satisfying functional and non-

functional requirements identified in the chapter 5.2. Furthermore, the design

models described in the chapter 6 are implemented using object-oriented

techniques and communicate using socket-based links, a representation of

which is also covered within this chapter.

7.2 Overall System Runtime Operation

For supporting close control and monitoring activities throughout a machine

lifecycle, an implementation of the overall system runtime operation has been

illustrated in the figure 7.1. Initially, the previously referenced CCE process

engineering toolset (chapter 3.2.2) [122] manages creation of machine

components (with their behaviour definitions) and stores them in a library for

future use (ref 1 in the figure 7.1). For any reconfiguration requirements or

machine design and build process, these components can be edited using the

same toolset (ref 2 in the figure 7.1), and either be installed (for a real machine)

or be simulated (for a virtual machine) (ref 3 in the figure 7.1). One of the

outputs from this engineering operation is the CB machine model description

which can be shared throughout the control and monitoring system architecture

Chapter 7 : System Components Implementation

P a g e | 146

(chapter 5.3) with the help of the Broadcaster system component (ref 4 in the

figure 7.1).

R
ea

l
S

im
ul

at
ed

Machine CCE

Engineering

Tools

1

2
3

Broadcaster
4

5

HMI Client Browser Screens

(Local and Remote)

6

Any Third-

Party Client

Tool(s)

8 7 9

10

11

Web-HMI

10

11

History

Marshaller

9

10

11

8

Figure 7-1: System Components Runtime Operation

Chapter 7 : System Components Implementation

P a g e | 147

When machine operates (whether in real, simulated or hybrid mode), its status

is continuously monitored using the Broadcaster (ref 5 in the figure 7.1) which in

turn processes, prepares and streams it to various clients (for example, the

Web-HMI system component) using TCP/IP socket communication [203] in

XML based data format (ref 6 in the figure 7.1). Web-HMI serves various HMI

client browsers by returning standard template-based HTML pages populated

with these CB machine model descriptions and initial current machine status

data. Furthermore, any machine status updates are propagated to various HMI

client browsers using XML-based objects as described in the section 7.5.2 (ref 7

in the figure 7.1).

When an HMI client browser intends to control a machine, it transfers a control

request to the Marshaller via the Web-HMI (ref 8 in the figure 7.1). The

Marshaller permits (or denies) machine control to the HMI client browser which

initiated the control request (ref 9 in the figure 7.1 through applying its machine

control sharing mechanism as discussed in the section 7.4.4). If the HMI client

browser obtains machine control, it can start controlling the machine operation

by sending control commands (ref 10 in the figure 7.1), for which the machine

acknowledges their receipt (ref 11 in the figure 7.1). Depending on the current

state of the machine, these commands can be executed by machine control

logic and updated status is propagated to the Broadcaster system component

(ref 5 in the figure 7.1). Next sections detail implementation description for each

system component designed within this research.

7.3 Broadcaster Implementation

7.3.1 I / O Outline

This section outlines Broadcaster’s operational boundary showing major inputs

and outputs supporting its monitoring functionality within CB implementation.

Figure 7.2 shows I / O outline where only external links are presented. As an

input, CB model is serialised and prepared to be propagated to clients when

they connect. Any machine status changes such as state change, emergence of

errors or operational information are collected, processed and transmitted to

Chapter 7 : System Components Implementation

P a g e | 148

clients using well-defined interfaces as described in the section 7.3.3 of this

chapter. To appreciate its internal workings, a description of its process runtime

implementation is provided next.

7.3.2 Process Runtime Implementation

The principal functionality of the Broadcaster is to simultaneously propagate

machine events to a number of clients regardless of their geographical locations

or their system implementation types. Figure 7.3 shows a process runtime

implementation for this system component. It has two TCP/IP socket

connections permanently open for listening to connection requests, one from a

machine and the other from client(s). Each socket operates with a different

configuration as specified by a user using its graphical interface (illustrated in

the section 7.3.5). When a connection request is detected by the respective

sockets, individual thread is created to handle each connection type to enable

either client subscriptions or machine publications to raise a corresponding

event in the Broadcaster’s blackboard. If the corresponding event is of the client

Figure 7-2: Broadcaster I / O Overview

Broadcaster

5

6

7

8

9

10

External Connection Service

CB Model

Current Machine Status

Operational Commands

and Mode Changes

State Changes

Errors

Major Input

Major Output

1

2

3

4

CB Model

Operational

Commands and

Mode Changes

State Changes

Errors

R
ea

l &
 S

im
ul

at
ed

M
ac

hi
ne

C
C

E
En

gi
ne

er
in

g

To
ol

Chapter 7 : System Components Implementation

P a g e | 149

request type, instances of client socket(s) are created by their listening socket

upon connection and subscribed to the published streams. If the corresponding

event is of the machine type, data entries are processed and stored with the

help of management interfaces (described in the section 7.3.3) into

reconfigurable memory buffer (described in the section 7.3.4).

There are separate read and write pointers to access this memory buffer. There

is only one single pointer that writes to the buffer where as there are multiple

read pointers, each created for every client request and its reference is provided

to the corresponding dedicated client socket instance. Data (in the form of CB

model description, current machine status, state changes, errors, or operational

commands and modes) is prepared and streamed to the connected clients.

Broadcaster

Li
st

en
in

g
So

ck
et

 (s
)

Machine

Publication

Clients

Subscription

Process Events

Publish Streams

Management

So
ck

et

In
st

an
ce

(s
)

Web-HMI Marshaller Other Client(s)

Machine

1 write / n read

pointers

Buffer

Figure 7-3: Broadcaster Process Runtime Implementation

Connection

Request

Chapter 7 : System Components Implementation

P a g e | 150

7.3.3 Interface Description

Broadcaster system component model described in the chapter 6.2.2 has been

implemented using object-oriented techniques [204], a description of which is

covered within this section of the chapter. KS being a machine data carrier and

processor, it can either be represented using set of functions or procedures as

mentioned in the chapter 6.2.5. These representations in object-oriented

programming (OOP) field correspond to objects; therefore a single KS

responsibility can be managed by implementing one or more object

representations depending on its processing burden, improving the overall

modularity and performance of the system.

For demonstrating its implementation process, KS1 of the Broadcaster

blackboard model is taken as a reference example. KS1 is responsible for

carrying out various tasks such as:

• Loading local system configurations entered by users,

• Loading CB model configurations created by CCE engineering tools,

• Initialising communication with external sources such as production

machine and clients like Web-HMI,

• Collecting continuous incoming machine data and

• Posting the collected data onto the “Boots” level of the panel “In-Load”.

Each of these tasks has been represented as “objects” in the form of methods

as shown in the figure 7.4. These methods form the object’s interface with the

outside world [205] and carry out all the responsibilities required by the KS1 in

the “Boots” level. This is a logical representation which bears no resemblance to

the actual implementation of the Broadcaster system. In actual implementation

terms, each of these objects has been implemented using a class within the

system, an example of “SystemLoader” class is shown in the figure 7.5 using

the UML notation [139]. Declaration of this class includes attributes such as

machine name, machine port, system IP, client port and memory queue size

configurations. Likewise, all the major methods have been implemented as

individual or grouped classes using Visual Studio® toolkit and dot Net

programming framework [45]. These KS classes implement Broadcaster’s

Chapter 7 : System Components Implementation

P a g e | 151

controller interfaces (described next) which provides a level of abstraction within

the system code, improves code organisation as well as supports the system

growth when new features will be desired [205].

IN-LOAD

Boots

Filters

KS1 – Representation

SystemLoader(config);

CBLoader(config);

SocketInit(ip,port);

Receiver(data);

DataPoster(entry);

Figure 7-4: Broadcaster KS1 Interface Representation

Object’s
Interface

SystemLoader

- MachineName: String

- MachinePort: String

- SystemIP: String

- ClientPort: String

- QueueSize: Int

+ LocalConfig():void

Figure 7-5: Broadcaster KS1 “SystemLoader” Class

Chapter 7 : System Components Implementation

P a g e | 152

Broadcaster Control

Broadcaster’s controller (known as “Broadcaster Control”) is actually

implemented using a set of interfaces. They manage and schedule all the

execution activities for Broadcaster system component using multi-threading

techniques. They are organised into logical grouping and implementable

interface groupings as shown in the figure 7.6. Implemented interfaces enable

encapsulation of various KS objects (instantiated from their respective classes),

for example, an object instantiated from the class “SystemLoader” (as described

previously) is encapsulated inside “Configuration” interface of the “Registry”

group. There are four logical groups as follows:

• Mechanism Management: This logical group has four implemented

interfaces within the system component, namely ClientManager (deals

with client lifetime management), MachineSet (deals with machine

management), GUIView (deals with user interface updates) and Abstract

Machine (deals with base communication instantiations).

• Dictionary: This logical group has two implemented interfaces within the

system component, namely GlobalDictionary (deals with data definition

management) and ControlParser (deals with parsing machine

messages).

• Blackboard Management: This logical group has three implemented

interfaces within the system component, namely QueueData (deals with

data propagation management), CircularQueue (deals with dynamic

memory storage – described in the next section) and FrozenState (deals

with client state management).

• Registry: This logical group has four implemented interfaces within the

system component, namely Validation (deals with data validation),

Configuration (deals with configuration management), Translation (deals

with necessary internal translations) and Instance (deals with system

component instance management).

Chapter 7 : System Components Implementation

P a g e | 153

Propagation of collected machine data, after its processing has been carried out

requires efficient data buffering mechanism. A reconfigurable buffer is thus

employed within Broadcaster’s implementation as discussed in the next section.

Implemented Interfaces:

= ClientManager

= MachineSet

= GUIView

= AbstractMachine

Implemented Interfaces:

= GlobalDictionary

= ControlParser

Implemented Interfaces:

= Validation

= Configuration

= Translation

= Instance

Implemented Interfaces:

= QueueData

= CircularQueue

= FrozenState

Broadcaster Control

Mechanism

Management
Dictionary Blackboard

Management
Registry

Logical Logical Logical Logical

Knowledge source functionality is supported by one or more implemented

interfaces, for example; KS1 belongs to “Registry” and “Mechanism

Management”

Figure 7-6: Broadcaster Control Interfaces

Chapter 7 : System Components Implementation

P a g e | 154

7.3.4 Reconfigurable Memory Buffer

As mentioned in the chapter 6.2.2, all processed machine data within the

system component is stored in a reconfigurable memory for its easy and prompt

access by clients. Since data transfer requires soft real-time access in

applications of this type, there is always a risk of collecting data faster than

actually processing and propagating it further, or vice versa [116]. To smooth

out any speed differences, a circular data storage acting as a buffer queue is

implemented. Using main memory rather than a traditional database as a

repository allows KS contributions to be made at memory speed, significantly

improving system performance when transmitting data from one source to the

other at soft real-time basis.

This circular structure acts as a reconfigurable First in First out (FIFO) queue

where data can quickly be saved and retrieved from by respective KS. Three

types of data can be saved with their timestamps i.e. machine states, machine

errors, and machine operational commands and modes. Current

implementation converts incoming machine data (in textual string format) into a

compressed integer-based unit, saving it into the buffer (with the help of

“Blackboard Management” controller group).

Any incoming data is added to the next available slot in the buffer until it gets

full; at this stage oldest unit in the buffer gets overwritten. When a client

connects to the Broadcaster, it gets an instant access to the existing pointer

location in the buffer storing current operational state of the machine. This leads

to propagation of the current state of machine from the Broadcaster to its clients

such as Web-HMI as shown in the figure 7.7. The circular buffer’s size is

reconfigurable using a configuration user interface view within the Broadcaster

system as discussed in the next section.

Chapter 7 : System Components Implementation

P a g e | 155

7.3.5 Graphical User Interface View

Currently, Broadcaster receives machine data in textual string format,

processes it and transmits it in XML-based uniform representation to its clients

upon their connections. Incoming data from machines can be monitored and

necessary system configurations can be made using Broadcaster’s graphical

user interface. As soon as any machine data is collected and processed, it is

displayed on its incoming messages section of its graphical user interface using

a colour coded representation to distinguish data based on its type as shown in

the figure 7.8.

Machine states, and machine operational commands and modes are presented

in green colour, machine errors are in red colour and unfiltered / incorrect or

corrupt data in purple colour. Furthermore, the same figure shows its

configuration interface view which enables a user to configure system settings

like IP addresses, Queue size, Machine name and Port details. Next section

describes Marshaller system component implementation details.

Figure 7-7: Reconfigurable Circular Queue

Q
ue

ue
 D

at
a

C
irc

ul
ar

Q
ue

ue

Q
ue

ue
D

at
a

C
irc

ul
ar

Q
ue

ue

Fr
oz

en
St

at
e

t= t + 5

Machine

t=0
t= t + 1
t= t + 2
t= t + 3
t= t + 4
t= t + 5

Machine’s Current State t + 5 Propagated to Web-HMI upon connection

Web-HMI

t= t + 5

Buffer

Chapter 7 : System Components Implementation

P a g e | 156

Broadcaster User
Interface

Operational
Commands and

Messages

Machine States
Machine Errors

Corrupt Data

Configuration Interface View

Figure 7-8: Broadcaster System Component Graphical User Interface

Chapter 7 : System Components Implementation

P a g e | 157

7.4 Marshaller Implementation

7.4.1 I / O Outline

This section outlines Marshaller’s operational boundary showing major inputs

and outputs supporting its control functionality within CB implementation. Figure

7.9 shows I / O outline where only external links are presented. As an input, CB

model is received and de-serialised for supporting its marshalling functionality.

Any machine status changes (i.e. state change, emergence of errors or

operational information) are collected from the Broadcaster, processed and

stored in a static data repository described in the section 7.4.3.

Br
oa

dc
as

te
r

Major Input

Major Output

Marshaller

CB Model

Current Machine

Status

1

2

Operational

Commands and

Mode Changes

State Changes

Errors

3

4

5

External Connection

Service 7

External

Connection

Request

14

Mode Change

Request / Ack

State Change

Request /Ack

Control Access

Request / Ack 8

9

10

Error History

Logs and

Activities

11

Machine

Playback 12

13

Mode Change

Request / Ack

State Change

Request /Ack

Control Access

Request / Ack 15

16

17

W
eb

-H
M

I &
 O

th
er

 C
lie

nt
s

Figure 7-9: Marshaller I / O Overview

R
eal & Sim

ulated M
achine

Chapter 7 : System Components Implementation

P a g e | 158

7.4.2 Process Runtime Implementation

The principal functionality of the Marshaller is to provide permission mechanism

for operator interface system to control a machine, and to manage historical

transactions for supporting additional functionalities within the system such as

playback support, real-time machine mimic presentation, etc. Figure 7.10 shows

a process runtime implementation for this system component. It has two

communication channels where the first channel deals with interaction with the

Broadcaster and the other deals with interaction between a machine and

various clients for example, Web-HMI. These communication channel settings

can be configured using Marshaller’s graphical interface (illustrated in the

section 7.4.5).

A TCP/IP connection is requested by Marshaller’s caller sockets to the

Broadcaster which in turn streams machine data over the established link. A

separate thread is created handling this connection type to enable its published

data to raise a corresponding event in the Marshaller’s blackboard. This causes

the received data to be processed, buffered and stored in a static SQL

database (whose schema is described in the section 7.4.3).

Marshaller has a permanently open TCP/IP socket for listening to client

requests. When a client such as Web-HMI establishes a socket connection with

the Marshaller, a separate thread is created to handle client subscriptions to

raise an event in the blackboard. Furthermore, instance of this client socket is

created by this listening socket and subscribed to the published streams. These

published streams can be control responses, mode responses or state

responses from a machine.

To control a machine, the connected client requests permissions through the

same established link. This request is managed by the machine management,

which houses logic mechanism for machine control limiting only one client to

control a machine at a time (described further in the section 7.4.4). If a control

can be granted, a caller TCP/IP socket connection is requested with the

machine, which in turn upon approval, streams necessary data to the

Marshaller. A corresponding event is generated which streams data to the

connected controlling client. Data can freely be exchanged between the

Chapter 7 : System Components Implementation

P a g e | 159

controlling client and the controller machine using the established socket link

with the aid of machine management and process events.

7.4.3 Top-level Database Schema

A static data repository called “MessageData” is created and implemented using

Microsoft SQL server 2008 to support historical transactional storage and

provide other functionalities within the system architecture such as data for

Listening Socket Socket Instance

Web-HMI Other Client(s)

Clients Subscription Publish Streams

B
uf

fe
r

Q
ue

ue

Static

Database

Process Events Machine
Management

Caller Socket(s)

Broadcaster Machine

Broadcaster
Publication

Machine
Publication

1 Control at a Time

Connection Request

Marshaller

Figure 7-10: Marshaller Process Runtime Implementation

Chapter 7 : System Components Implementation

P a g e | 160

machine playback, error history, etc. KS4 of the Marshaller system component

model is responsible for this storage functionality (chapter 6.2.3). Since the

amount of incoming machine data is expected to gradually increase database

size, an agent script which truncates data older than 7 days is also

implemented. This script’s parameters can be reconfigured using the SQL

browser. Figure 7.11 illustrates a top-level schema of the database

implemented in this research.

This database consists of a set of tables where the description for each table is

briefly provided as follows.

• B_States: This table contains real / simulated machine state transactions

data with their associated date/time stamps.

• B_Errors: This table contains real / simulated machine error transactions

data with their associated date/time stamps.

MessageData

B_States B_Errors B_Modes

Playback_History

Solved_Errors

Client_Logs Control_Activities Control_Commands

Figure 7-11: Top-level Database Schema

Chapter 7 : System Components Implementation

P a g e | 161

• B_Modes: This table contains real / simulated machine operational

commands and modes data with their associated date/time stamps.

• Solved_Errors: This table contains real / simulated machine solved errors

data with their date/time stamps.

• Playback_History: This table contains a sequential record of machine

transactional data with their date/time stamps. This table provides

possibilities to the Web-HMI component to support playback functionality

using VRML-based techniques.

• Client_Logs: This table contains all the connection-specific details of

clients who aim to obtain control of a production machine. For example,

Web-HMI component clients.

• Control_Activities: This table contains data pertaining to all the machine

control-specific requests / responses made by various clients after their

successful connection with the Marshaller.

• Control_Commands: This table contains data associated with exchange

of messages between client and production machine once it successfully

obtains control of the machine. A machine control mechanism is an

integral part of the Marshaller which enables safe management of

machine control activities within the system architecture. This control

mechanism is described next.

7.4.4 Machine Control Sharing Mechanism

Since Ford Motor Company has stressed the importance of having control

safety procedures when implementing this research solution [79], a control

sharing mechanism is implemented at both levels of the system architecture

(i.e. Web-HMI and Marshaller). At the Web-HMI level, its server control (i.e.BB

controller component) prohibits more than one HMI client browser to control a

Chapter 7 : System Components Implementation

P a g e | 162

machine at a time. At the Marshaller level, its manager control (i.e. BB controller

component) prohibits more than one client (for example Web-HMI, any other

machine acting as a client, etc) to obtain machine control at a time. This

mechanism ensures dual-level safety within the system architecture (as shown

in the figure 7.12) of both, technological and human resource, at the shop-floor.

This control mechanism is shown as a flowchart in the figure 7.13 and its

corresponding explanation is as follows:

• (a): Marshaller can be preconfigured with details of all the clients aiming

to connect with it. These clients may be Web-HMI, other machines, other

third-party clients, etc. For the sake of simplicity and ease of explanation,

an assumption of their unique id’s can be made to be C1 (for Web-HMI

client) and C2 (for a web service-based third-party client tool that aims to

control a machine). In addition to these Ids’, as Web-HMI serves many

HMI client browsers, their corresponding Ids’ can be assumed to be

C1H1 (for a local HMI browser) and C1H2 (for a remote HMI browser).

Figure 7-12: Dual-level Control Safety Mechanism

Real / Virtual Machine

Web-HMI

First level safety implementation: Only one HMI

browser (local or remote) can obtain machine control

at a time. Decision made by “Server Control”.

Local HMI Browser 1 Local HMI Browser 2 Remote HMI Browser 1

O
th

er

C
lie

nt
s

Server Control

Marshaller

Manager Control

Second level safety implementation: Only

one client (e.g. Web-HMI, other clients, etc)

can obtain machine control at a time.

Decision made by “Manager Control”.

Chapter 7 : System Components Implementation

P a g e | 163

By default, no control is given to any of these clients at Marshaller’s initial

start up.

• (b): When a client wants to request control of a machine, it sends its

unique Id to the Marshaller. If the client is a HMI browser, it transmits

C1H1 and if it is a web service-based client, it transmits C2W1.

• (c) and (d): Assuming C1H1 makes a control request, Marshaller

performs Id screening by checking its internal records where Id’s of the

clients allowed to control a machine are whitelisted. If C1H1 is restricted

to control the machine, its control request is dropped.

• (e) and (f): If C1H1 is in the control white list, the Marshaller checks

whether a control token is available for the machine. An availability of the

token corresponds to availability of the machine control. This token can

only be consumed by one client at a time. If the token is not available

(owing to C2W1 controlling the machine or the machine is unavailable for

some reason), then C1H1’s control request is denied.

• (g): If the control token is available, C1H1 consumes the control token,

which locks it to the control mechanism such that any control requests

from other clients such as C2W1 will be denied. Any control requests

from C1H2 will immediately be blocked at the Web-HMI level as it

maintains a local control token (i.e. first level safety as described earlier).

• (h): If by any chance C1H1 releases the machine control, the Marshaller

makes its control token available for other clients such as C1H2 and

C2W1 to initiate the process from (a) to (g).

• (i) and (j): When C1H1 is controlling the machine, it can start sending

messages to the Marshaller, only for it to be propagated to the machine.

These request messages are related to mode changes, state changes or

any component queries. Upon their receipt, Marshaller screens

Chapter 7 : System Components Implementation

P a g e | 164

messages against its CB description (received from the Broadcaster

system component). If message(s) are not confirming to the CB model

description, Marshaller propagates a denial message to C1H1. In this

case, C1H1 can either send further messages to Marshaller or release

machine control to make the token available for other clients.

• (k): If the message confirms to the CB model descriptions, firstly,

Marshaller establishes its connection to machine and upon a successful

connection, propagates this message to it. Secondly, the machine

acknowledges its receipt which is propagated by Marshaller back to the

client that generated original message request, in this case C1H1. In this

way, C1H1 gets an assurance of its successful message propagation to

the machine through the Marshaller system.

Marshaller system component consists of a set of graphical user interfaces

which provide various functionalities such as system configurations,

communications and debugging status views as illustrated in the next section.

Chapter 7 : System Components Implementation

P a g e | 165

Drop control

request

Control Denial

No control by

default

Client control

request

ID

Screening

Consume

 Control Token

Token

Available?

Control

Release?

Message

Screening

Message

Propagation

Message Denial

Propagation

a

b

c
d

e

f

g

h

i j

k

Figure 7-13: Machine Control Sharing Mechanism

Chapter 7 : System Components Implementation

P a g e | 166

7.4.5 Graphical User Interface View

Currently, Marshaller receives CB model descriptions and machine data in XML

format which is processed, stored and displayed in textual string format to a

user. It offers a set of graphical user interface views for providing various levels

of functionality required within the system. Figure 7.14 shows two major views

provided by Marshaller system component.

Marshaller User Interface Connection Status

Machine Control
Activities

Incoming Machine Data

Debugging View

Figure 7-14: Marshaller System Component Graphical User Interface

Chapter 7 : System Components Implementation

P a g e | 167

In the figure 7.14, two major views are illustrated such as communications view

and debugging view. The communications view shows connection status with

other resources within the system architecture such as Broadcaster, clients and

machine. Furthermore, it shows incoming data from the Broadcaster and any

machine control related activities in the data details section of the graphical user

interface.

Debugging view shows any system critical information and database related

activities. It acts as a logging section which saves Marshaller’s activities in an

external textual file for future debugging process, if needed. In addition to these

two views, Marshaller has two additional graphical user interface views such as

configurations view (for system related configuration settings) and additional

view (for database and control client’s settings). These views are not shown in

the figure 7.14. Next section describes Web-HMI system component

implementation details.

7.5 Web-HMI implementation

7.5.1 I / O Outline

This section outlines Web-HMI’s operational boundary showing major inputs

and outputs supporting the overall operator interface systems’ monitoring and

control functionality within CB implementation. Figure 7.15 shows I / O outline

where only external links are presented. As an input, CB model and machine

status is received and de-serialised by the Web-HMI server for supporting its

monitoring functionality. Any machine status changes (i.e. state change,

emergence of errors or operational information) are collected from the

Broadcaster, processed and propagated to HMI client browsers. Furthermore,

machine control operations are supported with the aid of the Marshaller. To

appreciate this client / server implementation, a description of its process

runtime is provided next.

Chapter 7 : System Components Implementation

P a g e | 168

7.5.2 Process Runtime Implementation

Since the Web-HMI system component supports various distributed HMI client

browsers in control and monitoring operations, BB knowledge sources

communicate with the blackboard using Client - server model (as described in

the chapter 4.6.4). This approach enables anytime, anywhere accessibility to

the operator interface system by supporting multiple client views, serving real-

Figure 7-15: Web-HMI I / O Overview

Major Input

Major Output

Web-HMI

Br
oa

dc
as

te
r

CB Model

Current Machine

Status

1

2

Operational

Commands and

Mode Changes

State Changes

Errors

3

4

5

External Connection

Service 7

Mode Change

Request

State Change

Request

Control Access

Request 9

10

11

H
M

I C
lie

nt
 B

ro
w

se
rs

 Http / Https XML

Object Request 8

Error History 12

Machine Playback 13

External

Connection

Request

14

M
arshaller

Mode Change

Request / Ack

State Change

Request /Ack

Control Access

Request / Ack 15

16

17

Http / Https XML Object

Response 18

Chapter 7 : System Components Implementation

P a g e | 169

time information (using XML-based objects, described later in this section) and

processes client’s control operations, overall satisfying the functional and non-

functional requirements identified in the chapter 5.2.2.

Figure 7.16 illustrates Web-HMI’s process runtime implementation from the

client – server model’s perspective. The Web-HMI system is internally

organised using the MVC pattern (described in the chapter 4.6.1) and security is

implemented using HTTPS protocol and layered architecture (described in the

chapter 4.6.2). Initially, an HMI client browser requests a required operator

interface screen (i.e. webpage) from the server using a URL (Uniform Resource

Locator), which is nothing but the address of resources serving the Web-HMI

system component over the WWW. With the help of its logic, a TCP/IP socket

connection from the Web-HMI caller sockets to the Broadcaster is established

(if it is not already initiated) to receive CB model and current state of a machine.

Upon their receipt, the logic updates the required html page (represented as a

template – further explanation in the section 7.5.3) by populating it with the CB

model description and current status of the machine. Furthermore, any

necessary navigational information is provided by this logic and the requested

html page is returned to the HMI client browser.

To avoid the traditional client – server communication issues where a client

waits for response from a server after every task, an AJAX (Asynchronous

JavaScript and XML) technique is implemented within this system component to

improve performance, interactivity of the overall application [206] and provide

real-time machine information. Any update request from the HMI client browser

takes the form of a JavaScript call to an AJAX engine (written in Javascript and

tucked away as a hidden frame) instead of a standard HTTP / HTTPs call.

Chapter 7 : System Components Implementation

P a g e | 170

This AJAX engine renders the operator interface screens and communicates

asynchronously with the server in the client’s behalf. If the engine requires any

updates from the server to refresh certain HTML content on the browser (for

example, retrieving real-time machine status information such as a component

HMI Browser Client

Page Request

HTML Page Response

JavaScript Call

Updated HTML Content

Ajax Engine

HMI Screen(s)

(HTML Pages)
HMI Screen(s)

(HTML Pages)
HMI Screens

XML HTTP/HTTPS Object

Request
XML HTTP/HTTPS

Object Response

Static

Database Broadcaster Marshaller

Data Management

Static

Information

Database

Queue

Runtime

Information

Model

Web Pages

Templates

Images

HTML + CSS

3D VRML

Representation

Java scripts

View

Logic

Control

Communication

Navigation

Controller

Socket Calls Messages
Socket and

Control Calls Messages

Figure 7-16: Web-HMI Process Runtime Implementation

Chapter 7 : System Components Implementation

P a g e | 171

state change), the engine makes asynchronous XML HTTP/HTTPS based

object calls to the server without stalling operator’s interaction with the HMI

browser screen. This technique provides responsive operator interface to HMI

roles whilst updating various contents on the HMI screens. Depending on the

request, the Web-HMI logic responds to the XML object request, which

becomes the updated HTML content of the HMI client browser screen. In this

way, various HMI screens and their contents can be requested without

experiencing any visual interruptions.

When the HMI client browser aims to obtain a machine control, a request token

(represented as an XML object) is propagated to the server where the logic

control permits or denies passing the machine control to the client browser that

generated the object. If control is permitted, a bi-directional communication

channel is established from the HMI client browser to the Marshaller (via the

server). Any updates that do not require requesting a complete webpage is

handled by the AJAX engine. The overall look and feel of the HMI screens is

consistent throughput, thanks to the template-based implementation described

in the next section of this thesis.

7.5.3 Operator Interface Template to Configuration Mapping

As described previously, Web-HMI serves numerous web pages which are

reconfigurable and consistent to displaying machine configurations at the

browser side through the use of template-based representation. This section

describes the exact approach utilised to represent these templates and the

process through which they are populated with various configurations at

runtime. Figure 7.17 shows an overall representation process illustrating

generation of HMI template with editable regions that map to various

configurations using the Web-HMI system component logic. As shown, an

operator interface template’s layout is governed by the representation layout

which is decomposed into three levels namely; panel view, zone view and link

points. These templates are inspired from Siemens Transline layout (as

described in the chapter 5.2.1).

Chapter 7 : System Components Implementation

P a g e | 172

An HMI screen can have any number of panels where each panel can have

multiple zones. Within each zone, numerous link points can be defined, which

are nothing but editable regions (dynamic array items acting as a placeholders)

that get populated at runtime with various configurations. This representation

layout provides reconfigurable templates once description of panels, zones and

link points have been carried out. It has to be noted that no external

configuration tool is yet available within this research to enable these

parameters to be configured outside the Web-HMI system code. Presently, this

Figure 7-17: Web-HMI Template Representation and Configuration Population Process

Panel View

Zone View

Link Points

Representation Layout

Reconfigurable Template

with Editable Regions (i.e.

Link Points)

Logic

Negotiator

Mapper

Translator

Machine Status

CB Model

Runtime Operator Interface Screen

Broadcaster Propagation

Navigation

Java Scripts

3D VRML

Images

Template Library

Chapter 7 : System Components Implementation

P a g e | 173

representation layout has been described within the system code and

expressed using CSS (Cascading Style Sheet) templates.

The Web-HMI logic’s translator interprets received CB model description from

the Broadcaster and handles the responsibility of populating these descriptions

to a mapper. The mapper creates an instance of the required reconfigurable

template and updates instance’s editable regions with the available

configurations such as CB model, machine data, images and VRML description.

Furthermore, it attaches executable scripts and navigational information to this

template instance. Negotiator’s responsibility is to manage communication

session with the requestor (i.e. HMI client browser) and thus return complete

html page (i.e. template instance) representing machine configurations. With

any modifications to a machine, corresponding sections of the HMI screen are

updated using AJAX objects (as described in the section 7.5.2).

To clarify the above explanation of representing and populating HMI screens,

an example has been illustrated in the figure 7.18, describing a layout of the

operator interface system’s component browser screen within this research. In

the representation layout described earlier, the panel view forms a boundary

within which zones exist. Within a zone, multiple items can be configured using

their respective link points. The screen is populated from its template with the

help of the mapper logic which updates various link points with their respective

configurations as shown in the example in the lower section of the figure 7.18.

Within the Web-HMI logic, the control (i.e. server logic) decides which link point

is of which category type. If the link point needs to house an image, it instructs

the mapper to load the required image at runtime.

The operator interface system can be implemented to run as a stand-alone

terminal communicating on its own to a machine controller (such as a PLC), or

as a server collecting data from various controllers and providing display

screens to numerous clients at various locations. Next chapter describes proof-

of-concept application of this CB operator interface systems approach by

validating it through three industrial case studies.

Chapter 7 : System Components Implementation

P a g e | 174

Introduce next chapter

1 Panel (P1)
3 Zones (Z1, Z2, Z3)
Z1-pt1, Z2 - pt1,pt2,pt3, Z3-pt1

1 Panel (P2)
2 Zones (Z1, Z2)
Z1- pt1,pt2, Z2-pt1

1 Panel (P3)
1 Zone (Z1)
Z1- pt1

1 Panel (P4)
5 Zones (Z1, Z2, Z3, Z4, Z5)
Z1-pt1,pt2,pt3,pt4, Z2-pt1,pt2
Z3-pt1, Z4-pt1,pt2
Z5-pt1,pt2,pt3,pt4

1 Panel (P5)
8 Zones (Z1,Z2,Z3,Z4,Z5,Z6,
Z7,Z8)
Z1- pt1, Z2-pt1, Z3-pt1, Z4-pt1,
Z5-pt1, Z6-pt1, Z7-pt1, Z8-pt1

 1 Panel (P6)
6 Zones (Z1, Z2, Z3, Z4,Z5,Z6)
Z1- pt1, Z2-pt1, Z3-pt1, Z4-pt1,
Z5-pt1, Z6-pt1,

Mapping Example for Panel 4 – Zone 1 and Zone 2

P4, Z1, pt1
P4, Z1, pt2
P4, Z1, pt3
P4, Z1, pt4

P1, Z2, pt1
P1, Z2, pt2

Mapper

Image

Library

X1

X2

X3

X4

CB Model
S1

S2

S3

S4

P1, Z2, x1
P1, Z2, x2
P4, Z1, x3
P4, Z1, x4

P1, Z2, S1
P1, Z2, S3

Zone

Panel

Link Point

Figure 7-18: Operator Interface Template to Configuration Mapping at Runtime

C
on

tr
ol

P a g e | 175

Chapter 8 : Industrial Case Studies

Chapter Contribution to this Thesis:

The main contribution of this chapter is the assessment of the CB operator interface system using three

industrial case studies, verifying the proposed research solution by fully supporting the identified

manufacturing automation requirements.

8.1 General Overview

This chapter describes the practical suitability of the CB operator interface

system approach in industry by assessing the research requirements focused

and identified as attributes in chapter 3.3. The development and implementation

of this research has been undertaken through various research projects such as

COMPAG [85], SOCRADES [27] and BDA [112]. Initially, the operator interface

system’s scope within the CB machine lifecycle is identified prior to the

verification of this research approach using three case studies.

8.1.1 Operator Interface Context within CB Machine Lifecycle

The aim of the CB automation approach is to fully support machine lifecycle

requirements. The idea is to define information once but to use it many times by

all the stakeholders throughout the machine’s lifecycle. As indicated in the

chapter 3.2.2, the fundamental concept of this approach is to compose a

complete automotive machine from modular machine components. The major

elements that facilitate implementation of CB approach are the CCE

engineering environment, a common machine data model (CB configurations),

real or simulated machine components and runtime support environment

assisting in close control and monitoring of machine components using the web-

based operator interface system.

From the CB approach perspective, the lifecycle of a machine involves machine

design, installation, operation and reconfiguration. Design and installation phase

includes intermediate phases such as build and try-outs where as operation

Chapter 8 : Industrial Case Studies

P a g e | 176

includes maintenance. Reconfiguration phase encompasses all machine

modification activities from minor machine interlocking changes to major

machine re-compositions.

During the machine design and installation, process engineers plan the

operation of a machine from the manufacturing process requirements that are to

be supported by it. Subsequently, engineers select machine components that

meet the specification of the new machine’s requirements. Using the CCE

engineering tools, the machine’s sequencing and interlocking logic can be

inputted by control engineers using a high-level state-based representation that

defines the machine operation. This definition becomes the control logic of the

machine which can be validated using machine simulation. Simulation involves

a 3D model execution of the machine logic that can be evaluated by the

operator interface system prior to the physical machine build phase. The output

of the CCE machine design activity provides a machine behaviour definition in

the CB configuration form that can be shared within the system components

architecture (described in the chapter 5.3).

Within this research implementation no operator interface configuration tool is

currently available therefore default operator interface system screens can be

reused by process engineers within the machine program. Since the machine

behaviour is already available in the form of CB configurations, operator

interface system can be used to validate various machine tasks prior to its build

(as studied in the section 8.3.4). Furthermore, operator interface system’s

functionality can be verified (as studied in the section 8.3.5) and machine

operators can be trained (as highlighted in the section 8.3.6) using the same

machine simulation. This enables a complete operator interface system to be

available to support design, build, try-out and installation phases of the machine

lifecycle.

After the machine installation at the end user’s site, operator interface system

can be used to support day-to-day control and monitoring operations, and any

maintenance activities (as studied in the section 8.2.7). Any machine

reconfiguration can be carried out to meet new product requirements using the

CCE engineering tools by modifying existing components from the CB library or

Chapter 8 : Industrial Case Studies

P a g e | 177

creating and integrating new components in the design. The corresponding

machine modifications are stored in CB configurations. This single common

machine data model can be shared throughout the machine lifecycle using the

Broadcaster system component, enabling operator interface system to support

reconfiguration activities (as studied in the section 8.2.4).

8.2 Stage 1 Case Study: Ford-Festo Test Rig

The Ford-Festo test rig is a table top style test bed located at the MSI laboratory

implemented to facilitate the advancement of the state-of-the-art in

manufacturing machine control technology and collaborative demonstrations.

The test rig (illustrated in the figure 8.1) was developed in conjunction with Ford

Motor Company of the UK, and mimics a general assembly automation machine

line (described in the section 8.3).

The main objective of using this rig is to investigate new research approaches

to powertrain automation in isolation and combining assembly stations in a

coordinated fashion. The rig provides a flexible environment where new ideas

can be verified without the cost of lost productivity, safety issues or scrap

inevitable in using it in a real manufacturing environment. A description of this

rig is covered in the next section.

Chapter 8 : Industrial Case Studies

P a g e | 178

8.2.1 Test Rig Description

This study is based on the application of CB operator interface systems

approach by validating it through the Ford-Festo test rig. The test rig consists of

four subsystems (i.e. stations) as illustrated in the figure 8.2:

• Station 1: This is a subsystem consisting of a distribution hopper unit.

• Station 2: This is a subsystem consisting of a buffer unit.

• Station 3: This is a subsystem consisting of a processing table unit.

• Station 4: This is a subsystem consisting of a handling arm unit.

Each of these subsystems has one or more mechanical components that are

connected to field devices (i.e. sensors and actuators) through a distributed

FTB-based control module from Schneider Electric.

Figure 8-1: Ford-Festo Test Rig

Station 1 Station 2

Station 3 Station 4

FTB Device

Chapter 8 : Industrial Case Studies

P a g e | 179

As previously described, this test rig’s functionality represents a typical

powertrain machine line operation which is used to assemble vehicle engines.

In the assembly process, parts are inserted to the main body of the engine

block (or head) at each station along the processing line. In this test rig the

engine block is represented as a plastic workpiece (or part) that undergoes

various assembly tasks such as transferring, buffering, slot checking, drilling

and sorting.

Its assembly sequence is such that the workpieces are loaded into the rig in the

magazine slot and the eject cylinder pushes each part from it at the station 1.

Swivel arm picks each one up and transfers them to the conveyor drive at the

station 2. With the help of the separator, parts are controlled to flow onto the

rotary table one at a time. At the rotary table in the station 3, parts move

through different locations such as checker, drill and ejector. The checker is

used to confirm that the workpiece is positioned correctly prior to drilling

operation. If it is not then it will skip the drill operation and raise an alarm to the

Station 1

Station 2

Station 3

Station 4

Figure 8-2: Ford-Festo Test Rig Illustrating Major Components

Chapter 8 : Industrial Case Studies

P a g e | 180

machine operator. If it is positioned correctly then drilling occurs and the part

gets moved to an ejector which pushes the workpiece to the buffer of the

transfer arm. The transfer arm at the station 4 uses the gripper to pick the parts

to place them in either goods part bin or goods reject bin depending on whether

a good / bad drilling operation is carried out earlier. This differentiation is

implemented using coloured workpieces.

Adoption of Web Services in CB Control Description

The control description within this test rig has been engineered using the CB

approach (as described in the chapter 3.2.2). In the test rig implementation,

there are four controller nodes, each responsible for the control tasks of one

subsystem (i.e. station) resulting in a fully distributed control environment. Each

controller node is a prototype embedded microprocessor device called FTB

which has been designed and provided for research by Schneider Electric.

Each component is enabled with a web services interface as a result of the

SOCRADES EU research project. Web services enable distribution of test rig

status information to widely used higher resources; in this case a web-based

operator interface system. This approach has been demonstrated through its

integration in a control and monitoring system architecture using a service

orchestration engine [82] developed at Loughborough University. This engine is

implemented within the application logic as a finite state machine and

orchestrates various services on the components [31, 82].

8.2.2 Case Study Setup

Figure 8.3 illustrates the overall case study setup using the Ford-Festo test rig

controlled using web services-based FTB devices.

Chapter 8 : Industrial Case Studies

P a g e | 181

To support fully distributed heterogeneous web services-based manufacturing

automation, a PC-based orchestration engine is implemented, acting as a client

to a service on the FTB control device for device operation. The orchestration

engine subscribes to the machine events published by the web service control

logic at the FTB server side and in doing so establishes a TCP/IP socket

connection with the Broadcaster to propagate a machine’s published status (in

this case, the test rig) and accepts incoming control commands from the

Marshaller via an alternative socket TCP/IP link. Machine status is broadcasted

FTB Servers
IP: 150.1.0.101

Station 1 Station 2

Station 3

Station 4

IP: 150.1.0.102 IP: 150.1.0.103 IP: 150.1.0.104

IP: 150.1.0.200

PC-based Service Orchestration Engine (Web Service Client)

Remote Operator Interface

IP: 217.162.18.15

IP: 150.1.0.203

Marshaller

IP: 150.1.0.202

Broadcaster

Local Operator Interface

IP: 150.1.0.201

Figure 8-3: Ford-Festo Test Rig Case Study Setup

Firewall

R
em

ot
e

IM
S

Web-HMI

Chapter 8 : Industrial Case Studies

P a g e | 182

to all the connected clients (including the Web-HMI and the Marshaller system

components). Web-HMI, in turn, serves local operator interface client

browser(s) as well as remote browser(s). An alternative remote connectivity link

can also be established by initiating a RemoteIMS screen sharing session

(concept described in the chapter 4.4) from any local HMI client browser’s PC.

The system components are deployed in a PC-based environment

communicating over the Ethernet / Internet. Each system component has been

given a specific IP address enabling them to operate in a distributed fashion.

The HMI system console consists of a standard computer touch screen (i.e. non

vendor-specific) operating using the Microsoft Explorer (standard web browser)

with internet connectivity.

8.2.3 Research Attributes Assessment

Some of the identified requirements of this research (summarised as attributes

in the chapter 3.3) are assessed using scenarios and demonstrations

appropriate for this case study. The benefits of utilising a CB operator interface

system in addressing these desired attributes have already been discussed in

the chapter 2.4. The four main attributes tested in the subsequent sections are

as follows:

• Reconfigurability and Reuse Support.

• Information Transparency and Mobility.

• Loose Mapping of HMI to Actual Machine or its Control Logic.

• Real-time Remote Machine Control, Monitoring and Maintenance.

8.2.4 Reconfigurability and Reuse Support

As a requirement of agile automation, it is vital to be able to reconfigure and

reuse production machine (and its associated engineering support tools)

throughout its lifecycle. From the perspective of operator interface system,

implementation of their screens must cater for any dynamic changes exercised

Chapter 8 : Industrial Case Studies

P a g e | 183

on the machine modules (i.e. mechanical and control components) owing to the

support required to facilitate new products.

In order to enable this functionality within the proposed operator interface

system, two major implementation features have been incorporated:

• Generic operator interface template screens are populated at runtime

with the machine configuration. Templates specify the screen layout

according to the representation layout as described in the chapter 7.5.3.

Since the operator interface’s view is separated from its logic (as

described in the chapter 7.5.2), the same generic screens can be utilised

within many machine programmes having different configurations.

• Presence of the Broadcaster system component enables propagation of

machine configurations (including any dynamic updates) to the operator

interface system at runtime. Since any change to a machine during its

reconfiguration activity is captured in the CB model (i.e. machine

configurations), their propagation to Web-HMI system component

supports dynamic screen updates to match machine changes.

Scenario Description: Modifying a Process Workflow

To assess the capabilities of the system in this respect, a scenario on the test

rig is setup as illustrated in the table 8.1. This scenario represents a real life

reconfiguration example that occurs at Ford Motor Company corresponding to a

process workflow change in an assembly line. In this scenario, the station 2

(buffer unit) is removed from the existing test rig’s configuration in order to

bypass the workpiece straight to the station 3 (processing table unit). The

configuration steps are illustrated in the figure 8.4:

Chapter 8 : Industrial Case Studies

P a g e | 184

Scenario Details

Implementation Target: Ford-Festo Test Rig

Control: Web Services-based FTB Device

Ref

Station ID

Configuration

Type

Operator Interface Client

Type

Application Re-

programming

SN1

Station

1,2,3,4

Existing

Machine

Configuration

Local and Remote HMI

Screens

None Required

SN2

Station 1,3,4

New Machine

Configuration

Local and Remote HMI

Screens

None Required

Table 8.1: Reconfiguration and Reuse Scenario

The configuration work flow is as follows:

• The Process engineer uses the CCE engineering toolset to re-design the

Ford-Festo test rig model, and mirror those changes through

mechanically rearranging the stations by removing station 2 and linking

the station 1 straight to the station 3. This replaces the current

configuration of having four stations (station 1/2/3/4) by a new

configuration having three stations (station 1/3/4). The new design can

be used to configure the control software as per the CB approach.

• Restart the Broadcaster system component after replacing CB model

description output provided by the CCE engineering toolset.

• Refresh the Internet explorer browser running the operator interface

system. Any configuration changes are dynamically reflected onto the

HMI screens (through the AJAX objects) and thus a machine operator

does not need to wait for a new version of the HMI system to be

deployed at the HMI panel (in this case a standard touch screen). The

output is a consistent machine information display that reflects the actual

machine configuration.

Chapter 8 : Industrial Case Studies

P a g e | 185

Mechanical Build

Operator Interface Screens

CCE Engineering Tool

Reconfigure old model

to output a new model

New CB Machine Configurations

Broadcaster

Station 1,3,4

Runtime Operation New Machine Configuration Runtime

Refresh Browser

SN1 SN2

Figure 8-4: Reconfigurability and Reuse Scenario Case Study

Station 1,2,3,4

Chapter 8 : Industrial Case Studies

P a g e | 186

8.2.5 Information Transparency and Mobility

A co-operation between business and shop-floor levels must be consistently

represented through standard interfaces that enable various support tools to be

integrated within the engineering and runtime processes of a machine’s

lifecycle. In fact, it is essential to improve the transparency of the connection

between back-end systems and shop-floor production. From the perspective of

this research, the control and monitoring system architecture must provide a

“plug-and-play” integration framework, legacy system support and operate using

open standards formats.

In order to support these functionalities within the proposed operator interface

system implementation, two major enabler features are implemented:

• A distributed system architecture that operates using standard TCP/IP

communication link, enabling third-party tools to connect to the

Broadcaster and Marshaller on ad-hoc fashion.

• Broadcaster system component represents machine operational status

data in uniform XML open format which can be collected and decoded by

any third-party (or legacy) system for further analysis, storage and

propagation.

Business Application Integration Demonstration: SAP Tool

To verify this attribute, a demonstration has been undertaken with SAP GmBH’s

SAP xMII (Manufacturing Integration and Intelligence) for shop-floor activity

monitoring and fault diagnosis [207] as part of the SOCRADES project. This

application enables business systems to obtain a real-time view of industrial

processes, supporting business activity monitoring, maintenance optimisation

and overall equipment effectiveness.

An overall setup for this demonstration is schematically shown in the figure 8.5.

As shown in this schematic, SAP xMII application is configured to interact with

the Ford-Festo test rig using the service orchestration engine (via the

Chapter 8 : Industrial Case Studies

P a g e | 187

Broadcaster’s TCP/IP link). The service orchestration engine has a state

publication utility and a service invocator. These enable SAP tool to subscribe

to the required device’s states and to invoke the operations on the FTB devices

[31].

In this integration demonstration, the test rig provides control device data (i.e.

real-time device status), work piece status, the number of processing units, and

the machine operational and idle times for data manipulation and analysis as

shown in the figure 8.6. The operational status of the test rig is provided by the

state variables determined from the logical state of local sensors. Based on the

event-based communication model, these variables are transmitted to the SAP

tool through the Broadcaster system component as and when a component

state changes.

By collecting this status information, businesses can have a global view of the

entire shop-floor manufacturing process. This enables strategic decision making

and provides an integration framework where third-party (or higher-level ERP)

systems can be plugged into the existing architecture.

Ford-Festo Test Rig

FTB1 FTB2 FTB3 FTB4

DPWS Interface

Service Orchestration

Invocator Publication

Broadcaster
SAP xMII

Tool

Marshaller

Web Service Interface

Figure 8-5: Schematic Setup for SAP xMII Demonstration

XML

Chapter 8 : Industrial Case Studies

P a g e | 188

8.2.6 Loose Mapping of HMI to Actual Machine or its Control Logic

It is of paramount importance to have operator interface systems that are

machine or control logic independent, requiring HMI to be loosely mapped to

both. Any reconfiguration activity or supplier selection process during the

machine lifecycle should not be influenced by the existing resources at the

shop-floor. Furthermore, any modification to a machine (eventually leading to

changes in the control logic) should not require any programming at the

operator interface system side. In fact, regardless of the machine type or the

controls vendor, operator interface systems should be integrated to the machine

engineering process in an open fashion, providing a truly heterogeneous

existence of systems at the shop-floor.

From the operator interface system’s research perspective, HMI screens should

be generic enough to enable same set to be deployed across various machines

in a production programme. Author acknowledges the fact that the same set of

screens cannot be practically utilised across various programmes having

Figure 8-6: SAP xMII Tool Integration in SOCRADES

Chapter 8 : Industrial Case Studies

P a g e | 189

different screen layout requirements (for example, transfer line machines and

assembly line machines may have different screen layout requirements),

however, these requirements within this research approach can manually be

integrated using programming the operator interface system codes and

modifying its representation layout (chapter 7.5.3). This setback is owing to the

lack of an available HMI configuration tool that can easily be used by process

engineers to quickly churn out new layout screens to fit new screen

requirements (as discussed in the future work, chapter 10.2).

In order to enable this functionality within the proposed operator interface

system, three major implementation features are provided:

• Machine configurations (based on CB approach) are independent of the

operator interface system owing to the separation of HMI’s logic from the

actual view (as described in the chapter 7.5.2). The logic maps machine

configurations to the HMI views only at runtime, enabling operator

interface screens to be generated with updated machine configurations.

A machine of type “A” (having its specific configurations downloaded to

an industrial controller from vendor 1) and a machine of type “B” (having

its specific configurations downloaded to an industrial controller from

vendor 2) can use the same operator interface system.

• Generic operator interface template screens specify the screen layout

based on the representation layout as described in the chapter 7.5.3.

The generic screens can be utilised within many machine programmes

having different configurations.

• A suitable control and monitoring system architecture that does not

differentiate between the machine type and the control type as it is purely

data transmission-oriented (which is represented in a uniform XML

format). Furthermore, the architecture supports hybrid machine control

and monitoring, where a partly real and partly simulated machine can

coexist and drive the HMI system.

Chapter 8 : Industrial Case Studies

P a g e | 190

Scenario Description: Simulated Machine-Independence

To verify this attribute, a scenario demonstrating the machine independence

feature of the operator interface system implementation is carried out (shown in

the figure 8.7). Two simulated machines are used for this scenario, first one

being the Ford-Festo test rig and second one is an Oil Pan Rundown machine

(described in the section 8.3). In this scenario, both machine models drive the

same operator interface system implemented in a PC, one after the other.

Initially, the Ford-Festo test rig model is run using the CCE engineering tools,

(its corresponding machine configuration is imported to the Broadcaster system

component prior to this). The Broadcaster is started, followed by the Marshaller

system component. Web-HMI’s client browser is refreshed to download the rig’s

configurations. The HMI browser can be used to control and monitor the test

rig’s model execution process, thus corresponding messages are displayed on

the screens.

The Ford-Festo test rig’s model is stopped and the Oil Pan Rundown machine

model is started (having imported its machine configurations to the Broadcaster,

following its restart), Web-HMI’s client browser needs a simple refresh action

from a machine operator. The HMI browser can be used to control and monitor

Oil Pan Rundown machine’s model execution process, thus corresponding

messages are displayed on HMI screens.

Chapter 8 : Industrial Case Studies

P a g e | 191

Ford-Festo Test Rig HMI Screens Oil Pan Rundown HMI Screens

Broadcaster Marshaller

CB Library
Ford-Festo CB Configurations Oil Pan Rundown CB Configurations

Machine
Model

Runtime

Figure 8-7: Machine Independence Scenario Case Study

Chapter 8 : Industrial Case Studies

P a g e | 192

8.2.7 Real-time Remote Control, Monitoring and Maintenance

Factors such as globalisation, environmental concerns and ICT demand

changes to existing practices for machine control, monitoring and its

maintenance in terms of remote connectivity. The web-based operator interface

system must be able to remotely support lifecycle requirements to overcome

shortcomings of the existing processes described in the chapter 2.

To enable these functionalities within the proposed research approach, three

major implementation features are provided:

• Web-based technology adopted in implementing operator interface

systems enable anytime, anywhere connectivity to manufacturing

machines regardless of their geographical locations.

• A three-dimensional VRML machine simulation model integrated within

the Web-HMI system component enable engineers to visualise the exact

machine status and not rely on the mental machine models as

traditionally practiced. This is very useful during machine maintenance

process.

• A distributed system architecture having Broadcaster (to support real-

time monitoring) and Marshaller (to support real-time control), enabling

machine configurations to be shared throughout its lifecycle.

For verification of these attributes, two scenario cases are setup. The first

scenario aims to investigate remote control and monitoring functionality offered

by the CB operator interface system, where as the second scenario aims to

investigate remote maintenance capabilities of the system.

Scenario Description: Remote control and monitoring

Remote control can be very useful feature when evaluating a machine at the

builder’s site during the try-out phase of a lifecycle to reduce costs and save

Chapter 8 : Industrial Case Studies

P a g e | 193

time. Furthermore, end users may require remote control of for example, an

inspection test machine in a production programme. To verify the remote control

and monitoring aspect of the operator interface system, a scenario has been

setup where a remotely located HMI client browser (used by a remote operator)

can supply operational commands (such as start, stop and reset) to the Ford-

Festo test rig. On the successful execution of these commands, the remote HMI

client browser can monitor rig’s status at real-time as shown in the figure 8.8.

Ford-Festo Test Rig

Broadcaster: Real-time
Machine Monitoring

Marshaller: Real-time
Machine Control

Control Token

Obtained

Commands Can
be Executed after

Obtaining
Remote Control

of a Machine

E.g. Control
Commands

START
RESET
STOP

Web-HMI

Real-time
Machine

Components’
Remote

Monitoring

Https Remote
Data Encryption

Figure 8-8: Real-time Control and Monitoring Scenario Case Study

CB Configurations

Chapter 8 : Industrial Case Studies

P a g e | 194

Initially, remote HMI obtains rig’s control token from the Marshaller and sends

the “START” operational command. Marshaller propagates this command to the

rig’s control (via orchestrator), which in turn acknowledges the receipt of it and

simultaneously starts operating the rig (if there are no pre-existing errors). Test

rig’s operation generates machine status data which gets propagated to the

Web-HMI through the Broadcaster. Every component of the test rig has one or

more states defined during its design phase of the lifecycle using the CCE

engineering tool. Once the test rig is started, machine’s state transitions can be

monitored in the operator interface system. These state transitions are

populated on the HMI screens at runtime from the CB configurations distributed

by the Broadcaster system component, enforcing consistent machine

information display across various connected HMI client screens.

Similarly, commands like “STOP” and “RESET” are also issued by the remote

client’s machine operator when needed. If the machine is operating in a manual

mode, individual components can also be controlled by executing the required

state using the operator interface client browser. Within this case study setup,

the test rig’s control only supports automatic mode. Once the control is locked

by a client browser, the Web-HMI system provides the ability to change a

machine mode from manual to automatic and vice versa. Any other remote or

local HMI client browsers cannot obtain test rig’s control token although

simultaneous monitoring is possible by all of them.

To address security concerns when remotely connecting to the Web-HMI, user

authentication mechanism (in terms of a combination of IP control whitelisting

and account credentials) is strictly applied. Furthermore, data transmission over

the web (i.e. from the Web-HMI server to the HMI client browser) is encrypted

using the HTTPS protocol implementation as shown in the chapter 9.3.

Scenario Description: Remote Maintenance

A scenario for machine maintenance has been setup where end user’s

diagnostic engineer needs machine builder’s diagnostic engineer’s support from

a distant location to diagnose machine faults using the operator interface

Chapter 8 : Industrial Case Studies

P a g e | 195

system. Two different types of errors (i.e. faults) are introduced into the Ford-

Festo test rig such as:

• Parts are jammed on the conveyor drive (station 2) and

• Sensor pairs check at the transfer arm (station 4).

While remote control and monitoring aspect of this research has already been

verified previously, this scenario looks at the practical applicability of the

operator interface system to support machine maintenance at Ford’s

manufacturing plant, using approved and acceptable approach. RemoteIMS tool

(approved by Ford Motor Company, UK) is therefore used to manage these

support sessions as shown in the figure 8.9. This tool allows a local operator

interface screen browser at the end user’s site (with integrated 3D machine

model functionality) to be shared over the internet with the remote diagnostic

engineer through acceptable maintenance standards.

Annotation Tools
Highlight Fault

Remotely

RemoteIMS Session Generation

Chatting Session between
Involved Parties

Error Monitoring

3D Test Rig Model
Integrated within

the Web-HMI

Local Operator Interface Screen
Shared Remotely

Figure 8-9: Remote Maintenance Scenario Case Study

Check the station 2 highlighted

Error Notification

Chapter 8 : Industrial Case Studies

P a g e | 196

In the above case study, once the fault occurs at the local site (for example,

parts get jammed at the conveyor drive), a RemoteIMS session is initiated by

the end user’s diagnostic engineer and the corresponding machine builder’s

diagnostic engineer is contacted (via SMS / Email) automatically through the

RemoteIMS system. The machine builder’s engineer can join the support

session and ascertains that the cause of the problem occurred in a

manufacturing machine (thousands of miles away) is identified and resolved.

With the help of the 3D model integrated within operator interface screen, the

machine diagnostic engineer is able to highlight the location of the error and

provide clear instructions to the end user’s engineer on how to go about

resolving this issue. The 3D machine model facilitates verification of parts

location and their position on the machine. While in traditional maintenance

procedure, lots of time is usually spent on establishing the cause of a problem

owing to lack of machine visualisation functionality within the HMI systems, this

research approach provides a detailed view and a good description of the

problem to remote engineers.

8.3 Stage 2 Case Study: Oil Pan Rundown Machine Simulation

Oil Pan Rundown (referred to as Op 1900 in this thesis) is an assembly

automotive machine recently implemented at Ford’s Fox three-cylinder gasoline

engine program. Assembly automation involves the design and manufacture of

machine that enables physical components to be assembled into complete

manufactured parts or sub assembles. Figure 8.10 shows a typical layout of an

engine block assembly plant (adapted from the machine builder J. A. Krause

Machinenfarik GmbH). It consists of a transport system that links assembly and

test stations. Engine blocks are loaded onto empty pallets on the transport

system (at the “Start”) before being carried to different assembly stations where

various engine parts such as pistons, conrods and cylinder head are assembled

to the block. The assembly stations (i.e. machines) operate independently of

each other in a modular fashion. At the end of the assembly process, fully

assembled engines are tested in hot test cells prior to being unloaded and sent

Chapter 8 : Industrial Case Studies

P a g e | 197

to vehicle assembly plants [59, 80]. Op 1900 is one of the automatic assembly

machine implemented within the Ford’s Fox engine program (described next).

8.3.1 Oil Pan Rundown Description

This case study is based on application of the CB operator interface system

concept by validating it through the Oil Pan Rundown machine used within the

Fox engine assembly program, specifically for nut running purposes. At this

phase, only a simulation for Op 1900 machine is available for this research

study. This machine model (as shown in the figure 8.11) has been engineered

during the design phase of the Op 1900 machine lifecycle using the CCE

engineering toolset at Loughborough University. The machine consists of major

components (as shown in the table 8.2) which are simulated based on a

process timing sequence chart (as shown in the figure 8.12) provided by Krause

(i.e. the machine builder).

Figure 8-10: Example of Engine Assembly Plant

Chapter 8 : Industrial Case Studies

P a g e | 198

Nutrunners

Rotary Plate Lift

Op 1900 Simulation

Model

Op 1900 Real

Machine

Figure 8-11: Oil Pan Rundown Machine

Chapter 8 : Industrial Case Studies

P a g e | 199

During the assembly process, a pre-stop opens and a pallet (with a gasoline

engine) arrives at the Op 1900 machine. Pallets have RFID (Radio Frequency

Identification) tag information mounted underneath which serves for various

purposes such as sorting the pallets, and reading / writing process data. As the

pallet arrives, it initiates a data tag reading process while an engine plate is

clamped on the rotary plate. The engine is then raised to a tightening position

where bolts are tightened by the Nutrunner spindles (where 15 oil pan bolts are

rundown to a final torque).

On completion of this process, the engine is lowered to a rollover position by the

lifting unit where it is rotated counter clockwise by 180 degrees. The engine is

further lowered to the clamping position while data is written to the pallet’s tag.

The engine plate is then unclamped and when the stop opens, the engine

leaves this station.

Chapter 8 : Industrial Case Studies

P a g e | 200

Figure 8-12: Op 1900 Process Time Chart

Chapter 8 : Industrial Case Studies

P a g e | 201

8.3.2 Case Study Setup

Figure 8.13 illustrates a schematic of the overall case study setup when

validating this research using the Oil Pan Rundown machine simulation,

designed using the CCE engineering toolset. On starting the machine

simulation, a TCP/IP socket connection with the Broadcaster is established by

the CCE environment to propagate machine’s published status (in this case, the

Op 1900 machine). The machine model accepts incoming control commands

from the Marshaller via an alternative socket TCP/IP link. Machine status is

broadcasted to all the connected clients (including the Web-HMI and the

Marshaller system components) through the Broadcaster. Web-HMI, in turn,

serves local operator interface client browser as well as a remote browser. An

alternative remote connectivity link can also be established by initiating a

RemoteIMS screen sharing session (concept described in the chapter 4.4 and

example case study demonstrated in the section 8.2.7) from any local HMI

client browser’s PC.

The system components are deployed in a PC-based environment

communicating over the Ethernet / Internet. Each system component has been

given a specific IP address enabling them to operate in a distributed fashion

(similar to the Ford-Festo test rig case study described in the section 8.2.2). The

HMI system console consists of a standard computer touch screen (non vendor-

specific) operating using the explorer (standard internet web browser).

Op 1900 Model

Marshaller Broadcaster

Web-HMI

Local Remote Browser Remote HMI Browser

Figure 8-13: Op 1900 Machine Case Study Setup

Chapter 8 : Industrial Case Studies

P a g e | 202

8.3.3 Research Attributes Assessment

Some of the identified requirements of this research (summarised as attributes

in the chapter 3.3) are assessed using scenarios and demonstration appropriate

for this case study. The benefits of utilising CB operator interface system in

addressing these attributes have already been discussed in the chapter 2.4.

The three main attributes tested in the subsequent sections are as follows:

• Virtual Machine Validation.

• Early HMI Verification.

• Early HMI Training.

8.3.4 Virtual Machine Validation

Validating a machine virtually prior to its build is essential in identifying faults

beforehand during its lifecycle to avoid unnecessary surprises. To enable these

functionalities within the proposed research approach, three major

implementation features are available:

• A three-dimensional VRML machine simulation model integrated within

the Web-HMI system component enable supply-chain partners to

visualise and understand the machine behaviour prior to its build process

(regardless of its geographical location).

• Machine design information is stored in CB configurations that are

shared using the distributed system architecture. These configurations

can drive machines (regardless of their implementation state).

• System architecture supports real, simulated and hybrid machine

operation through sharing CB configurations. Operator interface system

can therefore be driven by either a real, simulated or a hybrid machine.

Chapter 8 : Industrial Case Studies

P a g e | 203

Components Clashing Demonstration: Ford’s Fox Machine Simulation

To verify this attribute, the Op 1900 machine simulation model is operated and

inspected for any clashes that may be occurring during its design to avoid any

potential issues during its build. The table 8.2 (and accompanying figure 8.14)

summarises the clash type and its location identification in the model during the

design phase of the lifecycle. Solving this clash is extremely essential for safe

and economic operation of this machine (and the gasoline engine).

Problem Overview Description and Location Proposed Solution and

Outcome

Clash between the engine

plate and the pallet is

identified during the

simulation process.

Occurs when an engine

is rotating 180 degrees

counter clockwise, after

completing the nut

running operation.

Proposed Solution 1: Rotate

the engine clockwise

instead.

Outcome 1: The engine still

clashes slightly.

Proposed Solution 2: Raise

the position of the machine

lift unit where it stops to

rotate the engine. This

position of lift unit is called

“Rollover Position” in the

Krause’s process time chart

shown in the figure 8.12.

Outcome 2: No clash

identified.

Table 8.2: Virtual Machine Validation Demonstration

Chapter 8 : Industrial Case Studies

P a g e | 204

8.3.5 Early HMI Verification

While machine needs to be validated earlier on, likewise, the accompanying

HMI needs to be verified too. An early verification of the operator interface

system highlights any inconsistencies or operational issues on the HMI side of

the system implementation prior to the machine ramp up. To enable this

Clash Location Overview Exact Location of the clash: Viewpoint 1

Exact Location of the clash: Viewpoint 2

Figure 8-14: Virtual Machine Validation Case Study Demonstration

Chapter 8 : Industrial Case Studies

P a g e | 205

functionality within the proposed research approach, three major

implementation features are available:

• A three-dimensional VRML machine simulation model operation verifies

operator interface system prior to the build and commissioning phases.

• Machine design information is stored in CB configurations that are

populated to the operator interface screens at runtime, providing

consistent display to the machine operators.

• System architecture supports real, simulated and hybrid machine

operation through sharing CB configurations. Operator interface system

can therefore be verified by either a real, simulated or a hybrid machine.

Figure 8.15 illustrates ramp up activities for a new production machine. The

tools within the CCE engineering environment support the machine’s

mechanical design. All the machine configurations are housed in the common

data model (i.e. CB configurations) that resides with the Broadcaster system

component. Web-HMI system component de-serialises these CB configurations

upon connection with the Broadcaster and thus all the necessary information

required by the operator interface system is downloaded to the browser screens

at runtime. This enables HMI to be verified prior to the machine build and

commissioning phase, and machine operators to be trained earlier.

Chapter 8 : Industrial Case Studies

P a g e | 206

Scenario Description: Web-HMI Consistency and Operation

Two aspects of the operator interface system are addressed in this scenario.

The first one is the consistency and the second one is the operation of the HMI

(in the absence of a commissioned (i.e. real) machine). A scenario is setup (as

shown in the figure 8.16) where the Op 1900 machine simulation model is

initially operated with a default set of components (having their unique names

defined during the machine design using the CCE engineering tools).

Operator interface screens are populated at runtime from the CB information

that reflect the same configurations as defined within the machine model. Later,

machine model is modified (for example, an additional component is introduced

in the machine, or an existing component’s name is changed). The output CB

configuration (for the latest machine model) is reflected consistently at the HMI

side, and any machine model operation updates the corresponding component

states on the HMI screens. Furthermore, other essential operational aspects

such as navigation links are dynamically updated based on these CB

configurations.

Machine Ramp-up Time

Engineering Activities

Mechanical Design

Machine Simulation

HMI Verification

HMI Training

Machine Build and Commissioning

Operator Interface System Verified and Operator

Training Carried Out Using Machine Simulation

Operator Interface System

Already Implemented,

Simplifying Machine
Commissioning Process

Figure 8-15: Machine Ramp up Activities Within this Research

Chapter 8 : Industrial Case Studies

P a g e | 207

8.3.6 Early HMI Training

Machine operators are required to be trained earlier using the implemented HMI

to enable them to understand the machine behaviour effectively, to familiarise

themselves with the HMI interaction and to speed up the machine ramp up

process. Implementation features to achieve this functionality are similar to the

ones described in the section 8.3.5. Using the CB operator interface system,

both real and simulated machines can be driven, enabling engineers to be

trained on the operation of the machine prior to its commissioning process.

Operators need to be trained on various aspects of the HMI system. These are:

• Identifying changes to the operator interface screens with every machine

reconfiguration process (highlighted in the scenario of the section 8.2.4).

Op 1900 Machine
Model

Version 1

Version 2

Default: 14 Machine Components

Changes

• 1 Machine Component Added
• 3 Component Names Modified

CB Configurations

Output

3D VRML

Broadcast

and Import
HMI Verification

• Screens display consistent

machine information (V1

and V2 Op1900 machine)

• Component operational

states update accordingly

Figure 8-16: Early HMI Verification Case Study

Chapter 8 : Industrial Case Studies

P a g e | 208

• Remote monitoring and control of the machine (highlighted in the

scenario of the section 8.2.7).

• Maintenance support process (highlighted in the scenario of the section

8.2.7).

• Supporting machine validation process (highlighted in the scenario of the

section 8.3.4).

• Familiarisation with the operator interface screens and their

corresponding navigational structure (highlighted in the scenario of the

section 8.3.5).

8.4 Stage 3 Theoretical Case Study: Fox Assembly Plant Layout

Practical application of the CB operator interface systems by assessing it

through industrial case studies has been covered in the sections 8.2 and 8.3;

however, this section studies the Ford’s Fox engine plant architecture and

theoretically demonstrates the possibilities of implementing the system

components architecture (described in the chapter 5.3) by mapping its

components to the actual production plant layout. This study is essential in

identifying the physical locality of Broadcaster, Marshaller and Web-HMI to

support control and monitoring operations for different types of machines.

8.4.1 Production Plant Architecture Description

Figure 8.17 shows a simplified version of the Fox production plant architecture

where the overall layout is broken down into zones, having various stations. A

zone corresponds to a logical decomposition of the Fox production line into

various manageable sections. There are approximately 10 zones in total, having

approximately 10 to 12 stations each. A station in this context corresponds to

the actual production machine with its associated devices like PLC, HMI, etc.

Chapter 8 : Industrial Case Studies

P a g e | 209

Switch

M
an

ua
l S

ta
tio

n

H
an

d
to

ol
s

Si
m

pl
e

Se
m

i-
A

ut
o

St
at

io
n

H
an

d
to

ol
s

Sl
av

e
H

M
I

Si
m

pl
e

Se
m

i-A
ut

o
St

at
io

n
(S

la
ve

 H
M

I)

H
an

d
to

ol
s

Sl
av

e
H

M
I

Fu
nc

tio
n

U
ni

t
(S

la
ve

 H
M

I)

H
M

I

C
om

pl
ex

 S
em

i-A
ut

o
St

at
io

n

H
an

d
to

ol
s

St
at

io
n

H
M

I

A
ut

o
St

at
io

n

PL
C

 Security
Module

Zo
ne

 H
M

I

Switch

Zo
ne

 C
ab

in
et

 0
1

Other Zones

R
ou

te
r

PO
SM

O
N

C

om
m

un
ic

at
io

n

Zo
ne

 N
et

w
or

k

I.T
 N

et
w

or
k

(E
th

er
ne

t)
C

or
po

ra
te

 N
et

w
or

k
In

te
rn

et

Figure 8-17: Fox Production Program Plant Architecture

I/O

I/O

I/O

I/O

I/O

I/O

Chapter 8 : Industrial Case Studies

P a g e | 210

A zone can have a mixture of different types of stations namely manual, auto

and semi-auto. With reference to a recently implemented Fox line in Craiova,

the total number of stations amount to 112, out of which manual stations add up

to 80, auto stations add up to 12 and semi-auto stations add up to 20. Each

zone has a zone cabinet where a master HMI panel exists. Furthermore, every

zone has a zone PLC, security modules and switches for control and network

management. In each zone, at least 50% manual stations exist.

Each station type has a different configuration when implemented at the shop-

floor as follows:

• Auto Station

An auto station’s machine operational sequence is automatically

executed following a cycle start request from an operator. Likewise, it

can be stopped at the end of the cycle using a cycle stop request.

Physically, auto station consists of its own station PLC and a station HMI.

A zone HMI merely controls an auto station besides supplying a global

start and global stop. Op 1900 machine (described in the section 8.3.1) is

an example of an automatic machine station.

• Manual Station

A manual station’s machine provides individual movements (regardless

of its sequence) and other control actions can be made by using operator

push buttons. Physically, manual station consists of its own PLC but

does not have a HMI. A machine operator uses push button control box

to move machine components. A manual station is monitored using its

zone HMI.

• Semi-Auto (Simple) Station

Physically, a semi-auto simple station is controlled by a zone PLC and

has local push buttons. It does not have a local HMI (by default) as it is

monitored by the zone HMI. Sometimes, Ford may request a slave HMI

to exist in this station to control an independent operating area.

Chapter 8 : Industrial Case Studies

P a g e | 211

• Semi-Auto (Complex) Station

Physically, a semi-auto complex station is controlled by its own local PLC

and has its own HMI. Sometimes, this station is implemented as a device

of a standard manual station where by the PLC of the manual station

becomes the master controller and the semi-auto station’s PLC acts as a

slave device. No clear information has been obtained from the end user’s

regarding the possible physical configuration for this station.

8.4.2 System Components to Plant Architecture Mapping

The system architecture components can be mapped to the Ford’s plant

architecture using an implementation strategy which takes performance and

cost-effectiveness into account. The proposed strategy is to have the

Broadcaster and the Marshaller in the same location as the HMI (either in a

single PC or different PC’s) to avoid any network performance bottlenecks, and

to make the system implementation cost-effective. As identified in the section

8.4.1, various different types of stations exist, each having a different

configuration; mappings for system components are can be applied as follows:

• Auto Station

For an automatic station, Broadcaster, Marshaller and Web-HMI can

possibly be installed in an auto station PC. A number of local HMI

browsers (using vendor-independent standard touch screen panels) can

monitor and control the automatic station using the Broadcaster and the

Marshaller respectively. Any remote connectivity can be initiated using a

standard internet explorer browser from a zone cabinet location, or from

the I.T network, corporate network or even from a distant location over

the internet (if needed) as shown in the figure 8.18. POSMON data can

also be collected at the I.T network directly from the Broadcaster.

Chapter 8 : Industrial Case Studies

P a g e | 212

• Manual Station

For a manual station, Broadcaster, Marshaller and Web-HMI can

possibly be installed in a zone cabinet PC. A number of local HMI

browsers (using vendor-independent standard touch screen panels) can

monitor and control entire zone’s manual stations using the Broadcaster

and the Marshaller respectively as shown in the figure 8.19. Should a

need arise to remotely connect to the manual station (or locally connect

from an immediate vicinity of the machine), a standard internet browser

is sufficient. POSMON data can also be collected at the I.T network

directly from the Broadcaster.

• Semi-Auto Station

For a semi-auto station (simple), Broadcaster, Marshaller and Web-HMI

can possibly be installed in a zone cabinet PC (similar to the manual

station mapping described earlier). Since complex semi-auto station’s

configuration details are incomplete / inconsistently obtained from the

end user’s engineers, no specific analysis of the system components

mapping for a complex semi-auto station is provided in this thesis.

Figure 8-18: System Components to Auto Station Mapping

Auto Machine Station

Web-HMI

Broadcaster Marshaller

PLC

HMI Browser 1

HMI Browser 2

HMI Browser 3

Possibly a PC

I.T. Network Corporate Network Remote Location

(over the Internet) HMI Browser 5

Zone Cabinet 01

HMI Browser 6

HMI Browser 7

HMI Browser 4

Chapter 8 : Industrial Case Studies

P a g e | 213

8.4.3 Considerable Issues

To practically apply and support the system components to plant architecture

mapping discussed in the section 8.4.2, some runtime issues need to be

considered. These issues are instigated by raising various research questions

regarding the practicality of the implementation strategy described earlier.

These are described in the table 8.3.

Research Considerations Addressing Issues

How many machines can the system

architecture support for the manual station

strategy discussed earlier?

This is owing to fact that the system

Scalability of the Broadcaster and the

Web-HMI needs to be evaluated. This is

carried out in the chapter 9.7 of this

thesis.

Figure 8-19: System Components to Manual Station Mapping

I.T. Network Corporate Network Remote Location

(over the Internet) HMI Browser 2 HMI Browser 3

HMI Browser 4

Manual Machine Station 1

PLC HMI Browser 5 Manual Machine Station n

PLC HMI Browser 6

Zone Cabinet 01

HMI Browser 1 Web-HMI

Broadcaster Marshaller

Possibly a PC

Chapter 8 : Industrial Case Studies

P a g e | 214

components are attempting to support an

entire zone having at least 50% manual

stations.

Is the communication between the system

components operating in a fail-safe

manor?

Communication robustness between the

system components needs to be

evaluated. This is carried out in the

chapter 9.5 of this thesis.

What is the message propagation delay

within the system architecture?

Performance in terms of response times

need to be evaluated. This is carried out

in the chapter 9.6 of this thesis.

How do supply-chain partners ensure that

their own engineering tools can be

plugged into the system components

architecture to support various

functionalities they need, through the

security model existing at the Ford’s Fox

plant?

A remote serving client needs to be

implemented at higher I.T levels, such that

it propagates Broadcaster’s published

machine status messages at real-time in

uniform format, by establishing a secure

channel (through the Ford’s security

model) to remote parties. This uniformity

can enable third-party vendors to decode

and utilise remotely collected information

accordingly. This is acknowledged within

the future work section in the chapter 10.2

of this thesis.

How does the Broadcaster and the

Marshaller communicate with a PLC?

This can be achieved through OPC

connectivity. A practical evaluation of this

is undergoing and has been

acknowledged in the chapter 10.2 (future

work) of this thesis.

Table 8.3: Considerable Issues when Implementing System Architecture at Ford's Plant

P a g e | 215

Chapter 9 : System Components Evaluation

Chapter Contribution to this Thesis:

The main contribution of this chapter is the behavioural evaluation of the system components using their

non-functional but critical system properties for their industrial acceptance and application, specifically in

the powertrain manufacturing automation.

9.1 General Overview

As described by Somerville [116], emergent properties of a complete system

can only become apparent once the system components have been integrated

in their operational state. The functional emergent properties have already been

evaluated through case studies in the chapter 8; however, the non-functional

emergent properties relating to behavioural evaluation of the system

components in its operational state is carried out in this chapter. The

importance of non-functional emergent properties cannot be underestimated as

failure to achieve some minimal defined level in these properties can make the

system unusable [116]. The critical system properties focused for evaluation are

safety, security, reliability, robustness, performance and scalability.

9.2 Safety

For an industrial acceptance of this research, evaluation of the safety operation

strategies implemented within the system components is very essential. Safety

in this context corresponds to the protection of the system’s environment and its

users against hazards caused by incorrect functioning of the system

components [170]. The essential safety criteria that need to be evaluated for the

system components are:

• Regulating machine control through implementation of industry best

practice i.e. implementation of machine control safety procedures.

Chapter 9 : System Components Evaluation

P a g e | 216

• Avoiding accidental execution of operational commands through their

confirmation accomplishment.

To satisfy the above criteria, a number of safety strategies have been

implemented and evaluated as discussed next.

9.2.1 Configuration Whitelisting and Token Sharing

The industrial requirement is to grant only one operator interface system the

ability to control the machine at a time to avoid any operational disasters, for

example, one operator may use a HMI client browser to issue a command to

move an actuator while another operator directs the machine to return to its

initial position using another HMI client browser; these commands confuse the

machine and crashing is certain. To avoid such circumstances, the system

architecture applies the control sharing mechanism as described in the chapter

7.4.4. The underlying safety strategy implements configuration whitelisting and

token sharing.

Configuration whitelisting supports an approved list of IP addresses (as shown

in the figure 9.1) and client Id’s which are privileged enough to request machine

control. Any client outside the whitelist is automatically blacklisted thus is

unrecognised and denied to even initiate a machine control request session

with the Marshaller system component. Token sharing creates a key value pair

within the system such that only one control token is available for all the client

connections. If the token has been consumed, the returning value turns to false,

meaning the token is not currently available.

To evaluate this safety strategy, three HMI client browsers are connected from

different computers all at once to the Web-HMI and a control request is initiated

from each, one at a time. Results obtained from this evaluation are shown in the

table 9.1.

Chapter 9 : System Components Evaluation

P a g e | 217

Time HMI Client 1 HMI Client 2 HMI Client 3 Comments

t1

Connects

-

-

-

t2

Idle

Connects

-

-

t3

Idle

Idle

Connects

All the three clients are

connected at this point of time

t4

Idle

Request Control

Idle

-

t5

Idle

Controlling

Idle

-

t6

Request Control

Controlling

Idle

-

t7

Request Denied

Controlling

Control Attempt

Reason: Token Consumed by

the Client 2

t8

Idle

Control Released

Not Initialised

Reason: Client 3 IP address

not whitelisted

t9

Idle

Idle

Idle

Control Token Available

Table 9.1: Whitelisting and Token Sharing Strategy Evaluation

Whitelist of IP

Addresses

Accessed using

a Secure Login

Figure 9-1: Web-HMI IP Whitelisting Strategy Implementation

Chapter 9 : System Components Evaluation

P a g e | 218

9.2.2 Command Execution Confirmation and Handshaking

Once the machine control has been obtained, it is extremely important to avoid

executing any unintentional operational commands using the HMI client

browser, and have some sort of handshaking mechanism to ascertain

commands have been successfully propagated to the machine. To implement

these safety criteria, the strategy adopted is to confirm every command

execution on the HMI screen through double click capture events. These events

force the machine operator to click a control command button twice to

successfully propagate any instructions to the machine.

The first click event activates the command button and changes its background

colour to yellow, indicating the corresponding activation. The second button

click event propagates the control command to the machine and changes its

background colour to green, confirming the command execution success at the

HMI side. When the machine logic acknowledges the receipt of this command,

the corresponding blue colour change is displayed on the screen, confirming

that the message has been successfully delivered from the operator interface

system to the machine [187].

To evaluate these strategies, a simple commissioning test scenario is

conducted where a manual machine system’s components have to be driven by

the operator interface system. The main functionality to evaluate is to ensure

that the operator can manually select and move all the machine components to

their desired states safely using the HMI screens. The process through which

this is evaluated is as follows (shown in the figure 9.2):

• The machine control is acquired by an HMI client browser.

• The machine is set to be in “Manual” operation mode by pressing the

manual command button on the screen.

• Since the machine components’ states are displayed as buttons on the

screen, clicking them twice propagates the corresponding machine move

request to the machine logic.

Chapter 9 : System Components Evaluation

P a g e | 219

• Acknowledgement is received and displayed at the client browser

screen. Depending on the machine logic’s decision, the desired

components’ states can be safely moved.

9.3 Security

Implementing web-based operator interface system solution with remote

connectivity (for example, within the case study described in the chapter 8.2.7)

raises important security concerns. Remote connectivity requires internet

access, which may in turn trigger possibility of unauthorised access to

manufacturing process data, raise safety concerns when working with machines

and ultimately lead to financial loss for an automotive company. The essential

A

B

C

A
First Click –

Activate
Command,

Yellow Colour

B
Second Click –

Send
Command,

Green Colour

Command Receipt
Acknowledgement,

Blue Colour
C

Figure 9-2: Command Execution Confirmation and Handshaking Strategy Evaluation

Chapter 9 : System Components Evaluation

P a g e | 220

security criteria that need to be evaluated for the system components are [116,

170]:

• Protecting manufacturing data from unauthorised third-party access over

the Internet i.e. confidentiality of information through identification of

users and their entitlements.

• Avoiding any accidental or deliberate unauthorised manipulation /

damages to machine message contents i.e. integrity of information

through application of data ciphering.

To satisfy the above criteria (i.e. confidentiality and integrity) within the system

architecture, two security strategies have been implemented and evaluated, one

for each criteria. The first one is authentication followed by authorisation, and

the second one is data encryption. With respect to the availability of the Web-

HMI system, local mechanisms outside the system can be deployed such as

firewalls and antivirus protection to ensure that the system is available to

authorised users.

9.3.1 Authentication and Authorisation

Authentication through proof of HMI users’ identity is implemented and

evaluated. Only when HMI users are authenticated using the Web-HMI system

component, they are authorised to perform the required control and monitoring

operation. This strategy has been implemented using login credentials

approach (employing layered architectural technique as described in the

chapter 4.6.2) where a user needs to input a correct username and password to

request the Web-HMI system component to serve HMI screens on the HMI

panel.

The Web-HMI system component uses ASP.NET administration tool to manage

rules for securing specific resources of the application. ASP.NET uses a

security system that restricts access to specific user accounts or the roles to

which the user accounts belong. Two roles have been created such as

“Administrator” and “Operation”. The administrator role can make critical

Chapter 9 : System Components Evaluation

P a g e | 221

alterations to the Web-HMI system such as configuration settings, control

settings and account settings, where as operation role enables one to request

HMI screens and download machine data. A number of users can be created;

however, one user for each role has been created in the current implementation

i.e. “Admin” user (belonging to “Administrator” role) and “Ops” user (belonging

to “Operation” role) as shown in the figure 9.3.

The approach used for evaluating this strategy is summarised in the table 9.2

where 4 major attempts are carried out to access data (HMI screens and

machine operational data) using an internet explorer browser. The

corresponding results obtained from this evaluation are included in the same

table. Only upon providing the correct credentials to the Web-HMI system

Figure 9-3: ASP.NET Web Configuration Tool for Web-HMI System Component

Chapter 9 : System Components Evaluation

P a g e | 222

component, a user can either access the required resource or download

machine configurations and the corresponding HMI screens as shown in the

figure 9.4.

Attempt
Number

Username Password Role Result

1

Admin

▫▫▫▫▫▫▫▫

Administrator

X

2

Admin

●●●●●●●●

Administrator

√

3

Ops

▫▫▫▫▫▫▫▫

Operation

X

4

Ops

●●●●●●●●

Operation

√

▫▫▫▫▫▫▫▫ - Incorrect password

 The length and the actual password is not shown here

●●●●●●●● - Correct password

A number of other attempts carried out using incorrect username and correct password. The

evaluation results reflect the same outcome therefore not discussed here.

Table 9.2: Web-HMI Authentication Strategy Evaluation Results

Chapter 9 : System Components Evaluation

P a g e | 223

9.3.2 Data Encryption

Data transmitted between the server (i.e. Web-HMI) and the clients (i.e. HMI

client browsers) is encrypted using the HTTPS implementation. It is a

combination of the HTTP with SSL / TLS cryptographic protocol which provides

communication encryption and secure identification of the web server

component. This technique is usually used for sensitive data transmission by

creating a secure channel over the insecure network (i.e. the Internet) [208].

The HMI client browser authenticates the Web-HMI through examining its

certificate, transmitting requests / response over the encrypted channel

implemented using algorithms found within the SSL technology. This certificate

is currently self-signed using the IIS Resource Toolkit 6.0 (in contrast to

purchasing from third-parties like VeriSign, Thawte, etc). The overall process

through which the HMI client browsers are establishing a HTTPS session with

the Web-HMI system component is described in the figure 9.5.

Figure 9-4: Web-HMI Authentication Strategy Evaluation

Admin

Authorisation

Ops

Authorisation

Chapter 9 : System Components Evaluation

P a g e | 224

To evaluate the above implemented data encryption solution, the Wireshark

network protocol analyser has been installed that captures packets exchanged

between the Web-HMI server system component and a HMI client browser.

The TCP/IP packets transmitted between the server and the client contains

initial session setup details, machine configurations and any data updates

propagation. The aim is to sniff as a third-party onto the network to capture and

analyse data travelling over the wire.

While Wireshark is a very powerful tool to analyse TCP streams, the HTTPS

encryption mechanism prohibits any third-party to analyse the captured data

owing to its ciphering algorithm. This avoids one to eavesdrop onto the network

and / or generate any man-in-the-middle attack to the parties involved. As

shown in the figure 9.6, the captured data cannot be decrypted by Wireshark

packet sniffer, maintaining the integrity of the overall data exchange between

Web-HMI system component and various HMI client browsers.

Web-HMI Server

Creates a Self-SSL

Certificate

Install the SSL

Certificate

Accept Connection and

Send Certificate

Create a Unique Hash

and Encrypt it Using the

Client’s Public Key and

Own Private Key

Start Data

Exchange

HMI Browser Generates a Private Key and a

Public Key Certificate

Encrypted with the Private Key

Client URL

Request and Verify

Genuinity of the

Web-HMI Public

Key

https://host:443

Public Key

Send its Own

Public Key (If the

Server is Trusted)

Public Key

Key Pair Decrypt the Hash

Start Data

Exchange and

Show Encryption

Icon Secure Data Encryption Channel

Figure 9-5: HTTPS Data Encryption Session Setup

1

2

Chapter 9 : System Components Evaluation

P a g e | 225

C
ap

tu
re

d
D

at
a

ov
er

 th
e

H
TT

PS
 T

ra
ns

m
is

si
on

 L
in

k

?
Encrypted Data
(No Meaning)

Figure 9-6: Web-HMI Data Encryption Evaluation Using Wireshark Protocol Analyser

Chapter 9 : System Components Evaluation

P a g e | 226

9.4 Reliability

The ability of delivering messages from the machine to the operator interface

system without any loss is one of the essential features of the architecture that

needs evaluation. The underlying communication protocol utilised for

transferring data between system components is the TCP/IP. Referring to the

seven layers of the OSI model shown in the chapter 4.6.2, TCP operates on its

transport layer. The transport layer is responsible for making the end to end

data transmission reliable. The services provided by this layer are connection

oriented; it means that the data sent by this layer must be acknowledged by the

destination. These data acknowledgments are used to ensure that the data is

received correctly in the required order by the destination. Owing to this, TCP

ensures the reliable transmission of data using a three-way handshake

mechanism, retransmission and checksum functionality [209].

The ultimate aim of reliability evaluation in this case is to identify if all machine

messages are successfully collected by the Broadcaster system component

and transmitted to the Web-HMI and the Marshaller within reasonable amount

of time. Since the Marshaller saves all incoming data onto a database for further

utilisation, monitoring the database table provides an accurate reflection of the

messages being received from the Broadcaster system. By comparing the

messages sent to the messages received, one can easily establish the reliability

of the system components in sending and receiving data over the TCP/IP

socket links.

Approximately 50 test cases have been created where in each case some

random machine messages are transmitted to the Broadcaster system

component. Table 9.3 shows summarised results from these test cases where

machine states, machine errors, machine commands and modes have been

generated and data is received by the respective system components. As

shown, no message losses have been identified during their transmissions

between the system components.

Chapter 9 : System Components Evaluation

P a g e | 227

System

Components

Message Type

CB Config

Machine States

Machine Errors

Machine

Commands

and Modes

Broadcaster

G=50

R=360, T=360

R=250, T=250

R=670, T=670

Marshaller

R=50

R=360, S=360

R=250, S=250

R=670, S=670

Web-HMI

R=50

R=360

R=250

R=670

These results display only one way communication i.e. from the Broadcaster to other

system components. Web-HMI serving only two HMI client browsers.

Overall % Message Loss: None.

G= Generated, R= Received, T= Transmitted, S= Stored

Table 9.3: Reliability Evaluation Results

9.5 Robustness

When operating the system distributed over a network, it is essential to evaluate

robustness ascertaining the machine information timeliness for an operator. The

goal is to always display the current state of the machine on the operator

interface screens, requiring a mechanism that monitors the communication

liveliness between the Broadcaster, the Marshaller and the Web-HMI. In

addition, the fundamental concept of the Web-HMI system is to function

properly without crashing regardless of the invalid inputs propagated by the

machine.

The essential robustness criteria that need to be evaluated for the system

components are:

Chapter 9 : System Components Evaluation

P a g e | 228

• Monitoring communication robustness between the Broadcaster and the

other system components (i.e. the Web-HMI and the Marshaller) to

ensure fail safe operation of the operator interface system within

industrial implementation.

• Ensuring operation effectiveness of system components despite

abnormalities in the input data.

To satisfy the above criteria within the system architecture, two security

strategies have been implemented and evaluated, one for each criteria. The first

one is application heartbeat, and the second one is data propagation filtering.

9.5.1 Application Heartbeat

System components must be able to monitor their environment and detect any

significant communication changes. Heartbeats have been utilised to detect any

TCP/IP socket communication failures between the system components. This is

a useful strategy to ensure that if the communication link between the

Broadcaster and the other system components has been broken then the

machine operator is aware and can quickly track the issue. This will ascertain

that the HMI screens are always reflecting the current state of the machine

owing to communication liveliness between the Broadcaster and the Web-HMI.

Failing to detect abnormalities in the communication link between the system

components can lead to disastrous results for example, if a communication link

has failed between the Broadcaster and the Web-HMI, the machine operator

may assume that the machine components are not changing their states but in

reality the communication link between them is down. This is where the

application heartbeat strategy implementation comes handy where it monitors

TCP/IP socket link between the system components and displays a message to

the operator should a link failure is detected.

This application heartbeat implementation is carried out using a timer control

found within the dot Net application framework. This timer monitors the socket

connection every 300 milliseconds and raises a disconnection event to notify

Chapter 9 : System Components Evaluation

P a g e | 229

the system to display an appropriate message on the screens as shown in the

figure 9.7. This enables the system components to be in sync with the machine

broadcasted messages.

Marshaller System
Component

The disconnection is detected using a

message display and the monitoring

status colour changing to red. When the

connection is live, this colour changes

to green and an appropriate message is

displayed on the data details section.

 H
ea

rt
be

at
 S

tr
at

eg
y:

 S
om

e
C

od
e

Sn
ip

pe
ts

“R
ai

se
 e

ve
nt

 A
 (i

.e
. e

na
bl

e
th

e
tim

er
) w

he
n

th
e

so
ck

et
 is

 d
is

co
nn

ec
te

d
(i.

e.
 c

od
e

B
) A

B

Web-HMI System Component

The disconnection is detected using a

message display on the top of the HMI

client browser screen. This message is

critical to a machine operator hence it is

highlighted with a red background

attracting the attention of the user.

Figure 9-7: System Components Heartbeat Strategy Evaluation

Chapter 9 : System Components Evaluation

P a g e | 230

9.5.2 Data Filtering

Despite abnormalities in the input data, the Broadcaster system component

must be able to selectively propagate only desired outputs to other system

components. This is achieved through data filtering strategy where only

machine states, operational commands and modes, and machine errors are

propagated, ignoring any incorrect or corrupted machine messages. In short,

any machine message that does not confirm to the CB configuration model is

ignored by the Broadcaster system component.

To evaluate this, some corrupt messages are inputted over the network to the

Broadcaster’s port listening to machine events as shown in the figure 9.8.

These messages are successfully captured by the Broadcaster system

component, filtered as corrupt messages and stored in an external log file for

further investigation. Furthermore, they are not propagated to the Marshaller

and the Web-HMI system. This strategy provides the required level of

robustness (in addition to safety and security) against unnecessary data

propagation over the network.

Corrupt data –

represented in the

purple colour is

captured and logged

separately. The corrupt

data is not propagated

to other system

components.

Figure 9-8: Broadcaster’s Data Filtering Strategy Evaluation

Chapter 9 : System Components Evaluation

P a g e | 231

9.6 Performance

The system architecture must have desired performance expectations for its

industrial application. The strategy to satisfy higher performance requirements

(i.e. soft real-time processing) within the system components is implemented

through multithreading techniques. Multithreading improves the effectiveness of

a system through task-load distribution such that the processing load within an

application can be shared using number of threads [205].

Two main technical aspects that need to be considered to satisfy any system’s

performance expectations are its system throughput and response times. The

response times can be affected by the system’s processing time (i.e. the

throughput) therefore its throughput is evaluated first prior to the overall

response time as described in the next sections.

9.6.1 System Throughput

The main distribution mechanism within the system architecture is the

Broadcaster component therefore its system throughput is evaluated. In this

context, the system throughput corresponds to identifying the amount of time it

takes the Broadcaster to process and propagate any given machine message.

This is achieved through applying timestamps to each message as they arrive

through the Broadcaster’s blackboard and leave.

As shown in the chapter 6.2.2, each message passes through various

processing sections of the Broadcaster (i.e. its panels). To be precise, each

message passes through at least 3 of such panels. When the message arrives

at the panel 1 (i.e. at the IN-LOAD), its arrival time is taken (i.e. Tin) and when it

is propagated to any client (at the OUT-LOAD), its delivery time is taken (i.e.

Tout). The difference between the Tout and Tin is taken as its processing time as

shown in the figure 9.9. A total of 50 test cases have been created, out of which

one such test case is shown in the table 9.4. As shown, on average the

individual message processing time (Mtx) is approximately 74 milliseconds.

Chapter 9 : System Components Evaluation

P a g e | 232

E-Load

(Number of
Messages)

Tin

(On Entry Interface -
Accumulated Time in

ms)

Tout

(On Exit Interface -
Accumulated Time

in ms)

Tx (Tout – Tin)

Mtx (Tx / E-

Load)

500 42250 78315 36065 72.13

1000 84500 159854 75354 75.35

1500 126750 237855 111105 74.07

2000 169000 315819 146819 73.41

2500 211250 399732 188482 75.39

3000 253500 467520 214020 71.34

3500 295750 552855 257105 73.46

4000 338000 638276 300276 75.07

4500 380250 711750 331500 73.67

5000 422500 785910 363410 72.68

Average Mtx

73.66 ≈ 74 ms

Table 9.4: Broadcaster’s System Throughput Evaluation Results

Network’s

Throughput
Broadcaster’s Throughput Network’s

Throughput

Panel 1

(IN-LOAD)

Panel 5

(OUT-LOAD)
Message

Message

Panel 3

Panel 4

Panel 5

Tin Tout Mtx = Tout - Tin

Figure 9-9: Broadcaster's System Throughput Strategy Evaluation

Chapter 9 : System Components Evaluation

P a g e | 233

9.6.2 Response Times

Two different types of response times need to be evaluated namely; HMI to

machine response time and machine to HMI response time. HMI to machine

response time corresponds to the total time taken from when an operator

generates a request by pressing a button on the HMI client browser screen to

when this command is received by a machine. Likewise when a machine

changes its state, the total amount of time taken for the message to be

transmitted and displayed at the HMI client browser screen is the machine to

HMI response time.

It is expected that any machine state information must be propagated

considerably faster that the machine takes to move. Within the powertrain

assembly applications, the worst case response time must be 500 ms [80, 174].

Taking this value as a performance comparison benchmark, an evaluation study

has been carried out where messages are transmitted from the HMI client to the

machine (and vice versa), time stamped at their respective places as shown as

in the figure 9.10. To avoid any network latency issues, all the system

components have been implemented in the same PC, communicating using the

loopback IP address (i.e. 127.0.0.1).

 Figure 9-10: Response Time Strategy Evaluation

HMI Client
Web-HMI

Marshaller
Broadcaster

Machine As soon as the

request arrives, time

is recorded as T2 T2

T1 As soon as a button

press event is detected

for a request, time is

recorded as T1

As soon a message

arrives for display, time

is recorded as T4

T4

T3

As soon a message

leaves, time is recorded

as T3

Chapter 9 : System Components Evaluation

P a g e | 234

Throughout the evaluation study, a number of messages are exchanged

between the system components and some results are illustrated in the table

9.5. To avoid any unnecessary communication overheads associated with

establishing socket connections, respective TCP/IP links are left open

throughout these tests. The response times for the HMI to machine is 225 ms

where as the response times for the machine to HMI is 297ms, including the

100ms Profinet network performance. The HMI to the machine response time is

faster comparatively owing to the fact that the Marshaller does not carry out

cumbersome data processing besides just forwarding the data where as the

Broadcaster does substantial processing on the received data from a machine.

Record
Number

HMI to Machine Time (ms)

(Only last milliseconds shown)

Machine to HMI Time (ms)

(Only last milliseconds shown)

T1

T2

Ti (T2 – T1)

T3

T4

Tj (T4 – T3)

1

.120

.255

.135

.29

.222

.193

2 .12 .139 .127 .168 .367 .199

3 .23 .147 .124 .275 .473 .198

4 .36 .161 .125 .781 .975 .194

5 .280 .401 .121 .75 .274 .199

6 .163 .286 .123 .513 .708 .195

7 .87 .206 .119 .37 .239 .202

8 .55 .181 .126 .02 .198 .196

9 .392 .514 .122 .664 .859 .195

10 .474 .598 .124 .199 .396 .197

Average:

Ti

124.6 ≈ 125 +

100ms (Profinet) =

225

Tj

196.8 ≈ 197 +

100ms (Profinet) =

297

Worst case performance of any industrial Ethernet can be added to the overall response time,

for example Profinet is 100ms.

Table 9.5: Response Times Evaluation Results

Chapter 9 : System Components Evaluation

P a g e | 235

9.7 Scalability

The Broadcaster, being the central hub supporting machine data distribution,

needs to efficiently handle the continuous flow of received messages and also

ensure that it can accommodate new load within reasonable amount of time.

This requires one to measure its scalability to support any growth projections in

when adding more manufacturing machines. To realise the practical

applicability of the system components to plant architecture mapping strategy

described in the chapter 8.4.2, the scalability property of the Broadcaster

system component is evaluated in this section. Figure 9.11 shows the overall

process used to evaluate scalability of the Broadcaster system component.

X 1000
Mtx

1

Mts
Mct

Bs =

Scalability

Resource Utilisation

Growth with

Increasing Load?

Bs (Broadcaster’s Scalability)

What is the machine cycle

time?

How many operations (CB
States) are executed in one

cycle?

Mct = 34 Seconds, Source:

Process Time Chart

Mts = 110 Messages (States

and Errors), Source: CB

Configurations

What is the message

processing time (i.e. system
throughput)?

Mtx = 74 ms,

Source:

Performance

Evaluation

Figure 9-11: Broadcaster's Scalability Evaluation Process

Chapter 9 : System Components Evaluation

P a g e | 236

With reference to the Ford-Festo test rig results shown in the above figure 9.11,

the corresponding Broadcaster system component’s scalability can be

demonstrated using the table 9.6. From these results, it can be identified that

the number of test rig machines that can be supported by the Broadcaster

system component are 4. Based on this result, the author has enough

information to roughly evaluate the system components to plant architecture

mapping for the Fox line as described next.

Required Parameters Corresponding Values

The cycle time of the test rig

machine (Mts)

34 seconds

Number of states executed

when operating the machine

(Mct)

110 messages

Number of states executed

per second

(Mts / Mct)110 / 34 = 3.24 states per second

Broadcaster’s system

throughput per message per

millisecond (Mtx)

74 milliseconds

Broadcaster’s system

throughput per message per

second

(1000 / Mtx) 1000 / 74 = 13.51 messages per second

Scalability Calculation (Bs):

1 machine operation = 3.24 messages per second

Bs machines’ operation = 13.51 messages per second

Therefore Bs = 13.51 x 1 = 4 machines

3.24

Table 9.6: Scalability Evaluation Results for Ford-Festo Test Rig

Chapter 9 : System Components Evaluation

P a g e | 237

9.7.1 Proposed Plant Architecture Mapping Strategy Evaluation

With reference to the Ford’s Fox plant architecture description (see chapter

8.4), the breakdown of the machine stations per zone, and the corresponding

system components required (based on the Ford-Festo test rig’s scalability

calculation carried out previously) is shown in the table 9.7. As illustrated in this

table, since the manual stations amount to at least 8 per zone, 2 Broadcaster

system components are needed. It has to be noted that the scalability

evaluation is entirely governed by inputs from the total number of machine

messages generated per cycle and the corresponding cycle time. The next

chapter concludes this thesis and identifies critical areas for future work needed

to completely apply this research in the powertrain manufacturing automation.

Station Type Total Stations
for 10 Zones

Total
Stations
per Zone

Proposed
Implementation

Strategy

Resource
Allocation

Automatic

12

1

System

Components

Located per

Station

1 x Broadcaster

1 x Marshaller

1 x Web-HMI

Semi-Auto

20

2

System

Components

Located per Zone

1 x Broadcaster

1 x Marshaller

1 x Web-HMI

Manual

80

8

System

Components

Located per Zone

2 x Broadcaster

(4 Machines per

System)

1 x Marshaller

1 x Web-HMI

Table 9.7: Plant Architecture Mapping Strategy Evaluation Results

P a g e | 238

Chapter 10 : Discussion, Conclusion and Future
Work

Chapter Contribution to this Thesis:

This chapter identifies the contribution to knowledge, discusses the extent to which the research

requirements have been fulfilled and highlights future work to take the research forward.

10.1 Research Discussion and Conclusion

10.1.1 Contribution to Knowledge

This research has proposed a novel idea of implementing and utilising an

operator interface solution for the lifecycle support of CB automation systems.

The contribution to knowledge is summarised as follows:

• A detailed understanding of the emerging requirements that must be met,

and current limitations that must be resolved, in order to realise next-

generation operator interface systems for the lifecycle support of

powertrain manufacturing systems.

• Evolution of a novel system components architecture that complements

the CB approach through sharing a common machine model with supply-

chain partners, establishing new ways of locally and remotely deploying

and using operator interfaces throughout the lifecycle.

• Blackboard-based design models of system components describing their

data sharing process with clarity, and their simplified but detailed

development representation, allowing software programmers to

implement fully operational HMI systems.

• Qualitative and quantitative evaluation of the results against the stated

research requirements to identify the industrial readiness of the proposed

solution.

• A description of how the research approach and various developed

concepts aim to fulfil lifecycle requirements of CB automation systems.

Chapter 10 : Discussion, Conclusion and Future Work

P a g e | 239

• Identification of the visionary impacts of the CB operator interface

solution to the powertrain manufacturing systems.

10.1.2 Fulfilling the Industrial Requirements

Industrial case studies (described in the chapter 8) and system components

evaluation (described in the chapter 9) have demonstrated the feasibility of

adopting operator interface system implementation approach proposed within

this research, fulfilling the lifecycle usage requirements of CB automation

systems summarised in the chapter 2.4. The research output fulfils the following

research requirements:

Towards a Vendor-Independent (“Open”) Support Platform

The system components architecture operates using standard TCP/IP link,

publishes data in a uniform XML format that can be decoded by any supply-

chain partner’s engineering tool, and supports “plug-and-play” connectivity (as

demonstrated in the chapter 8.2.5 using the SAP xMII application).

Furthermore, the operator interface system is based on the open web

technology and implemented on standard touch-screen panels (covered in the

chapter 7.5), enabling the same operator interface system to be utilised with a

variety of control devices such as FTB and PLC (as demonstrated in the

chapter 8.2 and identified in the section 10.2.3 respectively).

Support for Reconfigurability and Reuse Requirements

Operator interface system solution complements the CB approach through

implementing generic template-based screens (described in the chapter 7.5.3)

that are automatically populated using machine configurations shared through

the system architecture (using the Broadcaster) at runtime. This enables the

same set of screens to be deployed across powertrain machine programme

regardless of the underlying configurations. To demonstrate this requirement

satisfaction, chapter 8.2.4 successfully illustrated a real-life process workflow

reconfiguration and reuse process using the Ford-Festo rig.

Chapter 10 : Discussion, Conclusion and Future Work

P a g e | 240

Validation of Machine Logic in Virtual Environment

A 3D virtual simulation model (associated with the machine control logic,

engineered using the CB tools as highlighted in the chapter 3.2.2) is integrated

within the operator interface system, and the system architecture supports real,

simulated and hybrid machine operation. This enables visualisation of the

machine behaviour to resolve any issues prior to its build process as

demonstrated using the Op 1900 model in the chapter 8.3.4.

Provision of Remote Control, Monitoring and Maintenance Support

Web-based operator interface solution incorporates 3D machine visualisation

implemented within the system architecture providing the required level of

remote connectivity services that support control, monitoring and maintenance

activities regardless of machine’s geographical location, as studied in the

chapter 8.2.7. The non-functional aspects associated with remote

communication (for example, safety and security of data transmission) have

been evaluated in the chapter 9.

Enabling Early HMI Verification and Operator Training

Integration of the 3D machine model to the operator interface system prior to

the machine build enables the HMI to be verified using the same CB

configurations (shared using the system components architecture) that are

going to be downloaded as the real control logic. This provides a fully-

operational HMI even at the virtual commissioning stage resulting in early

system verification and enabling operator training as illustrated in the chapter

8.3.5 and chapter 8.3.6 respectively.

Adhering to the Industrial Best Practices

The operator interface system conforms to industrial standards through

adopting the required design guidelines such as screen layouts and navigation

(as described in the chapter 5.2), and evaluating the non-functional but

Chapter 10 : Discussion, Conclusion and Future Work

P a g e | 241

essential quantitative properties of the system such as safety, security,

reliability, robustness, performance and scalability as illustrated in the chapter 9.

10.1.3 Benefits to the Powertrain Manufacturing Lifecycle

In a bigger picture, this research work is anticipated to provide the following

benefits to powertrain manufacturing lifecycle:

• Improvisation of the production machine design and its development

process. This research solution is going to provide a mechanism for

building and designing machines in new ways through the use of the CB

automation approach provided by the MSI research group at

Loughborough University. Adopting this practice in industries should

significantly reduce lifecycle costs. For example, early validation of the

machine and its operator interface system (as illustrated in the chapter

8.3.4) should significantly reduce number of issues which may arise later

during the actual machine build phase, reducing the overall time of

machine implementation and commissioning.

• It provides new ways of supporting manufacturing machines.

Incorporating remote control and monitoring support of the key machine

lifecycle phases is a promising approach towards solving the problems

faced by globally distributed manufacturing activities in today’s industrial

era (as described in the chapter 2). Moreover, a substantial amount of

revenue can be saved in terms of low machine MTTR and better

customer services can be offered to the end users. For example, by

remotely monitoring the machine status using the operator interface

system (as illustrated in the chapter 8.2.7), it can enable maintenance

engineers to identify and quickly address the actual cause of the problem

at the shop-floor level, significantly reducing machine downtime.

• Operator interface system screens are rapidly but consistently auto-

generated, supporting all the current industry best practice such as

optimised screen layouts, navigational structure and operational icons.

Chapter 10 : Discussion, Conclusion and Future Work

P a g e | 242

This is created from instances of reusable machine interface templates

stored within a system repository which when executed, transform the

machine engineering and runtime data into a complete operator interface

system. This leads to early HMI deployment and any machine change is

dynamically reflected on the operator interface screens without further

programming efforts. This also provides early operator training

opportunities which ultimately lead to faster machine ramp up as

described in the chapter 8.3.6.

• Stronger relationships between involved supply-chain partners can be

established enabling different classes of people to efficiently interact with

manufacturing machines. This is provided through an open system

implementation architecture where third-party engineering resources can

be easily “plugged-in” to control and monitor production machines

operation, and the same operator interface system can be utilised by

various stakeholders through the lifecycle.

10.2 Future Work Recommendations

Due to the finite time and resource constraints on the research, and the wide

scope of this investigation, not all the research paths have been fully explored.

Some potential extensions to the research work are summarised in the figure

10.1.

10.2.1 Remote Data Transmission

As identified in the chapter 4.4, large amounts of machine data may be required

in their raw (i.e. unprocessed xml) form at remote locations to drive application

resources such as engineering tools. A web services-based system called

RemoteComm has been proposed in the figure 10.2. In this approach, datasets

(used as parameters) can be marshalled over the HTTP(s) port using a web

service method call from remote engineering tools. The datasets can be

Chapter 10 : Discussion, Conclusion and Future Work

P a g e | 243

serialised as XML strings over the web, and be de-serialised at the remote end

within any application. The remote tools can refresh the dataset calls at specific

intervals as required to obtain the current state of a machine. Dataset

serialisation is the most widely accepted standard for data transmission over the

web owing to the coding and data packaging flexibility, data persistence and

any data source updates. This approach doesn’t require any overheads such as

subscriptions and license arrangements with a third-party service provider such

as Citrix, WebEx, etc. The RemoteComm system is still under a conceptual

design stage and is going to be addressed in the future as one potential

research possibility.

Remote Data Transmission for Operating
Engineering Support Systems

System Components
Architecture Application to a

PLC-based Environment

Additional
Operator

Interface System
Functionality

General Areas of
Work

- More Evaluation
- Application to Live

Automation Systems
- Application to Other

Industries

Potential
Research
Directions

Figure 10-1: Potential Research Directions

Chapter 10 : Discussion, Conclusion and Future Work

P a g e | 244

10.2.2 Operator Interface Functionality

Although the operator interface system has been designed and implemented to

show the research solution in operation, some additional functionality can be

accommodated in the list of future research and development opportunities.

• An operator interface system configuration tool needs to be developed

which may enable rapid generation of additional screens based on user’s

requirements. This will provide a means of supporting various industrial

domains (as identified in the section 10.2.5) and end user’s screen layout

preferences.

• Multilingual support is needed as currently the primary language of

display on the operator interface screens is English, however operation

of these interfaces in other languages like Chinese, Indian, German,

Korean, Japanese etc, would be beneficial where users with different

language preferences can access the system in their own language to

universally make the system more acceptable.

Retrieves machine

data from

“RemoteComm”

over a secure
https session

Client Side (Remote)

Tool 1

Tool n D
at

aS
et

Desktop / Web

Application

Desktop / Web

Application

Server Side (Local)

In
te

rn
et

Broadcaster

Marshaller History

Web-HMI

HMI Views

RemoteComm
(Web Service)

DataSet

Fi
re

w
al

l

HTTP SOAP

Figure 10-2: RemoteComm Conceptual Illustration

Chapter 10 : Discussion, Conclusion and Future Work

P a g e | 245

• A number of other additional screens have to be incorporated such as

RFID support screen, network monitoring screen, machine station

selection screen, role profile screen and interlock monitoring screens.

10.2.3 Application to a PLC-based Control System

To successfully demonstrate the migration path of the research solution to

current production machine, an OPC communication gateway needs to be

implemented [76] within the system architecture. This is the de-facto standard

used for communication between the PLC and the operator interface system.

While OPC COM-based specifications have been widely used by the industry,

due to newer technological opportunities presented especially by the cross-

platform capabilities of web services and the SOA, OPC UA (Unified

Architecture) is going to be adapted by major PLC vendors [210]. This provides

maximum interoperability, security and standardisation across all the levels of

the manufacturing operation hierarchy described in the chapter 2.3.1.

10.2.4 General Work Areas

A number of other general work areas relating to further research can be

suggested as follows:

• More thorough evaluation of the system components needs to be

undertaken. Evaluating the approach with real industry engineers rather

than academic researchers mimicking the role of actual engineers would

give invaluable feedback and information from their perspective on how

the system can be utilised on day-to-day basis.

• Although the system components architecture has been successfully

evaluated on a prototype machine used for proof-of-concept system, they

are not yet evaluated against actual machines at the shop-floor.

Application of the research approach to real life production machine

Chapter 10 : Discussion, Conclusion and Future Work

P a g e | 246

would generate new knowledge and complete the migration path to a

next-generation operator interface system solution.

• The system components implementation has only been tested in the

powertrain automation domain. Application of the approach to other

industrial sectors would be beneficial in assisting its validity and its

usefulness as identified next.

10.2.5 Application to Other Industries

From the case studies described in the chapter 9, this research has proven that

the web-based operator interface system solution can be deployed and utilised

for the lifecycle support of the CB automation system within the powertrain

manufacturing industry. While the focus of this work has been on the

automotive industry, other sectors may however benefit most from aspects of

the functionalities and the system components architecture implementation

offered. For example, frequent reconfigurability is considered to be a critical

requirement in the powertrain sector, but if this research was applied to a

petrochemical sector, remote monitoring and maintenance may have been

more of a critical requirement.

Research into operator interface system’s core requirements in a number of

different industries for example packaging, semiconductor manufacturing,

petrochemical, electronics manufacturing and textile manufacturing would grant

an opportunity to comparatively analyse the suitability of the operator interface

system solution across these other industrial sectors. Implementing this

research approach to different industries would require further engineering

activities to some aspects of the system components while other aspects would

remain generic as shown in the figure 10.3. For example, the Web-HMI server

component of the architecture would remain generic across all industrial sectors

in addition to the Broadcaster and the Marshaller system components

functionality that are core to this research approach. The template screens

(describing the operator interface layouts based on the representation layout as

illustrated in the chapter 7.5.3) would be particular to the individual stakeholders

Chapter 10 : Discussion, Conclusion and Future Work

P a g e | 247

in each industry. This highlights the need for an HMI configuration tool (as

identified in the section 10.2.2) to rapidly support various screen layouts for

different industrial sector’s requirements.

Operator Interface System Research
Application

Semiconductor
Manufacturing

Packaging

Petrochemical

Powertrain

Electronics
Manufacturing

Textile
Manufacturing

Broadcaster - generic

Web Server – generic

Web-HMI

Templates – domain specific

HMI
Screens

Marshaller- generic

Figure 10-3: Research Application to Other Industries

P a g e | 248

References

[1]. Harrison, R., A.A. West, and L.J. Lee. Lifecycle Engineering of Future
Automation Systems in the Automotive Powertrain Sector. in IEEE
International Conference on Industrial Informatics 2006.

[2]. Sutherland, J., K. Gunter, D. Allen, D. Bauer, et al., A global perspective
on the environmental challenges facing the automotive industry: state-of-
the-art and directions for the future. International Journal of Vehicle
Design, 2004. 34(2): p. 86-110.

[3]. Morel, G., H. Panetto, M. Zaremba, and F. Mayer, Manufacturing
enterprise control and management system engineering: paradigms and
open issues. Annual reviews in control, 2003. 27(2): p. 199-209.

[4]. Molina, A., C.A. Rodriguez, H. Ahuett, J.A. Cortes, et al., Next-generation
manufacturing systems: key research issues in developing and
integrating reconfigurable and intelligent machines. International Journal
of Computer Integrated Manufacturing, 2005. 18(7): p. 525-536.

[5]. Department-of-Trade-and-Industry. Environmental Impacts of Motor
Manufacturing and Disposal of End of Life Vehicles. [cited 05 Jan
2011]; Available from: http://www.autoindustry.co.uk/docs/74289.pdf.

[6]. Ning, L., Economic liberalisation for high-tech industry development?
Lessons from China's response in developing the ICT manufacturing
sector compared with the strategies of Korea and Taiwan. Journal of
Development Studies, 2007. 43(3): p. 562-587.

[7]. BüyüKözkan, G., T. Derel, and A. Baykaso lu, A survey on the methods
and tools of concurrent new product development and agile
manufacturing. Journal of Intelligent Manufacturing, 2004. 15(6): p. 731-
751.

[8]. Ong, M.H., A.A. West, S.M. Lee, and R. Harrison, The opportunities for
multimedia supported remote maintenance provided by an
implementation of a component-based system in the automotive domain.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture, 2007. 221(5): p. 787-798.

[9]. Ucar, M. and R.G. Qiu, E-maintenance in support of e-automated
manufacturing systems. Journal of the Chinese Institute of Industrial
Engineers, 2005. 22(1): p. 1-10.

http://www.autoindustry.co.uk/docs/74289.pdf

References

P a g e | 249

[10]. SMART. Monitoring and control: today's market, its evolution till 2020
and the impact of ICT on these, European Commission DG Information
Society & Media. 2007 [cited 2010 15th September]; Available from:
http://www.decision.eu/smart/SMART_9Oct_v2.pdf.

[11]. Haq, I., R. Monfared, R. Harrison, L. Lee, et al., A new vision for the
automation systems engineering for automotive powertrain assembly.
International Journal of Computer Integrated Manufacturing, 2010. 23(4):
p. 308-324.

[12]. Harrison, R., A.A. West, R.H. Weston, and R.P. Monfared, Distributed
engineering of manufacturing machines. Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manufacture,
2001. 215(2): p. 217-231.

[13]. Bi, Z.M., S.Y.T. Lang, W. Shen, and L. Wang, Reconfigurable
manufacturing systems: the state of the art. International Journal of
Production Research, 2008. 46(4): p. 967-992.

[14]. Boothroyd, G., Product design for manufacture and assembly. Computer-
Aided Design, 1994. 26(7): p. 505-520.

[15]. Bussmann, S., N. Jennings, N.R. Jennings, and M.J. Wooldridge,
Multiagent systems for manufacturing control: a design methodology.
2004: Springer-Verlag New York Inc.

[16]. Wikipedia. User Interface. http://en.wikipedia.org/wiki/User_interface
[cited 05 Jan 2011].

[17]. Anwar, M.R., O. Anwar, S.F. Shamim, and A.A. Zahid. Human Machine
Interface Using OPC (OLE for Process Control). in Student Conference
On Engineering, Sciences and Technology. 2004.

[18]. Yao, A.W.L., Design and implementation of Web-based diagnosis and
management system for an FMS. The International Journal of Advanced
Manufacturing Technology, 2005. 26(11): p. 1379-1387.

[19]. Da'na, S., A. Sagahyroon, A. Elrayes, A.R. Al-Ali, et al., Development of
a monitoring and control platform for PLC-based applications. Computer
Standards & Interfaces, 2008. 30(3): p. 157-166.

http://www.decision.eu/smart/SMART_9Oct_v2.pdf
http://en.wikipedia.org/wiki/User_interface

References

P a g e | 250

[20]. Zipkin, P., The limits of mass customization. Harvard Business Review,
1997. 75: p. 91-101.

[21]. Alptekinoglu, A. and C.J. Corbett, Mass Customization versus Mass
Production: Variety and Price Competition. 2005.

[22]. Fisher, M.L. and C.D. Ittner, The impact of product variety on automobile
assembly operations: Empirical evidence and simulation analysis.
Management Science, 1999. 45(6): p. 771-786.

[23]. Anderson, D. THE END OF LINE FOR MASS PRODUCTION : No Time
for Batches & Queues. [cited 05 Jan 2011]; Available from:
http://www.build-to-order-consulting.com/Mass%20Production.htm.

[24]. Deanab, P.R., D. Xueb, and Y.L. Tub, Prediction of manufacturing
resource requirements from customer demands in mass-customisation
production. International Journal of Production Research, 2009. 47(5): p.
1245-1268.

[25]. Da Silveira, G., D. Borenstein, and F.S. Fogliatto, Mass customization:
Literature review and research directions. International Journal of
Production Economics, 2001. 72(1): p. 1-13.

[26]. Maskell, B., The age of agile manufacturing. An International Journal of
Supply Chain Management:, 2001. 6(1): p. 5-11.

[27]. SOCRADES. SOCRADES ROADMAP The Future of SOA-based
Factory Automation. [cited 15th April 2012]; Available from:
http://www.socrades.eu/Documents/objects/file1274836528.84.

[28]. Neelamkavil, J., W. Shen, Q. Hao, and H. Xie, Making Manufacturing
Changes Less Disruptive: Agent-Driven Integration. Information
Technology For Balanced Manufacturing Systems, 2006: p. 271-280.

[29]. Harrison, R., R.P. Monfared, and L. Lee. Business driven engineering for
powertrain industry. in IEEE Conference on Emerging Technologies and
Factory Automation. 2009.

[30]. Gunasekaran, A., Agile manufacturing: enablers and an implementation
framework. International Journal of Production Research, 1998. 36(5): p.
1223-1247.

http://www.build-to-order-consulting.com/Mass%20Production.htm
http://www.socrades.eu/Documents/objects/file1274836528.84

References

P a g e | 251

[31]. Phaithoonbuathong, P., Web service Control of Component-Based Agile
Manufacturing Systems, in PhD Thesis. 2009, Loughborough University.

[32]. Sturgeon, T.J. and R. Florida, Globalization, deverticalization, and
employment in the motor vehicle industry. Locating global advantage:
Industry dynamics in the international economy, 2004: p. 52–81.

[33]. Spatz, J. and P. Nunnenkamp, Globalization of the automobile industry:
traditional locations under pressure? The Swiss Review of International
Economic Relations, 2002. 57(4).

[34]. KPMG. Globalization and manufacturing. [cited 05th Jan 2011];
Available from: http://www.kpmg.co.uk/pubs/Global_Manu_Survey.pdf.

[35]. Hao, Q., W. Shen, and L. Wang, Towards a cooperative distributed
manufacturing management framework. Journal of Computers in
Industry, 2005. 56(1): p. 71-84.

[36]. Ceglarek, D., W. Huang, S. Zhou, Y. Ding, et al., Time-based competition
in multistage manufacturing: stream-of-variation analysis (SOVA)
methodology—review. International Journal of Flexible Manufacturing
Systems, 2004. 16(1): p. 11-44.

[37]. Koren, Y., U. Heisel, F. Jovane, T. Moriwaki, et al., Reconfigurable
Manufacturing Systems. Annals of the CIRP, 1999. 48(2): p. 527-540.

[38]. Srivastava, S.K., Green supply-chain management: A state-of-the-art
literature review. International Journal of Management Reviews, 2007.
9(1): p. 53-80.

[39]. Sullivan, J.L., R.L. Williams, S. Yester, E. Cobas-Flores, et al. Life cycle
inventory of a generic US family sedan overview of results USCAR AMP
project. 1998: SOC AUTOMATIVE ENGINEERS INC.

[40]. Frosch, R.A., D.C. Bonner, J.B. Carberry, L. Carothers, et al., Industrial
Environmental Performance Metrics-Challenges and Opportunities.
Washington: National Academy of Science, 1999.

[41]. Van Tan, V., D.S. Yoo, and M.J. Yi, Efficient Web Service Based Data
Exchange for Control and Monitoring Systems. International Journal of
Information Technology, 2008. 14(1).

http://www.kpmg.co.uk/pubs/Global_Manu_Survey.pdf

References

P a g e | 252

[42]. Jammes, F. and H. Smit, Service-oriented paradigms in industrial
automation. IEEE Transactions on Industrial Informatics, 2005. 1(1): p.
62-70.

[43]. Phelps, J. and B. Busby, Service-Oriented Architecture-What Is It, and
How Do We Get One? Educause Quarterly, 2007. 30(3): p. 56.

[44]. Subrahmanian, E., S. Rachuri, S.J. Fenves, and S. Foufou, Product
lifecycle management support: a challenge in supporting product design
and manufacturing in a networked economy. International Journal of
Product Lifecycle Management, 2005. 1(1): p. 4-25.

[45]. Microsoft. Microsoft .NET. [cited 05th Jan 2011]; Available from:
http://www.microsoft.com/net/.

[46]. Toncich, D., Data Communications and Networking for Manufacturing
Industries. 2nd ed. 1994: Chrystobel Engineering.

[47]. Sahin, C. and E.D. Bolat, Development of remote control and monitoring
of web-based distributed OPC system. Computer Standards &
Interfaces, 2009. 31(5): p. 984-993.

[48]. Yusuf, Y.Y., M. Sarhadi, and A. Gunasekaran, Agile manufacturing: The
drivers, concepts and attributes. International Journal of Production
Economics, 1999. 62(1-2): p. 33-43.

[49]. Cho, H., M. Jung, and M. Kim, Enabling technologies of agile
manufacturing and its related activities in Korea. Journal of Computers &
Industrial Engineering, 1996. 30(3): p. 323-334.

[50]. Elkins, D.A., N. Huang, and J.M. Alden, Agile manufacturing systems in
the automotive industry. International Journal of Production Economics,
2004. 91(3): p. 201-214.

[51]. Harrison, R. and A.W. Colombo. Collaborative automation from rigid
coupling towards dynamic reconfigurable production systems. in 16th
IFAC World Congress, Prague, Czech Republic. 2005.

[52]. Gunasekaran, A. and E.W.T. Ngai, Build-to-order supply chain
management: a literature review and framework for development.
Journal of Operations Management, 2005. 23(5): p. 423-451.

http://www.microsoft.com/net/

References

P a g e | 253

[53]. Ishii, K., Life-cycle engineering design. ASME JOURNAL OF
MECHANICAL DESIGN, 1995. 117: p. 42-42.

[54]. Harrison, R., S.M. Lee, and A.A. West. Lifecycle engineering of modular
automated machines. in 2nd IEEE International Conference on Industrial
Informatics. 2004.

[55]. de Souza, L., P. Spiess, D. Guinard, M. Köhler, et al., Socrades: A web
service based shop floor integration infrastructure. The Internet of
Things, 2008: p. 50-67.

[56]. Gardoni, M., C. Frank, and F. Vernadat, Knowledge capitalisation based
on textual and graphical semi-structured and non-structured information:
case study in an industrial research centre at EADS. Computers in
industry, 2005. 56(1): p. 55-69.

[57]. Matta, N., B. Eynard, L. Roucoules, and M. Lemercier Continuous
capitalizaton of design knowledge. [cited 15th January 2011]; Available
from: http://www-sop.inria.fr/acacia/WORKSHOPS/ECAI2002-
OM/Actes/Matta.pdf.

[58]. Mehrabi, M.G., A.G. Ulsoy, and Y. Koren, Reconfigurable manufacturing
systems: key to future manufacturing. Journal of Intelligent
Manufacturing, 2000. 11(4): p. 403-419.

[59]. Harrison, R., A.W. Colombo, A.A. West, and S.M. Lee, Reconfigurable
modular automation systems for automotive power-train manufacture.
International Journal of Flexible Manufacturing Systems, 2006. 18(3): p.
175-190.

[60]. ElMaraghy, H.A., Flexible and reconfigurable manufacturing systems
paradigms. International journal of flexible manufacturing systems, 2005.
17(4): p. 261-276.

[61]. Mehrabi, M.G., A.G. Ulsoy, Y. Koren, and P. Heytler, Trends and
perspectives in flexible and reconfigurable manufacturing systems.
Journal of Intelligent manufacturing, 2002. 13(2): p. 135-146.

[62]. Koren, Y. and A.G. Ulsoy, Vision, principles and impact of reconfigurable
manufacturing systems. Journal of Powertrain International, 2002. 5(3):
p. 14-21.

http://www-sop.inria.fr/acacia/WORKSHOPS/ECAI2002-OM/Actes/Matta.pdf
http://www-sop.inria.fr/acacia/WORKSHOPS/ECAI2002-OM/Actes/Matta.pdf

References

P a g e | 254

[63]. Moyne, J., J. Korsakas, C. Milas, T. Hobrla, et al. A Software
Infrastructure for Reconfigurable Manufacturing Systems. in 2nd CIRP
Reconfigurable Manufacturing Conference. 2003.

[64]. Wikipedia. ANSI/ISA-95. [cited 05th Jan 2011]; Available from:
http://en.wikipedia.org/wiki/ANSI/ISA-95.

[65]. ISA. ISA99, Industrial Automation and Control Systems Security. [cited
05th June 2011]; Available from:
http://www.isa.org/MSTemplate.cfm?MicrositeID=988&CommitteeID=682
1.

[66]. Jones, A.T. and C.R. McLean, A proposed hierarchical control model for
automated manufacturing systems. Journal of Manufacturing Systems,
1986. 5(1): p. 15-25.

[67]. Adshead, A. Ford uses data analysis to boost productivity by 50% at
Dagenham. [cited 05 June 2011]; Available from:
http://www.computerweekly.com/Articles/2003/06/17/195308/Ford-uses-
data-analysis-to-boost-productivity-by-50-at.htm.

[68]. Dietrich, D. and T. Sauter. Evolution potentials for fieldbus systems. in
IEEE Workshop on Factory Communication Systems. 2000.

[69]. McFarlane, D.C. and S. Bussmann, Holonic manufacturing control:
Rationales, developments and open issues. Agent-Based Manufacturing,
Advances in the Holonic Approach, 2003: p. 303-326.

[70]. Tovar, E. and F. Vasques, Real-time fieldbus communications using
Profibus networks. IEEE transactions on Industrial Electronics, 1999.
46(6): p. 1241-1251.

[71]. Leitão, P., A.W. Colombo, and F. Restivo. A formal validation approach
for holonic control system specifications. in IEEE Conference
Proceedings on Emerging Technologies and Factory Automation. 2003.

[72]. DiFrank, G., Power of automation. Industry Applications Magazine, IEEE,
2008. 14(2): p. 49-57.

[73]. Katzel, J., Defining(and re-defining) HMIs. Control Engineering, 2004.
51(12): p. 60-60.

http://en.wikipedia.org/wiki/ANSI/ISA-95
http://www.isa.org/MSTemplate.cfm?MicrositeID=988&CommitteeID=6821
http://www.isa.org/MSTemplate.cfm?MicrositeID=988&CommitteeID=6821
http://www.computerweekly.com/Articles/2003/06/17/195308/Ford-uses-data-analysis-to-boost-productivity-by-50-at.htm
http://www.computerweekly.com/Articles/2003/06/17/195308/Ford-uses-data-analysis-to-boost-productivity-by-50-at.htm

References

P a g e | 255

[74]. Lee, K.H., E.C. Tamayo, and B. Huang, Industrial implementation of
controller performance analysis technology. Control Engineering
Practice, 2010. 18(2): p. 147-158.

[75]. Lin, H.C., A remote monitoring and control-based precise multilocation
riveting system. Computer Applications in Engineering Education, 2005.
13(4): p. 316-323.

[76]. Van Tan, V., D.S. Yoo, and M.J. Yi, A Novel Framework for Building
Distributed Data Acquisition and Monitoring Systems. Journal of
Software, 2007. 2(4).

[77]. Salihbegovic, A., V. Marinkovic, Z. Cico, E. Karavdic, et al., Web based
multilayered distributed SCADA/HMI system in refinery application.
Computer Standards & Interfaces, 2009. 31(3): p. 599-612.

[78]. Plaza, I., C. Medrano, and A. Blesa, Analysis and implementation of the
IEC 61131-3 software model under POSIX real-time operating systems.
Journal of Microprocessors and Microsystems, 2006. 30(8): p. 497-508.

[79]. Interview, Ford Motor Company Control Engineers, Operators and ICT
team. 2008-2010, Dunton, Essex.

[80]. Interview, ThyssenKrupp Krause Commissioning and Maintenance
Engineers. 2009-2010, Bremen, Germany.

[81]. Courses, E. and T. Surveys, It's good to talk-THE LATEST COMPANY
TO ATTACK THE MANUFACTURING IT ARENA IS ROCKWELL
AUTOMATION, WITH ITS FACTORYTALK PRODUCT.
MANUFACTURING ENGINEER TALKS TO ONE OF THE MEN BEHIND
THAT STRATEGY. Manufacturing Engineer, 2006. 85(6): p. 30-35.

[82]. Phaithoonbuathong, P., R. Harrison, A. West, R. Monfared, et al., Web
services-based automation for the control and monitoring of production
systems. International Journal of Computer Integrated Manufacturing,
2010. 23(2): p. 126-145.

[83]. Ong, M.H., Evaluating the impact of adopting a component-based
system within the automotive domain, in PhD Thesis. 2004,
Loughborough Univesity.

References

P a g e | 256

[84]. COMPANION. COmmon Model for PArtNers in AutomatION 2005 [cited
2010 15th July]; Available from:
http://www.lboro.ac.uk/departments/mm/research/manufacturing-
systems/dsg/doc/compag.htm.

[85]. COMPAG. COMponent Based Paradigm for AGile Automation. 2004
[cited 2010 15th July]; Available from:
http://www.lboro.ac.uk/departments/mm/research/manufacturing-
systems/dsg/doc/compag.htm.

[86]. Fantuzzi, C., F. Fanfoni, C. Secchi, and M. Bonfe. An engineering
process for the mechatronic development of industrial automation
systems. in 8th IEEE International Conference on Industrial Informatics
(INDIN). 2010.

[87]. SOCRADES. Service-Oriented Cross-layer infRAstructure for Distributed
smart Embedded devices. 2009 [cited 15th April 2012]; Available from:
http://www.socrades.eu/Documents/objects/file1224780946.72.

[88]. Luder, A., L. Hundt, and S. Biffl. On the suitability of modeling
approaches for engineering distributed control systems. in IEEE
Conference on Industrial Informatics. 2009. Cardiff, Wales.

[89]. Monfared, R., I. Haq, R. Harrison, L. Lee, et al., A new vision for the
automation systems engineering for Automotive Powertrain Assembly.
2010.

[90]. Colombo, A.W. and R. Harrison, Modular and collaborative automation:
achieving manufacturing flexibility and reconfigurability. International
Journal of Manufacturing Technology and Management, 2008. 14(3): p.
249-265.

[91]. Takata, S., F. Kirnura, F. Van Houten, E. Westkamper, et al.,
Maintenance: changing role in life cycle management. CIRP Annals-
Manufacturing Technology, 2004. 53(2): p. 643-655.

[92]. Swanson, L., An information-processing model of maintenance
management. International Journal of Production Economics, 2003.
83(1): p. 45-64.

[93]. Titus, J.B. Machine safety pays off. risk analysis 2008 [cited 15th
January 2011]; Available from:
http://www.jbtitus.com/Machine%20Safety%20Pays%20Off.pdf.

http://www.lboro.ac.uk/departments/mm/research/manufacturing-systems/dsg/doc/compag.htm
http://www.lboro.ac.uk/departments/mm/research/manufacturing-systems/dsg/doc/compag.htm
http://www.lboro.ac.uk/departments/mm/research/manufacturing-systems/dsg/doc/compag.htm
http://www.lboro.ac.uk/departments/mm/research/manufacturing-systems/dsg/doc/compag.htm
http://www.socrades.eu/Documents/objects/file1224780946.72
http://www.jbtitus.com/Machine%20Safety%20Pays%20Off.pdf

References

P a g e | 257

[94]. Yu, R., B. Iung, and H. Panetto, A multi-agents based E-maintenance
system with case-based reasoning decision support. Engineering
Applications of Artificial Intelligence, 2003. 16(4): p. 321-333.

[95]. Moore, P.R., J. Pu, H.C. Ng, C.B. Wong, et al., Virtual engineering: an
integrated approach to agile manufacturing machinery design and
control. Mechatronics, 2003. 13(10): p. 1105-1121.

[96]. Lee, J., Teleservice engineering in manufacturing: challenges and
opportunities. International Journal of Machine Tools and Manufacture,
1998. 38(8): p. 901-910.

[97]. Hatch, D. and T. Stauffer. Operators on alert. 2009 [cited 15th January
2011]; Available from:
http://www.exida.com/images/uploads/Alarm_Management_Intech_(Sept
_2009).pdf.

[98]. Moyne, J., J. Korsakas, and D.M. Tilbury. Reconfigurable factory testbed
(RFT): A distributed testbed for reconfigurable manufacturing systems. in
Proceedings of the Japan–USA Symposium on Flexible Automation.
2004.

[99]. Moyne, J.R. and D.M. Tilbury, The emergence of industrial control
networks for manufacturing control, diagnostics, and safety data.
Proceedings of the IEEE, 2007. 95(1): p. 29-47.

[100]. Vrba, P., P. Tichy, V. Mar i k, K.H. Hall, et al., Rockwell Automation's
Holonic and Multiagent Control Systems Compendium. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, 2011. 41(1): p. 14-30.

[101]. Vrba, P., P. Tichy, V. Mar i k, K.H. Hall, et al., Rockwell Automation's
Holonic and Multiagent Control Systems Compendium. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, 2010. 41(1): p. 14-30.

[102]. Garbrecht, S., The Benefits of Component Object-Based Supervisory
System Application Development versus Traditional HMI Development in
Water Systems Operations Management. Proceedings of the Water
Environment Federation, 2008. 2008(8): p. 7358-7370.

[103]. Process-Industry-News. Rockwell Automation Launches Web-HMI.
[cited 05 June 2011]; Available from:

http://www.exida.com/images/uploads/Alarm_Management_Intech_(Sept_2009).pdf
http://www.exida.com/images/uploads/Alarm_Management_Intech_(Sept_2009).pdf

References

P a g e | 258

http://www.processindustryinformer.com/Process-Control-Drives-
Automation/Rockwell-Automation-Launches-Web-HMI.

[104]. SIRENA. Welcome to the ITEA SIRENA project. [cited 01 March 2011];
Available from: http://www.sirena-itea.org/.

[105]. Muto, K., Advanced technology for manufacturing engineering
development: XML technology on a system that enables user to view
required information from the work shop through a web browser. JSAE
Review, 2003. 24(3): p. 303-312.

[106]. Shi, H.L., Y.M. Song, J.W. Xiang, W.W. Yue, et al., The Remote
Monitoring System for Fault Diagnosis Using ActiveX Control Technique.
Advanced Materials Research, 2011. 201: p. 1993-1997.

[107]. Kirubashankar, R., K. Krishnamurthy, and J. Indra, Remote monitoring
system for distributed control of industrial plant process. Journal of
Scientific & Industrial Research, 2009. 68: p. 858-860.

[108]. Campos, J., Development in the application of ICT in condition
monitoring and maintenance. Computers in Industry, 2009. 60(1): p. 1-
20.

[109]. Li, X., D.J. McKee, T. Horberry, and M.S. Powell, The control room
operator: The forgotten element in mineral process control. Minerals
Engineering, 2011. 24(8).

[110]. Pantförder, D., B. Vogel-Heuser, and K. Schweizer, Benefit and
Evaluation of Interactive 3D Process Data Visualization for the
Presentation of Complex Problems. Human-Computer Interaction. Novel
Interaction Methods and Techniques, 2009: p. 869-878.

[111]. Agrusa, R., V.G. Mazza, and R. Penso. Advanced 3D visualization for
manufacturing and facility controls. in IEEE HSI '09. 2nd Conference on
Human System Interactions, 2009. . 2009.

[112]. BDA. Business Driven Automation. 2011 [cited 2010 15th July];
Available from:
http://www.lboro.ac.uk/eng/research/imcrc/brochure/engineering-
change.html.

http://www.processindustryinformer.com/Process-Control-Drives-Automation/Rockwell-Automation-Launches-Web-HMI
http://www.processindustryinformer.com/Process-Control-Drives-Automation/Rockwell-Automation-Launches-Web-HMI
http://www.sirena-itea.org/
http://www.lboro.ac.uk/eng/research/imcrc/brochure/engineering-change.html
http://www.lboro.ac.uk/eng/research/imcrc/brochure/engineering-change.html

References

P a g e | 259

[113]. Lee, S.C. and A.I. Shirani, A component based methodology for Web
application development. Journal of systems and software, 2004. 71(1-
2): p. 177-187.

[114]. Kopetz, H., Component-based design of large distributed real-time
systems. Control Engineering Practice, 1998. 6(1): p. 53-60.

[115]. Hill, J.H., J.R. Edmondson, A. Gokhale, and D.C. Schmidt, Agile
Development of Component-based Distributed Real-time and Embedded
Systems via Model-Driven Engineering Techniques. 2009.

[116]. Sommerville, I., Software Engineering. 9th ed. 2011, Reading,
Massachusetts: Addison-Wesley Publishing Company.

[117]. Bouyssounouse, B. and J. Sifakis, Embedded Systems Design: The
ARTIST Roadmap for Research and Development. 2005: Springer
Verlag.

[118]. Ong, M.H., A.A. West, S.M. Lee, and R. Harrison, A structured approach
to evaluating the impact of implementing a component-based system in
the automotive engine manufacturing domain. International Journal of
Production Research, 2006. 44(13): p. 2645-2670.

[119]. Harrison, R. and A.A. West, Component based paradigm for the design
and implementation of control systems in electronics manufacturing
machinery. Journal of Electronics Manufacturing, 2000. 10(1): p. 1-17.

[120]. Lee, S.M., R. Harrison, and A.A. West, A component-based control
system for agile manufacturing. Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manufacture,
2005. 219(1): p. 123-135.

[121]. Lee, S.M., R. Harrison, A.A. West, and M.H. Ong, A component-based
approach to the design and implementation of assembly automation
system. Proceedings of the Institution of Mechanical Engineers, Part B:
Journal of Engineering Manufacture, 2007. 221(5): p. 763-773.

[122]. Raza, M.B., T. Kirkham, R. Harrison, R.P. Monfared, et al. Evolving
knowledge based product lifecycle management from a digital ecosystem
to support automated manufacturing. 2009: ACM.

References

P a g e | 260

[123]. Stephanidis, C., User interfaces for all: New perspectives into human-
computer interaction. User Interfaces for All–concepts, methods and
tools. 2001, Mahwah, New Jersey: Lawrence Erlbaum Associates. 3-17.

[124]. Degani, A. and M. Heymann, Formal verification of human-automation
interaction. International Journal of Human Factors, 2002. 44(1): p. 28-
43.

[125]. Luyten, K., T. Clerckx, K. Coninx, and J. Vanderdonckt, Derivation of a
dialog model from a task model by activity chain extraction. Interactive
Systems. Design, Specification, and Verification, 2003: p. 83-83.

[126]. Szekely, P., P. Sukaviriya, P. Castells, J. Muthukumarasamy, et al.,
Declarative interface models for user interface construction tools: the
MASTERMIND approach. Engineering for Human-Computer Interaction,
1996: p. 120-150.

[127]. Pinheiro da Silva, P., User interface declarative models and development
environments: A survey. Interactive Systems Design, Specification, and
Verification, 2001. 1946/2001: p. 207-226.

[128]. Puerta, A.R., A model-based interface development environment. IEEE
Journal of Software, 2002. 14(4): p. 40-47.

[129]. Mori, G., F. Paternò, and C. Santoro, CTTE: support for developing and
analyzing task models for interactive system design. IEEE Transactions
on software engineering, 2002. 28(8): p. 797-813.

[130]. Vanderdonckt, J.M. and F. Bodart. Encapsulating knowledge for
intelligent automatic interaction objects selection. 1993: ACM Press.

[131]. Birnbaum, L., R. Bareiss, T. Hinrichs, and C. Johnson. Interface design
based on standardized task models. 1998: ACM.

[132]. Sinnig, D., P. Chalin, and F. Khendek, Consistency between task models
and use cases. Engineering Interactive Systems, 2008. 4940/2008: p.
71-88.

[133]. Booch, G., R. Maksimchuk, M. Engle, B. Young, et al., Object-oriented
analysis and design with applications. 2007: Addison-Wesley
Professional.

References

P a g e | 261

[134]. Pineda, L., I. Meza, and L. Salinas, Dialogue model specification and
interpretation for intelligent multimodal HCI. Advances in Artificial
Intelligence–IBERAMIA 2010: p. 20-29.

[135]. Jacko, J.A., Human-computer Interaction: Design Issues, Solutions, and
Applications. 2009: CRC.

[136]. Fischer, G., User modeling in human–computer interaction. User
modeling and user-adapted interaction, 2001. 11(1): p. 65-86.

[137]. Lozano, M.D., F. Montero, and P. González. A Usability and Accessibility
Oriented Development Process. in 8th ERCIM Workshop on “User
Interfaces For All"(UI4ALL’04). Viena, Austria. Junio. 2004.

[138]. Moreno, L., P. Martínez, and B. Ruiz-Mezcua, Integrating HCI in a Web
Accessibility engineering approach. Universal Access in Human-
Computer Interaction. Applications and Services, 2009. 5616/2009: p.
745-754.

[139]. Ambler, S.W., The object primer: Agile model-driven development with
UML 2.0. 2004: Cambridge University Press.

[140]. Koch, N., H. Baumeister, R. Hennicker, and L. Mandel. Extending UML
to Model Navigation and Presentation in Web Applications. in Workshop
on the UML and Modelling Web Applications, UML'2000. 2000.

[141]. Lank, E., J.S. Thorley, and S.J.S. Chen. An interactive system for
recognizing hand drawn UML diagrams. in Proceedings of the 2000
conference of the Centre for Advanced Studies on Collaborative
research. 2000.

[142]. John, B.E., L. Bass, R. Kazman, and E. Chen. Identifying gaps between
HCI, software engineering, and design, and boundary objects to bridge
them. in CHI '04 extended abstracts on Human factors in computing
systems 2004.

[143]. Wahid, S., D.S. McCrickard, J. DeGol, N. Elias, et al. Don’t drop it! Pick it
up and storyboard. in CHI 2011. 2011. Vancouver, Canada.

[144]. Stephanidis, C. and A. Savidis, Universal access in the information
society: methods, tools, and interaction technologies. Universal Access
in the Information Society, 2001. 1(1): p. 40-55.

References

P a g e | 262

[145]. Mayhew, D.J. The usability engineering lifecycle. in CHI '99 Extended
abstracts on Human Factors in Computing Systems. 1999.

[146]. Constantine, L.L. and L.A.D. Lockwood, Software for use: a practical
guide to the models and methods of usage-centered design. 1999: ACM
Press/Addison-Wesley Publishing Co. New York, NY, USA.

[147]. Schneiderman, B., Designing the user interface: strategies for effective
human - computer interaction. . Fifth Edition ed. 2010: Addison-Wesley.

[148]. Amditis, A., L. Andreone, K. Pagle, G. Markkula, et al., Towards the
Automotive HMI of the Future: Overview of the AIDE-Integrated Project
Results. IEEE Transactions on Intelligent Transportation Systems, 2010.
11(3): p. 567-578.

[149]. Framinan, J.M. and R. Ruiz, Architecture of manufacturing scheduling
systems: Literature review and an integrated proposal. European Journal
of Operational Research, 2010. 205(2): p. 237-246.

[150]. Coury, B.G. and C.M. Pietras, Alphanumeric and graphic displays for
dynamic process monitoring and control. Ergonomics, 1989. 32(11): p.
1373-1389.

[151]. Marcus, A., Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Information Design Journal, 2009. 17(2):
p. 157-158.

[152]. Sanderson, S. and D. Sanderson, Pro Asp. net Mvc V2 Framework.
2010, New York, NY: Apress.

[153]. Azam, M.A. and K. Khan. Design of the Ethernet based process data
extraction algorithm and storage technique for industrial HMI systems. in
2nd International Conference on Computer and Automation Engineering
(ICCAE). 2010: IEEE.

[154]. SchneiderElectric. Vijeo Designer - HMI, SCADA and Historian software.
[cited 15th February 2011]; Available from: http://www.schneider-
electric.co.uk/sites/uk/en/products-services/automation-control/products-
offer/software-tools/hmi-and-scada-software-tools/vijeo-designer.page.

http://www.schneider-electric.co.uk/sites/uk/en/products-services/automation-control/products-offer/software-tools/hmi-and-scada-software-tools/vijeo-designer.page
http://www.schneider-electric.co.uk/sites/uk/en/products-services/automation-control/products-offer/software-tools/hmi-and-scada-software-tools/vijeo-designer.page
http://www.schneider-electric.co.uk/sites/uk/en/products-services/automation-control/products-offer/software-tools/hmi-and-scada-software-tools/vijeo-designer.page

References

P a g e | 263

[155]. Siemens. SCADA System SIMATIC WinCC. [cited 15th February 2011];
Available from: http://www.automation.siemens.com/mcms/human-
machine-interface/en/visualization-software/scada/Pages/Default.aspx.

[156]. Sauer, O., Production Monitoring Linked to Object Identification and
Tracking a Step Towards Real Time Manufacturing In Automotive Plants.
Digital Enterprise Technology, 2007: p. 149-156.

[157]. Hohpe, G., B. Woolf, and K. Brown, Enterprise integration patterns.
2004: Citeseer.

[158]. Wikipedia. Desktop Sharing. [cited 15th February 2011]; Available from:
http://en.wikipedia.org/wiki/Desktop_sharing.

[159]. SonicWALL. SSL VPN Secure Remote Access. [cited 05th Jan 2011];
Available from:
http://www.sonicwall.com/us/products/Secure_Remote_Access.html.

[160]. No-1-Reviews. Remote PC Access Reviews. [cited 05th Jan 2011];
Available from: http://remote-pc-access.no1reviews.com/.

[161]. Juniper-Networks. SA Series - Secure Access VPN Appliances. [cited
05th Jan 2011]; Available from: http://www.juniper.net/us/en/products-
services/security/sa-series/.

[162]. Cisco. Cisco Easy VPN. [cited 05th Jan 2011]; Available from:
http://www.cisco.biz/en/US/products/sw/secursw/ps5299/index.html.

[163]. R*HUB. Web Conferencing Comparisons - RHUB, WebEx and Citrix.
[cited 05th Jan 2011]; Available from:
http://www.rhubcom.com/front/comparison.htm.

[164]. Encyclopedia, e.-T.W.a.A. Is WebEx PCNow secure? [cited 05th Jan
2011]; Available from: http://www.experts123.com/q/is-webex-pcnow-
secure.html.

[165]. WebEx. WebEx MediaTone Technology Series White Paper. [cited 05th
Jan 2011]; Available from: http://www.webex.com/pdf/wp_mediatone.pdf.

[166]. FDS. Fully Distributed Systems. [cited 05th Jan 2011]; Available from:
http://www.fullydistributedsystems.com/.

http://www.automation.siemens.com/mcms/human-machine-interface/en/visualization-software/scada/Pages/Default.aspx
http://www.automation.siemens.com/mcms/human-machine-interface/en/visualization-software/scada/Pages/Default.aspx
http://en.wikipedia.org/wiki/Desktop_sharing
http://www.sonicwall.com/us/products/Secure_Remote_Access.html
http://remote-pc-access.no1reviews.com/
http://www.juniper.net/us/en/products-services/security/sa-series/
http://www.juniper.net/us/en/products-services/security/sa-series/
http://www.cisco.biz/en/US/products/sw/secursw/ps5299/index.html
http://www.rhubcom.com/front/comparison.htm
http://www.experts123.com/q/is-webex-pcnow-secure.html
http://www.experts123.com/q/is-webex-pcnow-secure.html
http://www.webex.com/pdf/wp_mediatone.pdf
http://www.fullydistributedsystems.com/

References

P a g e | 264

[167]. SAP. SAP Business Suite. [cited 15th February 2011]; Available from:
http://www.sap.com/solutions/business-suite/index.epx.

[168]. Siemens. Scalance S Security Modules. [cited 15th February 2011];
Available from: http://www.automation.siemens.com/mcms/industrial-
communication/en/ie/industrial-security/scalance-s/Pages/scalance-
s.aspx.

[169]. Stallings, W., Cryptography and network security: principles and practice.
2011, New York: Prentice Hall.

[170]. Neumann, P., Communication in industrial automation--What is going
on? Control Engineering Practice, 2007. 15(11): p. 1332-1347.

[171]. Stallings, W., Cryptography and network security. 2003: Prentice Hall
Upper Saddle River, NJ.

[172]. Funderburk, J.E., S. Malaika, and B. Reinwald, XML programming with
SQL/XML and XQuery. IBM Systems Journal, 2002. 41(4): p. 642-665.

[173]. Lee, K.C. and S. Lee, Performance evaluation of switched Ethernet for
real-time industrial communications. Journal of Computer Standards &
Interfaces, 2002. 24(5): p. 411-423.

[174]. LEE, l.J., A next generation manufacturing control system, in PhD
Thesis. 2003, Loughborough Univesity.

[175]. Metz, C., IP anycast point-to-(any) point communication. Internet
Computing, IEEE, 2002. 6(2): p. 94-98.

[176]. Bass, L., P. Clements, and R. Kazman, Software architecture in practice.
Second Edition ed. 2003, Boston, MA: Pearson Education, Inc.

[177]. Trowbridge, D., Integration Patterns. 2004: Microsoft Press.

[178]. Ossher, H., W. Harrison, and P. Tarr. Software engineering tools and
environments: a roadmap. in Proceedings of the Conference on The
Future of Software Engineering. 2000.

[179]. Bosch, J., Software architecture: The next step, in Software architecture.
2004, Springer Berlin / Heidelberg. p. 194-199.

http://www.sap.com/solutions/business-suite/index.epx
http://www.automation.siemens.com/mcms/industrial-communication/en/ie/industrial-security/scalance-s/Pages/scalance-s.aspx
http://www.automation.siemens.com/mcms/industrial-communication/en/ie/industrial-security/scalance-s/Pages/scalance-s.aspx
http://www.automation.siemens.com/mcms/industrial-communication/en/ie/industrial-security/scalance-s/Pages/scalance-s.aspx

References

P a g e | 265

[180]. Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design patterns. Vol.
1. 2002: Addison-Wesley Reading, MA.

[181]. Wikipedia. Model-View-Controller. [cited 25th February 2011]; Available
from:
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controll
er.

[182]. Stallings, W., Network Security Essentials: Applications and Standards.
2007: Prentice Hall.

[183]. Al-Ameed, H., Architecture of reliable Web applications software. 2007,
London, United Kingdom: Idea Group Publishing.

[184]. Hexatec. What makes a successful Operator Screen? [cited 15th April
2011]; Available from:
http://www.hexatec.co.uk/Consultancy/hmi_display_design_guidelines.as
px.

[185]. Scott, C., The Industrial Ethernet Book. Don't let colours hide the alarms.
2007.

[186]. ISA-SP101. ISA Forms Human-Machine Interface Standards Committee.
2005 [cited 2012 15th April]; Available from:
http://www.ihs.com/news/2005/isa-human-machine-interface-
standard.htm.

[187]. Siemens. Transline HMI PRO. [cited 15th April 2011]; Available from:
http://www.automation.siemens.com/mcms/industrial-
controls/en/industrial-communication/as-
interface/diagnostics/transline/Pages/default.aspx.

[188]. Ponsa, P. and M. Díaz, Creation of an ergonomic guideline for
supervisory control interface design. Engineering Psychology and
Cognitive Ergonomics, 2007. 4562/2007: p. 137-146.

[189]. Booch, G., J. Rumbaugh, and I. Jacobson, The unified modeling
language user guide. 1999: Addison Wesley Longman Publishing Co.,
Inc. Redwood City, CA, USA.

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://www.hexatec.co.uk/Consultancy/hmi_display_design_guidelines.aspx
http://www.hexatec.co.uk/Consultancy/hmi_display_design_guidelines.aspx
http://www.ihs.com/news/2005/isa-human-machine-interface-standard.htm
http://www.ihs.com/news/2005/isa-human-machine-interface-standard.htm
http://www.automation.siemens.com/mcms/industrial-controls/en/industrial-communication/as-interface/diagnostics/transline/Pages/default.aspx
http://www.automation.siemens.com/mcms/industrial-controls/en/industrial-communication/as-interface/diagnostics/transline/Pages/default.aspx
http://www.automation.siemens.com/mcms/industrial-controls/en/industrial-communication/as-interface/diagnostics/transline/Pages/default.aspx

References

P a g e | 266

[190]. Karampelas, P., I. Basdekis, and C. Stephanidis, Web user interface
design strategy: Designing for device independence. Universal Access in
Human-Computer Interaction. Addressing Diversity, 2009: p. 515-524.

[191]. Landay, J.A. and B.A. Myers. Sketching storyboards to illustrate interface
behaviors. 1996: ACM.

[192]. Corkill, D.D., Blackboard systems. AI expert, 1991. 6(9): p. 40-47.

[193]. Hunt, J. and H. Park. Blackboard Architectures. 2002 [cited 2011 15th
February]; Available from:
http://www.agent.ai/doc/upload/200402/hunt02_1.pdf.

[194]. Shaw, M. and D. Garlan, Software architecture: perspectives on an
emerging discipline. 1996: Prentice-Hall, Inc. Upper Saddle River, NJ,
USA.

[195]. Corkill, D.D. Collaborating software: Blackboard and multi-agent systems
& the future. in Proceedings of the International Lisp Conference. 2003.

[196]. Lau, T.L., H.Y.K. Lau, and A. Ko. A Distributed Blackboard-based Control
System for Modular Self-Reconfigurable Robots. in The University of
Hong Kong. Department of Industrial and Manufacturing Systems
Engineering. 2003.

[197]. Dong, J., S. Chen, and J.J. Jeng. Event-Based Blackboard Architecture
for Multi-Agent Systems. in Proceedings of the International Conference
on Information Technology: Coding and Computing. 2005. Las Vegas,
Nevada.

[198]. Craig, I.D., Blackboard systems. Artificial Intelligence Review, 1988. 2(2):
p. 103-118.

[199]. Abbod, M.F., D.A. Linkens, A. Browne, and N. Cade, A blackboard
software architecture for integrated intelligent control systems.
Kybernetes, 2000. 29(7/8): p. 999-1015.

[200]. Hughes, C. and T. Hughes, Parallel and distributed programming using
C++. 2003: Prentice Hall Professional Technical Reference.

http://www.agent.ai/doc/upload/200402/hunt02_1.pdf

References

P a g e | 267

[201]. Craig, I.D., The Cassandra architecture: distributed control in a
blackboard system, in Ellis Horwood Series In Applied Science and
Industrial Techn 1989.

[202]. Philip, G.C., Software design guidelines for event-driven programming.
The Journal of Systems & Software, 1998. 41(2): p. 79-91.

[203]. Stevens, W.R. and G.R. Wright, TCP/IP illustrated: the implementation.
Vol. 2. 1995: addison-Wesley.

[204]. Booch, G., R. Maksimchuk, M. Engle, B. Young, et al., Object-oriented
analysis and design with applications. 2007.

[205]. Holzner, S., Visual Basic. net Programming Black Book. 2004: The
Coriolis Group.

[206]. Paulson, L.D., Building rich web applications with Ajax. Computer, 2005.
38(10): p. 14-17.

[207]. SAP. SAP MANUFACTURING INTEGRATION AND INTELLIGENCE.
[cited 20 June 2011]; Available from:
http://www.sap.com/solutions/manufacturing/manufacturing-intelligence-
software/index.epx.

[208]. Wikipedia. HTTP Secure. [cited 15th July 2011]; Available from:
http://en.wikipedia.org/wiki/HTTP_Secure.

[209]. Wikipedia. Transmission Control Protocol. [cited 31st July 2011];
Available from:
http://en.wikipedia.org/wiki/Transmission_Control_Protocol.

[210]. Hannelius, T., M. Salmenpera, and S. Kuikka. Roadmap to adopting
OPC UA. in 6th IEEE International Conference on Industrial Informatics.
2008. Daejeon.

[211]. Schneider-Electric. OPC Factory Server Software. [cited 15th
September 2011]; Available from: http://products.schneider-
electric.us/products-services/products/scada-mes-and-hmi-software/opc-
factory-server-software/.

http://www.sap.com/solutions/manufacturing/manufacturing-intelligence-software/index.epx
http://www.sap.com/solutions/manufacturing/manufacturing-intelligence-software/index.epx
http://en.wikipedia.org/wiki/HTTP_Secure
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://products.schneider-electric.us/products-services/products/scada-mes-and-hmi-software/opc-factory-server-software/
http://products.schneider-electric.us/products-services/products/scada-mes-and-hmi-software/opc-factory-server-software/
http://products.schneider-electric.us/products-services/products/scada-mes-and-hmi-software/opc-factory-server-software/

P a g e | 268

Appendices

Appendix A: List of Abbreviations

Acronym Description

(Alphabetical Order)

3D Three Dimensional

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

ASP Active Server Page

BDA Business Driven Automation

CB Component-Based

CO2 Carbon dioxide

COMPAG Component Based Paradigm for Agile Automation

COTS Commercial Off-The-Shelf

DPWS Devices Profile for Web Services

EPSRC Engineering and Physical Research Council

ERP Enterprise Resource Planning

FIFO First In, First Out

FTB Field Terminal Block

Gbps Gigabits per second

GUI Graphical User Interface

HMI Human Machine Interface

HTML HyperText Markup Language

Appendices

P a g e | 269

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

ICT Information and Communication Technology

IEC International Electrotechnical Commission

IMCRC Innovative Manufacturing and Construction

Research Centre

IMS Issue Management System

I/O Input/Output

IP Internet Protocol

ISP Internet Service Provider

KS Knowledge Source (s)

LIFO Last In, First Out

Mbps Megabits per Second

MII Manufacturing Integration and Intelligence

MSI Manufacturing System Integration

MVC Model View Controller

OEM Original Equipment Manufacturer

OOP Object-Oriented Programming

OSI Open System Interconnection

PC Personal Computer

PDF Portable Document Format

PLC Programmable Logic Controller

RDBMS Relational Database Management System

Appendices

P a g e | 270

RFID Radio Frequency Identification

RMS Reconfigurable Manufacturing System

SCADA Supervisory Control and Data Acquisition

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOCRADES Service Oriented Cross-layer Infrastructure for

Distributed Smart Embedded Devices

SQL Structured Query Language

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UML Unified Modelling Language

URL Uniform Resource Locator

VRML Virtual Reality Modelling Language

WAN Wide Area Network

WS Web Services

WWW World Wide Web

W.Y.S.I.W.Y.G What You See Is What You Get

XML Extensible Markup Language

Appendices

P a g e | 271

Appendix B: Documentation on Remote Desktop Service Providers

Numerous products exist in the market targeting remote desktop sharing

functionality. The following table shows comparison of major solution providers

with their associated product features.

Product

Features

Major Solution Providers (e.g. Product)

Cisco WebEx

(e.g. PCNow)

Citrix

(e.g. GoToMyPC

Pro)

TeamViewer Laplink

(e.g. Laplink

Everywhere)

Symantec

(e.g. PC

Anywhere)

LogMeIn

(e.g.

LogMeIn

Pro)

Application Sharing √ √ √ √ √ √

Auto Reconnection √ √ √ √ √ √

Costs 10PC’s - $59.95

/month (Additional

PCs - $9.95

PC/month)

Or 45cents per

minute per user

10PC’s - $169.50

/month (More

than 20 PCs -

$14.00

PC/month). One

user:

$19.95/month

Business

License -

$699

Unlimited

clients – one

supporter

(Lifetime).

Free for

private users

3PC’s -

$99.95 /year

(More than 5

Pc’s –

additional

deals)

1 PC + 1

remote -

$199.99

(Additional

remotes

$99.00 each)

(Lifetime)

10PC’s -

$99.50

/month

(Additional

PCs - $7.95

PC/month).

Free limited

version

available

Data Encryption

Standard

End-to-End 128 bit

SSL encryption

End-to-End 128

bit AES

encryption

RSA+256 bit

AES

encryption

End-to-End

128 bit SSL

encryption

RC4+AES

128/192/256 –

bit encryption

End-to-End

128/256 bit

SSL

encryption

File Transfer √ √ √ √ √ √

Firewall Friendly √ √ √ √ Requires

modifications

(Port 5631/2)

√

Free Trial / Version √ √ √ √

None

√

Hardware

Implementation

None None None None None None

Implementation

Time

Within 24 hours Within 24 hours Within 24

hours

Within 24

hours

Within 24

hours

Within 24

hours

Integration API for

remote session

Open API ? None None None ?

International (or

Multiple) Language

Support

√ √ √ √ √ √

Licensing Per PC Per PC Per client Per PC Per PC Per PC

Machine State

Transmission

(Remote Monitoring)

√ √ √ √ √ √

Appendices

P a g e | 272

Product

Features

Major Solution Providers (e.g. Product)

Cisco WebEx

(e.g. PCNow)

Citrix

(e.g. GoToMyPC

Pro)

TeamViewer Laplink

(e.g. Laplink

Everywhere)

Symantec

(e.g. PC

Anywhere)

LogMeIn

(e.g.

LogMeIn

Pro)

Mobile Device

Support (as a client)

IPhone and other

windows mobile

devices. No

desktop access,

only files and

email.

Windows mobile,

smartphones

only. Full desktop

access.

PDA support Mobile

devices,

smartphones

and Nintendo

Wii (Almost

any device)

Major mobile

devices

supported.

-

Performance

(Bandwidth)

Better than in-

house VPN.

Modest

requirements

Optimal but

modest

requirements

Varies (based

on license

type)

Efficient

management

Configurable Optimal but

modest

requirement

s

Remote Control √ √ √ √ √ √

Remote Control

Speed

? ? ? ? ? ?

Remote Desktop

(Screen Copy /

Desktop Sharing)

√ √ √ √ √ √

Remote Login

Process

Username and

password; access

key on remote PC

Username and

password; access

key on remote PC

Username

and Password

Email and

Password;

password on

remote PC

Active

Directory

Integration.

Username and

Password

Username

and

password

Scalability Upgrade

necessary (based

on license)

Upgrade

necessary (based

on license)

Upgrade

necessary

(based on

license)

Upgrade

necessary

(based on

license)

Upgrade

necessary

(based on

license)

Upgrade

necessary

(based on

license)

Security Mechanism 2 level

authentication and

SSL + Proprietary

Dual

authentication +

SSL + AES

RSA

public/private

key exchange

+ AES

2 level

authentication

and SSL +

Proprietary

Multiple

authentication

and AES with

RC4

SSL +

Proprietary

Software

Requirements /

Installations

Agent software

download, internet

browser. Supports

Windows and Mac

hosts.

Agent software

download,

internet browser.

Supports

Windows hosts.

No installation

needed.

Supports

Windows and

Mac hosts.

Agent

software

download,

internet

browser.

Supports

Windows

hosts.

Agent software

installation on

both host and

client required.

Supports

Windows, Mac

and Linux

hosts.

Agent

software

download,

internet

browser.

Supports

Windows

hosts.

State Playback

(Record)

√ √ √ ?

√ √

Subscriptions

Monthly / Yearly Monthly / Yearly Lifetime Yearly Lifetime Monthly /

Yearly

Appendices

P a g e | 273

Product

Features

Major Solution Providers (e.g. Product)

Cisco WebEx

(e.g. PCNow)

Citrix

(e.g. GoToMyPC

Pro)

TeamViewer Laplink

(e.g. Laplink

Everywhere)

Symantec

(e.g. PC

Anywhere)

LogMeIn

(e.g.

LogMeIn

Pro)

Supported Remote

Access Types by

Vendor

SSL VPN, RDA RDA (Remote

Desktop Access)

RDA and VPN RDA VPN RDA

Technical Support

24*7 Live (no

extra charge)

24*7 Live (no

extra charge)

24*7 Live (no

extra charge)

24*7 Live (no

extra charge)

24*7 Live (no

extra charge)

24*7 Live

(no extra

charge)

Text Chat

√ √ √ √ √ ?

Training Complexity Minimal or None Minimal or None Some Minimal or

None

Some Minimal or

None

Video Integration /

Transmission

Possible Possible Possible Possible Possible Possible

VOIP

√ √ √

None

√ √

Web Conference

√ √ √ ?

-

√

Whiteboard

(Discussion Board)

√ √ √ √ √ √

NOTES: Needs an always

“ON” internet

connection to the

host PC

 Modem-to-

Modem link

available to

call host

remotely to

activate

internet

connection

A very

expensive and

complex to use

solution.

- Underlined features are the most important and directly related to Powertrain systems remote support requirements

- Costs vary according to the type of service, additional features requested and scalability requirements. Solution provider’s

charges are based on the number of computers and users. Discounts may be obtained with special arrangements like

paying annually in advance, guaranteed contracts, direct debits, etc.

- Firewall Friendliness corresponds to the provision of transmitting data through the firewall without opening any additional

ports. Some vendor products require additional ports depending on the type of the product service requested.

- Implementation time varies based on the type of product and number of users.

- Performance of remote solution depends on the Internet bandwidth available to the end user network.

Appendices

P a g e | 274

Product

Features

Major Solution Providers (e.g. Product)

Cisco WebEx

(e.g. PCNow)

Citrix

(e.g. GoToMyPC

Pro)

TeamViewer Laplink

(e.g. Laplink

Everywhere)

Symantec

(e.g. PC

Anywhere)

LogMeIn

(e.g.

LogMeIn

Pro)

- Security Mechanism can be configured based on the requirements and the product. Some additional features like call-back

service; device locking and session management can also be requested.

Appendices

P a g e | 275

Appendix C: List of Publications

Barot, V., R. Harrison, and S. McLeod, Distribution of Machine Information
Using Blackboard Designed Component for Remote Monitoring of
Reconfigurable Manufacturing Systems, in 24th IEEE Conference on Advanced
Information Networking and Applications Workshops. 2010: Perth, Australia.
P.145-151.

Barot, V., R. Harrison, S. McLeod, and A. West, “Broadcaster”: An architectural
description of a prototype supporting real-time remote data propagation in
distributed manufacturing, in 7th IEEE Conference on Industrial Informatics
2009: Cardiff, United Kingdom.

Barot, V., S. McLeod, R. Harrison, and A. West, Efficient real-time remote data
propagation mechanism for a Component-Based approach to distributed
manufacturing. International Journal of Mechanical Systems Science and
Engineering, 2009. 1(3).

