

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

A Quality of Service Based Framework for Dynamic, Dependable Systems

..

by

Peter Bull

Submitted in partial fulfilment of the requirements

for the award of

Doctoral Thesis of Loughborough University

April 2012

© by Peter Bull 2012

Thesis Access Form

Copy
No…………...…………………….Location………………………………………………….…………….

Author…………...…………………………………………………………………………………………..

Title……..

Status of access OPEN / RESTRICTED / CONFIDENTIAL

Moratorium Period:…………………………………years, ending…………../…………200……………

Conditions of access approved by (CAPITALS):…………………………………………………………

Supervisor (Signature)………………………………………………...…………………………………...

Department of……………………………………………………………………...………………………

Author's Declaration: I agree the following conditions:

Open access work shall be made available (in the University and externally) and reproduced as necessary
at the discretion of the University Librarian or Head of Department. It may also be digitised by the British
Library and made freely available on the Internet to registered users of the EThOS service subject to the
EThOS supply agreements.
The statement itself shall apply to ALL copies including electronic copies:

This copy has been supplied on the understanding that it is copyright material and that no
quotation from the thesis may be published without proper acknowledgement.

Restricted/confidential work: All access and any photocopying shall be strictly subject to written
permission from the University Head of Department and any external sponsor, if any.

Author's signature……………………………………….Date…………………………………...………

users declaration: for signature during any Moratorium period (Not Open work):
I undertake to uphold the above conditions:

Date Name (CAPITALS) Signature Address

CERTIFICATE OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this thesis, that
the original work is my own except as specified in acknowledgments or in
footnotes, and that neither the thesis nor the original work contained therein has
been submitted to this or any other institution for a degree.

……………………………………………. (Signed)

……………………………………………. (Date)

Abstract

There is currently much UK government and industry interest towards the integration of

complex computer-based systems, including those in the military domain. These

systems can include both mission critical and safety critical applications, and therefore

require the dependable communication of data. Current modular military systems

requiring such performance guarantees are mostly based on parameters and system

states fixed during design time, thus allowing a predictable estimate of performance.

These systems can exhibit a limited degree of reconfiguration, but this is typically within

the constraints of a predefined set of configurations. The ability to reconfigure systems

more dynamically, could lead to further increased flexibility and adaptability, resulting in

the better use of existing assets. Current software architecture models that are

capable of providing this flexibility, however, tend to lack support for dependable

performance.

This thesis explores the benefits for the dependability of future dynamic systems, built

on a publish/subscribe model, from using Quality of Service (QoS) methods to map

application level data communication requirements to available network resources.

Through this, original contributions to knowledge are created, including; the proposal of

a QoS framework that specifies a way of defining flexible levels of QoS characteristics

and their use in the negotiation of network resources, a simulation based evaluation of

the QoS framework and specifically the choice of negotiation algorithm used, and a

test-bed based feasibility study.

Simulation experimentation conducted comparing different methods of QoS negotiation

gives a clear indication that the use of the proposed QoS framework and flexible

negotiation algorithm can provide a benefit in terms of system utility, resource

utilisation, and system stability. The choice of negotiation algorithm has a particularly

strong impact on these system properties. The cost of these benefits comes in terms

of the processing power and execution time required to reach a decision on the

acceptance of a subscriber. It is suggested, given this cost, that when computational

resources are limited, a simpler priority based negotiation algorithm should be used.

Where system resources are more abundant, however, the flexible negotiation

algorithm proposed within the QoS framework can offer further benefits.

Through the implementation of the QoS framework within an existing military avionics

software architecture based emulator on a test-bed, both the technical challenges that

will need to be overcome and, more importantly, the potential viability for the inclusion

of the QoS framework have been demonstrated.

Keywords: Quality of Service, negotiation algorithms, dynamic systems, dependability

Acknowledgements

I would like to thank my wife Kitty, our poodle Charlie and my family for their constant

love and support.

I would like to express my gratitude to Dr. Lin Guan, Dr. Alan Grigg & Dr. Iain Phillips

for their supervision and guidance throughout the project. I am very grateful to the

Loughborough University Department of Computer Science as a whole for the support

and friendly atmosphere that they offer. The Nets group specifically has provided a

valuable opportunity to share research and learn from others through their regular

meetings.

Thanks to BAE Systems and the Engineering and Physical Science Research Council

(EPSRC) for funding this work and the Systems Engineering Innovation Centre for

hosting. Thanks also to the staff of the Systems Engineering Doctorate Centre for their

help and support.

Publications

Ford, B., Bull, P., Guan, L., Grigg, A., Phillips, I. (2009). Adaptive Architectures for

Future Highly Dependable, Real-Time Systems. Proceedings of the 7th Annual

Conference on Systems Engineering Research (CSER 2009), Loughborough, UK, (pp.

1-6).

Bull, P., Grigg, A., Guan, L., Phillips, I. (2010). A Quality of Service Framework for

Adaptive and Dependable Large Scale System-of-Systems. Proceedings of the 5th

International Conference on System of Systems Engineering Conference (SOSE

2010), Loughborough, UK, (pp. 1-8).

Bull, P., Grigg, A., Guan, L., Phillips, I. (2011). A Quality of Service Framework for

Dependability in Large Scale Distributed Systems. Proceedings of the 6th International

Symposium on Service-Oriented Systems Engineering Conference (SOSE 2011),

Irvine, California, USA, (pp. 327-334).

To Be Submitted

Bull, P., Grigg, A., Guan, L., Phillips, I., A Survey of Software Architectures for Future

Dynamic, Dependable Systems, Elsevier Journal of Systems and Software (To Be

Submitted).

- A survey paper containing the findings of the literature review.

Bull, P., Grigg, A., Guan, L., Phillips, I., A Quality of Service Based Framework for

Future Dynamic, Dependable Systems, International Journal of System of Systems

Engineering (To Be Submitted).

- A paper describing the Quality of Service Framework, and findings from

simulation experimentation and test-bed based feasibility study.

Contents

1	 Introduction ... 1	

1.1	 Primary Research Aim and Objectives .. 3	

1.2	 Original Contributions .. 5	

1.3	 Thesis Structure .. 6	

2	 Literature Review .. 9	

2.1	 Introduction .. 9	

2.2	 Industrial Context and Motivation for Research .. 9	

2.2.1	 Network Enabled Capability ... 9	

2.2.2	 Integrated Modular Avionics .. 15	

2.2.3	 Generic Vehicle Architecture Standard .. 22	

2.2.4	 Artist2 ... 25	

2.2.5	 Summary & Discussion .. 27	

2.3	 Software Architecture Review ... 33	

2.3.1	 Service Oriented Architectures .. 33	

2.3.2	 Agent Based Architectures .. 50	

2.3.3	 Data Distribution Service ... 57	

2.3.4	 Summary & Discussion .. 65	

2.4	 Quality of Service .. 66	

2.4.1	 Specification of Application Requirements ... 67	

2.4.2	 Middleware Infrastructures & QoS Negotiation .. 69	

2.4.2.1	 QoS Negotiation Algorithms .. 69	

2.4.2.2	 Assigning Value to Services .. 72	

2.4.2.3	 Application-Based Performance Adaptation .. 74	

2.4.3	 Operating System and Kernels .. 75	

2.4.4	 Network Based QoS Assurance .. 75	

2.4.5	 Summary & Discussion .. 78	

2.5	 Overall Summary ... 79	

3	 Research Methodology & Technical Rationale .. 83	

3.1	 Introduction .. 83	

3.2	 Research Methodology ... 83	

3.2.1	 Research Philosophy ... 84	

3.2.2	 Research Strategy ... 85	

3.2.3	 Systems Engineering Methodology ... 86	

3.3	 Technical Rationale ... 87	

3.3.1	 Summary of Proposed Work .. 87	

3.3.2	 Research Constraints .. 88	

3.3.3	 Test Plan .. 90	

3.3.3.1	 Manual Worked Examples ... 90	

3.3.3.2	 Simulation Experimentation ... 93	

3.3.3.3	 Test-Bed Based Implementation ... 96	

3.4	 Summary ... 96	

4	 Proposed Quality of Service Framework ... 97	

4.1	 Introduction .. 97	

4.2	 QoS Characteristic Definition .. 98	

4.2.1	 QoS Characteristic Requirements ... 98	

4.2.2	 QoS Characteristic Selection & Proposed QoS Characteristic Set 99	

4.3	 Value Function .. 102	

4.3.1	 Offline Value Function .. 102	

4.3.1.1	 Worked Example ... 104	

4.3.2	 Online Value Function .. 106	

4.3.2.1	 Worked Example ... 107	

4.3.3	 Resource Allocation ... 109	

4.3.3.1	 Worked Example ... 111	

4.4	 QoS Negotiation Algorithm .. 113	

4.4.1	 Choice of QoS Negotiation Algorithm and Adaptations Necessary 113	

4.4.2	 Proposed QoS Negotiation Algorithm .. 114	

4.4.3	 Worked Examples .. 118	

4.5	 QoS Framework Summary .. 128	

4.5.1	 QoS Framework Assumptions ... 130	

4.5.2	 Application Requirements .. 131	

4.5.3	 System Design ... 131	

4.6	 Initial Critique of QoS Framework ... 133	

4.7	 External Factors .. 140	

4.8	 Summary ... 141	

5	 Simulation Based Experimentation .. 143	

5.1	 Introduction .. 143	

5.2	 Technical Description of Simulation Implementation ... 143	

5.2.1	 Simulation Assumptions ... 144	

5.2.2	 Simulation Design .. 146	

5.2.3	 Guide to Simulation Use .. 149	

5.3	 Initial Validation of Simulation Implementation .. 150	

5.3.1	 Scenario 1: One Publisher and One Subscriber .. 151	

5.3.2	 Scenario 2: Three Publishers and Six Subscribers .. 153	

5.3.3	 Scenario 3: Three Publishers and Six Subscribers at Minimum QoS Levels 155	

5.3.4	 Summary & Discussion .. 157	

5.4	 Initial Simulation Experimentation ... 157	

5.4.1	 Scenario 4: 3 Node Pre-Defined System ... 157	

5.4.2	 Scenario 5: 5 Node Pre-Defined System ... 160	

5.4.3	 Summary & Discussion .. 163	

5.5	 Complex System Simulation ... 163	

5.5.1	 Scenario 6: 5 Node Complex System Topology .. 164	

5.5.1.1	 Scenario Design .. 164	

5.5.1.2	 Results ... 165	

5.5.2	 Scenario 7: 10 Node Complex System Topology .. 170	

5.5.2.1	 Scenario Design .. 170	

5.5.2.2	 Results ... 172	

5.5.3	 Scenario 8: 15 Node Complex System Topology .. 175	

5.5.3.1	 Scenario Design .. 175	

5.5.3.2	 Results ... 176	

5.5.4	 Summary & Discussion .. 179	

5.6	 Variations in QoS Definition .. 180	

5.6.1	 Scenario 9: Varying the QoS Level Interval ... 181	

5.6.1.1	 Scenario Design .. 181	

5.6.1.2	 Results ... 182	

5.6.2	 Summary & Discussion .. 186	

5.7	 Overall Summary ... 187	

6	 Test-Bed Based Implementation Feasibility Study ... 189	

6.1	 Introduction .. 189	

6.2	 Existing IMS Test-Bed Emulator ... 189	

6.3	 Assessment of Implementation Opportunities ... 191	

6.3.1	 Implementation Opportunities .. 191	

6.3.2	 Implementation Challenges ... 193	

6.3.3	 Implementation Options ... 194	

6.3.4	 Summary & Discussion .. 196	

6.4	 Test-Bed Implementation Design .. 197	

6.4.1	 Application Design ... 197	

6.4.2	 System Design ... 202	

6.4.3	 QoS Framework Implementation Validation .. 203	

6.4.3.1	 Reproduction of Test-Bed Based Scenarios .. 203	

6.4.3.2	 Test-Bed Validation Results .. 204	

6.4.4	 QoS Negotiation Execution Time Evaluation ... 212	

6.4.5	 Summary & Discussion .. 213	

6.5	 Implementation Critique and Recommendations .. 213	

6.6	 Overall Summary ... 215	

7	 Wider Application and Implications of QoS Framework ... 217	

7.1	 Introduction .. 217	

7.2	 Potential Wider Application of QoS framework ... 217	

7.2.1	 Application to Other Software Architectures .. 217	

7.2.2	 Application to Other Systems ... 218	

7.2.3	 QoS Negotiation with Different Constraints ... 219	

7.3	 Potential Wider Implications of QoS Framework ... 220	

7.3.1	 Compatibility with Existing Methods of Supporting Dependability 220	

7.4	 Summary & Discussion ... 222	

8	 Conclusions & Future Work .. 224	

8.1	 Conclusions ... 224	

8.2	 Future Work ... 227	

References ... 232	

Appendix A - Systems Engineering Tools Results .. 240	

Appendix B - Full Simulation Experiment Results .. 247	

Glossary

AFDX - Avionics Full-Duplex Switched Ethernet

ATM - Asynchronous Transfer Mode

DCPS - Data Centric Publish Subscribe

DDS - Data Distribution Service

GVA - Generic Vehicle Architecture

IMA - Integrated Modular Avionics

IMS - Integrated Modular Systems

IPv6 - Internet Protocol version 6

MoD - Ministry of Defence

MPLS - Multi-Protocol Label Switching

NEC - Network Enabled Capability

NECTISE - Network Enabled Capability Through Innovative Systems Engineering

NCW - Network Centric Warfare

QFD - Quality Function Deployment

QoS - Quality of Service

RSVP - Resource Reservation Protocol

RTP - Real-Time Protocol

RTPS - Real Time Publish Subscribe

RTSP - Real Time Streaming Protocol

SOA - Service Oriented Architectures

SOAP - Simple Object Access Protocol

TBF - Time Based Filtering

TCP - Transport Control Protocol

UDP - User Datagram Protocol

WSDL - Web Services Description Language

List of Figures

Figure 1 - NEC (Ministry of Defence 2007) ... 10	

Figure 2 - Civil IMA Model (Conmy and McDermid 2001) .. 16	

Figure 3 - Typical Aircraft Configuration (Prisaznuk, 1992) .. 16	

Figure 4 - Military IMA Model (Ministry of Defence 2008) ... 17	

Figure 5 - GVA Interfaces and Boundaries (Ministry of Defence 2010) 23	

Figure 6 - SOA Model ... 36	

Figure 7 - SOA Application Lifecycle .. 37	

Figure 8 - Service Oriented Architectures QFD Diagram .. 49	

Figure 9 - Agent Based Architectures QFD Diagram .. 56	

Figure 10 - DDS Infrastructure (Schlesselman, Pardo-Castellote and Farabaugh 2004) 57	

Figure 11 - DDS Entities (Schlesselman, Pardo-Castellote and Farabaugh 2004) 58	

Figure 12 - Open DDS Architecture (Object Computing Inc. 2007) .. 61	

Figure 13 - ORB-to-ORB Communication (Object Management Group, Inc. 2007) 62	

Figure 14 - Data Distribution Service QFD Diagram ... 64	

Figure 15 - Levels of QoS Integration (Bouyssounouse and Sifakis 2005) 67	

Figure 16 - End-to-End QoS Assurance ... 67	

Figure 17 - Distributed QoS Optimisation Protocol (Abdelzaher, Atkins, & Shin, 2000) 72	

Figure 18 - Protocol Stack .. 81	

Figure 19 - QoS Framework Manual Worked Example Topology .. 91	

Figure 20 - QoS Framework Simulation Scenario 4 System Topology 93	

Figure 21 - QoS Framework Simulation Scenario 5 System Topology 94	

Figure 22 - Time Based Filtering ... 100	

Figure 23 - Quality of Service Negotiation Algorithm Pseudo Code ... 117	

Figure 24 - Quality of Service Framework .. 129	

Figure 25 - Logical Model of System .. 132	

Figure 26 - QoS Framework Negotiation Example Initial State .. 135	

Figure 27 - QoS Framework Negotiation Example Negotiated State 136	

Figure 28 - Priority Based Negotiation Example Initial State .. 137	

Figure 29 - Priority Based Negotiation Example Negotiated State ... 138	

Figure 30 - Simulation GUI ... 150	

Figure 31 - Scenarios 1-3 GUI .. 151	

Figure 32 - Scenario 4 System Topology .. 158	

Figure 33 - Scenario 4 Total Reward Levels ... 159	

Figure 34 - Scenario 4 Total Network Utilisation ... 160	

Figure 35 - Scenario 5 System Topology .. 161	

Figure 36 - Scenario 5 Total Reward .. 161	

Figure 37 - Scenario 5 Network Utilisation .. 162	

Figure 38 - Scenarios 6-8 GUI .. 163	

Figure 39 - Scenario 6 Network Links ... 164	

Figure 40 - Scenario 6 System Topology .. 165	

Figure 41 - Scenario 6 Total Reward .. 165	

Figure 42 - Scenario 6 Network Utilisation .. 166	

Figure 43 - Scenario 6 Execution Time ... 169	

Figure 44 - Scenario 7 Network Links ... 171	

Figure 45 - Scenario 7 System Topology .. 171	

Figure 46 - Scenario 7 Total Reward .. 172	

Figure 47 - Scenario 7 Network Utilisation .. 173	

Figure 48 - Scenario 7 Execution Time ... 174	

Figure 49 - Scenario 8 Network Links ... 175	

Figure 50 - Scenario 8 System Topology .. 176	

Figure 51 - Scenario 8 Total Reward .. 176	

Figure 52 - Scenario 8 Network Utilisation .. 177	

Figure 53 - Scenario 8 Execution Time ... 179	

Figure 54 - Scenario 9 Comparison of Reward Values - 200 Subscribers 183	

Figure 55 - Scenario 9 Comparison of Final Reward Values .. 183	

Figure 56 - Scenario 9 Network Utilisation .. 184	

Figure 57 - Scenario 9 Total Execution Time .. 186	

Figure 58 - Singular VC Endpoints (Oikonomou, et al. 2010) .. 190	

Figure 59 - Message Exchange Across CFMs (Oikonomou, et al. 2010) 191	

Figure 60 - Lower Level Integration of QoS Framework in IMS Architecture 196	

Figure 61 - Application Level QoS Framework Implementation in IMS Architecture 198	

Figure 62 - Test-Bed Implementation of QoS Framework .. 199	

Figure 63 - IMS Test-Bed QoS Framework Implementation Screenshot 204	

List of Tables

Table 1 - Summary of QFD Results .. 65	

Table 2 - Comparison of Research Methods (Iivari, Hirschheim and Klein 1998) 84	

Table 3 - Example Application 1: Video Stream ... 91	

Table 4 - Example Application 2: GPS Location Data .. 91	

Table 5 - Example Application 3: Audio Stream ... 91	

Table 6 - Scenario 4: System Characteristics ... 93	

Table 7 - Scenario 5: System Characteristics ... 93	

Table 8 - Scenario 6: System Characteristics ... 94	

Table 9 - Scenario 7: System Characteristics ... 94	

Table 10 - Scenario 8: System Characteristics ... 95	

Table 11 - Randomly Generated System Topology Variables .. 148	

Table 12 - Scenario and Simulation Test Correlation ... 151	

Table 13 - Scenario 4 Total Number of Serviced Subscribers .. 160	

Table 14 - Scenario 5 Total Number of Serviced Subscribers .. 162	

Table 15 - Scenario 6 System Parameters ... 164	

Table 16 - Scenario 6 Total Number of Serviced Subscribers .. 166	

Table 17 - Scenario 6 Total Number of Stopped Subscribers .. 169	

Table 18 - Scenario 7 System Parameters ... 171	

Table 19 - Scenario 7 Total Number of Serviced Subscribers .. 172	

Table 20 - Scenario 7 Total Number of Stopped Subscribers .. 174	

Table 21 - Scenario 8 System Parameters ... 175	

Table 22 - Scenario 8 Total Number of Serviced Subscribers .. 177	

Table 23 - Scenario 8 Total Number of Stopped Subscribers .. 178	

Table 24 - Node Resource Availability vs. Number of Subscribers per Node 180	

Table 25 - Scenario 9 System Parameters ... 181	

Table 26 - Scenario 9 TBF Interval Values ... 182	

Table 27 - Scenario 9 Comparison of Reward Values .. 183	

Table 28 - Scenario 9 Total Number of Serviced Subscribers with Varying QoS Intervals 184	

Table 29 - Scenario 9 Total Number of Serviced Subscribers .. 184	

Table 30 - Scenario 9 Total Number of Stopped Subscribers .. 185	

Table 31 - Scenario 9 Total Number of Stopped Subscribers with Varying QoS Intervals 185	

Table 32 - Current Ability of IMS Architecture to Support QoS Framework Features 192	

Nomenclature

𝑎 - Number of timely and accurate data samples received.

B - Maximum number of additional data samples required for retransmission.

C - Online reward value.

D - Total resources required.

𝑓 - Number of timely but inaccurate data samples received.

H - Number of heartbeat messages sent per second.

k - Weighting used to increase reward value to integer range.

L - Latency.

R - Reliability.

S - Sample size.

TBF - Time Based Filtering value.

TBFInterval - Time Based Filtering interval value.

TBFmax - Maximum Time Based Filtering value.

TBFmin - Minimum Time Based Filtering value.

U - Sample rate.

Umax - Maximum sample rate.

Umin - Minimum sample rate.

V - Reward value.

Vmax - Maximum reward value possible.

Vmin - Minimum reward value possible.

w - Weighting applied to the probability 𝒫! for the value of retransmitted samples.

𝑧 - Number of data samples that were not timely.

1. Introduction

1

1 Introduction
The development of dependable system architectures has progressed from the days of

monolithic entities to more recent modular based designs and, as Rasmussen & Niles

(2005) observe, increasing demand and expectations continue to drive the need for

improvement. Dependability in this context refers to the ability of the system to provide

the levels of performance required by applications, including factors such as system

utility, stability and resource usage. Current static, dependable, systems are

predominantly based on parameters and system states decided during design time (as

inferred by Burns and Wellings, (2001)), thus allowing a predictable estimate of

performance prior to run-time. Trends evidenced by such future system requirement

summaries as the UK MoD’s Defence Industrial Strategy (2005), however, place an

emphasis on the flexibility and adaptability of systems, while maintaining the need for

dependability.

The ability to dynamically reconfigure systems based on new situations, as they

happen, allows for faster and more stable system responses to a changing

environment. These dynamic system principles are seen to be key to current UK

government and industry initiatives in the military domain, a prime example being the

UK MoD Joint Services Publication, Network Enabled Capability (NEC), JSP 777

(2005). Through the integration of assets (vehicles, sensors, databases, etc.) in an

enhanced network structure the MoD hopes to improve the agility of current systems

and enhance the support of command decisions. Dependable, distributed systems are,

however, not limited just to those that have a large physical structure and distribution.

The IMA (Integrated Modular Avionics) software architecture, described by the MoD

(2008), is used in both military and civil avionics systems. While IMA is currently static

in its nature, Grigg & McDermid (2011) detail how recent research efforts have focused

on adopting dynamic system features, including the support for more adaptive

applications.

Systems within the military domain typically include safety or mission critical

applications. Both of these types of application require guarantees that their specified

performance levels will be met, with data arriving outside of their allocated time often

being rendered useless. Considering the previous example of NEC, such applications

could be physically distributed throughout the system, and therefore, a demand is

1. Introduction

2

placed on the network connecting systems to be able to support dependable

behaviour, with data arriving at an application accurately and on time. The network

element of such systems shall thus be the focus of this work.

In static systems worst-case resource demands can be calculated during design time

and adequate resources provisioned (or over-provisioned) to mitigate potential

problems and delay associated with periods of high demand. The composition of a

dynamic system, however, cannot be determined until run-time and could continue to

change while the system is running, meaning that the system must be capable of

adapting to this while maintaining the necessary levels of performance. In addition, the

potentially mobile nature of distributed dynamic systems means that they could be

relying on a wireless network connection, which is vulnerable to issues with

interference depending on environmental conditions, obstacles, etc. These factors

mean that in dynamic systems particularly it cannot be assumed that there will always

be adequate resources to cope with the demand.

Current software architectures that are capable of providing the dynamic behaviour

sought by future systems include Service Oriented Architectures (SOA), detailed by

Sim et al. (2005) and the Object Management Group Data Distribution Service (DDS)

standard (2007). In SOA, service providers offer access to functionality through an

open and well-defined interface that consumers are capable of dynamically

discovering. Beyond some speculative research such as that by Tsai et al. (2006) and

Hiltunen & Schlichting (2010), support is largely missing, however, for any kind of

performance guarantees. DDS is similar to SOA in the way that applications are

separated into producers (publishers) and consumers (subscribers), however, DDS

focuses on the distribution of data, rather than functionality. DDS also has some

support for specifying Quality of Service (QoS) characteristics, describing subscriber

performance requirements and maximum publisher performance, through which

compatible matches can be found. It is still assumed, however, that adequate

resources have been provisioned.

A need emerges for a QoS framework capable of specifying the QoS characteristics of

applications and their use in a subsequent negotiation of resources at run-time, thus

offering some support to meeting application performance requirements within a

dynamic system. DDS offers a set of QoS characteristics with which to specify

1. Introduction

3

performance requirements, however, these do not allow for the flexibility needed for

negotiation. Additionally, beyond the compatibility testing used by DDS, there is

currently little support for using QoS characteristics to adapt the behaviour of resource

allocation protocols. Abdelzaher (2000) proposed a distributed QoS optimization

protocol for selecting an appropriate service (from a known list of alternatives) based

on specified QoS parameters and resource availability. This approach allows for the

graceful degradation of services and assigns two values to a service, a reward for its

acceptance and a penalty for its rejection. Services are selected based on their ability

to maximise the overall local system reward, where a penalty is specified for the

rejection of a service. While capable of the dynamic runtime reallocation of resources

this approach is still largely based on the developer defined offline prioritisation of

services. Considering the potential size and complexity of such systems as NEC

maintaining a database of all applications and their prioritisation in relation to each

other, while possible, is not practical without further support from the system. A

method of objectively assigning a reward from QoS characteristics available is also

therefore necessary.

This project explores the benefits that using QoS methods for mapping application level

network performance requirements to available resources can have for future large-

scale systems. Through this, a QoS framework is proposed that identifies existing QoS

methods for application specification and performance level negotiation that could be

applied to such systems. The framework will address these issues from a system

viewpoint, dealing with them as they relate to the systems overall ability to provide

dependability. It will not be concerned with the low level specification of hardware,

software or network protocols, which can be largely platform dependant, though, where

appropriate, some recommendations or discussion may be given.

1.1 Primary Research Aim and Objectives

Given the identified need for better Quality of Service support shown by Grigg and

McDermid (2011) and the system requirements derived here, the primary aim for this

project can be given as:

To develop a Quality of Service framework that facilitates dynamic system

changes while maintaining dependable performance.

1. Introduction – Primary Research Aim and Objectives

4

This aim will be satisfied through completion of the following objectives:

 [Obj-1] Identify gaps in research relating to dynamic and dependable system

architectures.

 A detailed literature review is necessary to establish the state-of-art in the area

of supporting adaptability and dependability in dynamic, distributed systems. This

literature review will focus on three main areas; those related systems already existing

or planned, the software architectures available and what methods exist to support

dependability. Through this literature review existing methods will be critiqued and gaps

in knowledge identified. These gaps in knowledge will form the criteria against which a

solution will be developed and evaluated.

[Obj-2] Construct a Quality of Service framework to improve support for

dependable behaviour in the communication networks of future large-

scale systems.

 Following from the literature review a Quality of Service framework should be

proposed that addresses the gap in research found for providing a dependable and

dynamic software architecture.

[Obj-3] Determine the effect on system dependability of introducing the proposed

Quality of Service framework to future large-scale systems.

 To verify that the proposed framework addresses the problems for which it was

developed it should be examined through simulation experiments and a test-bed based

feasibility study conducted. These shall be constructed based on appropriate dynamic

system scenarios found previously in [Obj-1].

[Obj-4] Analyse results and critique solution.

 The results gathered through simulation and test-bed based feasibility study

need to be assessed as to how well the framework meets the primary aim. From this

analysis further detail should be found regarding the potential strengths and

1. Introduction – Primary Research Aim and Objectives

5

weaknesses of the proposed framework, providing guidance as to its applicability to

varying system designs.

1.2 Original Contributions

In addressing the problems set forth in this thesis a series of original contributions are

developed. These contributions relate directly to fulfilling the primary aim of the project;

"to develop a Quality of Service framework that facilitates dynamic system changes

while maintaining dependable performance".

[OC-1] Construction of Quality of Service framework.

Following from a literature review and evaluation of existing Quality of Service

(QoS) methods a QoS framework has been created based on the requirements

identified. This framework consists primarily of a method of defining QoS

requirements and a negotiation algorithm for using these to allocate resources in

a way that seeks to increase system reliability and utilisation.

The framework introduces a flexible method of defining Quality of Service

characteristics (adapted from an existing set) that provides a way of specifying

performance requirements as a range of satisfactory values.

Existing Quality of Service negotiation algorithms are examined for their

applicability to the systems in question. A QoS framework negotiation algorithm

based on a distributed QoS optimisation protocol is then proposed. This

algorithm adapts the distributed QoS optimisation protocol from its original

purpose of selecting system configurations within a single platform to flexibly

negotiating requests for data in a large-scale dynamic system. A means of

calculating the reward (or utility to the system) from an application is developed

from existing value based scheduling methods to facilitate the negotiation

process. It is suggested, however, that this calculation will vary largely from

system to system depending on the system requirements and so the calculation

used here is included for guidance only.

1. Introduction – Original Contributions

6

[OC-2] Evaluation of Quality of Service negotiation methods for dynamic,

systems.

Existing methods of QoS negotiation were evaluated for their suitability to future

large-scale systems. This involved a series of simulation based experiments,

focusing on the effect that introducing such methods as a means of aiding

dependability has on such other system properties as overall utility or

scalability. From this evaluation guidance is developed for when a negotiation

process should be deployed given a set of known system properties.

[OC-3] Test-bed based feasibility study for the implementation of dynamic

behaviour (specifically that found within the QoS framework) within an

existing static software architecture.

 Different approaches to implementing the QoS framework within the Integrated

Modular Systems (IMS) software architecture, found through existing literature

and investigation were evaluated for their feasibility. A high-level, application

based approach was selected for implementation within an existing test-bed

based IMS emulator. Through this implementation further recommendations

were generated for issues requiring further work and investigation.

The origin and derivation of these original contributions is given throughout this thesis.

1.3 Thesis Structure

The thesis is composed of the following sections:

Chapter 2 - Literature Review: A literature review is presented that takes a top-down

approach to looking at research relevant to the project. Firstly the future industrial

systems in the military domain that this project is concerned with are examined and

from this potential software architectures are identified. These software architectures

are then critiqued for their suitability to meet the requirements of future systems.

Finally supporting methods of improving the dependability of those software

architectures are investigated.

1. Introduction – Thesis Structure

7

Chapter 3 - Research Methodology & Technical Rationale: Given the gaps in

research identified within the literature review this section outlines how this research

project will tackle these issues. The approach taken, constraints that affect the work,

research philosophy, overarching systems engineering methodology and a test plan

are presented.

Chapter 4 - Proposed Quality of Service Framework: The proposed QoS framework

is detailed, focusing on two main areas; the definition of Quality of Service

characteristics, and an adapted QoS negotiation technique with which resources are

allocated. Within these sections the design decisions taken and their potential impact

on system performance are discussed.

Chapter 5 - Simulation Based Experimentation: To ensure the validity of the

proposed framework it is first evaluated through the development of a set of simulation

experiments. Implementation details are given, followed by the results and their

analysis.

Chapter 6 - Test-Bed Based Implementation Feasibility Study: Following from the

simulation an investigation is conducted into the feasibility of implementing the

proposed QoS framework within an existing system. Different implementation options

are discussed and a basic implementation of the framework is created on an existing

real-time systems test-bed. A discussion on the limitations and recommendations

found from conducting this implementation is given.

Chapter 7 - Wider Application and Implications of QoS Framework: This chapter

discusses the potential of the QoS framework beyond what has already been

investigated. This includes the applications of the framework to systems and software

architectures beyond those currently explored, and the compatibility of the framework

with existing methods of supporting dependability in systems and networks.

Chapter 8 - Conclusions & Future Work: The thesis concludes with a summary of

the outcomes of this work and a discussion of possible directions for future work.

Future work focuses specifically on the industrial exploitation of this research.

1. Introduction – Thesis Structure

8

Appendix A: The result of using a set of systems engineering tools for analysing the

requirements of future large systems is presented here. These include a systemic

textual analysis and viewpoint analysis.

Appendix B: The full results from the simulation experimentation in chapter 5 are

given.

Note that the code related to the simulation and test-bed elements of the project can be

found on the accompanying CD.

2. Literature Review

9

2 Literature Review

2.1 Introduction

This literature review is intended to investigate and analyse existing research as it

relates to this project. As such it is separated into three main sections:

2.2 Industrial Context and Motivation for Research: Those industrially based

systems from which the initial requirements and motivations for this

research were derived.

2.3 Software Architecture Review: Following the investigation into industrial

systems a review is conducted of the software architectures proposed

within literature as a means of providing the dynamic behaviour that is

required. Particular focus is given to their ability to support dependable

behaviour.

2.4 Quality of Service: Finally the use of Quality of Service techniques are

investigated as a means of supporting the chosen software architecture in

providing the dependable behaviour required.

From this analysis gaps in knowledge are identified as areas needing further research.

2.2 Industrial Context and Motivation for Research

The systems discussed within the following sub-section are primarily taken from the

military domain, as this is where the main drivers for this project exist. The Artist2

project (section 2.2.4) is included as a brief reference to academic research into

adaptive real-time systems.

2.2.1 Network Enabled Capability

Network Enabled Capability (NEC) is a UK Ministry of Defence (MoD) project aimed at

the integration and collaboration of assets through the exploitation of modern

networking technologies and Information Age concepts; i.e. the ability to treat all types

of media as digital data, the opportunities for comparative and collaborative work

between this data and the following dispersal of the result, as described by Taylor

2. Literature Review - Network Enabled Capability

10

(1998). In simple terms this refers to the networking of vehicles, databases and

sensors, etc. which can then be exploited to achieve new or enhanced functionality,

only possible as the product of such collaboration. A typical illustration used to

promote the NEC project is given in Figure 1, showing the variety of entities and

interactions expected within such a system.

Figure 1 - NEC (Ministry of Defence 2007)

The NEC handbook, JSP 777, published by the MoD (2005) provides a brief overview

and introduction to the project and as such is often the basis for the background

assumptions found in related papers (for example Russell et al. (2007) or Whitworth

(2005)). It is recognised within this document that, as research is carried out into NEC,

the understanding of what exactly these types of systems will require in terms of

hardware or software architecture as well as its possible applications is likely to evolve.

The lower level definition of systems within NEC has thus been left purposely non-

restrictive so as to support this.

The objectives for NEC follow from the Defence Industrial Strategy (2005) (a document

again issued by the MoD to describe the future defence requirements for the UK), in

specific relation to the provision of agile systems (section A2.4, page 19), where agility

is said to consist of four main properties; responsiveness, robustness, flexibility and

adaptability. The adoption of agile systems shows the desire that the effectiveness of

systems should not (and possibly cannot) be the result of solely increasing the size of a

force and should instead follow from the better use of existing assets. This strategy

represents a method of ensuring an infrastructure that supports stability (in terms of

2. Literature Review - Network Enabled Capability

11

expansion and asset utilisation) for both current and future systems. The main

objectives of NEC as summarised in the NEC handbook are as follows:

• Provision of timely information to support decision making.

• Integration to enable agility.

• Enhanced force protection and reduced fratricide.

• Increased interoperability.

• Optimising the use of resources.

• Improving the sharing of information.

• Accelerating the establishment of common standards.

• Facilitating effective inter-agency operation.

• Enabling the development of more effective command and management

structures.

With exception to the objective of “enhanced force protection and reduced fratricide”,

which is clearly specific to the military domain, the goals described in the NEC

handbook potentially have wider application amongst non-military systems. It is easily

foreseeable that large-scale businesses will soon want to embrace these principles

(assuming that they haven’t already) to produce cost effective, agile systems and

therefore aspects of NEC can be seen to be applicable throughout industry. The

fulfilment of strict performance criteria is not just important for those industrial

environments involving manufacturing equipment (or other such safety critical

equipment), but where a penalty is associated with a business missing customer

performance requirements. While any final architecture for NEC is far from visible it

would be reasonable to assume that the varying levels of Quality of Service required by

applications within an NEC environment would allow for some flexibility in its

application to other industries.

The flow of information between the MoD and industry is by no means one way. The

NEC Handbook (page 3) makes explicit the desire to accelerate common standards

and facilitate the sharing of data with industry partners to improve acquisition

processes. Open standards developed in industry are seen as a cost-effective way of

exploiting well established, existing technologies. The use of IPv6 as a communication

2. Literature Review - Network Enabled Capability

12

protocol for NEC systems has been proposed by Goode et al. (2006) to enable the

necessary network interoperability. This paper claims that IPv6 has the necessary

support for the NEC features of QoS, mobility, and scalability. IPv6 is a logical choice

given the current migration from IPv4 and pervasiveness of the standard. The most

significant feature with relation to NEC is the vast address space available (around

3.4*1038 addresses). With such a large address space it would easily be possible to

address each individual piece of equipment without the need for any form of address

translation. The use of IPv6 is a high-level design decision in terms of the network

structure that is to support NEC. While this is a reasonable level to focus on initially it

opens up an area of research into compatible protocols for NEC, (e.g. those at the

application or transport layers) which is as yet largely unexplored within literature.

According to the NEC handbook there are three main factors to NEC; information,

people and networks. It is through the integration of these elements that NEC shall

achieve its goals. In terms of the actual implementation this shows two key elements,

human factors issues and technological developments. Human factors issues relate to

the actual use and dissemination of information. While these issues are of high

importance to NEC (and are discussed in detail by Houghton et al. (2007), Whitworth

(2005), Stanton et al. (2005) and Walker et al. (2005)), it is the technical

implementation that is of most relevance to this project.

The goals of NEC are not uniquely sought after by the UK and other similar projects

exist throughout the globe. The American Network Centric Warfare (NCW) project,

detailed by Alberts et al. (2000), can be seen to share many similarities with NEC (such

as the overall desire to provide enhanced support for command), however, where NEC

focuses more on the provision of information (and the structure to support this) NCW is

based more towards the development of networking technologies. Another key

difference in the two projects is that NEC is aimed at networking legacy systems,

whereas NCW promotes the development of new systems, an approach that while a

fine ideal is by no means cost effective, considering the large amount of effort already

invested into ensuring that current systems function in a correct manner.

As part of the investigation into NEC a jointly funded venture was created between

BAE Systems and the Engineering and Physical Sciences Research Council (EPSRC),

titled NECTISE (Network Enabled Capability Through Innovative Systems

2. Literature Review - Network Enabled Capability

13

Engineering). The project was conducted at various academic institutions throughout

the UK and contained four main topic groups:

• Through-Life Systems Management

• Systems Architecture

• Decision Support

• Control and Monitoring

Work carried out by the Systems Architecture group is most relevant to this project and

work publicised from their website (NECTISE Architectures Group 2007) places focus

on Service Oriented Architectures (SOA) as a potential solution to the architecture

needs of NEC. This software architecture is discussed in detail in section 2.3.1, as are

the findings and proposals from this initial research.

Agent Based Architectures have also been suggested as a viable way of achieving the

objectives of NEC in such works as Allsopp et al. (2003). The majority of work in this

area pre-dates the NEC handbook, however, and in recent years appears to have been

discontinued or placed on hold in favour of research into SOA. Agent Based

Architectures and the work carried out in this area with regards to NEC are discussed

in further detail in section 2.3.2.

Concerns have been raised over the viability of currently proposed NEC solutions.

Davies (2006), in particular, has highlighted the fact that the current focus on NEC

system architecture projects have so far neglected the integration of legacy systems,

while in reality the majority of work is likely to be devoted to this task. Davies also

highlights the difficulty in “achievement of service” (such as the assurance of

dependability, timeliness, etc.) across multiple systems with varying (and potentially

unknown) performance parameters, an issue that shall be discussed further in sections

2.3 and 2.4.

Concern has also been raised by Tyrrell (2007) over the possibility of information

overload. For example, if sensor data is available from two or more sources then there

is a clear need to be able to select the most appropriate for a given situation. This

could simply be based on the ability of the chosen source to cope with performance

2. Literature Review - Network Enabled Capability

14

demands or it could be based on some other metric describing the quality of the data

provided.

Conclusion

This section has given a brief overview of the NEC project and the progress of current

research. As the project is still in its definition phase there has been little publicised

information with regards to implementation and as such most detail presented has

been in terms of discussion about general issues that such a system is likely to

encounter. In addition to those issues previously mentioned with regards to NEC,

several key challenges can be seen that are likely to have specific relation to the

software architecture:

Nodes within an NEC environment may represent mobile entities such as vehicles (be

them land, sea or air based) and therefore it is reasonable to expect that such nodes

may enter or leave at unpredictable times. This requires ad-hoc connections to be

established at run-time in order for the system to remain connected to all possible

nodes. This raises issues with regards to how the system should be developed in

order to maintain scalability at run-time, track nodes moving connection points to the

network and perhaps most importantly how dependability is assured within such a

system.

The use of Service Oriented Architectures as an architectural solution to NEC has been

heavily promoted, however, little has been said with regards to how dependable

communication will be facilitated across NEC (with the possible exception to Davies

(2006), Tyrrell (2007) and Russell et al. (2008) raising the issue). Key questions exist

such as whether safety critical tasks will be possible across large, diverse networks,

potentially using a variety of network connections or whether it would only be possible

within individual nodes (i.e. within a single vehicle) or smaller local networks.

2. Literature Review – Integrated Modular Avionics

15

2.2.2 Integrated Modular Avionics

The Integrated Modular Avionics (IMA) architecture, as discussed by Prisaznuk (1992)

and the UK MOD (2008), is a safety critical, reconfigurable, modular approach to

avionics systems. The architecture encapsulates the benefits of modularity, including

enhanced interoperability, and ease of upgrade and replacement among components

(which in turn reduces maintenance and development costs), while maintaining the

necessary safety critical properties required by any aircraft system. IMA is used in both

the civil and military domains and slight variations on the architectures exist based on

the different applications.

The civil IMA software architecture, as described in the standards document ARINC

651 - Design Guidance for Integrated Modular Avionics (1997), and later in ARINC 653

- Avionics Application Software Standard Interface (1997), is comprised of Application,

Operating System and Hardware layers, forming a three layer model (see Figure 2).

The separation of the architecture into these layers allows for abstraction and

transparency between components, be it hardware or software based. Communication

between software or hardware elements is facilitated by virtual links, location

transparent channels defined during design time. The abstraction found within this

architecture aids the assurance of safety critical operation through the spatial and

temporal partitioning of elements. This partitioning also allows for processes to be run

in different hardware units, thus utilising potentially unused resources and reducing

unnecessary resource duplication.

2. Literature Review – Integrated Modular Avionics

16

Figure 2 - Civil IMA Model (Conmy and McDermid 2001)

In an IMA system, a modular system architecture approach is taken not only by the

software, but the hardware elements as well. Hardware is contained throughout the

aircraft in distributed cabinets (see Figure 3). Functional modules are packaged as

Line Replaceable Units (LRU) thus allowing for simple upgrade or replacement.

Figure 3 - Typical Aircraft Configuration (Prisaznuk, 1992)

In the civil IMA domain there are currently no open standards that encompass a

platform wide view of IMA and Littlefield et al. (2007) discuss the benefits that an open

Application
partition 1

Application
partition 2

Application
partition N

API

Operating System

CO-EX

Hardware

Data
Flow

API – Application
Programming Interface

CO-EX – Core-
Executive (Hardware to
Operating System
Interface)

2. Literature Review – Integrated Modular Avionics

17

standard could bring to IMA, including; true application portability, enhanced reuse,

reliable computing using dissimilar hardware and the increased use of COTS

(Commercial off the Shelf) components.

The military IMA architecture concept described in the MoD Interim Defence Standard

00-74 Part 1 Issue 2 (2008) differs to that of the civil in terms of interface details, with a

key difference being the addition of blueprints to the architecture model (see Figure 4).

Blueprint documents are used to configure the system state (for example which

applications are running, the allocation of communication channels) and switch it

between operational modes (for example standard flight and enemy engagement).

These documents are currently created during design time due to the extensive

verification and validation required to ensure their correctness. This means that in

practice only a small number of blueprints exist for each aircraft and as such the

system is only capable of switching between these few predefined modes.

Figure 4 - Military IMA Model (Ministry of Defence 2008)

Considering the design time generation of blueprints currently employed, the benefits

from this modularity and interchangeability of hardware units can be seen to be

restricted without further developments. Additionally, as discussed in section 2.2.1, the

ability to adapt to the current situation or changing capabilities (eg. a failing hardware

module) is key to the ability to function in a dynamic environment. Joliffe (2005)

suggests that there are three levels of system reconfiguration possible, varying

depending on the generation of blueprints:

Operating
System

GSM

MSL

AM
Funct
Apps

APOS

MOS

S
M
B
P

S
M
O
S

RT-
Blueprint

SMLI
AM – Application Management
APOS – Application to OS Interface
GSM – Generic System Management
MOS – Module to Operating System
Interface
MSL – Module Support Layer
SMBP – System Management to Blueprints
Interface
SMLI – System Management Logical
Interface
SMOS – System Management to OS
Interface

2. Literature Review – Integrated Modular Avionics

18

Manual Reconfiguration

 This is the type of reconfiguration currently used by IMA systems and involves

the offline production and testing of blueprints. This allows for full verification

and validation of the blueprints in a non-time critical manner.

Static (Ground Based) Automated Reconfiguration

 This type of automated reconfiguration allows for a semi-dynamic approach (i.e.

conducted at run-time but in a non-time-critical manner) to be introduced,

allowing for such features as the ground based compensation for failed

components and adaptations based on changes in component availability (e.g.

introduction of a new type of sensor).

Dynamic Reconfiguration

 Full dynamic reconfiguration involves the run-time generation (or modification)

and execution of blueprints to allow for unexpected system errors such as

component failure to be accounted for and adapted to while in flight. This is an

ideal and at current the computing performance and testing procedures do not

exist to facilitate the verification of performance characteristics at the same level

as currently found.

Work conducted by Grigg and McDermid (2011) has also investigated how IMA could

be made more adaptive. It is put forward that the use of the Object Management

Group (OMG) Data Distribution Service (DDS) (2007), a publish/subscribe based open

software architecture standard (detailed further within section 2.3.3), could help to

facilitate the adaptive behaviour of applications. A staged approach for the introduction

of DDS concepts into IMA is recommended, starting first with embodying the core

concepts of DDS and dynamic systems within the IMA architecture model itself.

Secondly providing bespoke DDS specific run-time support in the IMA application layer,

allowing DDS based applications to be supported seamlessly within IMA. Thirdly

providing more general DDS interoperability support in the MSL layer, allowing IMA

based nodes to connect with other DDS based nodes within a network.

2. Literature Review – Integrated Modular Avionics

19

Introducing DDS within IMA, at which ever level proposed, could in theory provide the

best of both worlds (i.e. the dynamic behavior of DDS and the safety critical

performance of IMA). The static nature of IMA, however, plays a key role in enabling it

to provide safety critical levels of performance and care would need to be taken to

ensure that this was preserved after introducing DDS. Ultimately it may well lead to a

compromise to both how adaptive and dependable the system is, which may not

necessarily be a problem depending on the requirements of the end system for which it

is intended. This introduction of dynamic behavior in IMA through adaptations to the

software architecture is discussed further in section 6.3. In addition to the support for

dynamic behavior provided by the software architecture it is important to consider the

underlying communication network used for such systems and the role that it plays in

supporting dependability and adaptability.

The data communication network used for IMA has undergone several changes over

the years representing the exploitation of new technologies. From the standard

proprietary data bus (such as the ARINC 629 data bus shown in Figure 3) used in the

early days of IMA there has been a move towards exploiting more standard networking

technologies. As the Avionic Systems Standardisation Committee (1999) describes,

IMA networks make use of ATM (Asynchronous Transfer Mode). ATM was chosen for

IMA as a reflection of trends in commercial data networks and the expectation of

support for the standard for decades to come.

An ATM network, as described by Kurose & Ross (2007), is based around the standard

packet switched network design, with the key unique property being the use of fixed

length packets (53 bytes in total, 48 bytes for payload and 5 bytes for header), allowing

for low latency hardware based packet switching. ATM makes use of virtual channels

(VC), application transparent communication paths analogous to those found already in

the IMA architecture. These are maintained in a VC translation table and referenced

using a virtual channel identifier (VCI) contained within the ATM header. The use of

such a table allows for simple reconfiguration when switching operational modes. As a

rule bandwidth is allocated proportionally among virtual connections. This is an easily

implemented approach to bandwidth allocation; however, it can be wasteful for

connections that transmit data infrequently.

2. Literature Review – Integrated Modular Avionics

20

Alena et al. (2007) detail the use of AFDX (Avionics Full-Duplex Switched Ethernet) as

a further replacement for ATM as the network protocol within the IMA architecture.

AFDX was created alongside the recently developed Airbus A380 as a method of

introducing deterministic real-time constraints to Ethernet networks. The adoption of

an Ethernet based protocol matches that of trends in industry and therefore expertise

among personnel. To facilitate the necessary real-time properties additional

parameters were added to the Ethernet protocol including perhaps most importantly

sequence number and redundancy management fields.

While AFDX specification allows for the use of either TCP/IP or UDP protocols for data

transmission, in practice only UDP is used. This is due to the fact that UDP not only

has a smaller header than TCP but also does not require an acknowledgment of

receipt to be sent, therefore reducing the network load. The Sequence Number (SN)

parameter is used to detect lost packets, allowing applications to respond accordingly.

Cyclic Redundancy Check (CRC) is used to ensure packet integrity and is performed at

the physical layer.

The Redundancy Management (RM) parameter is used to specify that a virtual channel

should transmit along dual lines of communication, being sent and received by

independent AFDX ports. This decreases the chances that collisions will occur and

allows for full duplex communication.

An AFDX switch supports static reconfiguration at run-time (e.g. with the use of

blueprints or equivalent static configuration document), however, as Alena et al.

discuss, unlike Ethernet, it does not support dynamic physical reconfiguration during

operation. This is due to the time that it takes to establish a connection with a new

component, modelling the timing properties and adapting system behaviour

accordingly.

Conclusion

This section has moved beyond the high level dynamic system design concepts

discussed in section 2.2.1 to introduce the Integrated Modular Architecture, an

approach to modular system design used in an avionics context. This safety critical

architecture is currently in use and so gives an important view as to the types of

2. Literature Review – Integrated Modular Avionics

21

systems that will potentially be required to be integrated within future dynamic systems.

As a note the concepts described within IMA have been seen to be applicable to

multiple platforms, including land and sea, leading to the wider term of Integrated

Modular Systems (IMS) for such systems.

The concept of openness with regards to system architecture has again been

highlighted as a key feature for future systems to adopt. The discussion of this

software architecture has highlighted the difficulty that safety critical systems face when

attempting to introduce dynamic elements. It is foreseeable that as hardware

performance increases that some of the existing problems related to the verification

system configurations (or blueprint documents) may be overcome, however, without

changes to the architecture, such as the introduction of DDS, the system may struggle

to be integrated within a dynamic environment.

2. Literature Review – Generic Vehicle Architecture Standard

22

2.2.3 Generic Vehicle Architecture Standard

The Generic Vehicle Architecture standard, Def-Stan 23-09, proposed by the Ministry

of Defence (2010) details the software architecture needs for future military land

vehicles. This standard specifies an open, modular and scalable architectural

approach to the design of future platforms. It is hoped that through this the MOD will

see operational, technical and cost benefits.

This architecture standard proposes the use of the OMG Data Distribution Service

(2007) as a means of facilitating the flexible communication of data throughout the

system. As mentioned in section 2.2.2 the Data Distribution Service (DDS) is an open

standard for distributing data in a publish/subscribe manner and is already a mandated

standard in the US Department of Defense (as noted by Schlesselman (2004)). BAE

Systems has also previously selected NDDS (Network Data Distribution Service), an

implementation of DDS developed by Real-Time Innovations, Inc. (RTI), for use with

the F-35 Joint Strike Fighter program (as detailed on the RTI website (2003)). DDS

separates data into topics and applications subscribe to a topic to receive published

data. This allows for publishers to be updated or added at a later date while allowing

applications to find these and take advantage of them with little additional effort. DDS

also makes use of Quality of Service characteristics to help provide a predictable level

of service. Further detail on DDS is provided in section 2.3.3.

Modern military vehicles depend heavily on software to aid in operation and this

software in turn depends on accurate and timely data from a variety of sources (e.g.

sensor readings, or some other form representing the current state of the vehicle). The

safety critical nature of the system means that internal data should be transmitted on a

predictable timing schedule (be it soft or hard real-time deadlines).

An illustration of the interfaces and boundaries of the system architecture is given in

Figure 5. This figure shows how a data distribution backbone will facilitate the sharing

of data among sub-systems. Legacy equipment is shown to be integrated through the

use of a data connector and data gateway, converting data to and from representations

that can be handled by the legacy system.

2. Literature Review – Generic Vehicle Architecture Standard

23

Figure 5 - GVA Interfaces and Boundaries (Ministry of Defence 2010)

One of the guiding principles of the GVA standard is that it will take account of previous

investment by industry. To this end the UK MOD has sponsored the Vehicle Systems

Integration (VSI) Applied Research Program (QINETIQ/EMEA/TS/CR0702540 2009).

This program sets out to assess the standards and technologies that have originated in

the commercial domain, reporting how they may be adapted for the military domain.

VSI aims to recommend architectures that have longer in-service lifetimes, minimal

cost upgrades, flexibility, rapid modification and operational benefits. Common themes

can be seen here when considering other future systems such as NEC. The need for

flexibility is said here to be driven by potential changes in operational requirements and

new and varied threats. Facility for rapid modification is required, specifically the need

for the system to be scalable (in function, performance, and cost), extensible (can add

more modules) and enhanceable (update current modules). Support for NEC is in-fact

explicitly mentioned by the VSI report as a requirement. It is said that this will be

primarily supported by an architecture that has good external integration and through

the introduction of middleware. Through this middleware data is to be made available

within platform and at internal system boundary, linking with the broader environment.

The VSI report also mentions the need to improve platform availability. This is said to

be possible by increasing platform reliability and supporting graceful degradation.

2. Literature Review – Generic Vehicle Architecture Standard

24

Graceful degradation refers to the ability of the system to scale back system

functionality in a controlled manner when a reduction in resources occurs. Through this

technique systems are able to continue to function where previously they may have

failed.

Conclusion

The Generic Vehicle Architecture standard discussed within this section has given an

insight into the way that future systems are planned to be integrated within dynamic

systems. The high level dynamic system requirements (e.g. flexibility in platform

configuration or system scale, etc.) seen in the Network Enabled Capability example

have been reiterated here, showing how they are flowing down into platform design

and influencing future projects. The point has been raised as to how future platforms

will be required to fit within the design of a much larger system and how a software

architecture will be required to support this with regards to issues of external and

internal interfaces for sharing data.

The concept of gracefully degrading the functionality of a system to maintain system

operation given reduced resource capabilities introduced here will be of particular

importance for systems operating within dynamic and uncertain systems. It implies a

degree of flexibility in the composition of running systems (as specified in the system

aims) and this in turn places requirements on the software or hardware of the system.

Components running within these systems will either need to be capable of providing

different levels of service themselves, or alternatives, capable of running given the

reduced system capabilities would need to be provided.

2. Literature Review – Artist2

25

2.2.4 Artist2

The Artist2 project, as described on the Artist2 Consortium website (2011) and by

Bouyssounouse & Sifakis (2005), is an academic endeavour aimed at strengthening

European research into embedded systems design. Work within this project is split into

several research topics:

• Real-Time Components

• Adaptive Real-Time

• Compilers and Timing Analysis

• Execution Platforms

• Control for Embedded Systems

• Testing and Verification

Of most relevance to this project is the “Adaptive Real-Time” topic area. In this topic

there are further sub-divisions of research including:

• A Common Infrastructure for Adaptive Real-Time Systems

This topic focuses on the adaptation of existing operating systems and network

protocols to support the adaptive properties necessary for systems to function

in a dynamic environment.

• Flexible Resource Management for Real-Time Systems

Systems functioning in a dynamic environment are likely to face varying levels

of resource demand and therefore a flexible approach to resource management

is necessary.

• QoS Aware Components

Quality of Service support is vital for providing the performance predictability

necessary from real-time systems. It is therefore important that system

components are aware of these requirements and are able to adapt to them as

necessary.

2. Literature Review – Artist2

26

• Real-Time Languages

This topic focuses on the development and extension of real-time programming

languages, including RTSJ (Real-Time Java Specification), C and SCOOP

(Static C++ Object Oriented Programming).

The work within all of these areas is extensive and beyond the scope of this literature

review. The areas of common infrastructure, flexible resource management and QoS

aware components are, however, of relevance to this project and shall therefore be

focused on in more detail in section 2.3.

2. Literature Review – Summary & Discussion

27

2.2.5 Summary & Discussion

The projects discussed within this section have shown the requirements of future

systems within the military domain are flowing down from such high level concepts as

Network Enabled Capability, impacting the both future and legacy systems and their

software architectures. All have described a need for a distributed, modular

architecture to enable support for a dynamic environment, with the use of a

publish/subscribe model (such as DDS) being repeatedly identified. Further to this

discussion a set of infrastructure level requirements for such systems have been

derived from the MoD Defence Industrial Strategy (2005) and NEC handbook, JSP 777

(2005) publications discussed in section 2.2.1. These requirements focus on the areas

of application/process management, network communications, hardware and software

configuration management, performance, and safety, security and health management.

The requirements are intentionally non-implementation specific so as to be applicable

to a wide range of systems.

Infrastructure Level Requirements

Application/Process Management

[InfReq-1] Applications should have defined Quality of Service (QoS)

characteristics.

• Defined application level performance characteristics are necessary

to enable any subsequent system functionality to assure

dependability. Such Quality of Service terms can include a range of

characteristics (for example timeliness, availability, reliability, etc.).

Applications in a dynamic environment will have QoS specifications;

as either the producer or consumer.

[InfReq-2] Applications should adapt at run-time to changing capabilities

in hardware and software.

• The term ‘capabilities’ in this context refers to the entering and

leaving or “plug and play” of resources (including both hardware and

software functionality) within a dynamic system. An application

running within a dynamic environment will be exposed to changing

capabilities (be it an increase or reduction) and enabling applications

2. Literature Review – Summary & Discussion

28

to adapt to this is essential to ensure a system that is both stable

and exploits all available opportunities.

[InfReq-3] Applications should adapt to varying levels of communication

performance.

• Dynamic systems will potentially be exposed to a wide range of

communication platforms, each with a varying level of reliability and

performance. Where possible any communication errors should be

dealt with in a manner that is transparent to the application (see

InfReq-6), however, where this is not possible applications should be

capable of graceful performance degradation.

[InfReq-4] Applications should use open and durable standards.

• Application standards include component interfaces, protocols,

behaviours, etc. The use of open standards helps to promote

interoperability, which will be vital in future systems where

collaboration can potentially be required across departmental or

organisational boundaries.

Network Communications

[InfReq-5] The communication network should allow for Quality of Service

(QoS) guarantees.

• The characteristics within these communication based QoS

guarantees can include but are not limited to timeliness, bandwidth,

delay and percentage of lost or invalid data.

[InfReq-6] Communication should be robust to faults.

• Where faults occur within a transmission these should be detected

and adapted to in order to ensure predictability. This differs from

InfReq-3 in that this form of fault tolerance is intended to be

transparent to the application.

2. Literature Review – Summary & Discussion

29

[InfReq-7] Communication should use open and durable standards.

• Open and durable standards promote interoperability and help to

extend the lifespan of a system.

[InfReq-8] The system should provide dynamic network reconfiguration.

• In a dynamic environment it is reasonable to expect that a network

node may have reason to enter or leave the system or change the

point of connection to the network. Communications must therefore

be reconfigurable to take events such as these into account.

[InfReq-9] Communications should be scalable at run-time.

• The overall size of the system is unknown and may change during

run-time so it is therefore necessary to ensure that the

communications model is scalable to account for this.

Hardware & Software Configuration Management

[InfReq-10] The system should provide dynamic resource allocation and

reconfiguration.

• The software infrastructure should be able to allocate and schedule

resources depending on QoS demands and the availability of

resources. Static, predefined resource allocation is not possible in a

dynamic environment due to the differing levels of QoS that

applications may require.

[InfReq-11] The system should provide facilities for the reconfiguration of

inter-process communication.

• In a system where higher-level functionality is provided through the

joining of lower level services a change in the tasks being executed

would require the remapping of inter-process communication

channels. This reconfiguration could also be used to account for

changing capabilities and to aid in fault tolerance.

2. Literature Review – Summary & Discussion

30

[InfReq-12] The system should be able to cope with dynamic changes in

required configurations.

• The wide amount of variation among system components means

that design-time analysis of all possible system configuration

permutations is not possible. Run-time analysis must therefore be

available for the evaluation of system safety and reliability resulting

from the interactions between components.

Performance

[InfReq-13] Performance of the infrastructure should be maintained with

varying system scales.

• The number of nodes within a dynamic system is not fixed and as

such the system must ensure that at any time the performance

remains predictable and sufficient to fulfil the necessary tasks. The

planning of the system to meet such criteria should be possible at

both run-time and design-time.

[InfReq-14] The system should be capable of meeting soft and hard real-

time deadlines as required.

• The wide range of potential applications and the safety critical or

mission critical nature that will be required by a proportion of these

means that the system will need to be capable of meeting a variety

of both hard and soft real-time performance requirements.

Safety, Security & Health Management

[InfReq-15] The system should be capable of providing flexible levels of

safety.

• Applications could be classified by their safety requirements (for

example, safety critical, mission critical or non-critical). Safety

critical applications for example need to be partitioned spatially and

temporally to ensure that there is no chance of conflict. Mission

critical applications could still require this partitioning but be more

flexible to accommodate for situations where it is not available.

2. Literature Review – Summary & Discussion

31

Non-critical applications may place no strict requirements on either

of these aspects.

[InfReq-16] The system should meet security requirements within a

dynamic environment.

• The system should be capable of providing security in a varying and

potentially geographically distributed environment. For example a

system may only allow sensitive data to travel along secure lines or

within certain buildings. If a node containing sensitive data were to

leave this safe area then it may be required to offload or delete this

data. This is particularly applicable to a military context and the

transition between friendly and hostile environments.

[InfReq-17] Facility should be provided for fault logging and recovery.

• Hardware and software methods of fault recovery will be required to

aid in ensuring the reliability of the system. Fault logging aids

maintenance and therefore the availability of the system.

From the analysis of these infrastructure-level requirements, conducted using systemic

textual analysis and viewpoint analysis tools (the full results of which can be found in

Appendix A), high-level system requirements are found.

System Level Requirements

[SysReq-1] Rapidly adapt and scale to changing capabilities in a dynamic

environment.

[SysReq-2] Promote interoperability to enable collaboration between systems.

[SysReq-3] Be reliable, available and secure.

2. Literature Review – Summary & Discussion

32

In addition to this basic architecture model several key system architecture properties

have been identified:

Scalability

A key distinguishing feature of systems operating in a dynamic environment is

that the system state cannot be determined at design time. This is of particular

importance with relation to the scale of the system. While even a system

architecture designed offline would need to be scalable to a degree the problem

of adjusting this at run-time is even more complex.

Dependable Performance

Many of the systems discussed in this section require safety critical

performance both in terms of application execution and communication (be it

internal or externally networked). Any architecture selected for this purpose

must therefore be capable of providing such predictable performance.

Openness

The problem of providing an open system is perhaps most obvious from the

example of NEC. In this system parties from across organisational and

geographical boundaries are required to collaborate and therefore openness is

vital.

The key technologies of Service Oriented Architectures, Agent Based Architectures

and Data Distribution Service have all been identified as potential options for the

architecture requirements of the systems discussed within this section and shall

therefore be discussed in further detail in section 2.3. Particular focus is necessary on

how these technologies are capable of meeting the key properties mentioned above.

2. Literature Review – Service Oriented Architectures

33

2.3 Software Architecture Review

The following section represents a review of the major current distributed, modular

architectures as suggested in literature for use with the systems discussed in section

2.2.

Partial QFD diagrams have been used to assess the suitability of the software

architectures to fulfil the requirements previously identified. The architectures used for

comparison are fairly loose in their implementation constraints and as such areas that

show no direct relation between feature and requirement may actually be satisfied

through the addition or adaptation of functionality. The following scale has been used

to indicate the relationships between the system features and the infrastructure

requirements.

9 - Strong Link - The feature either already satisfies or comes close to meeting

the requirement.

3 - Medium Link – The feature has some potential application to satisfying the

requirement, however, it may require significant more work.

1 - Weak Link - There is a minimal link between the feature and the

requirement.

A total is given for each row to assess whether the requirement has been met. A score

of 9 or above generally indicates that the requirement is close to or has in fact been

met.

The resulting QFD diagrams can be found in the relevant section's summary.

2.3.1 Service Oriented Architectures

Service Oriented Architectures (SOA), as described by such high level overviews as

Sim et al. (2005) and Nickull et al. (2005), are a model for distributing functionality

amongst systems and components to facilitate loose coupling and late binding,

therefore making a system with a greater potential for agility. This literature review

2. Literature Review – Service Oriented Architectures

34

shall (as far as possible) consider SOA as a conceptual architecture, unconstrained by

implementation specific requirements, so as to focus on the potential of such a system

rather than solely on current implementations where compromises may have been

made due to imposed restrictions (e.g. support for legacy systems).

The basic model for SOA service fulfilment consists of three main components; the

consumer, the service broker and the service provider, which work together in a

publish/subscribe environment to fulfil a service requirement. As a note the consumer

can refer to both other services and applications running on the SOA framework.

Services

At the heart of SOA are the services themselves. Services represent logical functional

abstractions that promote reusability through a simple, well defined interface. The

exact level of this functional separation can vary depending on implementation

requirements, however, it is commonly accepted that the division should not reach that

of an object oriented environment. A view of service definition provided by Sim et al.

(2005), given first from the organisational perspective, is as follows:

“Services are Information Technology (IT) assets that correspond to real-world

activities”

Or from a technical perspective:

“Services are coarse-grained, reusable IT assets that have well-defined interfaces that

clearly separate the service’s externally accessible interface from the service’s

technical implementation”

For a service to be accessed in an ad-hoc manner the interface with which it

communicates with external entities should be defined in a commonly accepted and

widely known manner. To support this each service holds a service policy document

that describes the functionality that it is capable of providing and the manner in which it

may be accessed (for example the result of an operation could be given as an integer

2. Literature Review – Service Oriented Architectures

35

or a floating point number, etc.). Service policies are also used to manage any security

restrictions such as access rights.

Having a well-defined interface that is abstract from the functionality also allows for

easy upgrading or changing of services without affecting the overall system design or

that of any interacting components.

Service Broker Architecture

At a basic level a service broker can be described as a module capable of handling the

necessary level of traffic for service announcements or requests and with the capability

to store the service policies from announcing services in a service registry that can

later be queried to find matches for requests.

SOA Model

Figure 6, adapted for clarity from the version provided by Gehlot et al. (2006), shows

the basic SOA model, where the annotated numbers correspond to the following

stages:

1. A service provider announces itself to the service broker, transferring a copy of

its service policy document for storage in a service registry.

2. A consumer requests the fulfilment of a service from the service broker.

3. Wherever possible the service broker matches this request to the details of a

service held within its service registry and replies with the location and interface

details of this service.

4. The consumer contacts the service directly to negotiate service fulfilment.

As a note something that is not explicitly mentioned in this model, but is implied by the

abstract nature of SOA is that communication between consumers and services should

be location transparent, requiring no knowledge of the path of communication between

two points, as suggested by Stal (2006).

2. Literature Review – Service Oriented Architectures

36

Figure 6 - SOA Model

Communication in the SOA model is seen to be a two-way process between all parties

except the service broker and service itself. An alternative version of this model is

given by Lund et al. (2007) where communication between service broker and service

is two way. The choice between these two models is likely dependent upon

implementation and additional communication from the service broker to the service

likely only implies that the service broker is providing some form of acknowledgement

to a service announcement, or conducting a periodic check to ensure that a service is

still available. A lack of communication from the service broker to the service provider

therefore implies that a service announcement is never directly acknowledged or polled

to check that it is still available within the system. This in turn can be taken to imply

that either service registries are held indefinitely or that the service must periodically

announce itself so as to confirm that it is still present within the system and to

communicate with any new service brokers (assuming an architecture that uses

multiple brokers). When a service announces itself it sends a copy of its service policy

document, which should remain static throughout the life of the service, meaning that it

is only necessary on the first announcement to the broker. Retransmission of this

document is therefore unnecessary and only serves to increase network traffic. While

the inclusion of two-way communication among all components in the SOA model is

most likely done to simplify the model it does in fact offer benefits when working in a

real-time dynamic system where information contained within the service policy may be

updated based upon new parameters of the system (for example current processor

load or memory utilisation). This shall be discussed in further detail in section 2.4.2.

The extra traffic in the system caused by this constant retransmission could potentially

have an impact on the overall scalability of the system. This is, however, dependant on

the size of the service policy document, overall available bandwidth and number of

services comprising the system.

Consumer

Service

Broker

Service
Provider

1
2

3

4

2. Literature Review – Service Oriented Architectures

37

The danger with not acknowledging a service announcement is that a lost transmission

due to some error in communication would not be detected and a service may

therefore be deemed unavailable for a period of time. This could hopefully be avoided,

however, by foresight in the design of the service broker (for example, requiring that a

service miss multiple re-announcements before being deemed unavailable).

SOA Application Lifecycle

A model of the lifecycle of an SOA application, as provided by Tsai (2006), is shown in

Figure 7. Note that this is potentially implementation specific and is not necessarily

mandated by the SOA principles.

Figure 7 - SOA Application Lifecycle

The model follows an iterative (and potentially non-linear) path of management,

modelling, assembling and deployment. According to this model before an application

can be deployed within an SOA environment it must be assembled and compiled to

contain the relevant details of the services that it shall be employing. The management

phase initialises the application construction and the modelling phase then initiates the

process of consumer to service broker requests as previously outlined. Once the

necessary services have been identified the application can be compiled to include

reference to these and deployed for execution. The management phase is then

responsible for ensuring that services are correctly fulfilling their requests and must

also monitor for any dropouts. If an error is detected then the application is placed into

a recoverable state (wherever possible) and reassembled with alternative services.

This suggested lifecycle model is likely to function well once the modelling and

assembly has completed, however, in systems where re-modelling is frequently

required (which could be easily foreseeable in a dynamic environment) the reassembly

Management

Deployment Modelling

*not necessarily

linear

Assembling

2. Literature Review – Service Oriented Architectures

38

of code is likely to introduce significant delay. A better system may be to use some

form of indirect addressing of services, whereby a separate table is maintained with the

addresses of the services to be used. In this case it would be a much simpler matter to

change one of the services being used.

Real-Time SOA (RTSOA)

While O’Brien et al. (2005) suggests that the loose coupling and unknown network

structures inherent in SOA do not lend themselves well to performance critical

environments, there has been work into adapting SOA for environments requiring real-

time performance. RTSOA (Real-Time Service Oriented Architecture), as proposed by

Tsai et al. (2006) at Arizona State University, addresses the issues of real-time

performance guarantees not only through the introduction of QoS constraints but from

a wider perspective of the SOA environment.

The main components identified by Tsai et al. as being key to the RTSOA framework

and the requirements placed on each are as follows:

Real-time Communication - A worst-case performance guarantee should be

ensured over the lines of communication, requiring the advance reservation of

channel bandwidth. To facilitate this it is suggested that the two main IP QoS

models, Intserv & Diffserv (discussed in further detail in section 2.4.4), are

considered for use. While this is not necessarily an architectural issue it does

potentially have a large impact on the ability to fulfil a service within a given

deadline.

Service Modelling for Real-Time Properties - Each service should have

additional capability related information added to the service policy document,

or similar specification. This should include the minimal and maximal response

times, the degree of concurrency that it can support and the cost and required

resources. This service specification should be a dynamic document that

adjusts in real-time to take into account changes in resource availability. This is

discussed further in section 2.4.2.

2. Literature Review – Service Oriented Architectures

39

Repositories for Real-Time Composition - Services should be categorised as

either verified or un-verified, where a verified service is said to have known

performance characteristics, determined at design time. Further suggestions

have been made to the inclusion of a cache memory to increase the response

time of popular services.

Dynamic Service Composition - Modelling the composition of services that

contribute to an application requires a detailed analysis of all known timing

properties. Services must be selected that are capable of fulfilling the overall

application timing deadline. Tsai et al. have conducted work into an efficient

run-time method of service selection needed to facilitate real-time dynamic

service composition. The heuristic method was found to have a time complexity

of O(k*n*log(n)) “where k*n is the maximal number of iterations of the reduction

process and O(log(n) complexity is required to maintain the sorted list in each

iteration.”. This compares well to the near exponential results seen from using

an exhaustive method.

Data collection & Policy Enforcement - The policy enforcement modules

(found typically within the management phase of the SOA lifecycle) should

ensure that both functional (are the services performing their tasks correctly?)

and non-functional (timing, accuracy of result, etc.) properties are as is defined

in the specification. If an exception is caught then error compensation should

be performed.

Real-time Service Execution Environment - The execution environment

chosen must be capable of supporting the real-time characteristics of the

system. Common implementations make use of the Java Virtual Machine

(JVM) to allow for hardware and operating platform transparency. Future

implementations could make use of advancements in the area of real-time

Java.

Mechanisms for Real-time Guarantees - Further mechanisms for real-time

guarantees are required, specifically in the areas of message queue design,

message prioritisation, operation pre-emption and multi-thread scheduling.

2. Literature Review – Service Oriented Architectures

40

The work completed in the area of real-time service oriented architectures has shown

an understanding of the necessary adaptations to the structure of SOA that a real-time

environment will require. While it may seem that the actual implementation effort into

this idea has been minimal it seems probable that a lot of the key areas identified

contain issues likely to have already been addressed in related research into real-time

applications and communication.

Collaborative SOA

Hiltunen & Schilichting (2010) argue that many of the features of SOAs (eg. the loose

coupling and late binding of services) are what hinder their ability to provide

dependable performance. They propose that through the compromise of these

features greater dependability can be found.

Dependability in this case is said to refer to four Quality of Service aspects of services,

specifically:

• Service Availability - The probability that a service is reachable and operational.

• Service Timeliness - The response time of the service.

• Service Reliability - The probability that the service provides the correct

response.

• Service Security - Privacy and integrity issues of the service and architecture.

Collaborative SOA is put forward by Hiltunen & Schilichting as a potential solution to

the dependability problem. This approach requires service consumers and service

providers to cooperate in implementing dependability features. This collaboration is

proposed at two different levels; producer/consumer collaboration and multi-party

(whole system) collaboration.

Producer/Consumer collaborative SOA requires these two parties to share data in a

number of different ways. Firstly by the service provider reporting current QoS values

(i.e. the actual measured performance of the service). This is said to be more reliable

than using an outside observer to measure QoS levels. Secondly, by exposing QoS

mechanisms. The service provider could for example identify optional backup services

2. Literature Review – Service Oriented Architectures

41

that are compatible or notify the consumer if there are multiple instances of the service

running (providing a backup incase a particular instance fails). Thirdly by negotiating

QoS properties. This involves the proposal and counter proposal of QoS parameters

and, it is said, could also potentially involve some reward or penalty for service

acceptance or rejection. These areas shall be discussed further in section 2.4.2.

Multi-party collaborative SOA involves all services working together to help improve

dependability. To aid this a trust collector service has been proposed to provide a

means of rating service providers based on the experience of consumers. Consumers

can report either a positive or negative experience with a producer, which is stored to

help future consumers when deciding which service providers to use.

The multi-party collaborative approach could prove impractical with large-scale

systems. If the trust collector service is to help inform the service consumer and help

stop services from lying about their QoS then the trust collector itself must be

maintained by a party that is known to be trustworthy. This may not be a problem with

some systems where, for example, a hosting company to which all services subscribe

can maintain the trust collector. For other systems, however, this may not be possible

as organisations may not trust each other. This approach also does not stop

consumers of services lying about the service they received and damaging the

reputation of the service provider. This approach only works when there are a

sufficiently large enough number of service consumers, from a wide range of

organisations or developers, that the influence of any rogue elements will be diluted.

This is because even a small number of malicious service providers or consumers

could taint the system by falsifying reports held by the trust collector. Take the

example of a small system with three nodes; the first node is a genuine publisher; the

second node is a malicious publisher and consumer of this data; the third node is a

genuine consumer. The malicious node could subscribe to the data from the second

node and submit a false, negative report to the trust collector. The genuine consumer

would now enter the system, assume the genuine consumer to be bad and instead

subscribe to the malicious consumer.

2. Literature Review – Service Oriented Architectures

42

Implementation Specific Features

The following are suggestions for implementation specific features, which aim either to

improve system performance or aid flexibility and other such dynamic properties.

Data Granularity - O’Brien et al. (2005) suggest that through the analysis of the

use of a service, predictions can be made as to the data that shall be required

by a consumer in the future. For example if a service is providing a user with

map information of an area then it is quite likely that they will want to scroll to an

area around this location and thus the data for this can be sent in anticipation.

This feature is not suitable for all services, however, and it may in fact lead to a

reduction in overall system performance if data is being sent in anticipation of

an event that never happens. Offline (or potentially dynamic) analysis of

system use characteristics could identify services that would benefit from this

feature and support for this feature could be planned in.

Dynamic Service Interface Adaptability - Suggestion has been made by Ketfi

et al. (2003) for the inclusion of dynamic service interface adaptability. This

technique aims to help overcome the situation in which a service broker is not

capable of providing a corresponding service for a request. It does this by

decreasing the reliance on strict interface definitions, thus increasing overall

system flexibility. If a service broker is not able to provide a match for a service

request it may be able to provide the same functionality through the use of other

similar services with minimal adjustment to the interface (e.g. a response is

required as integer but the alternative service provides it as a float). There are

two main types of adaptability discussed here; static and dynamic.

In a system using static adaptability a selection of potentially suitable services is

presented to the user for them to choose from. The options provided are the

result of a search based on service names and therefore there is a heavy

reliance on standard naming conventions being followed. This could prove

particularly difficult to enforce in systems that cross organisational (or even

departmental) boundaries. This type of adaptability is clearly not applicable to

those services requiring real-time performance, however, could prove useful for

non-time-critical data analysis or other such functionality.

2. Literature Review – Service Oriented Architectures

43

In a dynamically adapting system the dynamic adaptor is pre-programmed with

all possible system state combinations so as to automatically determine if a

service substitution is possible. The lack of scalability of such a solution when

applied to a large-scale system-of-systems type environment seems to imply

that it should be implemented at a sub-system level (i.e. at a level where it is

reasonable to assume knowledge of all possible system components).

Proxies - While perhaps not unique to SOA but potentially useful for increasing

the performance of any time and safety critical system, proxies have been

suggested for use by High et al. (2005) and can be used to cache messages

sent through the system. It is hoped that through this caching a better overall

system speed can be achieved in situations where packet loss is likely and

retransmission is essential. This is also dependant, however, on the benefits

from using this high speed cache outweighing the extra delay introduced as

packets pass through the proxy.

For proxies to be truly useful they should be placed strategically throughout the

network so as to provide the best benefit from retransmission. This does seem

to imply a prior knowledge of system layout, however, and could potentially

hinder the dynamic nature of SOA systems.

Web Services

The most common implementation of the SOA model at present is that of Web

Services, which as Altova (2006) describe, are a method of implementing SOA

principles over the Internet using pervasive web technologies such as HTTP and XML.

In an ideal world a new system could be designed and implemented from fresh to take

into account all the advantages of new technology, however, in reality this is not always

possible due to the high costs, time, legacy data and staff training, etc. For this reason

web services are often used as a middleware platform to bridge the gaps between

legacy systems and introduce SOA principles into a system. XML, a W3C specified

meta-language, is used to provide hardware and implementation transparent

2. Literature Review – Service Oriented Architectures

44

communication between these systems. The use of XML does bring with it its own

drawbacks as the parsing of messages can introduce a delay when compared with a

direct function call.

The popularity of Web Services is thanks at least in part to the support of leading

standards bodies in the development of common standards. The protocols developed

by these standards bodies and used throughout Web Services can be split into several

categories

Service Description Protocols - The service description protocol covers the

service policy type documents required by the SOA model. The WSDL (Web

Services Description Language), as described in Altova (2006), is maintained

by W3C and at a basic level describes the service’s location and the

functionality that it provides. There are six main elements to this document;

port type, port, message, types, binding and service.

Alternative service description protocols include RDF (Resource Description

Protocol) and ebXML.

Registration services - Registration services fulfil the role of the service

registry, as previously described in the SOA model. The UDDI (Universal

Description, Discovery and Integration) standard, maintained by OASIS

(Organization for the Advancement of Structured Information Standards),

provides such a registration service. The UDDI can quite often consist of a

database of WSDL (or similar) service policy documents.

Alternative registration services include WS-Inspection (created by IBM), LDAP

(Lightweight Directory Access Protocol) and ISO/IEC 11179 international

standard for representing metadata for an organization in a Metadata Registry

Access protocols - An access protocol is used to facilitate communication

between a service and client. One of the most commonly used access protocol

is SOAP (Simple Object Access Protocol) and as with most other web services

2. Literature Review – Service Oriented Architectures

45

is constructed using XML. As described by Altova (2006), a SOAP message

can include some or all of the following sections;

• Envelope – The tags to identify the message as being of the SOAP type.

• Header – Message relevant data such as time sent or authentication details,

etc.

• Body – The actual message payload.

• Fault – Details of a client or service error.

Alternative access protocols include XML-RPC.

Web Services & QoS

As Lin et al. (2009) discuss there is some support in Web Services for the specification

of Quality of Service (QoS) attributes describing features of service producer

performance such as reliability or availability. These QoS attributes are reported by

service consumers, listed in order of the consumer’s preference, and it is said that a

method of reaching a consensus among these QoS reports is necessary. Lin et al.

propose the use of Fuzzy Multi Groups based QoS Consensus Moderation Approach

(FMG-QCMA) as a means of reaching this consensus. FMG-QCMA is an extension of

QCMA, an approach that analyses subjective QoS reports to reach a group consensus

for the QoS that a producer should advertise. This advertised QoS can be updated

over time as additional QoS reports from consumers are received. FMG-QCMA

extends this to include a fuzzy clustering mechanism. Service consumer’s opinions are

clustered into sub groups based on their similar dispositions. When a service

consumer issues a request a service provider will be selected according to the

consumer’s previous preferences.

This approach addresses a key issue with regards to the potential subjectivity of a

service consumer’s opinion as to what constitutes the necessary Quality of Service

level. When considering the dependable levels of application performance required by

future systems, such as those within the NEC project, however, there is likely to be little

space for subjectivity in the specification of a service producer’s QoS.

2. Literature Review – Service Oriented Architectures

46

Current Implementations

The following are examples of how SOA has currently been used or has been

proposed for use within the military domain.

NEC - As part of the NECTISE research project SOA has been suggested by

Russell et al. (2006) as a suitable architecture to support the MoD’s Network

Enabled Capability Programme (see section 2.2.1 for further details). While

most publications under this project have stated little more than the intention to

use SOA as an architecture for NEC, Russell et al. (2008), has begun to

consider the introduction of Quality of Service (QoS) guarantees as necessary

for assuring the dependable provision of functionality. This work discusses the

adaptation of service provision as the main form of compensation for services

failing to meet their necessary QoS characteristics. This adaptation takes the

form of one of a number of tactics including dynamic resource allocation.

Considering the assurance of QoS purely from the side of the service provider

is perhaps missing the big picture (or perhaps choosing to ignore it at this

stage) and there are many other tactics available that can be used to consider

the service fulfilment as a whole (i.e. from the point of view of the consumer,

network and service provider). This is discussed in further detail in section

2.4.2. Work by the NECTISE group towards implementing a proof of concept

demonstrator is detailed by Russell et al. (2010). It makes use of an Service

Oriented Architecture and includes some facility for using QoS techniques to aid

in the dependability of communication between mobile nodes. The exact

results of the affect that their use of QoS had on dependability are not given,

however.

Current work has not specifically mentioned how SOA shall be used to integrate

existing legacy systems. The research into NEC up to this point has in general

been more a discussion of potential issues and opportunities than of fine detail

relating to implementation. This is by no means a negative comment as the

project is still in its relatively early stages and a thorough investigation is vital to

ensure the success of a project of this scale, however, more emphasis on the

integration of legacy systems would be expected soon.

2. Literature Review – Service Oriented Architectures

47

DUNAJ - Kątcki (2006) claims that an implementation of the NEC principles has

already been achieved by Poland. As a note this paper is poorly translated

and, therefore may not be accurate or fully representative of the project. It is,

however, the only publication relating to this project that is available in English

at this point and so is included for discussion.

The project integrates current radar systems in a publish/subscribe manner.

Their approach to improving shared situational awareness is simply to have a

large video screen viewable to all staff within a command centre, showing

general information that is not necessarily included on their individual screens.

This is an acceptable solution to the problem at this scale, however, how this

would be translated to a project the size of the UK MoD’s NEC is not

necessarily very clear.

Examining some of the specific implementation detail provided with regards to

the software and network support architecture raises some questions as to the

validity and completeness of the report. For example the choice of protocols

used is not justified or explained fully, when there are some clear gaps in detail.

It is claimed that both TCP and UDP are used within this system depending on

the application and its timing requirements. The suggestion of UDP as a

method of sending radar data is reasonable given that radar data is likely to be

highly time sensitive and could therefore become out-of-date if lost packets

were to be retransmitted. The further suggestion of using UDP for weapon

control messages, however, seems less intuitive. Given the previously

mentioned poorly translated nature of this document this could be a simple

misinterpretation of what exactly a weapon control message is, however, if this

is not the case then it seems that there is a level of detail missing. The use of

UDP for sensitive messages has been previously detailed in the discussion of

AFDX (see section 2.2.2), however, this included additional measures to ensure

data integrity and a method of detecting missing packets (even if they were not

to be retransmitted).

2. Literature Review – Service Oriented Architectures

48

Conclusion

This section has given a brief introduction to the area of Service Oriented

Architectures. The list of potential features and performance factors is by no means

exhaustive, given the fact that the basic SOA model is so non-restrictive and

implementation non-specific, meaning that such features would depend on the

particular project in question.

Recent research efforts have focused on improving the performance of SOA so as to

widen their possible applications and facilitate dependable applications. The

discussion of projects such as RTSOA and Collaborative SOA have shown the

complexity required in such adaptations.

The development of standards such as those mentioned in the discussion of Web

Services are a positive feature with regards to the openness of such systems and

these advances have already been seen to be made use of by other similar

architectures such as the previously discussed grid computing.

Using a basic QFD diagram, shown in Figure 8, to assess the suitability of a SOA

against the infrastructure requirements derived for the systems associated with this

project showed that the key area lacking is the support of Quality of Service (QoS)

guarantees. Service Oriented Architectures did score highly, however, with regards to

openness and adaptability.

2. Literature Review – Service Oriented Architectures

49

Figure 8 - Service Oriented Architectures QFD Diagram

2. Literature Review – Agent Based Architectures

50

2.3.2 Agent Based Architectures

Agent based architectures are a well-established method of producing flexible, modular

systems involving a degree of autonomy. An introduction to this field is given by

Wooldridge (1997), in which the basic premise of an agent based system is discussed,

along with some brief guidelines as to their implementation. At a basic level an agent

based architecture consists of a set of agents; components (either software objects or

larger computer systems) with the ability to perform a unique function and the capability

to manage their own actions through a small amount of Artificial Intelligence (AI). It is

through the combined work effort of these agents that the systems goals are reached.

An agent as an individual entity within a system could perform its given task without

collaboration or interaction with any other agents (for example monitoring temperature

sensors and adjusting cooling properties accordingly), however, it is in the sharing and

distribution of functionality and data where agents are of their most relevance to the

dynamic systems discussed in section 2.2. To enable this group functionality each

agent must therefore be able to communicate with separate entities within (and

potentially beyond) the boundaries of the system. This implies the ability for an agent

to request functionality and similarly respond to incoming requests for functionality that

it has the ability to deliver. The supply of a function is then negotiated by the consumer

and supplier to ensure that the final deliverable matches the consumer’s requirements.

This loose coupling and late binding allows for easy upgrade or replacement of agents

without creating disruption to the overall function of the system.

These features can be seen to be very similar to those previously mentioned under the

discussion of Service Oriented Architectures (see section 2.3.1), however, as

Wooldridge (1997) discusses, agents are unique to other modular architectures for

several key reasons. They:

• Follow the Belief, Desire, Intention (BDI) model.

The BDI model, as shown by Rao & Georgeff (1991), is used to show

how an autonomous system can be influenced by its environment. A

belief represents some known knowledge of the system or surrounding

environment. A desire is a goal that the agent is designed to achieve.

An intention is thus some action that the agent is taking in order to

satisfy the desires based on the known beliefs.

2. Literature Review – Agent Based Architectures

51

• Are aware of their environment.

Agents are capable of responding to changes in their environment. This

is important in distinguishing agents from other distributed systems as it

is this awareness of the environment that feeds directly into the agent’s

ability to function in an autonomous manner.

• Are autonomous.

Agents are expected for the most part to be capable of managing their

own behaviour, with a minimal amount of control input provided by the

user (or other external entity). The degree of artificial intelligence used

to support this is debateable, however, a usual guideline given is that it

should be minimal so as to maintain low costs in terms of development

and operational complexity.

• Are goal directed.

An agent will attempt to complete a sub-task with a view to its overall

goal and will only stop when it is either complete or has been deemed

impossible. Agents use AI methods to learn from their previous actions.

Through the combination of these properties agents can be seen as a way in which to

create a more autonomous and active distributed system in comparison to other

architectures (such as the previously discussed SOA).

Agent Models

Within the field of agent based architectures there are several sub models based on

specific agent behaviour. The properties held by each of these varieties are not

necessarily mutually exclusive and can depend largely upon the specific

implementation.

Mobile Agents - A mobile agent, as discussed by Lyu et al. (2005), is a

software object that travels between nodes on a system, performing a set task

2. Literature Review – Agent Based Architectures

52

and then moving on. This type of agent could be particularly useful in heavily

resource constrained environments where there may not be enough memory

available to store agents for all the tasks that it may need to perform during the

course of its operation. Allowing the agent to exist in only one place at any time

also helps to avoid any inconsistency in data, however, there are several

disadvantages with this method. The performance of the system will likely

suffer due to the extra transfer delays of moving the whole agent code and data

sets between nodes. If a system node unexpectedly disconnects then the

agent will be lost, thus losing all the data that it has collected up to that point.

This problem can be overcome, however, through the use of a master

controlling agent, used to co-ordinate the agent’s behaviour, monitoring for any

lost agents and periodically receiving a backup copy of the data collected so far.

Real-time Agents – Many approaches to real-time agent based systems, such

as Urbano (2002) or DiPippo et al. (2001) have focused on the use of agents

themselves and how their properties can be exploited to meet deadlines. This

can include for example, sacrificing the accuracy of a result or co-ordinating

their behaviour in a manner that takes into account the higher priorities of

certain tasks.

Urbano suggests that the AI methods employed by agents are well suited to

adapting system characteristics to support real-time properties in dynamic

environments. The example given is that of a network of cars with autonomous

cruise control. When an emergency vehicle wishes to pass quickly through

traffic (i.e. a high priority data packet) then the vehicles are capable of co-

ordinating their movements in a manner that allows this.

While the use of agents in the previously described manners will certainly aid

real-time systems, the system wide problem view is perhaps of most

importance as DiPippo et al. (1999) recognise. The importance of choosing an

appropriate communication model and underlying framework is highlighted.

Multi Agent Systems - As previously discussed agents are of their most use

as an architectural choice when they are capable of interactions, sharing data

2. Literature Review – Agent Based Architectures

53

or functionality. Allowing agents to communicate through broadcast messages

may be the simplest solution, however, it is clearly not scalable and therefore

an alternative approach must be employed. Multi agent systems, as discussed

by van der Hoek & Wooldridge (2007), typically make use of one of two

strategies to solve this; using either an agent matchmaker or facilitator. An

agent matchmaker identifies an agent capable of fulfilling the necessary

functionality and passes details of this back to the consumer who then contacts

the agent directly (in a similar manner to the SOA model). An agent facilitator

matches a consumer to an appropriate agent and then acts as a router for the

communication between the two parties.

Agents & NEC

Previous research into the development of an architecture suitable for supporting the

MoD NEC project (see section 2.2.1) has included discussion of agent based

architectures as a potential solution. While this work has seemingly been discontinued

in favour of service oriented architectures (perhaps due to recent trends towards this in

industry and the advancement of SOA standards), work by Allsopp et al. (2003)

included fairly detailed discussion of issues relating to what it means to work in an

international, cross organisational environment. In such an environment parties may

have trade secrets that they do not want to share even with their allies. For example a

country may want to allow others to make user of its sensor data, but it may not want

others to know their level of technical advancement so they may first want to

downgrade the data before sending it. This could be both in terms of resolution and in

the time delay experienced (i.e. reducing the data from real-time to near real-time). It

was suggested that agents would be a suitable means of performing this type of

operation given their autonomous nature.

Current implementations

Many open standards exist to aid in the development and use of agent communication

languages and architectures, including:

• DECAF (Distributed Environment-Centred Agent Framework)

• FIPA (Foundation for Intelligent Physical Agents)

• OAA (Open Agent Architecture)

• ICL (Interagent Communication Language)

2. Literature Review – Agent Based Architectures

54

• CORBA (Common Object Request Broker Architecture) with Agent Service

Layer (ASL) developed by Broadcom

• COBALT

A survey of the use of agent based architectures within industry conducted by Van

Dyke Parunak (2000) found that such systems tend to fall into into four main

categories; Manufacturing Scheduling, Control, Design Collaboration and Agent

Simulation. Examples given include that of General Motors where agents are used to

facilitate a bidding process for the selection of work stations within an automated

production line where changes in run-time make static scheduling unsuitable.

Criticisms

As Wooldridge (2002) notes, in recent years criticisms have been laid on Agent Based

Architectures for a seeming failure to live up to their potential. It has been suggested

that most, if not all current implementations could have been developed using a

standard modular (or other alternative) approach and have reached the same standard

of operation. Guedes et al. (1997) have shown how agent based architectures can in

fact introduce extra computational delays, with their example system (using agents to

negotiate quality of service provision among clients streaming media from a central

server), taking around three times as long to compute as a standard distributed

modular method. To use this as a purely negative example may, however, be

misleading given that the project was actually still seen as a success given the inherent

benefits of such an approach (i.e. an increased ability to adapt its behaviour in an

autonomous manner given changes within the system).

Conclusion

Agent based architectures have shown an approach to creating autonomous,

distributed systems. The use of Artificial Intelligence methods to provide this

autonomy, while beneficial, introduces an extra level of complexity not seen in other

such architectures, the benefits of which may not outweigh the cost. It has been

suggested by Wooldridge (1997) that the use of Artificial Intelligence in agents should

be kept to a minimum so as to minimise costs presumably in terms of both

development and execution, however, it would seem that through this dilution agents

have lost their unique aspects.

2. Literature Review – Agent Based Architectures

55

In order to assess the suitability of an agent based architecture against the

infrastructure requirements derived for the systems associated with this project a multi-

agent system approach was chosen over a basic agent based architecture given its

greater relevance to the project. A QFD diagram, shown in Figure 9, was used to show

the relationship between the features of such an architecture and the infrastructure

requirements given in section 1.1. This showed a key deficiency being a lack of

provision for Quality of Service guarantees and that the introduction of autonomous

behaviour is not particularly beneficial to those future systems considered by this

project.

2. Literature Review – Agent Based Architectures

56

Figure 9 - Agent Based Architectures QFD Diagram

2. Literature Review – Data Distribution Service

57

2.3.3 Data Distribution Service

The Data Distribution Service (DDS), set forth by the Object Management Group

(2007) and described by Pardo-Castellote (2003), is a standard for a real-time

publish/subscribe data-centric system architecture. DDS shares certain properties with

other publish/subscribe architectures (including the previously discussed SOA) such as

the modularised design, loose coupling of participants and open interface, however,

where DDS differs is that the focus is placed on the sharing of data as opposed to

functionality.

DDS follows the publish/subscribe scenario with possibly more accuracy to the terms

than other similar architectures. A client application places a subscription to a topic of

information (for example temperature readings or current GPS coordinates), which is

then matched to a publisher capable of dispersing information relevant to that topic.

The overall DDS infrastructure is shown in Figure 10.

Figure 10 - DDS Infrastructure (Schlesselman, Pardo-Castellote and Farabaugh 2004)

It is said by Pardo-Castellote that data disseminated through a system is likely to have

different properties and can be separated accordingly into one of three categories;

signals, streams or states.

Signals – A signal represents a continuously changing data value, such as a sensor

reading. As this type of data is likely to change frequently and be sensitive to delay it is

expected that there would be minimal to no time allowed for retransmission. It is

Transport

Distributed Application

DDS Infrastructure

Publish/Subscribe Interface

Topic Based
Autonomous

Communications

Per Topic Quality
of Service

Configuration

Auto-Discovery Network Architecture

2. Literature Review – Data Distribution Service

58

common therefore for this type of data to be transmitted as best effort, providing no

guarantees for missed packets, etc.

Streams – Streams are data values sent in a continuous manner and that are

dependent on preceding values. Given this dependency streams are often required to

be transmitted in a reliable manner, ensuring both timeliness and accuracy.

States – A state data value represents a system or component state at a point in time.

As this is likely to be updated sporadically it is less sensitive to delay and therefore the

transmission can afford to be assured as being accurate.

The DDS standard describes two levels of interfaces; DCPS (Data-Centric Publish-

Subscribe) and DLRL (Data Local Reconstruction Layer). The DLRL is an optional

higher level interface and allows for the integration of DDS into the application layer.

DCPS (Data-Centric Publish-Subscribe) is a lower level interface and is typically

composed of the elements found in Figure 11.

Figure 11 - DDS Entities (Schlesselman, Pardo-Castellote and Farabaugh 2004)

Each node within the system maintains a record of the available publishers and the

subscriber information relevant to them. Data is separated into domains in order to

2. Literature Review – Data Distribution Service

59

minimise the amount of data held unnecessarily by each node within the system and to

extend its scalability. A domain participant is a physical (or logical) entry point to the

network (or “data domain”) and can contain both data readers and writers. A data

writer is responsible for publishing instances of topic data. In order to distinguish

between data originating from different publishers and to ensure that each value is

treated separately to those previously received, each data entry is assigned a unique

value or “key”. Data readers declare their interest in a topic and the associated Quality

of Service (QoS) properties that they require from any response. The data writer then

matches this request to the stored record of QoS characteristics available to offer.

The Real-Time Publish/Subscribe (RTPS) protocol is typically used in conjunction with

DDS to provide a method of passing on the Quality of Service (QoS) requirements and

ensuring that errors in transmission are detectable (given that transmission typically

takes place over the unreliable UDP due to the importance of timeliness).

Quality of Service

A key feature of DDS, as previously mentioned, is the support for QoS characteristics.

As Hunt (2007) describes, these are separated into the following categories, with

further detail added from the Object Management Group (OMG) (2007) standard:

Volatility

Durability & Lifespan – Determines how and where data is stored so

as to control the level of persistence.

History – Refers to how many previous data values are required.

Reader Data Lifecycle – How long data instances are held within a

data reader before being purged.

Writer Data Lifecycle – How long data instances associated with a data

writer are held before being purged.

Infrastructure

 Entity Factory – Controls the creation and destruction of entities

(domain participants).

2. Literature Review – Data Distribution Service

60

 Resource Limits – Controls the resources that a service can use in

order to meet the consumers requirements

Delivery

 Reliability – Refers to the guarantee that data will be delivered.

 Time Based Filter – Users control their own delivery rate (e.g. require

data values every 100ms)

 Deadline – Send/receive time requirements.

 Content Filters – Specifies the content required.

User QoS

 User Data – Reader and writer meta-data exchanged with the discovery

service.

 Topic Data – Provides additional information relating to the topic data

so as to allow applications to use it in predefined manners.

 Group Data – Allows additional information to be attached to publishers

or subscriber groups.

Presentation

 Partition – The dynamic grouping of data readers and writers.

 Presentation – Controls the changes that can be made to data

instances without affecting other dependent instances.

 Destination Order – Controls how subscribers resolve a final data

instance written by multiple data writers.

Redundancy

 Ownership – Controls which data writers may write to an instance.

 Ownership Strength – Sets the priority with which a data writer will be

allowed to write to an instance.

2. Literature Review – Data Distribution Service

61

 Liveliness – Whether a data writer is still present within the system,

regardless of whether it has recently written an instance.

Transport

 Latency Budget – Indicates the maximum time allowed for data

communication.

Transport Priority – Defines the priority of traffic as transmitted across

the network.

While compliance with these QoS characteristics will help to assure the necessary

levels of performance, there is a need for lower level support mechanisms to provide

the required behaviour. These fall beyond the DDS specification.

Implementations

Currently there are a small number of implementations of DDS available including that

of RTI (Real-Time Innovations), Inc. (2008), which fully implements the standard and

an open-source partial (near complete) implementation, OpenDDS, supported by

Object Computing Inc. (2007). The architecture for this implementation is shown in

Figure 12 and can be seen to make use of a version of CORBA as a means of

brokering communication.

Figure 12 - Open DDS Architecture (Object Computing Inc. 2007)

2. Literature Review – Data Distribution Service

62

Common Object Request Broker Architecture (CORBA) is an OMG standard for

distributing functionality throughout a system and is detailed in (Object Management

Group, Inc. 2007). CORBA predates the previously discussed SOA and where that

focused on the loose coupling of components and higher level service provisioning,

CORBA facilitates interoperability at the object level. The main advantage of using

CORBA over an approach such as SOA is that most applications are currently

composed of objects and therefore little additional effort in design or redesign of

applications is necessary. The use of objects does; however, tend to lead to tighter

coupling of components, given the specific nature of objects. Figure 13 shows a high

level example of systems using ORB (Object Request Broker) to ORB based

communication using the Internet Inter-Orb Protocol (IIOP) to communicate over

TCP/IP.

Figure 13 - ORB-to-ORB Communication (Object Management Group, Inc. 2007)

Recent efforts have focused on the production of a real-time version of CORBA, which,

as Objective Interface Systems, Inc. (2008) detail incorporates many features

necessary for ensuring predictable performance including priority based scheduling

and advanced resource management. This does rely on the use of supporting

technologies such as a predictable transport protocol, and real-time operating system

to help ensure that deadlines are met.

Conclusion

DDS has shown an alternative approach to a publish/subscribe architecture, placing an

emphasis on the support of data distribution as opposed to distributing functionality.

This difference has allowed for certain data properties (varying timing and integrity

requirements) to be taken into account during design and perhaps most importantly led

to an architecture built around the inclusion of QoS guarantees.

2. Literature Review – Data Distribution Service

63

Assessing the suitability of DDS as a potential solution for this project using a QFD

diagram, shown in Figure 14, showed that it was perhaps the most suitable of the three

potential architectures analysed, reiterating the importance of an architecture that it is

built with support for QoS in mind. The support for QoS characteristics greatly

increases its suitability for those systems requiring performance guarantees. While this

support allows for the specification and compliance with such performance

requirements it does not strictly specify mechanisms for facilitating this and therefore

these are dependent on the implementation. Section 2.4 focuses on this provision of

Quality of Service throughout the system.

2. Literature Review – Data Distribution Service

64

Figure 14 - Data Distribution Service QFD Diagram

2. Literature Review – Summary & Discussion

65

2.3.4 Summary & Discussion

The distributed, modular architectures discussed within this section have shown the

various ways in which functionality and data can be distributed throughout a system

and while each have been shown to be applicable to a particular problem area (e.g.

distributing data in a dependable manner) there is no reason that the methods

proposed by each are mutually exclusive. A system may for example follow an overall

Service Oriented Architecture, however, the nodes contained within this network may

contain separate DDS or agent based architectures. Where this may prove to be a

problem, however, is with regards to the interoperability of existing standards.

QFD diagrams have been used to assess the suitability of each of the architectures for

meeting the infrastructure requirements of future systems given in section 1.1. A

summary of the results found is given in Table 1. From this it is clear that the Data

Distribution Service standard currently offers the most functionality to fulfil the needs of

future systems. That is not to say, however, that there aren't areas requiring further

work.

Table 1 - Summary of QFD Results

Software Architecture Total Score from QFD Diagram
Service Oriented Architectures 81
Agent Based Architectures 49
Data Distribution Service 103

A key requirement of the systems discussed in section 2.1 is that of dependable

performance. Where safety critical or mission critical systems (such as those in section

2.1) are concerned this is vital. The current distributed architectures discussed here

have for a large part shown a lack of provision for dependable applications. With

exception to DDS the architectures have placed little emphasis on the assurance of

Quality of Service (QoS) characteristics (used to define an applications performance

needs). While the support for QoS parameters within DDS shows a progression

towards this functionality there is still a lack of focus for many key supporting

technologies, including the role of the network within such systems. It is assumed that

these areas already contain the necessary means of assuring the required levels of

performance, a view that while true for static systems is likely proven wrong by the

unknown topologies of dynamic systems. This area shall be discussed further in

section 2.4.

2. Literature Review – Quality of Service

66

2.4 Quality of Service

In an ideal world systems will be designed so that they will experience minimal

processing delays, have adequate bandwidth for data transmission and encounter little

competition for resources, resulting in successful transactions. In reality of course this

is not always possible and therefore it is quite likely that a system (especially those of a

more dynamic nature) will experience periods of high load where delay is introduced

through queuing or the unavailability of resources. This creates unpredictable and

varying delays across the system, causing severe problems for delay sensitive

applications. According to Olifer & Olifer (2005) there are two methods of combating

this delay:

1. The over provisioning of resources.

2. Quality of Service management.

Even ignoring the waste created by the over provisioning of resources this is not a

viable solution for dynamic systems given their unknown scale and therefore

unpredictable resource requirements. It is therefore necessary to find some form of

compromise within the system with regards to resource utilisation using Quality of

Service management.

Quality of Service is a blanket term used to describe the specification and process of

ensuring an acceptable level of performance between two parties. Figure 15 (as

shown by Bouyssounouse & Sifakis (2005) from the previously discussed Artist2

project, section 2.2.4) shows the necessary levels of QoS integration required

throughout a system for it to be QoS aware. This is a fairly standard breakdown (a

similar discussion is shown by Object Services and Consulting, Inc., (1997) for

example) and provides a good structure for the discussion of QoS. A similar structure

shall thus be used as a basis for this section of the literature review.

2. Literature Review – Quality of Service

67

Figure 15 - Levels of QoS Integration (Bouyssounouse and Sifakis 2005)

The following discussion of Quality of Service (QoS) assumes for some part that the

chosen architecture implementation follows the basic publish/subscribe principles. This

places additional responsibility and opportunities (in terms of adaptability) at the

application ends of the transaction when compared to a standard architecture,

however, the issues involving the network remain the same regardless of any process

at either end. The overall end-to-end QoS guarantee is thus seen as being the

responsibility of three main parties within the architecture; the subscriber, the publisher

and the network (as shown in Figure 16).

Figure 16 - End-to-End QoS Assurance

2.4.1 Specification of Application Requirements

In order for the necessary QoS characteristics of a system to be met they must first be

defined in a common manner. These characteristics typically define the acceptable

boundary between idealised performance and reality, where the characteristics

represent a requirement by the consumer and the current capability of the service

Subscriber Publisher
Network

Data

Data

Data

Data

2. Literature Review – Quality of Service

68

provider. Specific QoS characteristics have already been discussed in section 2.3.3

under their use in DDS and this sub-section shall touch on some of the broader

categories found within both this and other selections of characteristics. Liu & Gu

(2007) provide a list of seven QoS characteristics used commonly among web

services. While the separation and overlap of some of the categories given in this

paper is not perfect, this list is a good place to start in defining a list of broad QoS

characteristics for the types of systems discussed in section 2.1 of this literature

review. A reformatted version of this list is as follows:

• Performance

Performance characteristics can take many forms be it as a timing deadline,

minimum jitter specification or resource requirement (e.g. memory used, processor

time required, necessary bandwidth, etc.).

• Reliability

o Availability

This represents the probability that a service is available and ready to use at

a particular instance in time.

o Accessibility

The service may for some reason be available but not accessible (for

example when under high load). This value represents the probability of a

successful service instantiation.

o Integrity

The integrity of the data refers to the probability that a data packet received

will match that which was sent and that all data has been received.

• Security

This could include for example the level of confidentiality surrounding data.

o Regulatory

This controls who can access the service, assuming therefore some form of

identity validation.

2. Literature Review – Quality of Service

69

The exact derivation of values for these characteristics when used within a system is

dependent on the application in question.

2.4.2 Middleware Infrastructures & QoS Negotiation

In a dynamic system it is likely that QoS considerations will first be made by the

software architecture (or middleware), acting as the gateway for applications to

communicate, tailoring service supplier performance or service subscriber expectations

as appropriate. Russell et al. (2008) propose the use of the service supplier as the

main party responsible for ensuring QoS. There are many strategies by which the

service provider may attempt to meet QoS requirements and these are dependent on

the specific implementation in question. Among those strategies suggested by Russell

et al. (2008) is dynamic resource allocation. This functions much as the name would

suggest in that, when the system becomes congested, resources are reallocated in an

effort to better meet QoS requirements. This should of course be done in a manner

that attempts to not disrupt the performance of other executing services sharing the

same hardware or different processes running simultaneously within the same service

provider to a point where they are no longer capable of meeting their minimum

performance. This approach is also known as QoS negotiation, for which there are

different approaches and algorithms proposed by literature.

2.4.2.1 QoS Negotiation Algorithms

While there are a variety of different techniques for QoS negotiation (including those

using advanced Artificial Intelligence based techniques) developed for different

purposes, this literature survey will focus on those that satisfy the criteria required for

this project. The negotiation algorithms identified for analysis in this literature review

have focused on those that are suitable for dependable, real-time systems and are

concerned with resource utilisation as their main criteria for negotiation. It shall also be

assumed that because the systems being analysed are dynamic and potentially prone

to frequent changes, the negotiation process of the algorithms considered will not be

distributed between different nodes. This means that any negotiated resource

allocation will be locally, but not globally optimal.

Through the literature review conducted, three main methods of QoS negotiation were

found that could potentially be applicable to dynamic and dependable systems;

2. Literature Review – Quality of Service

70

compatibility testing, prioritisation, and a distributed QoS optimization protocol. These

methods are introduced here and investigated further within sections 4.4, 5.4, and 5.5.

Compatibility Testing

The current method of accepting new applications into a system found within such QoS

compatible dynamic software architecture standards as DDS (discussed in section

2.3.3), and investigated within Service Level Agreement work conducted by Herrsens

et al. (2008) and Gao & Wei (2011), is based around compatibility testing. In this

approach subscribers and publishers are matched based on the compatibility of their

QoS characteristics as they have been specified. This does not necessarily mean that

the publisher and subscriber have identical QoS specifications, but that the publisher is

capable of meeting the minimum required by the subscriber. For example the reliability

QoS characteristic could indicate that a publisher is capable of sending data as

‘reliable’ (where erroneous or lost packets are retransmitted) or ‘best-effort’ (lost

packets are not reported to the sender). If the subscriber only requires best-effort

communication, however, it does not matter if the publisher is capable of reliable

transmission or not. Work in this area, such as with the DDS standard, does not

currently specify what happens when the system network resources are at their

maximum capacity, as it is assumed that offline design has ensured that this cannot

happen. For this reason compatibility testing is more of an admission policy than

negotiation algorithm. This is not to diminish the work in this area, however, as the

compatibility of QoS specifications between systems developed by different

organisations or for varying purposes can require a translation effort to convert it into a

commonly understood format.

Prioritisation

The simplest method of negotiating resource allocation based on the importance of an

application is that built around the assignment of priorities. With this method when

resources become constrained the application with the lowest priority is removed until

enough resources are available to adequately serve the higher priority applications.

Priorities are traditionally assigned offline, however they could be assigned dynamically

at run-time provided a method of calculating this was provided. An example of such an

approach include the IntServ and DiffServ network traffic classification protocols, as

described by Xiao & Ni (1999), where bandwidth is allocated to different classes of

traffic.

2. Literature Review – Quality of Service

71

Prioritisation based negotiation offers a computationally simple algorithm for allocating

resources. This simplicity stems from the fact that the QoS levels used (and therefore

resources required) by an application are fixed. The dynamic nature of the systems

considered by this work, however, means that such fixed levels of QoS could mean

that opportunities for using the available resources to increase the utility of an

application are missed. If QoS levels are set too high then applications risk there not

being adequate resources available and conversely if they are set too low then the

quality of an applications performance could be restricted while resources remain

unused.

The computational simplicity of this algorithm does also provide benefits when it comes

to the safety critical certification of systems. Such certification, as discussed by NASA

(2003), is often based on the verification of code, a task that is made easier by keeping

the complexity of code (and therefore the resulting system configuration outcomes) to a

minimum.

Distributed QoS Optimization Protocol

Abdelzaher et al. (2000) propose an example real-time middleware service

incorporating QoS negotiation, called RTPOOL, which manages shared computing

resources to guarantee timeliness QoS for real-time applications. The QoS negotiation

algorithm provides for graceful degradation through the dynamic reallocation of

resources, to maximising the calculated system utility when dealing with times of

overload or failures. In this way it can be seen to be ideally suited to those dynamic

systems (such as those within the NEC project) considered previously.

The QoS negotiation algorithm uses a distributed QoS optimization protocol for selecting

between service instances in order to maximize the system utility given current resource

demands. The algorithm, shown in Figure 17, seeks to gracefully degrade services to

lower levels of operation as a means of freeing enough resources to cope with changes in

resource availability or demand. The algorithm degrades the service that results in the

minimum decrease in reward until there are adequate resources in the system. Through

this the algorithm seeks to increase the overall system reward.

2. Literature Review – Quality of Service

72

Figure 17 - Distributed QoS Optimisation Protocol (Abdelzaher, Atkins, & Shin, 2000)

Two values are assigned to an application, a reward for its acceptance and a penalty

for its rejection. The reward is the perceived utility to the system and the penalty

reflects the criticality of the application in question. If accepting the new application

would reduce the overall reward value then it should be rejected. If the penalty is

greater than this decrease, however, then the subscriber should still be accepted. The

use of these two values allows for both the subjective and objective assignments of

value to an application. This algorithm and its application to dynamic systems is

discussed in further detail in section 4.4.1.

2.4.2.2 Assigning Value to Services

It has been shown how in order to negotiate between different services a means of

expressing the value or priority of a particular service is needed. This could potentially

be done by the service developer; however, as other services within future dynamic

systems could potentially be developed by different departments there is no guarantee

that it will be a fair representation of its true value to the system. Alternative

approaches are therefore needed.

Stochastic Game Theory

Stochastic game theory, as detailed by Goeree & Holt (1999) is typically used to predict

human behaviour; however it is also applicable to other disciplines. Through this

prediction of human behaviour it seeks to account for human bias when determining

something’s value.

Within the area of stochastic game theory there are social dilemma games that

illustrate how they could be applied to service providers to ensure that the reward

values that they quote for themselves are fair. Take the example that two identical

2. Literature Review – Quality of Service

73

service providers quote the reward for accepting them. If one of the services quotes

the reward as higher, then it is assumed to have lied and the lower reward value is

given to both and a set penalty is taken from the higher claimant and given to the lower

(note that a range of acceptable claims for reward values is known). The simplest

solution to this would seem to be for both service providers to claim low reward values

to avoid a high penalty. Experimentation with human subjects as bidders, however,

contradicts this. These discrepancies arise due to people being unsure of the actions

of others.

Reinforcement models are able to support this reward value assignment further. Each

decision is given an initial reward value and then the actual pay off obtained is added.

The probability that a service provider is accepted is the ratio of its own reward value to

the sum of all reward values.

Value-Based Scheduling

A discussion of methods available for calculating the value of a service within a real-

time system is given by Burns et al. (2000). This approach, known as value-based

scheduling, is designed for scheduling processes within an onboard real-time system.

It focuses on the selection of service fulfilment from a known set of alternatives (e.g.

the service could require a collision avoidance mechanism and the choice could be

between an infra-red beam deflection and RADAR).

The value approximation of a service is said to be based on:

• The quality (in terms of accuracy, precision, etc.) of the output produced.

• The time at which the service completes.

• The history of previous invocations of the service.

• The condition of the environment.

• What other services are currently using resources.

• The importance of the service.

• The probability of the completion of the service.

Burns et al. state that there are two main problems with the assignment of value; the

representation problem (knowing whether a value function exists that can ‘represent’

2. Literature Review – Quality of Service

74

the preferences between the alternatives) and the construction problem (knowing how

to construct such a value function).

An example referred to by Burns et al. and originally given by Bondavelli et al. (1997)

shows how a value function could be potentially be constructed. Observed values for a

publisher instance are recorded for the number of timely and accurate data sample

transmissions (a) the number of transmissions which did not meet the latency allowed

(z), and the number of timely but inaccurate transmissions (f). The values recorded for

the different outcomes are based on an assigned weighting.

These values help to give an indication of the actual reward possible given real system

conditions (C). Given that 𝒫! is the probability of a occurring, 𝒫!is the probability of z

occurring and 𝒫! is the probability of f occurring; (1) is given as an online value

function. The representation of the formula and values used for online value

calculation as shown in this paper have been altered from their original form given by

Burns et al. (2000) to aid clarity here.

C = 𝑎𝒫! − 𝑧𝒫! − 𝑓𝒫! (1)

While equation (1) is given as an example that could be used to determine a services

value offline, the statistics needed for its calculation mean that it would first need to be

observed running. It would seem that there is no reason that this calculation could not

be used as an online means of updating the value of a service based on its actual

performance, provided there was adequate time to perform it. The application of value-

based scheduling principles to a QoS framework are discussed further in section 4.3.

2.4.2.3 Application-Based Performance Adaptation

Supplementary to the adaptation of resource allocations, the applications themselves

can be seen to be able to support dynamic behaviour by providing functionality to adapt

to changes in resource availability. As an example of such an approach, ‘anytime

algorithms’, as described by Zilberstein (1996), provide a result when given a minimum

amount of resources. Given greater resources, however, an increase in accuracy or

further benefit from being allowed to run to completion is found. It should be noted,

2. Literature Review – Quality of Service

75

however, that approaches such as this that place a heavy burden on the design and

output of the application will not always be possible, and thus should not be relied upon

as a sole means of compensation for the degradation of available resources.

2.4.3 Operating System and Kernels

As Bouyssounouse & Sifakis (2005) discuss, a real-time operating system is an

essential part of a QoS aware system and must incorporate many vital features

necessary for ensuring predictable performance. These include priority-based

scheduling, time management services that operate with sufficient precision as to allow

applications to meet their deadlines and predictable behaviour of the operating system

itself (i.e. having a bound interrupt latency and known worst case execution time of

system calls, etc.). Of particular importance within the scheduling of applications is the

idea of hard or soft real-time deadlines.

Systems that require a flexible level of assurance ranging from safety critical hard real-

time deadlines to slightly less sensitive soft real-time deadlines (usually presented as a

range) need some measure to assure this. The (m,k) firm notation, as Yin et al. (2004)

suggest, can be used to describe either hard or soft real-time deadlines, where m out

of every k deadlines must be met (and therefore a hard deadline is k, k), thus allowing

for the dynamic prioritisation of traffic .

Work by Bernat et al. (1999) introduces the concept of ‘weakly-hard’ real-time systems.

This is based on the idea that even hard real-time systems can still function given

missed deadlines, provided they occur in a known and predictable way. Through this

relaxation of deadline specifications it is said that a system is created with a worst-case

utilisation above 100%, but an average case well below this, therefore allowing the

better utilisation of system resources.

2.4.4 Network Based QoS Assurance

When assuring QoS over a network there are several aspects that can contribute to

providing overall predictable performance. Those that are included for discussion

within this section have been highlighted through the investigation of the support that

exists for dependable behaviour within existing software architectures. This is not

2. Literature Review – Quality of Service

76

intended as a complete list of such areas, but presents an introduction to the

mechanisms supporting QoS assurance at the network level.

Queuing Algorithms

When a network experiences times of overload the excess traffic must be queued.

Olifer & Olifer (2005) discuss the variety of queuing algorithms available. A first in first

out queue is the simplest form of queue with no differentiation between delay sensitive

and non-sensitive traffic. This is clearly not a viable solution for systems dealing with

traffic classes of varying deadlines and importance and therefore several strategies

exist for providing some form of intelligent method of dealing with queues. A priority

queuing system allows for traffic classes to be differentiated and allocated set amounts

of bandwidth that each class must not exceed. This approach is typically used for real-

time systems given its strict specification of priorities. Weighted queuing differs to this

approach in that traffic classes are assigned a percentage of the overall bandwidth as

opposed to a fixed priority, making it appropriate for traffic with more flexible deadlines.

More complex algorithms have been developed to try and find a compromise between

the two approaches (for example allowing both prioritised and non-prioritised traffic,

where the latter makes use of weighted queuing).

Resource Reservation Based QoS Assurance

Integrated Services (IntServ), as described by Xiao & Ni (1999), is a method of

assuring QoS based upon the individual classification of a packet. This allows

applications to define their own QoS groupings. The Resource Reservation Protocol

(RSVP), as described by Cisco Systems, Inc. (2008), is commonly used in conjunction

with this to assure the ability of the network to meet its deadlines. The RSVP reserves

bandwidth between routers or compatible network devices between two points in order

to assure a minimal performance. It is usual that a portion of bandwidth will remain

unreserved to allow for best effort communication.

Resource reservation within a circuit switched network allocates dedicated bandwidth

to flows requiring delay sensitive transmission. It is reasonable to assume that the

delay sensitive application requiring this reservation will not use 100% of the bandwidth

at all times and therefore this bandwidth is not being used to its full capability.

Reducing the bandwidth available to other flows also means that it is more likely that

2. Literature Review – Quality of Service

77

they will reach points of overload; however, any free bandwidth in the reserved channel

cannot be used as it is out of bounds. In a packet switched network, however,

reservation is based around the average bandwidth usage and when it is not in use this

bandwidth can be allocated to other flows.

The Differentiated Services (DiffServ) method of QoS assurance over networks is

similar to IntServ, however, it is based on the assumption that applications working

across a network can be separated into different classes, for which there are

predefined methods of access to the network. This is also usually based on the

assumption that network resources have been reserved in advance.

Real-Time Protocol

The Real-Time Protocol (RTP), as detailed by Schulzrinne et al. (1996), is typically

used for the reliable transmission of video and audio streams. As such it is based

around the UDP protocol and adds in additional features to aid in reliable real-time

communication (i.e. using a sequence number to detect packet loss, and time stamping

packets to ensure that they are still within a useful bound). This is extended to the

Real-Time Control Protocol (RTCP) which is used to monitor QoS and report any

failures to meet such defined levels.

Mobile Ad-hoc Networks

The Real-Time Subject Routing Protocol (RTSR) as proposed by Sobral & Becker

(2008) is designed to ensure predictable timing guarantees when dealing with dynamic

systems such as MANETs (Mobile Ad-hoc Networks) and in this particular example

vehicle to vehicle networks. This is done though a publish/subscribe communication

model, in which it is suggested there can be two approaches to the distribution of data;

content based or subject based. Content based data can be specific values (within a

given range for example), whereas subject based data is much broader (fitting within a

given topic).

RTSR is an extension of earlier work on Proximity Driven Routing (PDR). PDR is used

to manage the topology of a highly dynamic and mobile network. Within such a

network each node is treated as a broker and is capable of calculating the proximity of

2. Literature Review – Quality of Service

78

neighbouring nodes. Subscriptions for data are broadcast to all nodes/brokers within

range in regular periods (so as to account for newly appearing nodes). These brokers

store subscriptions locally and matched to publisher nodes within a given proximity

value. If a subscription cannot be satisfied by a node then it is passed on, providing

the proximity value can still be satisfied. RTSR extends this by adding the facility for

meeting specific timing as opposed to proximity requirements. Messages have a

temporal range, after which the message is discarded. Once a subscription has been

matched the necessary resources are reserved. This does, however, suffer from the

same problem as PDR in that it assumes that nodes remain within a (reasonably)

similar distance to each other for a fairly long amount of time. It also assumes that the

first matching publisher is the best and does not allow for any quantification as to the

quality of data.

2.4.5 Summary & Discussion

This section has shown the various aspects of a system that are required to cooperate

in order to allow for Quality of Service characteristics to be guaranteed. A variety of

approaches have been presented to each of these system areas and it is through the

careful combination of these that overall QoS can be satisfied.

A point that is made clear within this section is the difficulty with which QoS is assured

within adaptive and dynamic systems that are by their nature at conflict with the

predefined levels of service required by dependable, real-time systems. As future

systems such as those in section 2.2 will be distributed over potentially large areas and

among mobile nodes the networking aspects are a particularly key with regards to QoS

assurance.

The areas of QoS negotiation and the assignment of value to a service (or application)

have been shown to be of particular importance when attempting to allocate network

resources in a dynamic system. Current work in these areas has not been targeted

specifically at the future systems discussed in section 2.2, but rather stems from more

traditional real-time systems, within which many static elements remain. These areas

are therefore potential targets for further research, assessing what adaptations would

be necessary to make them applicable to dynamic systems and what benefits could

then be seen.

2. Literature Review - Overall Summary

79

2.5 Overall Summary

This literature review has given a brief overview of future embedded systems in the

military domain and the associated software architecture standards, setting forth the

industrial context and motivations of this work. These systems have shown a desire for

flexibility and adaptability, while maintaining dependable real-time performance.

Through the discussion of existing and proposed software architectures for such

systems, it has been shown, however, that currently dynamic behaviour often comes at

the cost of predictable performance. This is demonstrated by a significant lack of

support for Quality of Service (QoS) guarantees throughout such dynamic

architectures, with the exception of DDS (Data Distribution Service), however, which

implements the publish/subscribe model while allowing for some basic specification of

performance requirements through the use of QoS characteristics.

The use of QoS to ensure predictable performance in systems was discussed in

section 2.4, as were the different QoS aware elements of a system that are necessary

to ensure overall dependability. As future dynamic systems are being designed to work

with data and functionality distributed over potentially large and varying distances and

over networks that may not have been built with real-time performance in mind, the

networking of the system becomes increasingly important. Existing system

implementations containing dynamic behaviour and real-time performance

requirements have been built around the assumption that networks shall remain fairly

stable in terms of topology and within predictable load bounds. Future systems, such

as those that will result from the NEC project, however, show how these assumptions

cannot be made when creating a truly dynamic and distributed system where there is a

conflict between the real-time requirements of dynamic applications and the ad-hoc

nature of the network, as illustrated in Figure 18. These issues can be considered from

each level of the Protocol Stack:

Physical Layer – Many of the problems experienced with dynamic, distributed

systems flow from the physical properties of the network nodes and

communication medium. Connections between network nodes within such

systems are likely to have varying levels of persistence given their ability to

move in and out of range with each other. In addition to this the use of wireless

2. Literature Review - Overall Summary

80

communication, which can be susceptible to interference, introduces issues

with regards to the reliability of connections.

Data Link Layer – As Kurose & Ross (2007) describe, to help ensure the

reliable transmission of data across unreliable links some link layer protocols

provide the facility for the local retransmission of data, meaning that a complete

end-to-end retransmission is not necessary. This does, however, introduce

additional overheads and therefore has an impact on the ability of the system to

meet the necessary deadlines.

Network Layer – The persistence of nodes, and their ability to move their

location relative to others, causes changes in the topology of the network,

requiring recalculations of routes, meaning that services which may have

previously been capable of meeting their deadlines are no longer meeting this

requirement. It may therefore be necessary to take this information into

account when establishing the network topology, either through direct stating of

the volatility of connections, or through some other indirect means.

Transport Layer – Dependable real-time communication requires both timely

and accurate transmissions. When a network is susceptible to unknown

periods of interference, however, this accuracy is lost. In situations where the

accuracy of data is more important than integrity this loss is detected and the

data is retransmitted. This retransmission introduces additional unpredictable

delays and is therefore not viable for those applications with strict deadlines. A

common practice as seen in the discussion of the AFDX protocol (section 2.2.2)

or the DDS RTPS protocol (section 2.3.3) is to use a UDP like transport layer

protocol (a best-effort method of communication) with some additional means of

detecting missing or corrupt data. As the quality of the network cannot be

assumed during system design, the system must be built to take into account

the possibility of data loss or corruption and, where possible, compensate for

this (possibly through the use of dual redundant channels of communication, or

the flexible adaptation of resource requirements).

2. Literature Review - Overall Summary

81

Figure 18 - Protocol Stack

In addition to these problems the use of an ad-hoc network introduces several

additional issues:

• Large-scale systems are increasingly being built around standard networking

technologies due to their existing wide spread support. Standard IP based

networks are not designed with the support of real-time communication in mind.

When support is provided through the use of resource reservation or some

other such method it is often presumed to be a fairly static and persistent link,

which may be at conflict with the ad-hoc nature of future system networks.

• When a system scale is unknown at design time (as with dynamic systems) it is

impossible to adequately provision resources for all situations. In the case of

best-effort applications running over such networks, transient periods of

overload may be a tolerable problem. Real-time applications, however, have

strict deadlines and requirements with regards to data integrity and therefore

require guarantees of predictable behaviour. In order for applications to

communicate in a dependable manner resources must be available when

needed, requiring advance reservation. In a system that has an unknown scale

this could quickly become a problem and even considering those using the

prioritisation of traffic it is possible that several high priority applications may

require resources at the same time causing the system to become overloaded.

Both the applications and the network must therefore make all efforts to

minimise the chance of this occurring, through careful pre-emptive planning.

This project shall take a holistic systems thinking approach and consider these

problems from the application level. The focus of this research project shall therefore

Real-Time Dynamic

Application

Requirements

Ad-hoc Network Properties

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

2. Literature Review - Overall Summary

82

be on the areas of Quality of Service characteristic specification and negotiation. A

Quality of Service framework shall be constructed that assesses and adapts existing

methods in these areas, discussed within this literature, to make them suitable for

dynamic systems. Through this a benefit to the dependability of such systems is

sought.

It shall be assumed for the purpose of this research that support exists within lower

level network features to provide a reliable estimate of available network bandwidth

with which to negotiate, as work within this area falls outside of the scope of the

project.

3. Research Methodology & Technical Rationale

83

3 Research Methodology & Technical Rationale

3.1 Introduction

This section outlines the approach taken by this research project towards addressing

the gaps in research identified through the literature review. A theoretical

methodological point-of-view to the project is considered first. According to Vreede

(1995) a research methodology should be composed of a research strategy in which a

set of research instruments are used to collect and analyse data on the phenomenon

studied, guided by a research philosophy. In addition to this a discussion is given on

the impact of the work conducting this work within a systems engineering context.

Once the theoretical basis for the research methodology is established a technical

rationale is presented. This covers a summary of proposed work, the constraints within

which the work is to be conducted and concludes with a test plan.

3.2 Research Methodology

For a potential solution to the problems identified in the literature review to be

approached there should first be a thorough understanding of the research

methodology that will underpin any work done. This will ensure, through the use of

well-established methods, that the reasoning behind the research plan is sound.

According to Iivari et al. (1998) there are three main research approaches that can be

considered; constructive, nomothetic and idiographic. Examples of research methods

associated with these approaches are summarised in Table 2.

• A constructive approach is related to the pursuit of technical developments,

creating frameworks or algorithms.

• A nomothetic approach is based on efforts to derive laws that explain objective

phenomena (often based on quantitative data).

• An idiographic approach is based on the effort to understand the meaning of

subjective phenomena and as such is often qualitative.

As the problem being investigated is a largely technical one a constructive approach

shall be taken.

3. Research Methodology & Technical Rationale - Research Methodology

84

Table 2 - Comparison of Research Methods (Iivari, Hirschheim and Klein 1998)

Constructive Research
Methods

Nomothetic Research
Methods

Idiographic Research
Methods

Conceptual development Formal mathematical analysis Case studies
Technical development Experiments; laboratory and

field
Action research

 Field Studies and surveys

3.2.1 Research Philosophy

Orlikowski and Baroudi (1991) put forward three main philosophical approaches that

are appropriate to a computer science based research project; positivist, interpretive

and critical.

• A positivist philosophy refers to the belief that it is possible to measure all

things. The characteristics of a positivist approach include formal propositions,

quantifiable measures of variables, hypothesis testing, and the drawing of

inferences about phenomena from a sample to a population.

• An interpretive approach takes a nondeterministic perspective. It is based on

purely qualitative, observational research.

• A critical study takes a critical stance towards taken-for-granted assumptions

about systems or existing practices.

It is said by Miles and Huberman (1994) though that no research project can be based

solely on any one research philosophy as ultimately all research has a qualitative

grounding. Qualitative research persuades through argument, thus overcoming the

abstract nature of quantitative data

This work will take a largely positivist approach, running experiments through which

data on the performance of the QoS framework can be gathered and analysed. It may,

however, be necessary to take an in interpretive approach when examining the overall

behaviour of the QoS framework and its effects on the system.

3. Research Methodology & Technical Rationale - Research Strategy

85

3.2.2 Research Strategy

The research strategy, as defined by Galliers (1992), is the means of going about the

research, taking on a particular style and using different research methods with which

to collect data.

Where possible background research that contributed to the literature review has been

found through the search of journal papers and conference proceedings. This is to

ensure that the sources have been peer-reviewed and are of a good quality. As the

majority of the systems mentioned within the first section of the literature review were

of a military nature appropriate corresponding documentation was found, often in the

form of military publications or standards.

Following the construction of the QoS framework the two main research methods

employed will be simulation and test-bed based laboratory experimentation. These

were selected from a larger list, presented by Beynon-Davies (2002), as being the most

appropriately matched to the constructive approach taken with developing the QoS

framework. The strengths and weaknesses of these approaches are discussed by

Beynon-Davies.

• By conducting simulations systems can be studied that it may not otherwise be

possible to. There are, however, issues that need to be addressed with regards

to ensuring the validity of generalisation from the simulation to the real-world.

• Test-bed based laboratory experimentation allows the extensive study of a

small number of key variables. It also provides a proof-of-concept for the QoS

framework generated. There are limitations though, due to the potential over-

simplification of laboratory situations when compared to the real world.

Examining the strengths and weaknesses of these approaches show them to be well

matched. The simulation allows experiments to be conducted that would otherwise not

be possible on a test-bed. Likewise the test-bed based laboratory experimentation

provides the opportunity to validate the principles of the QoS framework in a more

realistic scenario.

3. Research Methodology & Technical Rationale - Systems Engineering Methodology

86

3.2.3 Systems Engineering Methodology

In addition to the theoretical research methodologies already described here, this

project will take a systems engineering approach. As Checkland (1999) describes, to

take a systems engineering approach to a project can mean a number of different

things. It can mean using the tools that have been developed to support systems

engineering requirement derivation and product design such as systemic textual

analysis or QFD diagrams, or it can refer to the mind-set with which the work is

approached.

A holistic, systems thinking, approach is being taken with the project, which, as

Andersen (2001) describes, differs to the reductionist approach (reducing a problem to

its simplest parts) in that it considers the properties of the system as a whole, including,

perhaps most importantly, those emergent properties that are only apparent at this

level.

In order to fully explore the requirements for this project and therefore the associated

systems, Systems Engineering techniques were employed. These include a systemic

textual analysis (to identify functional requirements), viewpoint analysis (to help

visualise the requirements and the categories that they fall under, thus helping to see

missing requirements) and QFD diagrams (used to show the relationship between

architecture features and project requirements). Full results from these tools can be

found in Appendix A.

To further aid in the analysis of the dynamic systems for which a QoS framework was

to be developed, Systems Architecture approaches, described by Dickerson (2009),

were applied to a Quality of Service negotiation system (the result of which can be

found in section 4.5.3). This provides a means of understanding the various elements

there are within a system and the interactions that it has with the environment in which

it is operating.

3. Research Methodology & Technical Rationale - Summary of Proposed Work

87

3.3 Technical Rationale

3.3.1 Summary of Proposed Work

As a result of the literature review several key areas relating to the support of

dependability within dynamic systems have been identified that require further

research.

With the exception of the Data Distribution Service (DDS) standard the area of

dependability within publish/subscribe architectures is one that has been somewhat

neglected. The use of Quality of Service characteristics in the DDS standard as a

means of matching publishers and subscribers can be seen to be a step in the right

direction; however, it is still based around static assumptions with regards to resource

availability.

The problem can thus be surmised as a need to improve the use of QoS and its

supporting methods by the (publish/subscribe based) software architecture as a means

of supporting dependability in the applications of future dynamic systems. The

research project will therefore focus on the following areas:

• Supporting the negotiation of resource usage between different applications.

In the example of DDS it is currently assumed that there will be

adequate resources available for all subscribers to be catered for.

As the discussion of future large scale systems has demonstrated,

however, this will not always be the case and the competition for

resources could become a major issue.

• Assessing the suitability of existing QoS characteristic specifications for future

dynamic systems.

Future dynamic systems are likely to bring with them their own

unique characteristics that will need to be captured so as to allow

applications to specify their use within such systems.

• Introducing flexibility to QoS characteristic specifications.

3. Research Methodology & Technical Rationale - Summary of Proposed Work

88

Existing QoS characteristic definitions have been shown to be

capable of matching compatible applications based on defined QoS

characteristics. Flexibility is needed in this definition, however, if

any kind of negotiation is to be possible.

• Assessing the suitability of existing QoS negotiation algorithms for future

dynamic systems.

Existing QoS algorithms have been designed for use within different

types of systems and each have their own potential benefits and

drawbacks. A performance comparison of such algorithms is

necessary as a means of evaluating their ability to meet the needs

of future large-scale systems.

• Identifying potential areas of improvement in existing QoS negotiation

algorithms to increase their suitability for future large-scale systems.

The properties of future large-scale systems will likely provide areas

in which negotiation algorithms could be tailored in order for them to

better meet the requirements of the system.

• Identifying the requirements that the use of QoS will place on

applications.

For applications to make the most from the performance available

within a dynamic system it will need to be designed with

considerations for the constraints that are likely to be experienced

(periods of loss, publishers leaving unexpectedly, etc.). It is also

important to recognise, however, that where support for legacy

applications is required this may not be possible.

The work conducted in these areas will form a QoS framework for providing adaptive

applications with improved dependability in a dynamic system.

3.3.2 Research Constraints

The research conducted in this project will be subject to a set of constraints that will

influence the work carried out. These are found from two main sources; resource

3. Research Methodology & Technical Rationale - Research Constraints

89

constraints (time, equipment, etc.) and the need to ensure that the work is industrially

relevant.

The time constraints will mean that work will need to be focused and clear in its

purpose and scope. This will particularly affect, work on validating the proposed

solution through simulation and test-bed experimentation.

While dynamic systems such as those within the NEC project example are likely to

change over time with nodes moving in and out of range of each other the simulation

shall consider a single instance of such a system. This has the benefit of ensuring that

the simulation is also relevant to those system that while static during run time are not

predefine at design time and thus still benefit from the adaptive properties offered by

the QoS framework. The QoS framework as set forth in chapter 4 shall, however,

consider those systems that may vary in size during run-time. Future work (discussed

in section 8.2) shall consider that adaptations necessary to the simulation to include

this additional behaviour.

Extended development of the solution on a test-bed (for example, creating a fully

functional implementation) may be a valuable area of research in its own right,

however, for the purpose of this research the requirement would be that it provides

validation for the feasibility of the solution developed. Further constraints regarding the

test-bed implementation involve the choice of equipment. Where an existing,

industrially relevant, test-bed is available for use this would be the practical choice,

given the cost in terms of time and money in setting one up.

One of the key benefits of the Engineering Doctorate is that an industrial company are

involved throughout the project, helping to ensure that the work conducted is not just of

academic significance, but applicable to wider industry. One way that this is done is

through the provision of relevant case study systems. In the case of this project an

existing test-bed developed to emulate the Integrated Modular Avionics architecture is

available for use. As this is a relevant case study system already examined it seems

an appropriate choice as a platform for further experimentation.

3. Research Methodology & Technical Rationale - Research Constraints

90

Overall these constraints can be seen to help to focus the work and ensure that it is

industrially relevant.

3.3.3 Test Plan

To evaluate the proposed QoS framework a number of experiments must be conducted

that analyse the various features of the framework as they relate to the objectives. As

discussed in section 3.2.2, these will take the form of simulation and test-bed based

experimentation. Prior to this, however, it will first be necessary to validate the QoS

framework through simple manual worked examples that confirm that it functions in the

manner intended.

Scenarios of increasing complexity will be examined, starting with simple manual

examples (scenarios 1-3), extending these to include additional nodes and a more

complex arrangement of publishers and subscribers (scenarios 4-5), and finally

increasing system the complexity of network connections, and scale of nodes and

publishers/subscribers further still (scenarios 6-8). System topologies of 2, 3, 5, 10 and

15 nodes have been chosen as they show incremental increases in complexity, as the

number of potential network connections increases exponentially. The maximum

number of nodes examined has been chosen as 15 as this was judged to be enough to

establish a trend in simulation results. This examination of different scales of

complexity will allow the analysis of negotiation algorithm behaviour as it could be

expected in a wide range of systems. The further analysis of trends in the results

between these scenarios will give an indication of how the proposed QoS framework

can be expected to scale when faced with systems of even greater complexity.

3.3.3.1 Manual Worked Examples

The following examples demonstrate different aspects of the proposed QoS framework.

All use the system topology shown in Figure 19. This topology has been kept simple

as a more complex topology would be too time consuming and lengthy to be shown

step-by-step.

3. Research Methodology & Technical Rationale - Test Plan

91

Figure 19 - QoS Framework Manual Worked Example Topology

A set of example publisher and subscriber applications are needed to test the

framework. These are differentiated by the data type that they require or can provide.

Table 3, Table 4 and Table 5 contain the details of the example applications that are to

be used (where TBF refers to the Time Based Filtering QoS characteristic). These

have been based on data that could possibly be required within such systems as those

that shall result from the NEC project. Note that the derivation of the characteristics

used to describe applications shall be given in section 4.

Table 3 - Example Application 1: Video Stream

QoS Characteristics Value
Sample Size 150KB
TBFmin 40ms
TBFmax 50ms
TBFInterval 2ms
Reliability best-effort
Max Latency 150ms

Table 4 - Example Application 2: GPS Location Data

QoS Characteristics Value
Sample Size 15KB
TBFmin 100ms
TBFmax 500ms
TBFInterval 100ms
Reliability reliable
Max Latency 250ms

Table 5 - Example Application 3: Audio Stream

QoS Characteristics Value
Sample Size 25KB
TBFmin 25ms
TBFmax 125ms
TBFInterval 25ms
Reliability best-effort
Max Latency 100ms

Node 1 Node2

3. Research Methodology & Technical Rationale - Test Plan

92

Throughout the construction of the QoS framework where formulas are proposed,

these example applications shall be used to demonstrate their affect.

When examining the negotiation algorithm it will be necessary to consider a number of

different scenarios using the example topology and applications. The following

scenarios will be used to examine the different features of the negotiation algorithm,

starting with the simplest topology possible and then gradually adding more publishers

and subscribers to allow the demonstration of different negotiation outcomes.

Scenario 1 – A system containing 1 publisher and 1 subscriber.

Within this scenario a single publisher and subscriber are held on separate nodes.

Three different cases are examined; case 1a, publisher and subscriber QoS match

exactly, case 1b – publisher and subscriber QoS are different but compatible, and case

1c – publisher and subscriber QoS levels are incompatible.

Scenario 2 – A system containing 3 publishers and 5 subscribers, a new

subscriber is introduced

In this scenario 5 subscribers are held on node 1 and they have successfully been

matched to their appropriate publishers on node 2. A new subscriber is introduced for

which there are not adequate resources to accept it at the current levels of QoS. A

negotiation is then shown that degrades the performance of the necessary subscribers

as a means of accepting the new subscriber.

Scenario 3 - A system containing 3 publishers and 5 subscribers at their

minimum QoS levels, a new subscriber is introduced

In this scenario, again, 5 subscribers are held on node 1 and they have successfully

been matched to their appropriate publishers on node 2. A new subscriber is

introduced for which there are not adequate resources to accept it at the current levels

of QoS, however, this time current subscribers cannot be degraded any more without it

resulting in their removal.

3. Research Methodology & Technical Rationale - Test Plan

93

3.3.3.2 Simulation Experimentation

Offline Generated Scenarios

The first simulation experiments will repeat the manual worked examples from

scenarios 1, 2 and 3. This will verify that the simulation is performing in the manner

expected. Scenarios 4 and 5 will expand these tests to show the effect of the QoS

framework on systems with a greater number of nodes and publishers/subscribers.

This will serve to examine the behaviour of the different negotiation algorithms when

complex system configurations are required. Table 6 and Table 7 show the

characteristics of the corresponding scenarios. Figure 20 and Figure 21 show their

corresponding system topologies.

Table 6 - Scenario 4: System Characteristics

System Characteristic Value
Number of Nodes 3
Number of Publishers 15
Number of Subscribers 30
Number of Data Types 5

Table 7 - Scenario 5: System Characteristics

System Characteristic Value
Number of Nodes 5
Number of Publishers 40
Number of Subscribers 75
Number of Data Types 5

Figure 20 - QoS Framework Simulation Scenario 4 System Topology

Node 1

Node 2 Node 3

3. Research Methodology & Technical Rationale - Test Plan

94

Figure 21 - QoS Framework Simulation Scenario 5 System Topology

Pseudo Random System Topologies

Scenarios 6, 7 and 8 will extend the simulation further, with pseudo-randomly created

system topologies, publishers and subscribers forming a complex system. Subscribers

will be added to the system and measurements taken at intervals. These complex

scenarios will provide an idea of how the QoS framework performs under extreme load

and will expose its strengths and weaknesses. The number of nodes used for each

scenario was selected s it a judged that it would be a sufficient number to demonstrate

a steady progression of system complexity and allow for the establishing of trends in

behaviour.

Table 8 - Scenario 6: System Characteristics

System Characteristic Value
Number of Nodes 5
Number of Publishers 500
Number of Subscribers 800
Number of Data Types 20

Table 9 - Scenario 7: System Characteristics

System Characteristic Value
Number of Nodes 10
Number of Publishers 500
Number of Subscribers 2500
Number of Data Types 20

Node 1

Node 4 Node 5

Node 3 Node 2

3. Research Methodology & Technical Rationale - Test Plan

95

Table 10 - Scenario 8: System Characteristics

System Characteristic Value
Number of Nodes 15
Number of Publishers 500
Number of Subscribers 2500
Number of Data Types 20

Scenario 9, finally, will examine the benefits and drawbacks of having finer grained

levels of QoS, using the system topology established in scenario 8. Nine different

sizes of QoS intervals shall be tested and compared in terms of system utility, stability

and resource utilisation. These QoS interval sizes will range from the smallest to the

largest possible within the simulation parameters. Precise details of the QoS intervals

used will be given within section 5.6.1 so as to allow for their discussion in context with

other simulation parameters used.

The three main criteria being examined are the effect of the QoS framework (and

specifically the proposed negotiation algorithm) on system utilisation, system stability

and scalability.

§ System Utilisation

The utilisation of the system can be measured in two ways, the total reward

gained from subscribers within the system and the network resources

utilised.

§ System Stability

The stability of the system will be judged by the number of subscribers that

are interrupted (stopped) once running. It is assumed that the reduction in

QoS levels of running subscribers is expected by the application and

therefore does not affect system stability.

§ Scalability

The scalability of the negotiation algorithms will be assessed by examining

the execution time taken by each algorithm.

3. Research Methodology & Technical Rationale - Test Plan

96

3.3.3.3 Test-Bed Based Implementation

To verify that the implementation created as part of the test-bed based feasibility study

is functioning as expected the manual examples specified in 3.3.3.1 shall be replicated.

These will examine its ability to match or reject publishers and subscribers

appropriately and to flexibly negotiate resource usage when accepting a new

subscriber that it may not otherwise be possible to accept given resource constraints.

Scenarios 1, 2 and 3 shall be replicated here.

3.4 Summary

This chapter has detailed the approach that shall be taken to address the research

problems identified in the literature review. A constructive research approach shall be

taken, creating a QoS framework. This shall then be tested using the largely positivist

approaches of simulation and test-bed based experimentation.

The technical approach planned has been shown; detailing the work proposed creating

a Quality of Service framework that specifies QoS characteristics and negotiation

algorithm for future dynamic systems. The constraints of resources and industrial

influence and the affect that they will have on the work produced have been discussed.

The test plan has detailed the various example applications and scenarios that will be

used to examine the QoS framework during derivation, simulation and test-bed based

experimentation. These scenarios have been chosen to represent a variety of different

system scales and complexities. While further scenarios could have extended these

factors further it was considered that the scenarios presented here were adequate to

show any major trends or patterns in the performance of the QoS negotiation algorithm.

4. Proposed Quality of Service Framework

97

4 Proposed Quality of Service Framework

4.1 Introduction

To address the primary issue of a lack of support for dependable behaviour in dynamic

systems, found through the literature review, a Quality of Service framework is

proposed. A framework, as considered here, is defined as “a supporting structure

around which something can be built” or “a system of rules, ideas or beliefs that is used

to plan or decide something” (Cambridge University Press 2011). Following from this

the QoS framework shall be designed in a way that provides a structure and rules for a

system that when implemented will provide features that support dependable

communication in future dynamic systems. The framework shall therefore, as far as

possible, remain platform-independent, while using the influence of industrial systems

examined in the literature review to ensure that it is relevant to the requirements of

such systems. A high level structure is given that can be adapted to suit the needs of a

specific system implementation. Given that the industrial systems considered during

the literature review are largely still in development their final details are yet to be

decided, so reasonable assumptions will have to be made. Where this is the case it

will be stated as such.

To begin to develop the framework, appropriate high-level QoS elements need to be

selected. As shown in section 2.4, Figure 15 - Levels of QoS Integration , there are

many different elements, at varying levels (application, middleware, component, OS

and network) within a system, that could be included for the system to be considered

QoS aware. The selection of these is also important so as to set the scope of this

work. As this work is taking a Systems Engineering approach, it follows that it would

be appropriate to select QoS elements concerned with high level co-ordination, often

found at the application or middleware levels.

Current approaches to system configuration (and resource allocation) within the

systems examined through the literature review have not been designed with dynamic

behaviour in mind and this could form a major barrier. For a system to be capable of

run-time reconfiguration and reallocation of resources a negotiation must take place

between the publishers and subscribers of data. This negotiation algorithm will be

required to search for a set of publisher/subscriber matches to form a system

configuration that maximises the utility of the system, given a set of resource

4. Proposed Quality of Service Framework

98

constraints. The utility of the system will be judged from the point of view of the end

user, as a system that performs well at a technical level, but not from the perspective of

a user will likely have failed in its objectives.

Considering the NEC example given in section 2.2.1, such a system could potentially

be reconfiguring on a frequent basis as new nodes enter or leave and with only a small

window of opportunity for communication (for example if a vehicle is passing briefly

within range, relaying data). It could also be foreseeable that as the scale of the

system increases pursuing the optimal system configuration could become prohibitively

costly in terms of computational time required. These factors mean that there are

additional objectives of keeping the QoS negotiation process simple and stable.

Given the changing scale and dynamic nature of future-systems such as those within

the NEC project, a major resource constraint likely to be experienced is that of the

communication bandwidth. This shall therefore be the focus of the QoS negotiation

process. Before any QoS negotiation can take place, however, a set of QoS

characteristics, with which to negotiate, are necessary.

Two major, high-level, elements of QoS have thus been selected to form the basis of

the QoS framework; QoS characteristic definition and QoS negotiation.

4.2 QoS Characteristic Definition

4.2.1 QoS Characteristic Requirements

To select or define a set of QoS characteristics with which to use for negotiation it is

necessary to first define what system properties they will need to reflect. To this end

there are two main areas identified.

• Firstly the use of network resources has already been highlighted through

discussion as being of high importance for dynamic systems. The QoS

characteristic set should therefore aim to describe the demands that an

application will place on the network.

4. Proposed Quality of Service Framework - QoS Characteristic Definition

99

• Secondly to allow for the unknown and changing topology of dynamic systems

there should be some provisioning within the QoS characteristic set for

flexibility.

4.2.2 QoS Characteristic Selection & Proposed QoS Characteristic
Set

When considering what characteristics would be appropriate for the QoS framework,

given the previous requirements, it would be useful to see if support for such

characteristics exists within an appropriate existing standard. Through the literature

review, DDS was identified as a software architecture standard with support for some

QoS functionality and as such has a set of QoS characteristics defined. From this QoS

set a subset can be identified that will have the greatest impact on network utilisation

and application performance in systems with a varying network quality and topology.

These characteristics are; Reliability, Time Based Filter, and Latency Budget. As the

exact purpose of QoS characteristics as defined by the DDS standard is somewhat

open to interpretation some assumptions must be made as to their use.

To take these characteristics from the point of view of a subscribing application first

they can be interpreted as follows:

• The Reliability (R) characteristic sets whether a subscriber requires "reliable" or

"best effort" communication, where "reliable" means that corrupt or missing data

samples will be retransmitted (provided they are within their allowed Latency).

• The Time Based Filter (TBF) characteristic is set by the subscriber as a means

of controlling data sample rates. The gap between sample arrival times is given

in milliseconds. The middleware filters available data samples so that they do

not violate the subscribers QoS levels. An illustration of how time based

filtering works is given in Figure 22.

• The Latency Budget (L), referred to as simply Latency beyond this, is the time

allowed from the creation of a data sample at the publisher to the time received

at the subscriber. If a sample is received beyond this then it is no longer of use

to the subscriber and should therefore be discarded.

From the publishers perspective these characteristics are interpreted as follows:

4. Proposed Quality of Service Framework - QoS Characteristic Definition

100

• The Reliability (R) characteristic sets whether a publisher is capable of

providing "reliable" or "best effort" communication. For reliable communication

to be possible the publisher must be able to store a range of data samples

within its history so that samples are still stored while inside the latency allowed

by the subscriber.

• The Time Based Filter (TBF) characteristic is in this instance set by the

publisher as a means of specifying the minimum time interval possible between

generating data samples (i.e. the maximum sample rate).

Figure 22 - Time Based Filtering

Note that the latency characteristic is unique to the subscriber and whether or not it can

be fulfilled is found as a property of the network.

There are other DDS QoS characteristics that could potentially have been selected.

The “Resource Limits” characteristic would seem ideal for a negotiation that primarily

involves resource allocation. This characteristic is set in order to control the resources

that a publisher can use in order to meet the subscriber requirements. This

characteristic is not descriptive enough, however, for the negotiation process. It is

much more useful to know what the subscriber requires from the data being published

to it (e.g. sample rate, reliability and latency) and then to find the resource limits from

this. A second characteristic that could also seem to be suited is “Transport Priority”.

Publisher

Subscriber

D
at

a
S

am
pl

e
G

en
er

at
ed

D
at

a
S

am
pl

e
G

en
er

at
ed

D
at

a
S

am
pl

e
G

en
er

at
ed

D
at

a
S

am
pl

e
G

en
er

at
ed

D
at

a
S

am
pl

e
G

en
er

at
ed

D
at

a
S

am
pl

e
G

en
er

at
ed

Time
Interval

D
at

a
S

am
pl

e
R

eq
ui

re
d

D
at

a
S

am
pl

e
R

eq
ui

re
d

D
at

a
S

am
pl

e
R

eq
ui

re
d

Time Based
Filtering Value

Data Sample Sent
by Middleware

4. Proposed Quality of Service Framework - QoS Characteristic Definition

101

A discussion of how a similar value can be found through those characteristics selected

and why “Transport Priority” on its own may not be the best choice follows in section

4.3.

These characteristics form the basis of a means of matching subscribers and

publishers based on their performance requirements and abilities. To move beyond

compatibility matching, however, to true negotiation of resources, a flexibility in QoS

requirements is needed. This means that, where possible, an application should

provide a range of performance criteria within which it could function. As discussed in

the literature review, Abdelzaher et al. (2000) give an example of using application

developer specified QoS levels. This allows the application a number of predefined

levels of operation.

For a greater degree of flexibility over predefined QoS levels, however, and to reduce

the overhead of transmitting what could be a high number of QoS levels, the framework

shall instead use minimum, maximum and interval values. QoS levels therefore occur

at every interval between the minimum and maximum. The interval value allows the

developer to control the number of levels possible and can be used to specify the

sensitivity of the application, decreasing unnecessary network load where possible.

For this purpose the TBF subscriber QoS characteristic shall be specified with a

minimum, maximum and interval value.

A key QoS characteristic necessary for defining network resource usage is that of the

data sample size (S) offered by a publisher, and for this work assumed to be directly

related to the data type requested. This QoS characteristic is not present in the current

DDS set and is therefore a major limitation for supporting dependable behaviour. It is

assumed that the sample size is fixed for a given publisher and known globally through

its definition in a data dictionary, though for the examples within this work it shall be

explicitly stated within the publisher QoS set for clarity.

4. Proposed Quality of Service Framework - Value Function

102

4.3 Value Function

In addition to the definition of QoS characteristics, there is a need for a common

understanding of the level of importance that a subscribing application has within the

system. If all applications were viewed as having an equal importance then the

negotiation of resources would have to focus purely on the number of subscribers in

the system, maintaining this at a set level, depending on the system requirements. In

reality, however, as the future dynamic systems considered here are composed of

many different types of nodes or users it is very likely that some applications will carry

a greater weight than others (mission or safety critical applications for example). It

could also, however, be foreseeable that a developer may erroneously view the

importance of their application as higher or lower than is consistent with other

applications in the system so there needs to be some method of addressing this issue.

As the dynamic behaviour and scale of a system increases the use of a human system

for verifying QoS properties becomes increasingly impractical. It is not reasonable to

expect that any individual or group will be able to take into account every type of

application running in every configuration of the system when assigning priorities.

Solely using a formulaic approach to calculating a services value may, however, not

truly reflect the importance of an application as this is found from the result as viewed

by the end user, not the level of resources it takes to complete it. Combining a

calculated value with a developer-defined priority found from a set of subjective

guidelines could potentially provide a solution.

Burns et al. (2000) also suggest calculating value both offline and online. Online

analysis amends the reward value based on the performance of the network. A

subscriber may have a high priority but if the actual performance it receives falls short

of the ideal then its value will be decreased.

4.3.1 Offline Value Function

A discussion of methods available for calculating the value of a service is given in

section 2.4.2.2. Value-based scheduling, proposed by Burns et al. (2000) and

stochastic game theory, discussed by Goeree & Holt (1999), were presented as

4. Proposed Quality of Service Framework - Value Function

103

potential options for supporting the calculation of value. Only the value-based

scheduling approach, however, provided any real effort towards the actual calculation

of value. Stochastic game theory could potentially be useful if the system is found to

contain bias once it is up and running. For the purposes of this framework, however,

the application of lessons learnt by the value-based scheduling approach shall be

investigated further.

Value-based scheduling is designed for scheduling processes within an on-board real-

time system but the approach would seem to be applicable for inter-platform

communication. Where the approach differs to that which is necessary for this work is

that it focuses on the selection of service fulfilment from a known set of alternatives

(e.g. the service could require a collision avoidance mechanism and the choice could

be between an infra-red beam deflection and RADAR). It is assumed for the

framework that a subscriber will have one possible data type required from a publisher.

Publishers of this data type may vary in their Time Based Filtering (TBF) value or

reliability but the data received (and sample size) will always be of the expected format.

When deciding on a value function for the framework it is necessary to make

assumptions about the properties that a service of high priority would have. For the

purposes of this work a service could be said to be more important if it requires a low

latency, high rate of data samples and reliable transmission. A function is therefore

required that weights these attributes accordingly. The exact weighting will vary

between systems and a very general case has been assumed here. As there is an

inherent value to running a subscriber, regardless of where within its range of QoS

levels it is performing, an additional acceptance bonus is given. For the purposes of

this example the bonus is equal to twice the value of the subscriber at its minimum

QoS level so as to provide a significant minimum reward (and thus weight the system

towards having a larger number of serviced subscribers). Note also that as the sample

size does not directly relate to the importance of the data that is being transmitted this

shall not be included within the value function. Given, however, that two subscribers

with an equal calculated reward could potentially have vastly different resource

requirements it may be beneficial to take this into account using the penalty (assigning

a greater penalty to the application requiring fewer resources). This is an

implementation specific issue and is an indication of the types of issues that will need

to be dealt with when implementing the QoS framework within actual system.

4. Proposed Quality of Service Framework - Value Function

104

Given that the TBF value specifies in milliseconds the amount of time between data

samples, the sample rate (U) is found in equation (2).

𝑈 =
1000
𝑇𝐵𝐹

 (2)

It is assumed that the value of the latency (L) is linear and will affect each of the data

samples. The reliability (R) is weighted as differently for 'best effort' and 'reliable'

communications, with exact values being system dependant. As a calculation using

these variables will likely result in a non-integer value in a large number of cases a

weighting k shall be used to increase the size of the reward into an integer range and

to aid with clarity. Given these assumptions the value (V) of a service shall be

calculated using equation (3).

𝑉 = k ∗ (2 ∗ (𝑅 ∗
𝑈!"#
𝐿

) + 𝑅 ∗
𝑈
𝐿
) (3)

Placing exact values on the preference between reliable and best effort service in a

real system requires extensive evaluation of the applications that will run within. For

this example and for further work it is assumed that a service requiring reliable

communication will be of a value at least great enough to justify its resource usage.

This is discussed further in sub-section 4.3.3.

4.3.1.1 Worked Example

To demonstrate the outcome of the algorithms within section 4.3, and in accordance

with the test plan, a series of worked examples are given. The following example

applications were presented in the test plan (section 3.3.3) and will be used for each of

the ‘Worked Example’ subsections within section 4.3. Note that the reward value

calculated here has no inherent unit, similarly as a priority would not be expected to

have a unit type.

4. Proposed Quality of Service Framework - Value Function

105

System Settings

Variables Value
k 10000
Best-Effort’ Reliability (R) weighting 1
‘Reliable’ Reliability (R) weighting 3

Example Application 1: High Quality Video Stream

QoS Characteristics Value
Sample Size (S) 150KB
TBFmin 40ms
TBFmax 50ms
TBFinterval 2ms
Reliability (R) best-effort
Latency (L) 150ms

Umin = 1000/TBFmax = 20 samples/second

Umax = 1000/TBFmin = 25 samples/second

Vmin = 10000*(2*(1*(20/150))+1*(20/150)) = 4000

Vmax = 10000*(2*(1*(20/150))+1*(25/150)) = 4333.33

Example Application 2: GPS Location Data

QoS Characteristics Value
Sample Size (S) 15KB
TBFmin 100ms
TBFmax 500ms
TBFinterval 100ms
Reliability (R) reliable
Latency (L) 250ms

Umin = 1000/TBFmax = 2 samples/second

Umax = 1000/TBFmin = 10 samples/second

Vmin = 10000*(2*(3*(2/250))+3*(2/250)) = 720

Vmax = 10000*(2*(3*(2/250))+3*(10/250)) = 1680

4. Proposed Quality of Service Framework - Value Function

106

Example Application 3: Audio Stream

QoS Characteristics Value
Sample Size (S) 25KB
TBFmin 25ms
TBFmax 125ms
TBFinterval 25ms
Reliability (R) best-effort
Latency (L) 100ms

Umin = 1000/TBFmax = 8 samples/second

Umax = 1000/TBFmin = 40 samples/second

Vmin = 10000*(2*(1*(8/100))+1*(8/100)) = 2400

Vmax = 10000*(2*(1*(8/100))+1*(40/100)) = 5600

4.3.2 Online Value Function

As discussed in section 2.4.2.2, equation (1) has been presented by Burns et al (2000)

as an offline value function, but where performance allows it could actually be used to

update the value of a subscriber online.

C = 𝑎𝒫! − 𝑧𝒫! − 𝑓𝒫! (1)

Observed values for a publisher instance are recorded for the number of timely and

accurate data sample transmissions (a) the number of transmissions which did not

meet the latency allowed (z), and the number of timely but inaccurate transmissions (f).

The values recorded for the different outcomes are based on an assigned weighting.

These values help to give an indication of the actual reward possible given real network

conditions. Given that 𝒫! is the probability of a occurring, 𝒫!is the probability of z

occurring and 𝒫! is the probability of f occurring, (1) is an option for an online value

function.

Equation (1) results in a reward value composed of the values assigned to accurate,

inaccurate and untimely data samples. Considering the offline value calculation,

equation (3), a more appropriate online value calculation is required for the framework.

4. Proposed Quality of Service Framework - Value Function

107

Assuming that those data samples that missed their latency (z) are of no use to the

subscriber, no reward should be associated with these. For those subscribers matched

with publishers providing them “reliable” communication samples that are received in

time but are inaccurate (f) could still be of use if received correctly upon retransmission

(assuming that these samples are not counted again once correctly received). It is

therefore reasonable to assume that a weighting (w) of between 0 and 1 can be applied

to the probability 𝒫!. If the reward value received when there are no errors in

transmission is V then an equation for calculating the online value (C) for the

framework can be found in (4).

4.3.2.1 Worked Example

For the following examples it is assumed that the maximum QoS level has been

accepted. The numbers of timely and accurate data sample transmissions (a) and

timely but inaccurate samples (f) are given. When the application is using 'reliable'

communication a weighting (w) of 0.5 is given for timely but inaccurate samples. An

online value calculation is given after the publisher has been transmitting for 30

seconds.

Example Application 1: High Quality Video Stream

QoS Characteristics Value
Sample Size (S) 150KB
TBFmin 40ms
TBFmax 50ms
TBFinterval 2ms
Reliability (R) best-effort
Latency (L) 150ms

Calculated Values Value
Min Sample Rate (Umin) 20 samples/second
Max Sample Rate (Umax) 25 samples/second
Minimum Reward (Vmin) 4000
Maximum Reward (Vmax) 4333.33

a = 600

f = 20

𝐶 = 𝑉 ∗ (𝒫! + 𝑤𝒫!) (4)

4. Proposed Quality of Service Framework - Value Function

108

𝒫! = 600/750 = 0.8

𝒫! = 20/750 = 0.027

C = 4333.33

V = 4333.33*(0.8+(0*0.027)) = 3466.66

Example Application 2: GPS Location Data

QoS Characteristics Value
Sample Size (S) 15KB
TBFmin 100ms
TBFmax 500ms
TBFinterval 100ms
Reliability (R) reliable
Latency (L) 250ms

Calculated Values Value
Min Sample Rate (Umin) 2 samples/second
Max Sample Rate (Umax) 10 samples/second
Minimum Reward (Vmin) 720
Maximum Reward (Vmax) 1680

a = 274

f = 15

𝒫! = 274/300 = 0.913

𝒫! = 15/300 = 0.05

C = 1680

V = 1680*(0.913+(0.5*0.05)) = 1575.84

Example Application 3: Low Quality Audio Stream

QoS Characteristics Value
Sample Size (S) 25KB
TBFmin 25ms
TBFmax 125ms
TBFinterval 25ms
Reliability (R) best-effort
Latency (L) 100ms

4. Proposed Quality of Service Framework - Value Function

109

Calculated Values Value
Min Sample Rate (Umin) 8 samples/second
Max Sample Rate (Umax) 40 samples/second
Minimum Reward (Vmin) 2400
Maximum Reward (Vmax) 5600

a = 350

f = 200

𝒫! = 350/1200 = 0.29

𝒫! = 200/1200 = 0.17

C = 5600

V = 5600*(0.29+(0 *0.17)) = 1624

4.3.3 Resource Allocation

When considering the assignment of value to a reliable service it is also necessary to

consider the allocation of resources. Given the previous assumption that a service

requiring reliable communication would intrinsically be of a higher value than one

requiring only best effort performance, the reward value assigned for fulfilling the

service must be enough to justify its acceptance into the system.

Network resource usage is based on the size (S) and frequency (U) of samples

transmitted. As previously discussed, these two parameters are contained within the

publisher and subscriber QoS sets. This assumes that any header overhead is

included in the sample size. It also assumes, however, that either samples are

transmitted with no loss or the application can tolerate errors in transmission. The

standard formula for calculating resources used (D), is thus:

D = 𝑈 ∗ 𝑆 (3)

If communication is to be as close to reliable as is possible in a real world system,

where errors can occur, then the process for retransmitting missed data samples

should take every opportunity to correct errors.

4. Proposed Quality of Service Framework - Resource Allocation

110

As previously noted the proposed framework is taking influence from the DDS standard

and as such the retransmission behaviour of the OMG Real-Time Publish Subscribe

(RTPS) wire protocol (2009) would be an appropriate policy to follow.

The DDS specification uses a heartbeat message, sent periodically from a publisher to

its subscribers, to check firstly that the subscriber is still there and secondly that it is

receiving the data samples sent. The RTPS protocol uses two methods of determining

when retransmission needs to occur. These methods are ACKNACK or NACKFrag.

The ACKNACK message is used to both positively and negatively acknowledge the

receipt of data samples. The message acknowledges all samples up to and including

the lowest sample number sent as part of a sample number set. This message is also

interpreted as a negative acknowledgement (or request) for those samples whose

number appears explicitly in the set.

The NACKFrag message differs to the ACKNACK message in that it is only used for

negative acknowledgements. Samples can also be negatively acknowledged in any

order. Additionally, data can be separated into fragments to overcome transport

message size limitations. For the purposes of this work and for simplification, however,

it is assumed that data samples can be contained within a single fragment.

The positive and negative acknowledgements of the ACKNACK method make it most

suitable for dependable systems, as NACKFRAG messages could be lost and the

publisher might not find out in time if a sample went missing. As the exact resource

reservation method used is not a primary focus of this project a worst-case approach

shall be taken. This approach is potentially pessimistic and inefficient and future work

in this area could help to reduce the amount of unused reserved bandwidth.

Considering the worst-case scenario where samples are always required to be

retransmitted then the number of additional samples transmitted (B) can be calculated

based on the maximum number of data samples that are still within their latency budget

(latency/TBF) and the number of heartbeat messages sent per second (H). This

formula is thus given in (4).

4. Proposed Quality of Service Framework - Resource Allocation

111

B = 𝐻
𝑙𝑎𝑡𝑒𝑛𝑐𝑦
𝑇𝐵𝐹

 (4)

The full formula for calculating resource use is thus:

D = (𝑈 + 𝐵) ∗ 𝑆 (5)

While it may be that a high frequency of heartbeat messages would allow the maximum

chance for samples to be retransmitted this will need to be limited. A high heartbeat

rate would increase the overhead of communication and consume additional

processing and communication time. It would also require the reservation of additional

resources for possible retransmissions.

Resources reserved for possible retransmission could potentially be used as a second

class of resource available for negotiation by other subscribers that can tolerate

sudden drops in service as these resources are claimed for retransmission purposes.

For the purpose of this research project, however, reserved resources shall remain

untouched by other subscribers.

4.3.3.1 Worked Example

For these examples it is assumed that heartbeat messages are sent at a rate of 2 per

second, thus giving applications 2 opportunities to declare any missing samples.

Example Application 1: High Quality Video Stream

QoS Characteristics Value
Sample Size (S) 150KB
TBFmin 40ms
TBFmax 50ms
TBFinterval 2ms
Reliability (R) best-effort
Latency (L) 150ms

4. Proposed Quality of Service Framework - Resource Allocation

112

Calculated Values Value
Umin 20 samples/second
Umax 25 samples/second
Vmin 4000
Vmax 4333.33

D = 25*150 = 3750KB/s

Example Application 2: GPS Location Data

QoS Characteristics Value
Sample Size (S) 15KB
TBFmin 100ms
TBFmax 500ms
TBFinterval 100ms
Reliability (R) reliable
Latency (L) 250ms

Calculated Values Value
Umin 2 samples/second
Umax 10 samples/second
Vmin 720
Vmax 1680

B = 2*(250/100) = 5 samples

D = (10+5)*15 = 225KB/s

Example Application 3: Low Quality Audio Stream

QoS Characteristics Value
Sample Size (S) 25KB
TBFmin 25ms
TBFmax 125ms
TBFinterval 25ms
Reliability (R) best-effort
Latency (L) 100ms

Calculated Values Value
Umin 8 samples/second
Umax 40 samples/second
Vmin 2400
Vmax 5600

D = 40*25 = 1000KB/s

4. Proposed Quality of Service Framework - QoS Negotiation Algorithm

113

4.4 QoS Negotiation Algorithm

To ensure that resources within a dynamic system are being best utilised in any given

state and to provide assurance of dependability beyond that of any best-effort method

QoS negotiation must take place.

4.4.1 Choice of QoS Negotiation Algorithm and Adaptations
Necessary

Through section 2.4.2.1 of the literature review priority-based and distributed QoS

optimisation protocol based methods of QoS negotiation were found to be capable of

offering improvements to the allocation of resources and general utility of the system

over the currently employed compatibility testing. Considering the issues of objectivity

discussed in relation to the assignment of priority values the distributed QoS

optimisation protocol can be seen to support both the objective and subjective

assignments of value through their specification as reward (for subscriber acceptance)

and penalty (for subscriber rejection) respectively. The reward shall thus be calculated

using the objective value functions previously derived, and the penalty shall be

assigned by the developer. While priority based negotiation would likely be

computationally simpler than the distributed QoS optimisation protocol it lacks flexibility

in terms of negotiation between levels of QoS and does not provide a clear solution to

the issues of objectivity in value assignments.

The existing distributed QoS optimisation protocol was designed for use in real-time

systems that, while capable of the dynamic run-time recomposition of services, were

based on statically defined service priorities and known resources, on-board a single

node. This algorithm will therefore need several adaptations in order for it to be

suitable for the future dynamic systems of consideration here.

The most fundamental adaptation of the algorithm necessary is the idea that

negotiation takes place between different QoS levels of subscribing applications, rather

than the selection of alternative applications capable of providing the same data but

with different accuracies.

4. Proposed Quality of Service Framework - QoS Negotiation Algorithm

114

Extending this algorithm to negotiate for publisher/subscriber matches between

different nodes means placing a much heavier reliance on the ability of the negotiation

algorithm to cope with varying resources. Given that the algorithm will now potentially

have to deal with choosing between different network links in order to successfully find

a publisher match, guidance is needed as to which network links will be preferred.

For the purposes of this work preference shall be given to wired links, as when

compared to wireless links they are less prone to interference and any connected

nodes are likely to be less mobile. Preference is also given to those publishers on

nodes that have the highest level of free resources. This is a coarsely grained set of

parameters and actual implementations may use other network properties such as

known latency, number of hops in link, etc. A simple set has been chosen for this

example to simplify illustration and to fit the parameters available for later simulation.

In the original negotiation algorithm when the least drop in reward comes from the

removal of a service then this is done and, providing there are now adequate

resources, the new service is accepted. It could be, however, that before the

negotiation reached the point of removing a service that several others had their QoS

levels degraded. When removing a service completely, however, the resources now

available may mean that the system is not just able to accept the new subscriber, but

that some of those services already degraded could have their previous QoS levels

reinstated. To check if this is the case when a service is removed from the system

during negotiation all other services should be increased to their maximum QoS levels

and the negotiation process should continue from there.

Note that it will also be necessary to employ QoS management to ensure that the

agreed levels of QoS are being met. If QoS is not being met then the resources

available should be recalculated and the list of serviced subscribers renegotiated.

4.4.2 Proposed QoS Negotiation Algorithm

The negotiation algorithm is expected to be contained on middleware on each node

within the system and is triggered on receipt of a new subscriber request or a change

in resource availability. A step-by-step overview of the negotiation algorithm follows:

4. Proposed Quality of Service Framework - QoS Negotiation Algorithm

115

1. Generate list of potential publisher matches, ensuring that QoS levels are

compatible.

2. Sort this list based on the criteria defined (i.e. in preference first of local

publishers, secondly by the type of network connection, giving preference to

wired links, and thirdly by network resources available).

3. Starting with the first (and most preferred) publisher, send request for service

and wait for response.

4. The middleware on the node receiving the request will then begin the

negotiation process, compiling a new list of serviced subscribers containing the

newly requested subscriber at its maximum QoS level.

5. The middleware then checks to see if there are adequate resources to accept

this new list of serviced subscribers. If there is then a positive response is sent

to the subscriber and publisher data begins to be sent. If there are not

adequate resources then the middleware begins to negotiate the levels of QoS

provided.

6. The new list of serviced subscribers is examined to see which subscriber, when

reduced to its next QoS level will result in the least drop in reward. This

subscriber is then degraded (within the newly proposed serviced subscriber list)

and the middleware checks the new level of resource usage. This step

continues until there are adequate resources to service the subscribers. It may

be that the lowest drop in reward will come from the complete removal of a

subscriber, in this case the subscribers penalty should be taken into

consideration (i.e. the drop in reward for removing the subscriber equals the

current reward level plus the penalty). This helps to ensure general system

stability, and that the developer’s preferences are taken into account.

7. If the overall system reward is greater than or equal to the previous total reward

then the proposed list of serviced subscribers is accepted. Note that this does

not necessarily mean that the subscriber has been accepted and so this should

be explicitly checked. If the level of reward has decreased, then the

middleware checks to see if the penalty for the rejection of the subscriber is

greater than the decrease in reward. If it is then the subscriber is still accepted.

If not then the subscriber is rejected and, where possible, the next compatible

publisher is checked.

Should a request or requests be received while a negotiation is taking place it would be

expected that this would complete before dealing with any new requests, however, this

4. Proposed Quality of Service Framework - QoS Negotiation Algorithm

116

is an implementation specific decision. Additionally if multiple new requests are

queued it would be expected that these would be dealt with together, adding them all to

the proposed list of new subscribers that is to be negotiated.

If multiple compatible publishers offering equal QoS levels are found for a subscriber

then the middleware will compare the network links used to reach the publishers. If

these are again found to be equal through whatever methods are used then the

middleware will randomly choose a publisher to use. This will help to fairly distribute

the network load throughout the system.

The pseudo-code in Figure 23 summarises the basic structure of the framework

algorithm as it could be implemented for a dynamic distributed system. It is assumed

for this example that a matching on-board publisher is not available and therefore a

match will be searched for on those nodes connected via network links.

4. Proposed Quality of Service Framework - QoS Negotiation Algorithm

117

Figure 23 - Quality of Service Negotiation Algorithm Pseudo Code

The example pseudo code given here is intended as guidance only for the

implementation of the negotiation algorithm. It is expected that the properties of the

system for which it is implemented will be taken into account and adjustments made

where necessary. Further discussion of the different modules within the QoS

framework that could be adapted based on implementation requirements is given in

section 4.5.

FOR each connected node
 FOR each publisher on connected node
 IF publisher reliability >= new subscriber reliability
 IF publisher TBF <= new subscriber TBF
 Add publisher to list of potential publishers
 END
 END
 ENDFOR
ENDFOR

Sort list of potential publishers by network link type (wired first)
and then by free resources on link

FOR each publisher in list of potential publishers
 Compile list containing new subscriber and all current
subscribers using network link
 Calculate resources required, new subscriber at max QoS levels
 WHILE resources available < resources required
 FOR each subscriber using link
 degraded TBF = current TBF + TBF interval
 IF degraded TBF > maximum TBF
 subscriber must be removed
 reward decrease = current subscriber reward
 ELSE
 calculate new reward
 reward decrease = old reward - new reward
 END
 IF reward decrease < current lowest reward decrease
 Note subscriber with lowest reward decrease
 END
 ENDFOR
 Remove or degrade subscriber with lowest reward decrease
 Calculate resources available
 ENDWHILE
 Calculate new system reward
 IF new system reward > old system reward
 Accept new system configuration, end search
 ELSEIF (old system reward - new system reward) > subscriber
 penalty
 Accept new system configuration, end search
 ELSE
 Do not accept new system configuration
ENDFOR

4. Proposed Quality of Service Framework - Worked Examples

118

4.4.3 Worked Examples

The following system scenarios demonstrate different aspects of the negotiation

algorithm proposed here. The examples shown here all use a two node topology, as

shown in Figure 19 within the test plan. Where network resource limitations are to be

considered the total bandwidth available will be given. Note that this may change

between examples.

Scenario 1 - 1 Publisher/1 Subscriber

Scenario 1 is separated into three sections showing the different ways in which a

publisher and subscriber could be matched. For these examples it is assumed that

where a publisher/subscriber match is possible adequate resources exist to support

this.

Scenario 1a - Exact QoS Match

For this example the publisher and subscriber have identical QoS specifications

meaning that the subscriber can be accepted at its highest QoS level.

Node 1 - Subscribers

Su
bs

cr
ib

er

N
o.

D
at

a
Ty

pe

TB
Fm

in

TB
Fm

ax

TB
F

In
te

rv
al

R
el

ia
bi

lit
y

M
ax

La

te
nc

y

M
in

 R
ew

ar
d

M
ax

R

ew
ar

d

Pe
na

lty

1 1 40ms 50ms 2ms Best-
effort

150ms 4000 4333.33 0

Node 2 - Publishers

Pu
bl

is
he

r
N

o.

D
at

a
Ty

pe

Sa
m

pl
e

Si
ze

TB
Fm

in

R
el

ia
bi

lit
y

1 1 150KB 40ms Best-effort

4. Proposed Quality of Service Framework - Worked Examples

119

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 40ms Best-effort 4333.33 3750KB/s

Scenario 1b - Different but Compatible Levels of QoS

For this scenario the publisher and subscriber have different QoS specifications,

specifically the TBFmin of the publisher does not meet the TBFmin specified by the

subscriber. The publisher TBFmin is, however, below the subscriber TBFmax, so the

subscriber can still be accepted, meaning that the sample rate will be slower than the

maximum that the subscriber is capable of making use of, but still above its minimum.

The accepted TBF value is thus set at the publishers TBFmin.

Node 1 - Subscribers

Su
bs

cr
ib

er

N
o.

D
at

a
Ty

pe

TB
Fm

in

TB
Fm

ax

TB
F

In
te

rv
al

R
el

ia
bi

lit
y

M
ax

La

te
nc

y

M
in

 R
ew

ar
d

M
ax

R

ew
ar

d

Pe
na

lty

1 1 40ms 50ms 2ms Best-
effort

150ms 4000 4333.3
3

0

Node 2 - Publishers

Pu
bl

is
he

r
N

o.

D
at

a
Ty

pe

Sa
m

pl
e

Si
ze

TB
Fm

in

R
el

ia
bi

lit
y

2 1 150KB 44ms Best-effort

4. Proposed Quality of Service Framework - Worked Examples

120

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 44ms Best-effort 4181.82 3409KB/s

Scenario 1c - Incompatible Levels of QoS

For this scenario the publisher matches the data type required by the subscriber, but

the publisher TBFmin is greater than the subscriber TBFmax and therefore the match

cannot be accepted.

Node 1 - Subscribers

Su
bs

cr
ib

er

N
o.

D
at

a
Ty

pe

TB
Fm

in

TB
Fm

ax

TB
F

In
te

rv
al

R
el

ia
bi

lit
y

M
ax

La

te
nc

y

M
in

 R
ew

ar
d

M
ax

R

ew
ar

d

Pe
na

lty

1 1 40ms 50ms 2ms Best-
effort

150ms 4000 4333.3
3

0

Node 2 - Publishers

Pu
bl

is
he

r
N

o.

D
at

a
Ty

pe

Sa
m

pl
e

Si
ze

TB
Fm

in

R
el

ia
bi

lit
y

1 1 150KB 55ms Best-effort

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

N/A N/A N/A N/A N/A N/A

4. Proposed Quality of Service Framework - Worked Examples

121

The simulation has successfully recognised that the QoS levels are incompatible and a

match has not been found.

Scenario 2 - 3 Publishers/5 Subscribers + 1 New Subscriber

For this scenario five subscribers are currently being serviced within the system and a

sixth subscriber is added, requiring the renegotiation of QoS levels. The network

bandwidth limit is set at 9500KB/s.

System State 1

Node 1 - Subscribers

Su
bs

cr
ib

er

N
o.

D
at

a
Ty

pe

TB
Fm

in

TB
Fm

ax

TB
F

In
te

rv
al

R
el

ia
bi

lit
y

M
ax

La

te
nc

y

M
in

 R
ew

ar
d

M
ax

R

ew
ar

d

Pe
na

lty

1 1 40ms 50ms 2ms Best-effort 150ms 4000 4333.33 0
2 2 100ms 500ms 100ms Reliable 250ms 720 1680 0
3 3 25ms 125ms 25ms Best-effort 100ms 2400 5600 0
4 1 40ms 50ms 2ms Best-effort 150ms 4000 4333.33 0
5 2 100ms 500ms 100ms Reliable 250ms 720 1680 0

Node 2 - Publishers

Pu
bl

is
he

r
N

o.

D
at

a
Ty

pe

Sa
m

pl
e

Si
ze

TB
Fm

in

R
el

ia
bi

lit
y

1 1 150 40ms Best-effort
2 2 15 100ms Reliable
3 3 25 25ms Best-effort

4. Proposed Quality of Service Framework - Worked Examples

122

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 40ms Best-effort 4333.33 3750KB/s
2 2 100ms Reliable 1680 225KB/s
3 3 25ms Best-effort 5600 1000KB/s
4 1 40ms Best-effort 4333.33 3750KB/s
5 2 100ms Reliable 1680 225KB/s
 Total 17626.66 8950KB/s

System State 2

A new subscriber is added to Node 1.

Node 1 - New Subscriber

Su
bs

cr
ib

er

N
o.

D
at

a
Ty

pe

TB
Fm

in

TB
Fm

ax

TB
F

In
te

rv
al

R
el

ia
bi

lit
y

M
ax

La

te
nc

y

M
in

 R
ew

ar
d

M
ax

R

ew
ar

d

Pe
na

lty

6 3 25ms 125ms 25ms Best-effort 100ms 2400 5600 0

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 40ms Best-effort 4333.33 3750KB/s
2 2 100ms Reliable 1680 225KB/s
3 3 25ms Best-effort 5600 1000KB/s
4 1 40ms Best-effort 4333.33 3750KB/s
5 2 100ms Reliable 1680 225KB/s
6 3 25ms Best-effort 5600 1000KB/s
 Total 23226.66 9950KB/s

A match for the new subscriber is found on Node 2; however, it is not possible to

accept it at the current QoS levels as the resources required (9950KB/s) exceed those

available (9500KB/s). A renegotiation must therefore take place, first checking which

subscriber when degraded to its next TBF level will reduce in the lowest drop in reward.

4. Proposed Quality of Service Framework - Worked Examples

123

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

N
ex

t T
B

F
Le

ve
l

N
ew

R

ew
ar

d
at

N

ex
t Q

oS

Le
ve

l

D
ro

p
In

R

ew
ar

d

1 1 40ms Best-effort 4333.33 3750KB/s 42 4254 79.33
2 2 100ms Reliable 1680 225KB/s 200 1080 600
3 3 25ms Best-effort 5600 1000KB/s 50 3600 2000
4 1 40ms Best-effort 4333.33 3750KB/s 42 4254 79.33
5 2 100ms Reliable 1680 225KB/s 200 1080 600
6 3 25ms Best-effort 5600 1000KB/s 50 3600 2000

Subscribers 1 and 4 both result in the lowest drop in reward compared to the other

subscribers. In this case the first subscriber with the lowest drop in reward (Subscriber

1) is degraded.

System State 2

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

N
ex

t T
B

F
Le

ve
l

N
ew

R

ew
ar

d
at

N

ex
t Q

oS

Le
ve

l

D
ro

p
In

R

ew
ar

d

1 1 42ms Best-effort 4254 3571.43KB/s 44 4181.82 72.18
2 2 100ms Reliable 1680 225KB/s 200 1080 600
3 3 25ms Best-effort 5600 1000KB/s 50 3600 2000
4 1 40ms Best-effort 4333.33 3750KB/s 42 4254 79.33
5 2 100ms Reliable 1680 225KB/s 200 1080 600
6 3 25ms Best-effort 5600 1000KB/s 50 3600 2000
 Total 23147.33 9771.43KB/s

Following the degradation of subscriber 1 the resources required has decreased but

still exceeds the maximum available. The negotiation process must therefore continue.

Subscriber 1 again has the lowest drop in reward and shall therefore be degraded.

4. Proposed Quality of Service Framework - Worked Examples

124

System State 3

Node 2 - Serviced Subscribers
Su

bs
cr

ib
er

N

o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

N
ex

t T
B

F
Le

ve
l

N
ew

R

ew
ar

d
at

N

ex
t Q

oS

Le
ve

l

D
ro

p
In

R

ew
ar

d

1 1 44ms Best-effort 4181.82 3409.09KB/s 46 4115.94 65.88
2 2 100ms Reliable 1680 225KB/s 200 1080 600
3 3 25ms Best-effort 5600 1000KB/s 50 3600 2000
4 1 40ms Best-effort 4333.33 3750KB/s 42 4254 79.33
5 2 100ms Reliable 1680 225KB/s 200 1080 600
6 3 25ms Best-effort 5600 1000KB/s 50 3600 2000
 Total 23075.15 9609.09KB/s

Again the resources required have decreased but still exceed the maximum available.

Once more Subscriber 1 has the lowest drop in reward and shall therefore be

degraded.

System State 4

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

N
ex

t T
B

F
Le

ve
l

N
ew

R

ew
ar

d
at

N

ex
t Q

oS

Le
ve

l

D
ro

p
In

R

ew
ar

d
1 1 46ms Best-effort 4115.94 3260.87KB/s 48 4055.56 60.38
2 2 100ms Reliable 1680 225KB/s 200 1080 600
3 3 25ms Best-effort 5600 1000KB/s 50 3600 2000
4 1 40ms Best-effort 4333.33 3750KB/s 42 4254 79.33
5 2 100ms Reliable 1680 225KB/s 200 1080 600
6 3 25ms Best-effort 5600 1000KB/s 50 3600 2000
 Total 23009.27 9460.87KB/s

Degrading Subscriber 1 for the third time resulted in a drop in resource usage to

9460.87KB/s so there are now adequate resources to accept the new subscriber. The

new total reward is 23009.27 meaning an increase of 5382.61 when compared to the

original system state of 17626.66 so the new system state is accepted.

In this example Subscriber 1 repeatedly offered the lowest drop in reward, meaning

that it was always chosen for degradation. In the original system state Subscriber 4

also offered an identical drop in reward to Subscriber 1, however, once Subscriber 1

4. Proposed Quality of Service Framework - Worked Examples

125

was chosen to be degraded first Subscriber 4 never again offered the lowest drop in

reward. This might seem unfair to Subscriber 1, however, the negotiation algorithm is

designed to maximise overall system reward, not to sacrifice this in favour of being fair

to all subscribers. This method also ensures that disruption to the service of

subscribers that comes from degrading their service is minimised.

Scenario 3 - 3 Publishers/5 Subscribers at min QoS Levels + 1 New Subscriber

This scenario demonstrates a subscriber’s penalty value being used after a negotiation

has taken place. Again, five subscribers are currently being serviced within the system

and a sixth subscriber is added, requiring the renegotiation of QoS levels. This time

the subscribers are already at their lowest QoS level and therefore any degradation in

service will mean their removal from the system. The maximum network bandwidth

available is 6300KB/s.

System State 1

Node 1 - Subscribers

Su
bs

cr
ib

er

N
o.

D
at

a
Ty

pe

TB
Fm

in

TB
Fm

ax

TB
F

In
te

rv
al

R
el

ia
bi

lit
y

M
ax

La

te
nc

y

M
in

 R
ew

ar
d

M
ax

R

ew
ar

d

Pe
na

lty

1 1 40ms 50ms 2ms Best-effort 150ms 4000 4333.33 0
2 2 100ms 500ms 100ms Reliable 250ms 720 1680 0
3 3 25ms 125ms 25ms Best-effort 100ms 2400 5600 0
4 1 40ms 50ms 2ms Best-effort 150ms 400 433.33 0
5 2 100ms 500ms 100ms Reliable 250ms 720 1680 0

Node 2 - Publishers

Pu
bl

is
he

r
N

o.

D
at

a
Ty

pe

Sa
m

pl
e

Si
ze

TB
Fm

in

R
el

ia
bi

lit
y

1 1 150 50ms Best-effort
2 2 15 500ms Reliable
3 3 25 125ms Best-effort

4. Proposed Quality of Service Framework - Worked Examples

126

Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 50ms Best-effort 4000 3000KB/s
2 2 500ms Reliable 720 45KB/s
3 3 125ms Best-effort 2400 200KB/s
4 1 50ms Best-effort 4000 3000KB/s
5 2 500ms Reliable 720 45KB/s
 Total 11840 6290KB/s

System State 2

A new subscriber is added to Node 1. To help with clarity for this example the new

subscriber will not have any lower levels of QoS to degrade to.

Node 1 - New Subscriber

Su
bs

cr
ib

er

N
o.

D
at

a
Ty

pe

TB
Fm

in

TB
Fm

ax

TB
F

In
te

rv
al

R
el

ia
bi

lit
y

M
ax

La

te
nc

y

M
in

 R
ew

ar
d

M
ax

R

ew
ar

d

Pe
na

lty

6 3 125ms 125ms 0ms Best-effort 100ms 2400 2400 1500

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

Pe
na

lty

1 1 50ms Best-effort 4000 3000KB/s 0
2 2 500ms Reliable 720 45KB/s 0
3 3 125ms Best-effort 2400 200KB/s 0
4 1 50ms Best-effort 4000 3000KB/s 0
5 2 500ms Reliable 720 45KB/s 0
6 3 125ms Best-effort 2400 200KB/s 1500
 Total 14240 6490KB/s

A match for the new subscriber is found on Node 2; however, it is not possible to

accept it at the current QoS levels as the resources required (6490KB/s) exceed those

available (6300KB/s). A renegotiation must therefore take place, first checking which

subscriber when removed from the system will result in the lowest drop in reward.

Subscribers 2 and 5 both result in the lowest drop compared to the other subscribers.

In this case subscriber 2 will be removed first. Note that in an actual implementation

4. Proposed Quality of Service Framework - Worked Examples

127

preference should be given to the subscriber that has been provided service for the

longest, thus promoting system stability.

System State 3

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

Pe
na

lty

1 1 50ms Best-effort 4000 3000KB/s 0
3 3 125ms Best-effort 2400 200KB/s 0
4 1 50ms Best-effort 4000 3000KB/s 0
5 2 500ms Reliable 720 45KB/s 0
6 1 125ms Best-effort 2400 200KB/s 1500
 Total 13520 6445KB/s

Subscriber 5 now offers the lowest drop in reward and shall be removed.

System State 4

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

Pe
na

lty

1 1 50ms Best-effort 4000 3000KB/s 0
3 3 125ms Best-effort 2400 200KB/s 0
4 1 50ms Best-effort 4000 3000KB/s 0
6 1 125ms Best-effort 2400 200KB/s 1500
 Total 12800 6400KB/s

Subscriber 3 now offers the lowest drop in reward and shall be removed.

4. Proposed Quality of Service Framework - Worked Examples

128

System State 5

Node 2 - Serviced Subscribers
Su

bs
cr

ib
er

N

o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

Pe
na

lty

1 1 50ms Best-effort 4000 3000KB/s 0
4 1 50ms Best-effort 4000 3000KB/s 0
6 1 125ms Best-effort 2400 200KB/s 1500
 Total 10400 6200KB/s

Removing subscribers 2, 3 and 5 resulted in a drop in resource usage to 6200 KB/s

meaning that there are now adequate resources to accept the new subscriber. The

new total reward is 10400, however, meaning that it has decreased by 1440 when

compared to the original system state 11840. The penalty for rejecting the subscriber

is 1500. This is greater than the difference between the original reward and the new

reward level so the new system state is accepted.

4.5 QoS Framework Summary

The full QoS framework can be seen as being composed of the elements in Figure 24.

4. Proposed Quality of Service Framework - QoS Framework Summary

129

Figure 24 - Quality of Service Framework

Each of these elements could be interchanged for others of similar functionality based

on the platform implementation requirements. These elements are:

• Publisher Interface, including QoS Spec – This is the interface through which

publishing applications are accessed. The QoS specification describes their

maximum performance levels.

• Subscriber Interface, including QoS Spec - This is the interface through which

subscriber applications are accessed. The QoS specification describes their

required performance levels.

• Local Publisher List – A list of the locally available publishers and their

associated QoS characteristics.

• Remote Publisher List - A list of publishers available from connected nodes and

their associated QoS characteristics.

• Pub/Sub Interface, including Pub/Sub Matcher and QoS Translator – The

publisher/subscriber interface has a number of roles. The publisher/subscriber

Publisher Interface

Serviced

Subscriber

List

Pub/Sub

Interface Local

Publisher List

Remote

Publisher List

QoS

Negotiation

Algorithm

External Publisher

Interface

External Subscriber

Interface

Subscriber Interface

Pub/Sub

Matcher

QoS Spec QoS Spec

External Network Interface

Network Resource Feedback

QoS

Translator

Application Interface

Level

Network Interface

Level

QoS Enabled

Middleware Level

4. Proposed Quality of Service Framework – System Design

130

matcher checks local and remote publisher lists to find a match for local

subscribers. The QoS translator is responsible for delivering data from the

locally connected publishers to any matched subscribers at the appropriate

QoS levels. This means that the publisher itself need not be concerned with

what subscribers are connected. Remotely connected publishers will have their

data filtered to the appropriate QoS levels by their local QoS translators.

• QoS Negotiation Algorithm – The QoS negotiation algorithm used to decide

which subscribers are provided service.

• Serviced Subscriber List – A list of the subscribers (both local and remote) that

are being serviced by local publishers. This includes details of their location

and QoS level.

• External Publisher Interface - This is the interface through which remote

publishers are announced. When a local subscriber requires data from an

external publisher a request is sent through this interface.

• External Subscriber Interface – This is the interface through which remote

subscribers send messages to request service from a local publisher and later

to receive data from matched subscribers.

• External Network Interface, including Network Resource Feedback – This is the

network connection (or connections) from the node to the wider system. Note

that some facility is required for monitoring the available bandwidth at any given

time.

4.5.1 QoS Framework Assumptions

It is necessary to make a set of assumptions with regards to how the QoS framework

will fit into the wider system. Firstly, it is assumed that the same value function will be

used across each node for calculating the reward obtained from providing service to a

subscriber. Following on from this it is also assumed that nodes within this system are

trustworthy. This means that a node will not claim to be capable of providing false

levels of QoS. Finally the QoS framework is intended to reside within the middleware

on each node. This allows nodes to function independently, without concern for

maintaining a connection with any kind of distributed control system. This could create

issues with regards to platform wide system management and is discussed further

within section 8.2.

4. Proposed Quality of Service Framework – System Design

131

4.5.2 Application Requirements

An application functioning within a dynamic system must be capable of specifying a

range of QoS levels within which it can function and it must also be able to account for

changes between these levels. The manner in which this occurs is application

dependant and is the responsibility of the subscriber, as the use of published data is

not specified in the negotiation process. For example a video stream being analysed to

detect movement or people by automated algorithms could cope with fluctuations in

received data quality or frame rate. A human operator may find these changes jolting,

however, and therefore the application would need to decide the best way to smooth

this out.

4.5.3 System Design

Further to the previous Quality of Service framework summary (and following guidance

in systems engineering literature) a high level overview of the system design is

presented. The proposed system model is first given in natural language. To support

this natural language definition and help to make clear any ambiguities inherent from

the use of a purely text based definition Dickerson (2008) suggests the use of a logical

model with UML based notation. The results of this can be seen in Figure 25. Note

that square parenthesis represent a slight change of text from the original definition so

that it fits the format of the model.

Natural Language Definition

“The dynamic system is composed of two or more nodes. Nodes contain services of

either the type publisher or subscriber. Publishers have QoS specifications containing

descriptions of their data type (e.g. video, audio or GPS” data) and the maximum level

of QoS that they support. Subscribers also have policy documents containing

descriptions of their required data type along with the minimum, maximum and QoS

level intervals that they require. Each level of QoS has a level of reward associated

with it. An overall penalty is also included.”

Note that the number of nodes in the system is assumed to be greater than two for this

example; however, these principles could also be seen to apply to internal sub-systems

4. Proposed Quality of Service Framework – System Design

132

within a platform. For this example a node is assumed to be a physical device,

however, the principles can also be seen to apply to logical instances of nodes.

Figure 25 - Logical Model of System

Dynamic
System

Minimum
QoS Level

Maximum
QoS Level

Node

Service

Publisher Subscriber

Reward

composed of

2...m 1

contain
1..n

QoS
Specification

[has] [has]
1

contain

1

1

1

Data Type

Description

Maximum

QoS Level

QoS
Specification

1 1

contain

[Data Type
Required]

1
QoS Level

Interval

1
Penalty

1

4. Proposed Quality of Service Framework - Initial Critique of QoS Framework

133

4.6 Initial Critique of QoS Framework

When designing the negotiation algorithm constraints with regards to the potential

network and computational resources available (particularly within mobile nodes) mean

that compromises had to be made for how optimal the end configuration and resource

allocation is.

Data Types

This QoS framework has considered the allocation of resources and assignment of

value, as they would relate to a data source with regular intervals between

transmissions. As previously stated in section 2.3.3 Pardo-Castellote (2003) suggest

that data can be in the form of signals, streams or states. A signal represents a

continuously changing data value, such as a sensor reading, sensitive to delay,

typically with best-effort transmission. Streams are data values sent in a continuous

manner and that are dependent on preceding values. Given this dependency streams

are often required to be transmitted in a reliable manner, ensuring both timeliness and

accuracy. A state data value represents a system or component state at a point in

time. As this is likely to be updated sporadically it is less sensitive to delay and

therefore the transmission can afford to be assured as being accurate. The QoS

framework can therefore be seen to be predominately built around signals and

streams.

The sporadic nature of the state data type does not work particularly well with standard

resource reservation techniques. Resources are required to be reserved even when a

transmission may not be necessary. This is an unavoidable issue for truly dependable

systems, where worst-case scenarios mean that they require adequate resources to be

provisioned for all eventualities. In this way it can be seen that they could be specified

in the same manner as data streams or signals, with some prediction of data sample

frequency used for the sample rate.

Optimisation over Multiple Network Links

A key compromise was made with regards to how optimal the solution is when

considering a node with multiple network connections and different possible matches

on nodes connected to each of these. It was decided that the algorithm should select

the network link with the most available resources and if a matching publisher is found

4. Proposed Quality of Service Framework - Initial Critique of QoS Framework

134

and there are adequate resources available then the search should not query any

further publishers. This approach was used due to the computational power required

when negotiating resources. Additionally the fact that nodes are potentially mobile and

the network topology and usage therefore prone to frequent changes means that a

potential publisher match may no longer be available once a search of all potential

publishers has completed. A broadcast request could go some way to addressing this

but would still be wasteful of resources for those nodes that calculate new resource

allocations that are never used.

The choice of considering only a single network link at a time for negotiation presents a

quirk of the proposed negotiation algorithm. The algorithm will, where possible,

degrade the service of existing subscribers in an attempt to increase the overall system

reward. In doing so it may be able to make use of a network link that a less flexible

negotiation algorithm may not. Take the example of a priority-based algorithm that

simply removes those subscribers with a lower priority until adequate resources are

available. This algorithm may not be able to make use of the first network link

examined, but upon inspecting the second could find that the subscriber could be

accepted through the removal of a subscriber with a lower priority. By removing

subscribers on the second link in order to accept the new subscriber at its maximum

level of service the negotiation algorithm could lead to a greater overall system reward

than from the framework negotiation algorithm.

To illustrate this further an initial system state using the QoS framework negotiation

algorithm is shown in Figure 26. Subscribers are defined with a range of QoS levels

through which the negotiation can take place. The negotiation algorithm will see that

network link 1 has the most free resources available and attempt to negotiate for the

inclusion of the new subscriber. This is successful (as shown in Figure 27), the QoS

levels of existing subscribers are degraded and the subscriber is accepted, leading to

an increase in reward of 50.

4. Proposed Quality of Service Framework - Initial Critique of QoS Framework

135

Figure 26 - QoS Framework Negotiation Example Initial State

Framework Negotiation Algorithm Framework Negotiation Algorithm – Initial StateInitial State

R
es

ou
rc

e
A

llo
ca

tio
n

Total Reward 950

Network Link 1

Subscriber 3
Penalty 50

 Reward 300

Subscriber 2
Penalty 100
 Reward 350

Subscriber 1
Penalty 50

 Reward 300

Free Resources

R
es

ou
rc

e
A

llo
ca

tio
n

Total Reward 750

Network Link 2

Subscriber 6
Penalty 50

 Reward 100

Subscriber 5
Penalty 20

 Reward 300

Subscriber 4
Penalty 50

 Reward 250

Free Resources

Subscriber 7
Penalty 10

 Reward 100

Max QoS Level

Min QoS Level
Intermediate Levels

New Subscriber
Penalty 50

 Max Reward 300

4. Proposed Quality of Service Framework - Initial Critique of QoS Framework

136

Figure 27 - QoS Framework Negotiation Example Negotiated State

Take the example now of an identical initial system state but with a non-flexible, priority

based negotiation algorithm (Figure 28), where priorities are assumed to be a

combination of reward and penalty values. Link 1 is examined first again as it has the

most free resources, but the priority of the new subscriber is lower than those

subscribers already using the network link and therefore the subscriber cannot be

accepted. Examining link 2 now, subscribers 6 and 7 can be seen to have lower

priorities and can therefore be removed, freeing adequate resources for the new

subscriber. The subscriber is thus accepted and an increase in reward of 100 is

achieved, therefore offering greater overall system utility than the framework

negotiation algorithm. This is only a temporary effect, however, as when new

subscribers enter the system the flexibility of the framework negotiation algorithm will

allow it to make better use of the resources available when compared to more

traditional negotiation techniques.

New Subscriber
Penalty 50

 Reward 200
R

es
ou

rc
e

A
llo

ca
tio

n

Total Reward 1000

Network Link 1

Subscriber 3
Penalty 50

 Reward 300

Subscriber 2
Penalty 100
 Reward 300

Subscriber 1
Penalty 50

 Reward 200
R

es
ou

rc
e

A
llo

ca
tio

n

Total Reward 750

Network Link 2

Subscriber 6
Penalty 50

 Reward 100

Subscriber 5
Penalty 20

 Reward 300

Subscriber 4
Penalty 50

 Reward 250

Free Resources

Subscriber 7
Penalty 10

 Reward 100

Framework Negotiation Algorithm Framework Negotiation Algorithm – Negotiated StateNegotiated State

4. Proposed Quality of Service Framework - Initial Critique of QoS Framework

137

Figure 28 - Priority Based Negotiation Example Initial State

R
es

ou
rc

e
A

llo
ca

tio
n

Total Reward 750

Network	 Link	 2

Subscriber 6
Penalty 50

 Reward 100
Subscriber 5
Penalty 20

 Reward 300

Subscriber 4
Penalty 50

 Reward 250

Free Resources

Subscriber 7
Penalty 10

 Reward 100

R
es

ou
rc

e
A

llo
ca

tio
n

Total Reward 950

Network Link 1

Subscriber 3
Penalty 50

 Reward 300

Subscriber 2
Penalty 50

 Reward 350

Subscriber 1
Penalty 50

 Reward 300

Free Resources

New Subscriber
Penalty 50

Reward 300

Priority Based Negotiation Algorithm Priority Based Negotiation Algorithm – Initial StateInitial State

4. Proposed Quality of Service Framework - Initial Critique of QoS Framework

138

Figure 29 - Priority Based Negotiation Example Negotiated State

On-board Resource Negotiation

For the purpose of setting the scope of this work QoS negotiation was limited to those

resources concerning the network (i.e. bandwidth) as these were seen as a major

limiting factor. It may be, however, that the resources available onboard (e.g. memory,

processor time) could also restrict the performance of the applications and may need to

be taken into account by the negotiation algorithm.

While it would be preferable for subscribers to match with publishers onboard this may

not always be possible due to resource limitations within the node. These take the

form of processor time available and memory available. Applications require the use of

onboard resources in order to run and it could be foreseeable that a node may have a

library of different applications available but resource limitations may mean that only a

small selection of these can be run at any one time. The problem therefore lies in

choosing the applications that result in the highest increase in utility. Utility can be

gained from applications acting as either publishers or subscribers. It would be

reasonable to assume that the core set of subscriber applications within a node should

be serviced before any external requests are dealt with.

R
es

ou
rc

e
A

llo
ca

tio
n

Total Reward 850

Network	 Link	 2

Subscriber 5
Penalty 20

 Reward 300

Subscriber 4
Penalty 50

 Reward 250

R
es

ou
rc

e
A

llo
ca

tio
n

Total Reward 950

Network	 Link	 1

Subscriber 3
Penalty 50

 Reward 300

Subscriber 2
Penalty 50

 Reward 350

Subscriber 1
Penalty 50

 Reward 300

Free Resources Free Resources

New Subscriber
Penalty 50

Reward 300

Priority Based Negotiation Algorithm Priority Based Negotiation Algorithm – Negotiated StateNegotiated State

4. Proposed Quality of Service Framework - Initial Critique of QoS Framework

139

Wasted Effort

When the system renegotiates which subscribers are serviced by its available

publishers there is a potential that subscribers currently receiving data may be

removed. If the data received by the subscriber so far is not a full data sample, or is an

incomplete sequence of samples then the resources used up to this point to transmit

the partially received data will have been wasted.

The approach taken by the QoS framework with regards to renegotiation should

address the problem of incomplete samples being received as only whole data

samples are ever transmitted. This does mean that the system may have to wait to

execute a renegotiated system configuration; however, this is balanced by the benefit

to overall system stability.

The QoS framework is currently agnostic as to what data samples are used for beyond

their individual transmission. Specific implementations of the QoS framework may

need to take into account the interdependencies of data samples being transmitted.

Adjustments would need to be made to the weighting of reward for such data sample

sets and this taken into account when renegotiating. Given that nodes containing

publishers and subscribers may be developed by different organisations, the specific

implementation of such features should not be relied on too heavily. A subscribing

application should be aware that disruptions to a stream of data samples are possible

and should take whatever steps it can to account for such events.

Differing Value Calculations

The QoS framework assumes that all reward values are calculated through the same

formula, thus allowing their comparison in the negotiation process. The exact formula

used is intended to be system implementation specific and based on the properties

attributed to the prioritisation of subscribers as they are found. It could be, however,

that different application types may be identified, for which different metrics may be

necessary for prioritisation (e.g. one application may value latency the greatest, while

another values sample rate). Such differing value calculations would be possible,

however, system resources would need to be partitioned for negotiation so that only

comparable subscribers competed for a given set of resources. For this reason it is

4. Proposed Quality of Service Framework - Initial Critique of QoS Framework

140

recommended that, where possible, value calculations are kept as generically

applicable as possible, and where necessary, adjustments made to value assignments

through the penalty associated with the rejection of a specific subscriber.

Duplication of Data Samples for Multiple Subscribers on the Same Node

The QoS framework does not currently consider the case where multiple subscribers

on the same node are receiving data from the same publisher on a separate node.

Sending the same data samples separately to these subscribers would be unnecessary

and waste network resources. The framework could be adapted to take advantage of

this situation, where data samples are sent at the highest rate required by the

subscribers and filtered as necessary by local middleware. This would avoid

duplicating network traffic, thus allowing a higher reward to be gained from lower

network usage. The publishing node would still need to be aware of how each

subscriber is using the data (i.e. what TBF is used for each, and what reliability is

required) so as to be able to correctly calculate the reward gained from the provision of

this data.

4.7 External Factors

While the QoS framework has been designed to support dependable performance in

dynamic systems there are external factors within the system that could affect the

ability of the framework to achieve its goals.

It is assumed for the purposes of the QoS framework that network traffic is limited to

that controlled by the framework itself. This means that the availability of network

resources can be relied upon (not including environmental factors that may affect

network performance). If traffic unrelated to the framework were to use the same

network then it would be necessary to separate this into a different class (or classes),

allocating bandwidth between this and the framework.

Perhaps the greatest external factor is the reliability of the physical layer of the

network. The mobility of nodes and environmental factors may mean that wireless

network connections are subject to interference. This means that data could be lost in

transmission and the reach of wireless connections could be restricted. It is intended

4. Proposed Quality of Service Framework – External Factors

141

that the QoS framework should monitor the actual performance of the network and

adjust its behaviour accordingly. There will, however, be a period of adjustment in

which data will be lost and the dependability of the system affected. This will be of

particular concern for those applications with tight deadlines, where retransmission of

data may not be possible within the allocated budget. Where possible, therefore this

should be accounted for by the applications themselves.

4.8 Summary

A Quality of Service framework has been proposed as a means of increasing the

support for dependability in future dynamic systems. The use of QoS characteristics

specifying minimum, maximum and interval Time Based Filtering levels, latency and

reliability have been suggested as a means of specifying a flexible set of performance

requirements by subscribing applications. Publishers likewise specify their minimum

Time Based Filtering level and reliability as a means of relaying their maximum

performance capabilities. Through the specification of these QoS characteristics QoS

negotiation as a means of dynamically allocating resources is possible.

A negotiation algorithm has been presented that flexibly negotiates which subscribers

are allowed to run within the system, aiming to maximise local reward, and thus system

utility. The ability to gracefully degrade subscribers between different levels of QoS

allows for greater system stability as subscribers no longer need to be removed from a

congested system when a new subscriber of a higher value or priority appears.

Initial critique of the QoS framework has identified a number of areas in which

consideration would be needed when constructing an implementation. These areas

identify the current constraints of the framework and its application, while also providing

potential avenues for future research and opportunities for even greater dependability

within a dynamic system.

A set of worked examples has demonstrated how the framework would be expected to

perform under a number of different conditions, confirming that the component in the

proposed design work together as specified. These results should now be validated

4. Proposed Quality of Service Framework – Summary

142

and extended through the use of simulation and a test-bed based feasibility study, as

set forth in the test plan.

5. Simulation Based Experimentation

143

5 Simulation Based Experimentation

5.1 Introduction

To evaluate the proposed QoS framework detailed in section 4, and in line with the

approach outlined in section 3, a simulation was developed. This simulation provides

an opportunity to examine the behaviour of the QoS framework, and specifically,

provides a platform on which to compare the behaviour of the proposed negotiation

algorithm to the currently employed compatibility testing or priority-based negotiation.

This simulation is based around the design of dynamic distributed systems, such as

those within the NEC project discussed in section 1.

Details of the simulation implementation and the way in which simulation experiments

can be reproduced are given in section 5.2. Section 5.3 evaluates the simulation

implementation against the expected output from the worked examples in section 4.4.3.

Section 5.4 extends these examples to systems with a slightly larger but relatively

simple topology. Section 5.5 introduces randomly generated complex system designs

of varying scale with which to evaluate the QoS framework. Section 5.6 looks at the

effect on system performance and dependability from varying the number of QoS levels

with which subscribers are specified. The full results for all simulation scenarios can be

found in Appendix B. Those results of particular significance are highlighted within this

section.

5.2 Technical Description of Simulation Implementation

The simulation was created using the MATLAB simulation environment (initially version

7.8.0 and later 7.10.0). MATLAB was chosen as it provides an environment within

which a dynamic system topology and its behaviours can be developed as well as the

tools to visualise results. The code for this simulation is available on the accompanying

CD.

Assumptions made with regards to the overall design of the system being simulated,

and the subsequent simulation design, are detailed in the following sub-sections.

5. Simulation Based Experimentation – Technical Description of Simulation Implementation

144

5.2.1 Simulation Assumptions

The following assumptions were made when deciding on the system to be simulated.

These were largely chosen to ensure that the focus of the experimentation was on the

QoS framework and not any supporting services.

Communication Model

An assumption is made that communication between nodes is direct, with data only

being visible to those directly connected. This is done to demonstrate the fundamental

functioning of the negotiation algorithms involved in matching publishers and

subscribers. This could be adapted in the future to take into account multi-hop

communication algorithms. Adaptations would also then be necessary, however, to

ensure that the distribution of reward throughout the system is proportional to the

amount of resources that are being consumed. This is discussed in more detail in

section 8.2.

Further to this the model of the network itself shall be kept as simple as possible,

considering only the bandwidth available for negotiation and not any underlying

protocols needed to support this. This allows for the QoS framework to be evaluated

independent of any performance characteristics that additional protocols may

introduce. This approach is also chosen due to the fact that the future systems

considered by this work are also yet to specify such details.

System Design

The simulation was developed to investigate the performance and dependability of the

QoS framework when used within a dynamic system. While such systems are likely to

change in topology over time, this simulation considers a single instance of such a

system. This means that nodes are still required to be capable of dynamic discovery;

however, the focus is on how the QoS framework is capable of handling this, rather

than the effect of nodes moving within the environment. This approach allows the

scaling of a system instance to be investigated without issues surrounding node

movement obscuring results. For future investigation, however, the simulation could be

extended to include this additional node behaviour, as discussed further in section 8.2.

5. Simulation Based Experimentation – Technical Description of Simulation Implementation

145

Negotiation Algorithm Implementation

To evaluate the performance of the proposed QoS negotiation algorithm a comparison

is necessary with the two existing alternate methods of negotiating resource allocation

discussed within the literature review; compatibility testing and priority-based

negotiation.

It is assumed for the purposes of the simulation that each algorithm is capable of

detecting the network resources available and working within these. This is not

necessarily true for current implementations of compatibility testing. With DDS, for

example, it is expected that the developer is aware of the resource limitations and

works within these. To compare the performance of the compatibility testing algorithm

without an awareness of network resources; however, would be unfair, considering the

simulation experiments shall be purposely requesting more resources than are

available.

Both compatibility testing and priority-based negotiation are based on static levels of

QoS. As the QoS characteristic definition being used is based on a flexible range of

QoS levels it is reasonable to consider the comparison of the two alternate negotiation

methods using one of three fixed QoS levels; high, medium and low. These

correspond to the maximum QoS level requested, the minimum, and a medium level

between these points.

For the priority-based method of negotiation the priority used is considered to be the

calculated reward value of the subscriber plus any penalty value.

Penalty Value

While the QoS framework and negotiation algorithm developed have considered the

use of a penalty for the rejection of a subscriber, allowing the developer to give a

subjective view of a subscriber’s value, the complex system scenarios (4-7) shall

consider all penalty values to be 0. Were penalty values to be used for these scenarios

it may obscure system results. For example, if a new subscriber were accepted into

the system based on the use of the penalty value then a drop in total reward could be

observed, where in actual fact the penalty value has made up for this decrease. The

5. Simulation Based Experimentation – Technical Description of Simulation Implementation

146

worked examples in scenario 1 will, however, verify that the simulation is capable of

using penalties correctly in negotiation.

5.2.2 Simulation Design

The simulation constructs a system topology through the specification of 4 main

elements; nodes, network links, publishers and subscribers. These in turn are

specified with the following properties:

Node

Middleware Instance ID – Unique identifier for the middleware instance on a

node.

Location Coordinates – x and y co-ordinates of node location

Subscriber List – List of local subscribers.

Publisher List – List of local publishers.

Serviced Subscriber List – List of subscribers currently receiving data from a

local publisher and their corresponding QoS values,

Network Links List – List of network link IDs for those links connected to the

node in question.

Connected Nodes List – Nodes that are known to be connected through the

network links available.

Known Connected Publishers List - Publishers that are known to be available

through the connected nodes.

Subscriber

Middleware Instance ID - The ID of the middleware instance that the

subscriber is associated with.

Subscriber ID – The unique ID of the subscriber.

Publisher Data Type Required – The data type required by the subscriber.

Transport Latency Max – The maximum latency allowed by the subscriber.

Time Based Filtering Min – The minimum TBF value acceptable.

5. Simulation Based Experimentation – Technical Description of Simulation Implementation

147

Time Based Filtering Max – The maximum TBF value acceptable.

Time Based Filtering Interval – The TBF interval value.

Reliability - The reliability required by the subscriber (best-effort or reliable).

Penalty – The penalty for the rejection of the subscriber.

Subscriber Match Status – Whether a publisher match has been found.

Subscriber Matching Pub ID – The ID of the publisher match found.

Subscriber Matching Pub MMID – The middleware instance ID of the

publisher match.

Publisher

Middleware Instance ID - The ID of the middleware instance that the publisher

associated with.

Publisher ID – The unique ID of the publisher.

Publisher Data Type – The data type that the publisher is capable of providing.

Min Time Based Filtering – The minimum TBF value (in milliseconds) that the

publisher is capable of providing data at.

Sample Size – The size of each data sample (in Bytes).

Reliability – The reliability of the publisher (best-effort or reliable).

Network Link

Middleware Instance ID – The ID of the middleware instance that the network

link is associated with.

Link ID – The unique ID of the network link.

Link Max Bandwidth – The maximum bandwidth of the network link (in B/s).

Nodes Linked – The nodes connected by the network link (explicitly specified

for a wired link, found dynamically for wireless links).

Link Type – Whether the link is wired or wireless.

Signal Strength – The maximum strength of the wireless signal (ignored for

wired links).

5. Simulation Based Experimentation – Technical Description of Simulation Implementation

148

As the simulation is capable of generating a pseudo-random system topology, a series

of constraints are necessary to ensure that resulting values remain within a sensible

range. These constraints are found from the values detailed in Table 11. These

values are either held within the projectGui.m code file (C) or specified through the GUI

(G). Additionally these are either used as fixed values (F) or as the limit for a random

variable (R).

Table 11 - Randomly Generated System Topology Variables

Variable Location Use Meaning Default Value
Seed G F The random seed from

which all random variables
are generated

sizeOfAreaX C F Width of environment. 100
sizeOfAreaY C F Length of environment. 100
numOfNodes G F Number of nodes to be

created.
-

maxWiredBandwidth G R Maximum bandwidth of
wired network links.

-

maxWirelessBandwidth G R Maximum bandwidth of
wireless network links.

-

maxNetworkLinks C R Maximum number of
network links.

numOfNodes *
3

maxSignalStrength C R Maximum signal strength of
wireless links.

50

probOfConnectedNodes C R Probability that a node is
connected via a specific
wired network link.

0.9

numOfSubs G F Number of subscribers. -
numOfPubs G F Number of publishers. -
pubDataTypes C F Number of different

publisher data types.
10

pubSampleSizeMax G R Maximum sample size for a
publisher.

-

pubSampleSizeMin C R Minimum sample size for a
publisher.

1000

pubTBF C R Maximum publisher TBF
value.

200

pubTBFMin C R Minimum publisher TBF
value.

80

subTL C R Maximum value of
subscriber transport latency
QoS.

500

subTLFloor C R Minimum value of
subscriber transport latency
QoS.

150

subTBFMin C R Maximum value of
subscriber TBF min QoS.

150

subTBFMin Floor C R Minimum value of
subscriber TBF min QoS.

100

subTBFMax C R Maximum value of 800

5. Simulation Based Experimentation – Technical Description of Simulation Implementation

149

subscriber TBF max QoS.
subTBFMax Floor C R Minimum value of

subscriber TBF max QoS.
200

subTBFI C R Maximum value of
subscriber TBF Interval
QoS.

100

subTBFIFloor C R Minimum value of
subscriber TBF interval
QoS.

10

subPenMin C R Maximum value of
subscriber penalty.

0

subPenMax C R Minimum value of
subscriber penalty.

0

5.2.3 Guide to Simulation Use

Simulation experiments are run through the Graphical User Interface (GUI), executed

by running ‘projectGui’ in the MATLAB command window. The GUI, as shown in

Figure 30, allows for a system topology to be created in one of two ways; through the

use of static descriptions entered as text files or through the GUI, or by random

generation using a set of given constraints and a seed value to enable the reproduction

of results. This enables the testing of specific scenarios as well as those scenarios that

may be too timely or complex to design manually.

5. Simulation Based Experimentation – Technical Description of Simulation Implementation

150

Figure 30 - Simulation GUI

The parameters necessary for reproducing the simulation experiments conducted

within this section are given within their appropriate sub-sections.

5.3 Initial Validation of Simulation Implementation

To validate the simulation against the QoS framework design proposed in section 4 a

series of small-scale system simulations are conducted. The first of these examines

the examples conducted in section 4.

Reproducing Simulation Scenarios

 The scenarios and examples within this section can be seen to correlate with the tests

in the simulation as shown in Table 12. Experiments are run by selecting the

appropriate test from the drop down menu (shown in Figure 31) and clicking ‘Run All’.

5. Simulation Based Experimentation – Initial Validation of Simulation Implementation

151

Table 12 - Scenario and Simulation Test Correlation

Scenario Simulation Test
Scenario 1
Worked Example 1a Test1
Worked Example 1b Test2
Worked Example 1c Test3
Worked Example 2
System State 1 Test4
Final System State Test5
Worked Example 3
System State 1 Test6
Final System State Test7
Scenario 2 Test8
Scenario 3 Test9

Figure 31 - Scenarios 1-3 GUI

5.3.1 Scenario 1: One Publisher and One Subscriber

Scenario 1, as presented in section 4.4.3, is separated into three sections, showing the

different ways in which a subscriber request for a publisher could be matched. Example

1a demonstrates a perfect QoS match, 1b demonstrates a constrained but compatible

match, and 1c illustrates an incompatible match. For the purposes of this scenario only

the expected outputs that resulted from the worked examples are given, not the

intermediary stages. Note also that, while the simulation generates output for all of the

negotiation algorithms considered, only the results from the framework algorithm are

presented here for comparison.

Scenario 1a - Exact QoS Match

Expected Output

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 40ms Best-effort 4333.33 3750KB/s

5. Simulation Based Experimentation – Initial Validation of Simulation Implementation

152

Simulation Output

QoS Framework Negotiation Algorithm - Serviced Subscribers
Su

bs
cr

ib
er

N

o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 40ms Best-effort 4333.33 3750KB/s

Summary

The simulation results can be seen to exactly match those expected, confirming the

ability of the simulation to successfully match publishers and subscribers and calculate

reward and resource values.

Scenario 1b - Different but Compatible Levels of QoS

Expected Output

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 44ms Best-effort 4181.82 3409KB/s

Simulation Output

QoS Framework Negotiation Algorithm - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 44ms Best-effort 4181 3410KB/s

Summary

The rounding performed during the manual worked example calculation and by the

simulation resulted in a small variation of 0.82 for the reward and 1KB/s for the

resource utilisation. This error is within an acceptable tolerance for simulation

5. Simulation Based Experimentation – Initial Validation of Simulation Implementation

153

purposes. For an implementation of the QoS framework, however, it would be

expected that no rounding should occur when allocating resources.

Scenario 1c - Incompatible Levels of QoS

Expected Output

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

N/A N/A N/A N/A N/A N/A

Simulation Output

QoS Framework Negotiation Algorithm - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

N/A N/A N/A N/A N/A N/A

Summary

The simulation has successfully recognised that the publisher and subscriber QoS are

incompatible.

5.3.2 Scenario 2: Three Publishers and Six Subscribers

This worked example provides the first instance of the actual negotiation process being

used. An initial system state and the final system state, once negotiation has

completed and the new subscriber request dealt with, are shown.

Initial System State

Expected Output

Node 2 - Serviced Subscribers

5. Simulation Based Experimentation – Initial Validation of Simulation Implementation

154

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 40ms Best-effort 4333.33 3750KB/s
2 2 100ms Reliable 1680 225KB/s
3 3 25ms Best-effort 5600 1000KB/s
4 1 40ms Best-effort 4333.33 3750KB/s
5 2 100ms Reliable 1680 225KB/s
 Total 17626.66 8950KB/s

Simulation Output

QoS Framework Negotiation Algorithm - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 40ms Best-effort 4333 3750KB/s
2 2 100ms Reliable 1680 225KB/s
3 3 25ms Best-effort 5600 1000KB/s
4 1 40ms Best-effort 4333 3750KB/s
5 2 100ms Reliable 1680 225KB/s
 Total 17626 8950KB/s

Final System State

Expected Output

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

N
ex

t T
B

F
Le

ve
l

N
ew

R

ew
ar

d
at

N

ex
t Q

oS

Le
ve

l

D
ro

p
In

R

ew
ar

d

1 1 46ms Best-effort 4115.94 3260.87KB/s 48 4055.56 60.38
2 2 100ms Reliable 1680 225KB/s 200 1080 600
3 3 25ms Best-effort 5600 1000KB/s 50 3600 2000
4 1 40ms Best-effort 4333.33 3750KB/s 42 4254 79.33
5 2 100ms Reliable 1680 225KB/s 200 1080 600
6 3 25ms Best-effort 5600 1000KB/s 50 3600 2000
 Total 23009.27 9460.87KB/s

5. Simulation Based Experimentation – Initial Validation of Simulation Implementation

155

Simulation Output

QoS Framework Negotiation Algorithm - Serviced Subscribers
Su

bs
cr

ib
er

N

o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 46ms Best-effort 4115 3260KB/s
2 2 100ms Reliable 1680 225KB/s
3 3 25ms Best-effort 5600 1000KB/s
4 1 40ms Best-effort 4333 3750KB/s
5 2 100ms Reliable 1680 225KB/s
6 3 25ms Best-effort 5600 1000KB/s
 Total 23008 9460KB/s
Summary

A slight variation in reward and resources allocated can again be noticed due to the

rounding automatically performed when outputting from MATLAB. The actual

negotiation of QoS levels performed by the simulation, however, can be seen to exactly

match the expected output.

5.3.3 Scenario 3: Three Publishers and Six Subscribers at Minimum
QoS Levels

This example shows how a subscriber’s penalty value can be used to ensure its

acceptance despite the negotiation process causing a drop in total reward.

Initial System State

Expected Output

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 50ms Best-effort 4000 3000KB/s
2 2 500ms Reliable 720 45KB/s
3 3 125ms Best-effort 2400 200KB/s
4 1 50ms Best-effort 4000 3000KB/s
5 2 500ms Reliable 720 45KB/s
 Total 11840 6290KB/s

5. Simulation Based Experimentation – Initial Validation of Simulation Implementation

156

Simulation Output

QoS Framework Negotiation Algorithm - Serviced Subscribers
Su

bs
cr

ib
er

N

o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 50ms Best-effort 3999 3000KB/s
2 2 500ms Reliable 720 45KB/s
3 3 125ms Best-effort 2400 200KB/s
4 1 50ms Best-effort 3999 3000KB/s
5 2 500ms Reliable 720 45KB/s
 Total 11838 6290KB/s

Final System State

Expected Output

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

Pe
na

lty

1 1 50ms Best-effort 4000 3000KB/s 0
4 1 50ms Best-effort 4000 3000KB/s 0
6 3 125ms Best-effort 2400 200KB/s 1500
 Total 10400 6200KB/s

Simulation Output

QoS Framework Negotiation Algorithm - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

Pe
na

lty

1 1 50ms Best-effort 3999 3000KB/s 0
4 1 50ms Best-effort 3999 3000KB/s 0
6 3 125ms Best-effort 2400 200KB/s 1500
 Total 10398 6200KB/s

5. Simulation Based Experimentation – Initial Validation of Simulation Implementation

157

Summary

The simulation has successfully used the penalty value assigned for the rejection of the

new subscriber (6) to ensure that it is accepted, even though the overall reward value

has decreased due to its introduction.

5.3.4 Summary & Discussion

The implementation of the negotiation algorithm within the simulation has been shown

to result in the expected selections of subscriber QoS levels. Some slight variation has

been observed in the calculated reward and resources used. This is due to the

differences in rounding when calculating the worked examples and in that performed by

MATLAB when outputting the result and will not have a significant impact on any

further results observed. It has been noted, however, that rounding would not be

expected to occur within an actual implementation.

5.4 Initial Simulation Experimentation

The examples from scenarios 1, 2 and 3 shall now be extended, manually specifying

the introduction of further nodes and a greater number of publishers and subscribers.

The topology shall be kept relatively simple by having all nodes connected to each

other by independent network links. While simple in terms of system topology, the

higher number of subscribers and publishers make an offline analysis too complex to

be shown, thus only the simulation results are given. The simulation shall also be used

to give an initial indication of performance differences between the different negotiation

algorithms considered.

5.4.1 Scenario 4: 3 Node Pre-Defined System

This scenario introduces a third node to the system and makes use of 30 subscribers

and 9 publishers distributed throughout these nodes. The system topology is shown in

Figure 32, where network connection between nodes are represented by connecting

lines and nodes are plotted based on their specified x and y co-ordinates. Note that

the unit of distance used for the co-ordinates is left unspecified, as this is not currently

required for the simulation.

5. Simulation Based Experimentation – Initial Simulation Experimentation

158

Figure 32 - Scenario 4 System Topology

Figure 33 examines the total reward achieved across all nodes with each of the

negotiation algorithms considered. The framework negotiation algorithm can be seen

to achieve the greatest total reward with a value of 17001, offering an increase of 1114

over the best result of the priority-based negotiation algorithm and 2384 over

compatibility testing. At low and medium levels priority-based and compatibility testing

negotiation achieve equal reward levels, meaning that either resources are not

contested, or it is not possible to remove lower priority subscribers in order to increase

the total reward.

x axis co-ordinates

y
ax

is
 c

o-
or

di
na

te
s

5. Simulation Based Experimentation – Initial Simulation Experimentation

159

Figure 33 - Scenario 4 Total Reward Levels

Examining the network link utilisation in Figure 34, the framework algorithm can be

seen to use slightly more resources than the priority-based or compatibility testing

algorithms with high levels of QoS. This is due to the algorithms ability to tailor

resource demands at times of high load, maximising resource use and resulting in the

greater degree of reward found.

The priority-based negotiation algorithm also starts to show some benefit as when

compared to compatibility testing at high levels it can be seen to use less resources,

but offer a higher reward.

0	
2000	
4000	
6000	
8000	

10000	
12000	
14000	
16000	
18000	

Re
w
ar
d	
Va

lu
e	
(V
)	

Nego7a7on	 Algorithm	

Scenario	 4:	 Total	 Reward	

5. Simulation Based Experimentation – Initial Simulation Experimentation

160

Figure 34 - Scenario 4 Total Network Utilisation

The total number of serviced subscribers in the system with each negotiation algorithm

is shown in Table 13.

Table 13 - Scenario 4 Total Number of Serviced Subscribers

Negotiation Technique No. of Serviced
Subscribers

Compatibility Testing (High) 11
Compatibility Testing (Medium) 16
Compatibility Testing (Low) 16
Priority-Based (High) 10
Priority- Based (Medium) 16
Priority- Based (Low) 16
Framework (Reward/Penalty) 15

5.4.2 Scenario 5: 5 Node Pre-Defined System

Scenario 5 extends the simulation further, adding fourth and fifth nodes, and increasing

the number of subscribers to 50 and publishers to 20. The system topology is shown in

Figure 35.

0.00	
10.00	
20.00	
30.00	
40.00	
50.00	
60.00	
70.00	
80.00	
90.00	

N
et
ow

rk
	 U
7l
is
a7

on
	 (%

)	

Nego7a7on	 Algorithm	

Scenario	 4:	 Network	 U7lisa7on	

5. Simulation Based Experimentation – Initial Simulation Experimentation

161

Figure 35 - Scenario 5 System Topology

Similarly to scenario 4 the total reward values observed in Figure 36 show the

framework negotiation algorithm offering a slight increase in reward.

Figure 36 - Scenario 5 Total Reward

0	
5000	

10000	
15000	
20000	
25000	
30000	
35000	
40000	
45000	
50000	

Re
w
ar
d	
Va

lu
e	
(V
)	

Nego7a7on	 Algorithm	

Scenario	 5:	 Total	 Reward	

x axis co-ordinates

y
ax

is
 c

o-
or

di
na

te
s

5. Simulation Based Experimentation – Initial Simulation Experimentation

162

The overall network utilisation of all negotiation algorithms, shown in Figure 37, is much

lower than in scenario 4. This is due to the wider availability of publishers on different

nodes and the network links with which to reach them to choose from. Regardless of

this the framework negotiation algorithm can still be seen to make use of slightly more

resources in return for the increase in reward observed.

Figure 37 - Scenario 5 Network Utilisation

The total number of subscribers serviced, given in Table 14, shows only minor variation

between negotiation algorithms.

Table 14 - Scenario 5 Total Number of Serviced Subscribers

Negotiation Technique No. of Serviced
Subscribers

Compatibility Testing (High) 27
Compatibility Testing (Medium) 28
Compatibility Testing (Low) 28
Priority-Based (High) 27
Priority- Based (Medium) 28
Priority- Based (Low) 28
Framework (Reward/Penalty) 28

0.00	
5.00	
10.00	
15.00	
20.00	
25.00	
30.00	
35.00	
40.00	
45.00	

N
et
ow

rk
	 U
7l
is
a7

on
	 (%

)	

Nego7a7on	 Algorithm	

Scenario	 5:	 Network	 U7lisa7on	

5. Simulation Based Experimentation – Initial Simulation Experimentation

163

5.4.3 Summary & Discussion

This section has given an initial comparison of results from different negotiation

techniques. The flexibility found within the framework negotiation technique has been

observed to offer an increase in reward compared to all other negotiation techniques at

the expense of higher resource utilisation.

5.5 Complex System Simulation

Following from the manually specified simulation scenarios a series of randomly

generated complex system topologies are used to form a further set of scenarios,

building on the results already identified. This section shall consider three separate

scenarios where complex systems are generated containing 5, 10 and then 15 nodes.

As specified within the test plan these scenarios shall be examined in terms of the

effect of the QoS framework on system utilisation, system stability and scalability.

Reproducing Simulation Scenarios

System parameters such as the number of nodes, publishers and subscribers are set

in the GUI under the ‘Common Options’ box as shown in Figure 31. The simulation is

executed by using the ‘Run All’ button within the ‘Varying Levels of Subscribers’ box.

The interval at which data samples are collected is specified by the ‘Subscriber Interval’

parameter. Results are presented both visually and in a Comma-Separated Value

(CSV) file created within the main simulation code folder.

Figure 38 - Scenarios 6-8 GUI

5. Simulation Based Experimentation – Complex System Simulation

164

5.5.1 Scenario 6: 5 Node Complex System Topology

5.5.1.1 Scenario Design

A randomly generated system topology containing 5 nodes is generated through the

simulation environment. The scenario is specified using the parameters in Table 15.

Table 15 - Scenario 6 System Parameters

System Parameter Value
Number of Nodes 5
Number of Publishers 500
Number of Subscribers 300
Sample Interval 25
Random Seed 10

An illustration of the connectivity between nodes in the resulting randomly generated

system topology is given in Figure 39. In this figure nodes are placed at equally

spaced intervals along and lines used to illustrate where connectivity is present. The

actual topology is shown in Figure 40.

Figure 39 - Scenario 6 Network Links

5. Simulation Based Experimentation – Complex System Simulation

165

Figure 40 - Scenario 6 System Topology

5.5.1.2 Results

5.5.1.2.1 System Utility

The reward values gained from each algorithm are shown in Figure 41 and the

corresponding network utilisation is given in Figure 42. The final number of serviced

subscribers is shown in Table 16 so as to give context to these measures of algorithm

performance.

Figure 41 - Scenario 6 Total Reward

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

25	 50	 75	 100	 125	 150	 175	 200	 225	 275	 300	

Re
w
ar
d	
Va

lu
e	
(V
)	

Number	 of	 Subscriber	 Requests	

Scenario	 6:	 Total	 Reward	
Framework	 Nego7a7on	
Algorithm	

Priority	 Based	 (Low)	

Priority	 Based	 (Medium)	

Priority	 Based	 (High)	

Compa7bility	 Test	 (Low)	

Compa7bility	 Test	 (Medium)	

Compa7bility	 Test	 (High)	

x axis co-ordinates

y
ax

is
 c

o-
or

di
na

te
s

5. Simulation Based Experimentation – Complex System Simulation

166

Table 16 - Scenario 6 Total Number of Serviced Subscribers

Negotiation Technique No. of Serviced
Subscribers

Compatibility Testing (High) 11
Compatibility Testing (Medium) 15
Compatibility Testing (Low) 20
Priority-Based (High) 6
Priority- Based (Medium) 9
Priority- Based (Low) 12
Framework (Reward/Penalty) 13

Figure 42 - Scenario 6 Network Utilisation

While system resources are largely uncontested (up to around 75 subscriber requests)

the reward values and network resources utilised by the different algorithms can be

seen to be largely similar. In contrast to what would be expected, at this point the

framework negotiation algorithm can be seen to offer the lowest total reward. At the

next measured interval (100 subscriber requests), however, the framework algorithm

can be seen to have overtaken all other algorithms in terms of reward offered. As was

discussed in section 4.6 an inflexible method of negotiation may result in a temporary

increase in reward, as the inflexible algorithm is forced to choose alternative

publishers, which may ultimately lead to a more optimal system configuration.

Comparing the reward from the framework negotiation algorithm with any of the QoS

0	

5	

10	

15	

20	

25	

30	

25	 50	 75	 100	 125	 150	 175	 200	 225	 275	 300	

N
et
w
or
k	
U
7l
is
a7

on
	 (%

)	

Number	 of	 Subscriber	 Requests	

Scenario	 6:	 Network	 U7lisa7on	
Framework	 Nego7a7on	
Algorithm	

Priority	 Based	 (Low)	

Priority	 Based	 (Medium)	

Priority	 Based	 (High)	

Compa7bility	 Test	 (Low)	

Compa7bility	 Test	 (Medium)	

Compa7bility	 Test	 (High)	

5. Simulation Based Experimentation – Complex System Simulation

167

interval ranges tested with priority-based negotiation or compatibility testing though

shows that it still offers a benefit with any QoS interval range, as seen in Table 27.

As more subscribers enter the system and network resources become contested for

the differences in performance of the different negotiation methods start to become

more pronounced.

The compatibility testing algorithm does not allow for subscribers to be removed once a

publisher match has been accepted. This means that new subscribers can only be

accepted while adequate resources remain. Specifying subscribers with low QoS

levels can be seen to allow for a slightly higher reward as the likelihood of there being

adequate resources remaining for a new subscriber is increased.

The priority-based negotiation algorithm can be seen to offer significant improvements

to the level of reward when compared to compatibility testing. Comparing the lowest

final reward found from priority-based negotiation to the highest possible reward with

compatibility testing (low QoS level), an increase in reward of 91.5% at best (high QoS

level) and 48.3% at worst (low QoS level) can be seen. This is achieved by the

removal of subscribers offering a lower reward in favour of newer, higher priority,

subscribers. Again the highest reward is possible when subscribers are set with low

QoS levels, allowing the finer grained use of resources.

Examining the final reward offered by the framework negotiation algorithm a further

increase in the final reward can be found. The reward level can be seen to be 2.5%

higher than the best priority based negotiation results and 96% higher than

compatibility testing. This shows the advantage in terms of system utilisation provided

by being able to flexibly negotiate the QoS levels used for each subscribing application.

The benefits of flexible negotiation can also be seen in terms of resource utilisation

where the framework negotiation algorithm can be seen to offer lower resource

utilisation while resources are under heavy but not extreme demand (between 50 and

100 subscriber requests). Note that the network resource utilisation appears to reach

its limit around 30%. This is due to the random nature of the system topology and the

fact that links may be created that are redundant, or never used (due to publishers on

nodes not being required by a subscriber on another node).

5. Simulation Based Experimentation – Complex System Simulation

168

Where differences in the negotiation algorithms are perhaps most apparent is in the

number of subscribers that are ultimately serviced (shown in Table 16). Note that the

number of serviced subscribers may seem low in relation to the number of subscriber

requests, however, this is due to the random nature of the system topology and general

incompatibilities that may arise between publisher and subscriber QoS levels.

Additionally some subscribers will have been accepted into the system but

subsequently dropped in favour of others (this will be discussed further in section

5.5.1.2.2). Compatibility testing offers consistently higher numbers of serviced

subscribers than the other negotiation algorithms as is to be expected given that it does

not remove subscribers once they are accepted. The flexible nature of the QoS

framework algorithm, however, allows it to accept more subscribers than priority-based

negotiation at any level. In practice this will mean that additional applications (and

therefore end users) will be capable of running within the system, while still maintaining

the highest overall reward level.

5.5.1.2.2 System Stability

As a measure of system stability the number of subscribers that were accepted into the

system but then subsequently removed in favour of others capable of offering a greater

reward was recorded. This is shown in Table 17. As the compatibility testing method

does not offer the ability to exchange subscribers based on any preference, this can be

said to remain stable. Performance of the priority-based algorithm can be seen to be

reasonably similar in terms of number of subscribers stopped at each QoS level. As

the medium and low QoS levels accept the most subscribers into the system they also

experience the greatest degree of churn, as is to be expected. The performance of the

framework negotiation algorithm can also be seen to be in line with this, offering slightly

better stability than priority-based negotiation at medium level, but slightly worse at

high and low levels.

5. Simulation Based Experimentation – Complex System Simulation

169

Table 17 - Scenario 6 Total Number of Stopped Subscribers

Negotiation Technique No. of Stopped
Subscribers

Compatibility Testing (High) 0
Compatibility Testing (Medium) 0
Compatibility Testing (Low) 0
Priority-Based (High) 24
Priority- Based (Medium) 32
Priority- Based (Low) 29
Framework (Reward/Penalty) 30

5.5.1.2.3 Resource Utilisation

Examining the execution times of the algorithms, shown in Figure 43, starts to show the

cost of introducing a flexible and relatively computationally expensive algorithm. Note

that the execution time is included as a means of comparing the performance

differences of the algorithms in relation to each other. The execution time of each

algorithm would be expected to be lower within an actual implementation (though

maintaining the same relative performance), without the overhead inherent in

simulation.

Figure 43 - Scenario 6 Execution Time

The priority-based negotiation algorithm was seen to consistently offer the fastest

execution times, beating even the algorithmically simpler compatibility testing. As the

0.00	
5.00	
10.00	
15.00	
20.00	
25.00	
30.00	
35.00	
40.00	
45.00	
50.00	

25	 50	 75	 100	 125	 150	 175	 200	 225	 275	 300	

	 A
ve
ra
ge
	 E
xe
cu
7o

n	
Ti
m
e	

	 P
er
	 S
ub

sc
rib

er
	 (s
)	

Number	 of	 Subscriber	 Requests	

Scenario	 6:	 Execu7on	 Time	
Framework	 Nego7a7on	
Algorithm	
Priority	 Based	 (Low)	

Priority	 Based	 (Medium)	

Priority	 Based	 (High)	

Compa7bility	 Test	 (Low)	

Compa7bility	 Test	 (Medium)	

Compa7bility	 Test	 (High)	

5. Simulation Based Experimentation – Complex System Simulation

170

priority-based algorithm is capable of accepting subscribers that the compatibility

testing is not it means that the algorithm can often reach a decision quicker than

compatibility testing which will often proceed to check all potential publisher matches

for a subscriber before being able to return a response.

While resources are uncontested (up to 50 subscriber requests) the execution time of

the framework negotiation algorithm can be seen to be between 12.2% and 22.8%

worse than the best performing algorithm (priority-based, low QoS level). This is a

relatively insignificant cost considering that each subscriber request is still typically

handled in less than 13 milliseconds. Once the negotiation of resources becomes

necessary, however, the execution time of the framework algorithm increases at a

greater factor than is observed in either of the other negotiation algorithms.

The execution time of the negotiation algorithms can be seen to mirror the total network

utilisation. This is due to the fact that as resources are being used decisions on the

acceptance of a new subscriber become more complex, potentially requiring the

removal or degradation of currently serviced subscribers (as appropriate), or simply the

additional checks of alternative publishers. Where the algorithms differ, however, is in

the scale of the performance impact that servicing subscribers has.

The final execution time of the framework algorithm observed is between 32 and 26

times greater per subscriber request than any other algorithm. This is a significant cost

when subscribers require a quick decision on whether a publisher can be accept them

or not.

5.5.2 Scenario 7: 10 Node Complex System Topology

5.5.2.1 Scenario Design

A randomly generated system topology containing 10 nodes is generated through the

simulation environment. The scenario is specified within the simulation using the

values in Table 18.

5. Simulation Based Experimentation – Complex System Simulation

171

Table 18 - Scenario 7 System Parameters

System Parameter Value
Number of Nodes 10
Number of Publishers 500
Number of Subscribers 2500
Sample Interval 100
Random Seed 1

An illustration of the connectivity between nodes is given in Figure 44 and the actual

topology is shown in Figure 45.

Figure 44 - Scenario 7 Network Links

Figure 45 - Scenario 7 System Topology

x axis co-ordinates

y
ax

is
 c

o-
or

di
na

te
s

5. Simulation Based Experimentation – Complex System Simulation

172

5.5.2.2 Results

5.5.2.2.1 System Utility

The reward values gained from each algorithm are shown in Figure 46 and the

corresponding network utilisation is given in Figure 47. The final number of serviced

subscribers is shown in Table 19 so as to give context to these measures of algorithm

performance.

Figure 46 - Scenario 7 Total Reward

Table 19 - Scenario 7 Total Number of Serviced Subscribers

Negotiation Technique No. of Serviced
Subscribers

Compatibility Testing (High) 13
Compatibility Testing (Medium) 18
Compatibility Testing (Low) 22
Priority-Based (High) 13
Priority- Based (Medium) 19
Priority- Based (Low) 17
Framework (Reward/Penalty) 23

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

20000	

10
0	

30
0	

50
0	

70
0	

90
0	

11
00
	

13
00
	

15
00
	

17
00
	

19
00
	

21
00
	

23
00
	

25
00
	

Re
w
ar
d	
Va

lu
e	
(V
)	

Number	 of	 Subscriber	 Requests	

Scenario	 7:	 Total	 Reward	
Framework	 Nego7a7on	
Algorithm	

Priority	 Based	 (Low)	

Priority	 Based	 (Medium)	

Priority	 Based	 (High)	

Compa7bility	 Test	 (Low)	

Compa7bility	 Test	 (Medium)	

Compa7bility	 Test	 (High)	

5. Simulation Based Experimentation – Complex System Simulation

173

Figure 47 - Scenario 7 Network Utilisation

The framework negotiation algorithm can be seen to consistently offer the greatest total

reward value and number of serviced subscribers. The low initial system reward

observed in scenario 6 is not seen here, possibly due to the change in system topology

or higher interval between results observed. Similar patterns to those identified in

scenario 6 are observed for the priority-based and compatibility testing methods of

negotiation.

A spike in resource usage and reward values are seen (between 1900 and 2100

subscriber requests) where new subscribers capable of making use of previously

unused network links enter the system. Beyond this spike the framework and priority-

based negotiation algorithms can be seen to further negotiate resource use, increasing

reward levels while maintaining resource utilisation levels.

5.5.2.2.2 System Stability

With the additional nodes and load examined in this scenario the benefits of the

framework in terms of system stability can begin to be seen. The framework again

offers the lowest total number of stopped subscribers (as shown in Table 20), however,

the difference between this and the priority-based negotiation algorithm at medium and

low levels is more pronounced.

0	

2	

4	

6	

8	

10	

12	

14	
N
et
w
or
k	
U
7l
is
a7

on
	 (%

)	

Number	 of	 Subscriber	 Requests	

Scenario	 7:	 Network	 U7lisa7on	
Framework	 Nego7a7on	
Algorithm	

Priority	 Based	 (Low)	

Priority	 Based	 (Medium)	

Priority	 Based	 (High)	

Compa7bility	 Test	 (Low)	

Compa7bility	 Test	 (Medium)	

Compa7bility	 Test	 (High)	

5. Simulation Based Experimentation – Complex System Simulation

174

Table 20 - Scenario 7 Total Number of Stopped Subscribers

Negotiation Technique No. of Stopped
Subscribers

Compatibility Testing (High) 0
Compatibility Testing (Medium) 0
Compatibility Testing (Low) 0
Priority-Based (High) 87
Priority- Based (Medium) 135
Priority- Based (Low) 170
Framework (Reward/Penalty) 82

5.5.2.2.3 Resource Utilisation

The average execution time per subscriber for this scenario is shown in Figure 48. The

performance of the framework negotiation algorithm can again be seen to suffer as

more subscribers are accepted into the system and the complexity of the negotiation

process increases. This is again to a far greater degree than that experienced by the

other negotiation algorithms.

Figure 48 - Scenario 7 Execution Time

0.00	
50.00	
100.00	
150.00	
200.00	
250.00	
300.00	
350.00	
400.00	
450.00	
500.00	

10
0	

30
0	

50
0	

70
0	

90
0	

11
00
	

13
00
	

15
00
	

17
00
	

19
00
	

21
00
	

23
00
	

25
00
	

Av
er
ag
e	
Ex
ec
u7

on
	 T
im

e	
	

Pe
r	 S

ub
sc
rib

er
	 (s
)	

Number	 of	 Subscriber	 Requests	

Scenario	 7:	 Execu7on	 Time	
Framework	 Nego7a7on	
Algorithm	
Priority	 Based	 (Low)	

Priority	 Based	 (Medium)	

Priority	 Based	 (High)	

Compa7bility	 Test	 (Low)	

Compa7bility	 Test	 (Medium)	

Compa7bility	 Test	 (High)	

5. Simulation Based Experimentation – Complex System Simulation

175

5.5.3 Scenario 8: 15 Node Complex System Topology

5.5.3.1 Scenario Design

A randomly generated system topology containing 15 nodes is generated through the

simulation environment. The scenario is specified within the simulation using the

values in Table 21.

Table 21 - Scenario 8 System Parameters

System Parameter Value
Number of Nodes 15
Number of Publishers 500
Number of Subscribers 2500
Sample Interval 100
Random Seed 1

An illustration of the connectivity between nodes is given in Figure 49 and the actual

topology is shown in Figure 50.

Figure 49 - Scenario 8 Network Links

5. Simulation Based Experimentation – Complex System Simulation

176

Figure 50 - Scenario 8 System Topology

5.5.3.2 Results

5.5.3.2.1 System Utility

The reward values gained from each algorithm are shown in Figure 51 and the

corresponding network utilisation is given in Figure 52. The final number of serviced

subscribers is shown in Table 22 so as to give context to these measures of algorithm

performance.

Figure 51 - Scenario 8 Total Reward

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

50000	

10
0	

30
0	

50
0	

70
0	

90
0	

11
00
	

13
00
	

15
00
	

17
00
	

19
00
	

21
00
	

23
00
	

25
00
	

Re
w
ar
d	
Va

lu
e	
(V
)	

Number	 of	 Subscriber	 Requests	

Scenario	 8:	 Total	 Reward	
Framework	 Nego7a7on	
Algorithm	

Priority	 Based	 (Low)	

Priority	 Based	 (Medium)	

Priority	 Based	 (High)	

Compa7bility	 Test	 (Low)	

Compa7bility	 Test	 (Medium)	

Compa7bility	 Test	 (High)	

x axis co-ordinates

y
ax

is
 c

o-
or

di
na

te
s

5. Simulation Based Experimentation – Complex System Simulation

177

Table 22 - Scenario 8 Total Number of Serviced Subscribers

Negotiation Technique No. of Serviced
Subscribers

Compatibility Testing (High) 29
Compatibility Testing (Medium) 46
Compatibility Testing (Low) 52
Priority-Based (High) 37
Priority- Based (Medium) 45
Priority- Based (Low) 66
Framework (Reward/Penalty) 74

Figure 52 - Scenario 8 Network Utilisation

The benefit of the framework negotiation algorithm in terms of total system reward is

more pronounced within this topology. The flexible nature of the framework algorithm

has made it possible for a greater number of subscriber requests to be fulfilled,

resulting in the increased reward value observed. As has been seen throughout

scenarios 6 to 8 the exact benefit provided by the framework negotiation algorithm is

likely to vary given different system topologies and the flexibility allowed by subscribing

applications.

Previously noted trends for the behaviour of the priority-based and compatibility testing

algorithms can be seen to continue here.

0	

2	

4	

6	

8	

10	

12	

N
et
w
or
k	
U
7l
is
a7

on
	 (%

)	

Number	 of	 Subscriber	 Requests	

Scenario	 8:	 Network	 U7lisa7on	
Framework	 Nego7a7on	
Algorithm	

Priority	 Based	 (Low)	

Priority	 Based	 (Medium)	

Priority	 Based	 (High)	

Compa7bility	 Test	 (Low)	

Compa7bility	 Test	 (Medium)	

Compa7bility	 Test	 (High)	

5. Simulation Based Experimentation – Complex System Simulation

178

5.5.3.2.2 System Stability

The number of stopped subscribers observed in Table 23 follows the same patterns

observed previously in scenarios 6 and 7. The framework negotiation algorithm results

in a lower number of stopped subscribers than the priority-based algorithm at any QoS

level, aiding overall system stability. This is particularly significant given the greater

number of serviced subscribers observed in this scenario.

Table 23 - Scenario 8 Total Number of Stopped Subscribers

Negotiation Technique No. of Stopped
Subscribers

Compatibility Testing (High) 0
Compatibility Testing (Medium) 0
Compatibility Testing (Low) 0
Priority-Based (High) 100
Priority- Based (Medium) 126
Priority- Based (Low) 126
Framework (Reward/Penalty) 95

5.5.3.2.3 Resource Utilisation

The average execution time per subscriber for this scenario is shown in Figure 53. The

performance of the framework negotiation algorithm can again be seen to suffer as

more subscribers are accepted into the system and the complexity of the negotiation

process increases.

5. Simulation Based Experimentation – Complex System Simulation

179

Figure 53 - Scenario 8 Execution Time

5.5.4 Summary & Discussion

The simulation results presented here have begun to show the strengths and

weaknesses of each algorithm as related to future large-scale distributed systems.

Compatibility testing results in the most stable system but allows for no preference of

subscribers or optimization for resource use. For these reasons it can be seen to

consistently result in the lowest reward levels.

Prioritisation offers higher system reward values but the lack of flexibility in the

specification of QoS levels means that its performance is less stable as subscribers are

removed from the system that may not have been necessary with a flexible negotiation

algorithm.

The framework algorithm consistently offers a greater or equal reward value and

relatively low number of stopped subscribers resulting in a system that is more stable

to change. The execution time that it requires to accept new subscribers when under a

high volume of subscribers could, however, be prohibitive to those applications with

strict requirements on the amount of time taken to reach a decision. The execution

time of the framework negotiation algorithm could be reduced through fine-tuning of the

0.00	

200.00	

400.00	

600.00	

800.00	

1000.00	

1200.00	

1400.00	

1600.00	

1800.00	

10
0	

30
0	

50
0	

70
0	

90
0	

11
00
	

13
00
	

15
00
	

17
00
	

19
00
	

21
00
	

23
00
	

25
00
	

Av
er
ag
e	
Ex
ec
u7

on
	 T
im

e	
Pe

r	 S
ub

sc
rib

er
	 (s
)	

Number	 of	 Subscriber	 Requests	

Scenario	 8:	 Execu7on	 Time	
Framework	 Nego7a7on	
Algorithm	
Priority	 Based	 (Low)	

Priority	 Based	 (Medium)	

Priority	 Based	 (High)	

Compa7bility	 Test	 (Low)	

Compa7bility	 Test	 (Medium)	

Compa7bility	 Test	 (High)	

5. Simulation Based Experimentation – Complex System Simulation

180

algorithm itself and QoS requirements (increasing the sample rate interval, lowering the

number of QoS levels available for example).

What these results suggest is that an adaptive approach to negotiation algorithm

selection itself, based on the characteristics of the individual node that is running it and

the requirements placed on it by external subscribers within the system, would provide

the ability to tailor the performance of the QoS framework as necessary. From these

scenarios recommendations can be made as to when the use of the framework

negotiation algorithm is suitable. Table 24 shows this recommendation based on the

coarsely defined levels of subscriber density and node resource availability.

Table 24 - Node Resource Availability vs. Number of Subscribers per Node

Node Resource Availability Number of Subscribers per Node
Low High

Low Framework Negotiation
Algorithm

Priority-Based Negotiation
Algorithm

High Framework Negotiation
Algorithm

Framework Negotiation
Algorithm

The QoS framework as proposed within this thesis adopts a modular approach to the

implementation of QoS features, including the negotiation algorithm used. This means

that different nodes within the system can use different negotiation algorithms,

depending on their resource availability, while remaining compatible with each other.

5.6 Variations in QoS Definition

The previous scenarios have examined the QoS framework under different system

topologies of increasing complexity. This experiment, however, will investigate how the

number of QoS levels available for use with the framework negotiation algorithm will

affect the system performance. In a similar manner to the previous scenarios (6-8),

performance shall again be examined for the effect that this increased flexibility has on

system utilisation, stability and scalability.

5. Simulation Based Experimentation – Variations in QoS Definition

181

5.6.1 Scenario 9: Varying the QoS Level Interval

This scenario examines the effect of altering the Time Based Filtering QoS interval

value, effectively adjusting the number of QoS levels between the maximum and

minimum QoS range through which the negotiation can take place. The number of

QoS levels available for negotiation affects the ability of the negotiation algorithm to

tailor resource usage at times of high load.

The TBF interval value shall be considered at levels both higher and lower than the

default level used for previous randomly generated scenarios.

5.6.1.1 Scenario Design

This scenario uses the same system topology, containing 15 nodes, as scenario 8, as

shown in Figure 49 and Figure 50.

Reproducing Simulation Scenarios

Each test shall be run with the parameters shown in Table 25. The TBF interval values

used for each test (found as a random number between maxSubI and maxSubIFloor),

found in the generateRandomTopology function within projectGui.m, specifying the

maximum TBF interval size, are given in Table 26. The default level used

for previous scenarios is examined in Test 3.

Table 25 - Scenario 9 System Parameters

System Parameter Value
Number of Nodes 15
Number of Publishers 500
Number of Subscribers 1000
Sample Interval 100
Random Seed 1

5. Simulation Based Experimentation – Variations in QoS Definition

182

 Table 26 - Scenario 9 TBF Interval Values

Test maxSubInt maxSubIntFloor
1 1 1
2 50 5
3 (default level) 100 10
4 150 15
5 200 20
6 250 25
7 300 30
8 350 35
9 400 40

5.6.1.2 Results

5.6.1.2.1 System Utility

The expectation would be that increasing the number of QoS levels would result in

greater levels of reward, made possible by the fine tuning of application performance in

times of high network load. Looking first at the initial reward values gained when

subscribers have been successfully matched (shown in Figure 54) shows this to be

true. Examining the final reward values, observed in Figure 55, however, shows

unexpected variations. The complexity of system design means that final reward

values do not match what would be expected. As was previously discussed in the

results for scenario 4 (section 5.5.1.2.1) this is due to the less flexible algorithms being

forced to use a network link that may lead to a temporary increase in reward. It would

be expected that greater flexibility in QoS levels would ultimately lead to a higher

reward were the system to continue to grow (as was observed in scenarios 4-6).

5. Simulation Based Experimentation – Variations in QoS Definition

183

Figure 54 - Scenario 9 Comparison of Reward Values - 200 Subscribers

Figure 55 - Scenario 9 Comparison of Final Reward Values

Table 27 - Scenario 9 Comparison of Reward Values

Negotiation Technique Reward Value (V)
Compatibility Testing (High) 14103
Compatibility Testing (Medium) 13921
Compatibility Testing (Low) 14446
Priority-Based (High) 25155
Priority- Based (Medium) 24746
Priority- Based (Low) 18995
Framework (Reward/Penalty) –
Lowest Result (Test 9)

25916

5000	

5100	

5200	

5300	

5400	

5500	

5600	

Test	 1	 Test	 2	 Test	 3	 Test	 4	 Test	 5	 Test	 6	 Test	 7	 Test	 8	 Test	 9	

Re
w
ar
d	
Va

lu
e	

Test	

Comparison	 of	 Reward	 Values	 Using	
Different	 Interval	 Sizes	 -‐	 200	 Subscribers	

24500	
25000	
25500	
26000	
26500	
27000	
27500	
28000	
28500	

Test	 1	 Test	 2	 Test	 3	 Test	 4	 Test	 5	 Test	 6	 Test	 7	 Test	 8	 Test	 9	

Re
w
ar
d	
Va

lu
e	
(V
)	

Test	

Comparison	 of	 Final	 Reward	 Values	 Using	
Different	 Interval	 Sizes	

5. Simulation Based Experimentation – Variations in QoS Definition

184

As is to be expected, the network utilisation seen in Figure 56 is largely very similar

between all QoS interval ranges and can be seen to directly correspond to the number

of serviced subscribers, given in Table 28.

Figure 56 - Scenario 9 Network Utilisation

Table 28 - Scenario 9 Total Number of Serviced Subscribers with Varying QoS Intervals

Negotiation Technique -Test No. of Serviced
Subscribers

1 54
2 56
3 (default level) 54
4 57
5 54
6 56
7 55
8 46
9 46

Table 29 - Scenario 9 Total Number of Serviced Subscribers

Negotiation Technique No. of Serviced
Subscribers

Compatibility Testing (High) 29
Compatibility Testing (Medium) 42
Compatibility Testing (Low) 50
Priority-Based (High) 21
Priority- Based (Medium) 40
Priority- Based (Low) 52
Framework (Reward/Penalty) 56

0.00	

2.00	

4.00	

6.00	

8.00	

10.00	

12.00	

100	 200	 300	 400	 500	 600	 700	 800	 900	 1000	

Re
w
ar
d	
Va

lu
e	
(%

)	

Number	 of	 Subscriber	 Requests	

Scenario	 9:	 Network	 U7lisa7on	
Test	 1	

Test	 2	

Test	 3	

Test	 4	

Test	 5	

Test	 6	

Test	 7	

Test	 8	

Test	 9	

5. Simulation Based Experimentation – Variations in QoS Definition

185

5.6.1.2.2 System Stability

The number of subscribers stopped during the negotiation process of the compatibility

testing and priority based negotiation algorithms are given in Table 30. Comparing this

with the number of subscribers stopped by the framework negotiation algorithm at

different interval levels (Table 31), the framework negotiation algorithm can be seen to

perform at least as well as the priority-based algorithm. At all but one level (Test 1) the

number of subscribers stopped was less than possible with priority-based negotiation.

Table 30 - Scenario 9 Total Number of Stopped Subscribers

Negotiation Technique No. of Stopped
Subscribers

Compatibility Testing (High) 0
Compatibility Testing (Medium) 0
Compatibility Testing (Low) 0
Priority-Based (High) 42
Priority- Based (Medium) 45
Priority- Based (Low) 41

Table 31 - Scenario 9 Total Number of Stopped Subscribers with Varying QoS Intervals

Negotiation Technique No. of Stopped
Subscribers

1 41
2 34
3 (default level) 35
4 37
5 36
6 32
7 37
8 39
9 40

It would be expected that the fewer possible levels of QoS there were to negotiate with

the more subscribers would need to be removed in order to increase reward.

Examining the results, however, shows this to not necessarily be true for all cases.

While some tests would fit this pattern the complex system topology can again be seen

to adversely affect the results of some tests.

5.6.1.2.3 Resource Utilisation

The comparison of total execution times for the different QoS intervals, seen in Figure

57 shows the benefit that using coarser grained levels of QoS has in comparison to

5. Simulation Based Experimentation – Variations in QoS Definition

186

allowing a full range of QoS levels (used in Test 1). The framework negotiation

algorithm can be seen to follow the expected pattern that the more levels of QoS with

which there are to negotiate, the longer the algorithm takes to complete. It can also be

seen, however, that the benefits of reducing the number of QoS levels decrease

quickly, with there being little discernable difference between tests 4-9, a measured

maximum difference of 0.015 seconds per subscriber, whereas between tests 1-4 there

is a maximum difference of 1.25 seconds per subscriber. This suggests that beyond

the initial low levels the execution time should not be a consideration when deciding on

the number of QoS levels used, unless under extreme time constraints.

Figure 57 - Scenario 9 Total Execution Time

5.6.2 Summary & Discussion

This section has highlighted the complexity of choosing the number of levels with which

to specify the QoS requirements of applications.

This scenario has again highlighted how negotiating resource allocation within a

complex system containing varied network links and multiple potential publisher

matches to subscriber requests can prove challenging without a system wide view.

0.00	

20.00	

40.00	

60.00	

80.00	

100.00	

120.00	

140.00	

100	 200	 300	 400	 500	 600	 700	 800	 900	 1000	

Av
er
ga
e	
Ex
ec
u7

on
	 T
im

e	
Pe

r	 S
ub

sc
rib

er
	 (s
)	

Number	 of	 Subscriber	 Requests	

Scenario	 9:	 Total	 Execu7on	 Time	

Test	 1	

Test	 2	

Test	 3	

Test	 4	

Test	 5	

Test	 6	

Test	 7	

Test	 8	

Test	 9	

5. Simulation Based Experimentation – Variations in QoS Definition

187

System wide optimisation could potentially be used to ensure that resources are

allocated in a way that will benefit the entire system. In order to do this a current view

of the state of the system (or sub-system) is needed. This is particularly difficult in a

dynamic system where system elements are likely to change frequently. If some

measure of system wide optimisation were possible, however, it would help to alleviate

some of the discrepancies observed in this scenario and increase the confidence of the

application developer in the affect that setting their QoS levels (and the QoS interval

specifically) will have.

While it may ultimately be the decision of application developers to set their QoS

requirements, the middleware could be used to adjust these levels where necessary,

depending on the performance of the node that they are executing on. For example an

application requiring a minimum of 10 and a maximum of 20 samples/second, with an

interval of 2, could be set to negotiate with an interval of 4. This tailoring of the QoS

interval could allow applications to be more portable between nodes of differing

resource capabilities.

5.7 Overall Summary

This section has investigated the affect that the QoS framework has on the

dependability of dynamic systems. System topologies of increasing complexity have

been generated with which to test the QoS framework. Additionally an investigation

has been conducted into the affect that the way in which subscriber QoS requirements

are specified (specifically QoS intervals) has on system dependability and

performance. The results of the more complex topologies have focused specifically on

system utility, resource utilisation and system stability.

The QoS framework negotiation algorithm was found to offer increases in system

reward and have a positive affect on system stability (when compared to priority-based

negotiation). The main drawback of this algorithm was identified in the execution time

taken. It was suggested, however, that a modular approach could be taken to

negotiation algorithm implementation and, where computational resources within a

node are limited, priority-based negotiation could instead be used.

5. Simulation Based Experimentation – Overall Summary

188

The compatibility testing algorithm is particularly disadvantaged within the dynamic

systems considered here as it is primarily designed for use in systems that are

developed with a prior wider knowledge of the system (particularly those resources

available and the applications that run within). While it is the sole method of resource

allocation within such software architectures as DDS, however, it is important to

recognise its limitations within complex dynamic systems.

The scenarios examined here have investigated system topologies containing up to 15

nodes. It could be expected that the results observed here would be applicable to

system topologies of increasing size and complexity. The main factor affecting the

execution time taken by each algorithm is the density of subscribers serviced per node.

Depending on the performance impact experienced, nodes may want to have a limit on

the number of serviced subscribers that can be accepted.

While the simulation has provided an insight into the potential performance of the QoS

framework it is important to recognise the inherent limitations of simulation

experimentation. The assumptions necessary when creating the simulation mean that

it can only give an indication of performance. An actual implementation would likely

introduce unexpected challenges and results.

6. Test-Bed Based Implementation Feasibility Study

189

6 Test-Bed Based Implementation Feasibility Study

6.1 Introduction

To further validate the applicability of the proposed QoS framework a test-bed based

implementation feasibility study was conducted. This study focused on identifying

potential implementation challenges and opportunities through the integration of QoS

framework features within an existing test-bed based on the Integrated Modular

Systems (IMS) software architecture. The IMS emulator test bed was chosen due to

the opportunity it provided to work on an industrially inspired system that may not

otherwise be possible due to cost and commercial restrictions.

This section first details the existing test-bed implementation of an IMS emulator. An

assessment is then conducted on the different ways in which the QoS framework could

be included within the IMS architecture. This includes any particular challenges or

opportunities identified. Detail is then given regarding the framework implementation

conducted on the test-bed. Finally, initial results from the test-bed are shown,

validating the implementation against scenarios 1-3, previously examined in sections

4.4.3 and 5.3, and a critique of the implementation is given.

6.2 Existing IMS Test-Bed Emulator

An existing IMS emulator test bed was developed by Oikonomou et al. (2010) to

provide a platform on which adaptations to the IMS architecture could be experimented

with. This emulator does not replicate the entire IMS operating system; instead it

focuses on implementing the communications model.

IMS is a typically static architecture that uses blueprint documents, created offline, to

describe the composition of the system under different modes (i.e. which applications

are running and through which virtual channels they communicate at a given time).

The initial development of the emulator included the addition of a service discovery

daemon, allowing the run-time discovery of applications between platforms.

6. Test-Bed Based Implementation Feasibility Study – Existing IMS Test-Bed Emulator

190

Each node of the IMS emulator is set-up using a manually created configuration file

detailing the applications that are to be run and the virtual channels that shall connect

them.

Figure 58 shows how applications within a single node communicate use local virtual

channels (denoted as LVC) to send data to or receive data from a global virtual

channel (VC). An application need only be aware of the number of local virtual

channels that it is to use and what data is to be sent or received over these channels.

If an application is to send data then this is written to the corresponding virtual channel

whether it is then being read by an application or not (though given the static

configuration of applications currently used it could be expected that a corresponding

application would be receiving this data).

Figure 58 - Singular VC Endpoints (Oikonomou, et al. 2010)

Figure 59 shows how global virtual channels (denoted as VC within the figure) can be

mapped to transfer connections (TC) as a means of facilitating communication between

common functional modules (CFM) across a network (in this case IPv6 based).

App. B

LVC
0

LVC
1

App. C

LVC
0

App. A

LVC
0

LVC
1

LVC
2

VC 1 VC 2 VC 39

6. Test-Bed Based Implementation Feasibility Study – Existing IMS Test-Bed Emulator

191

Figure 59 - Message Exchange Across CFMs (Oikonomou, et al. 2010)

The IMS emulator test-bed itself is composed of a series of networked PCs, each

running an instance of the emulator on the CentOS 5 Linux based operating system.

While the dynamic service discovery implemented within the emulator could be

integrated within the QoS framework as part of future work, as it is an addition not

currently found within the IMS architecture and not necessary to facilitate the tests

planned it shall be excluded from this feasibility study.

6.3 Assessment of Implementation Opportunities

As the QoS framework proposed within this work is presented in a system

implementation agnostic manner there are a variety of ways in which it could be

implemented within the test bed (or IMS in general), depending on the level of

integration required.

6.3.1 Implementation Opportunities

When considering any form of implementation of the QoS framework it is necessary to

first assess whether there are features within the IMS architecture that already provide

support for the features required and to discuss whether there are any major or

fundamental changes to either IMS or the QoS framework that would be required.

As previously discussed, the full QoS framework can be seen as being composed of

the elements in Figure 24 (found within section 4.5). Examining these features for

6. Test-Bed Based Implementation Feasibility Study – Assessment of Implementation

Opportunities

192

corresponding functionality within the IMS architecture provides the result seen in

Table 32.

Table 32 - Current Ability of IMS Architecture to Support QoS Framework Features

QoS Framework Feature Corresponding IMS Feature
Application Interface Level
Publisher Interface, including QoS Spec No QoS spec implemented, though blueprint

documents do contain some application
performance parameters.

Subscriber Interface, including QoS Spec No QoS spec implemented, though blueprint
documents do contain some application
performance parameters.

QoS Enabled Middleware Level
Local Publisher List Local application details stored in blueprints.
Remote Publisher List Remote application details stored in

blueprints.
Pub/Sub Interface, including Pub/Sub Matcher
and QoS Translator

Dynamic matching of performance
requirements not currently supported.

QoS Negotiation Algorithm Not currently supported.
Serviced Subscriber List Local application details stored in blueprints.
External Publisher Interface External application interface handled through

Transfer Connections (TC).
External Subscriber Interface External application interface handled through

Transfer Connections (TC).
Network Interface Level
External Network Interface, including Network
Resource Feedback

Network resources currently planned offline
and so known prior to system running. Does
not monitor current resource levels as
available resources assumed to be
predictable.

Specific support is missing for the majority of features of the QoS framework though

this is to be expected given that IMS was not created with dynamic features in mind.

Even given this though the QoS framework can still be seen to be compatible.

Examining the IMS architecture, the blueprint documents used to describe system

configurations could be seen to map well onto the storage of QoS specifications and

the local publisher list required by the QoS framework.

While the use of the static IMS architecture does place some constraints on the level of

dynamic behaviour possible, it does also provide additional benefits to the

dependability of the system through the inclusion of safety critical features (such as the

spatial and temporal partitioning of applications) not included within the QoS

framework. These features are largely as yet not implemented within the IMS emulator

so shall not be utilised within this work.

6. Test-Bed Based Implementation Feasibility Study – Assessment of Implementation

Opportunities

193

6.3.2 Implementation Challenges

When considering the implementation of the QoS framework there are a number of

issues regarding the nature of the dynamic systems considered when constructing the

framework, and the IMS architecture itself that may present challenges.

Static Nature of IMS Architecture

The IMS architecture was designed to provide safety critical levels of operation for

systems of a largely static nature. Changes in the mode of system operation are

currently handled by blueprint configurations, decided during design time. This allows

for a level of confidence in the ability of the system to predictably meet execution and

communication deadlines. It was not therefore designed with dynamic systems in

mind, where varying levels of performance are to be expected, and as such areas of

compromise to the safety critical features that depend on this predictability may be

experienced.

Even given these potential problems safety critical levels of performance would still be

possible provided developer expectations are managed correctly and flexibility is

provided within applications. Developers will need to be clear in their specification of

applications performance requirements in terms of both the degree of flexibility allowed

in their QoS specification and whether off-board communication should be supported.

Where support for applications with rigid performance deadlines is required it would be

strongly recommended that communication remain within the same platform, unless

the reliability and availability of the necessary external network links can be assured.

Challenges of a Dynamic System

A dynamic system is said to be one where component or environmental changes can

mean that adaptations are needed at run-time. Considering the NEC example from

section 2.2.1, this could include mobile nodes moving in and out of range of each other

over a varying environment. There is a requirement of the QoS framework for it to help

aid system stability, meaning trying to keep disruptions to a minimum, while adapting to

changes. It is foreseeable, however, that changes in the system could happen at a

rate that the framework is unable to keep up with. A key consideration is therefore that

6. Test-Bed Based Implementation Feasibility Study – Assessment of Implementation

Opportunities

194

of timing within the framework. As the simulation was based upon a set of ideals it was

assumed that a subscriber looking for a publisher would receive all replies within the

same time window, meaning that it could begin the selection of a publisher with

confidence that this wasn’t going to change. In a real life system, however, there may

be varying delays between a subscriber sending a request and publishers responding.

This means that the subscriber should wait for a set amount of time and then take

whatever replies it has received and begin the selection process. If this amount of time

is too short then publisher responses could be missed, but if it is too long then this

creates a delay for the subscriber and risks that publisher responses may no longer still

be valid (i.e. the node containing it could have moved out of range).

6.3.3 Implementation Options

As noted by Grigg and McDermid (2011), there are a number of opportunities for areas

for the introduction of DDS and QoS functionality to IMS. The QoS framework has

taken inspiration from DDS in its development and therefore these recommendations

hold true. Three approaches to the implementation of DDS are outlined:

• A direct implementation of DDS within the IMS software stack – an extended

APOS interface and OS implementation to provide explicit and direct support for

DDS applications.

It would be difficult to implement the QoS framework and maintain

support for legacy systems given the resource allocation necessary for

the negotiation process. It would be possible, however, if network

bandwidth was allocated separately between legacy and QoS framework

compatible applications, ensuring that the two do not interfere with each

other.

• Running DDS within IMS partitions – DDS applications would execute on top of

a DDS ‘middleware’ implementation that runs within one or more IMS partitions.

The implementation of the QoS framework as a middleware based

application within an IMS partition would allow for the existing IMS

operating system to remain untouched, thus preserving the inherent

safety critical properties and maintaining support for legacy applications.

Care would need to be taken, however, in the scheduling of the

6. Test-Bed Based Implementation Feasibility Study – Assessment of Implementation

Opportunities

195

middleware application to ensure that it would be capable of receiving

and publishing data to its connected QoS aware applications in timely

manner.

• Running DDS and IMS as separate (federated) subsystems – running DDS and

IMS on separate processing modules or subsystems interoperating across a

network or backplane.

This approach would allow QoS framework based features and

applications to function independently of any legacy IMS applications,

thus allowing each to function as required without disrupting or

compromising the performance of each other. Where network

resources are shared, however, the QoS framework will require an

assurance of the availability of the resources with which it shall

negotiate. The clear disadvantage of this approach, however, is the

additional hardware requirements, which may not always be possible

given restrictions to cost, size, or weight.

Beyond these implementation options Grigg and McDermid give three

recommendations for a staged introduction of DDS functionality to IMS:

• Introduce data type support within the blueprints to allow compatible

applications to be matched at design time or run time.

• Introduce basic QoS characteristics into the IMS virtual channel model through

their specification within the IMS Blueprints, rather than via extensions to the

APOS.

• Introduce the run-time discovery and establishment of VCs within a set of

publishers, subscribers and VCs decided at design time, via the Blueprints

(rather than giving explicit support to applications in the OS API).

The inclusion of these different elements within the blueprint documents would be a

potentially valuable avenue of research, exploring how much support exists currently

for dynamic behaviour enabled by these documents and what further work would be

necessary. Blueprint documents currently contain some limited code execution and

this could be extended to select a set of applications based on their QoS specification

and current resource availability. Ultimately, however, it is unlikely that truly dynamic

6. Test-Bed Based Implementation Feasibility Study – Assessment of Implementation

Opportunities

196

off-board communication would be possible using this method alone, as there would

still need to be some discovery element capable of searching for external publishers,

as in Figure 60.

Figure 60 - Lower Level Integration of QoS Framework in IMS Architecture

For this feasibility study a high level, application based, approach to implementation

has been chosen, as this is sufficient to validate the viability of the QoS framework and

is a logical first step. A lower level implementation may be necessary for further work;

however, this is outside the scope of this project.

6.3.4 Summary & Discussion

This section has presented the implementation opportunities, challenges and options

for implementing the QoS framework within IMS (and specifically the IMS emulator

test-bed). It has been shown that while support is largely present for the specification

of QoS characteristic requirements through minor adaptation to the existing blueprint

model used, the major area that will require further work is with regards to using these

to facilitate dynamic behaviour.

A number of options have been given for the different levels at which the QoS

framework could be implement within IMS. These range from the higher, application

based level to deeper integration within the IMS operating system.

Pub
1

Pub
2

Pub
N

Sub
1

Sub
2

Sub
N

Operating System

Hardware

Blueprints

Application QoS
Specification

QoS Facilitator

External Publisher/Subscriber Interface

6. Test-Bed Based Implementation Feasibility Study – Assessment of Implementation

Opportunities

197

In order to further evaluate the feasibility of integrating the QoS framework within IMS it

is necessary to conduct a basic implementation within the previously discussed test-

bed. This will provide the opportunity to observe challenges that may only present

themselves during an actual implementation on a real-world system. Once this is

completed the implementation should be validated to show that it performs as

expected.

6.4 Test-Bed Implementation Design

The approach taken for the test-bed based implementation of the QoS framework

places all additional functionality within the application layer, as shown in Figure 61.

This approach allows all other IMS functionality will remain untouched.

6.4.1 Application Design

The QoS framework shall be implemented within the test-bed based IMS emulator

through the use of three applications; ‘Middleware App’, ‘Echo App QoS’, and ‘Sink

App QoS’.

A middleware application, ‘Middleware App’, sits between the publishers and

subscribers and the IMS operating system. QoS requirements are received from

subscribers and matched to compatible publishers, performing QoS negotiation where

necessary. All publishing and subscribing applications send and receive data through

the middleware application.

An application, ‘Echo App QoS’ (so named as it is based on the ‘Echo App’ application

originally developed by Oikonomou) is designed as a publisher, with the ability to tailor

the size and frequency of data being published, so as to be representative of the

different types of application considered.

The subscribing application, ‘Sink App QoS’ (again so named due to it being based on

‘Sink App’ developed by Oikonomou) receives data published to it and prints it to the

screen.

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

198

Figure 61 - Application Level QoS Framework Implementation in IMS Architecture

In this implementation of the QoS framework the middleware application has four pairs

of remote input/output LVCs, each used for a specific type of data. These four types

are;

• External Data Out/In

• Remote Publisher QoS Data Out/In

• Request for Subscriber Pairing with Remote Publisher Out/In

• Subscriber Request Response Out/In

While these could be combined into one pair of input/output connections and any

incoming data parsed to determine its type, the use of separate LVCs was chosen to

aid in the clarity of design. With the current implementation of the IMS emulator each

connected node would require these four pairs of LVCs.

Figure 62 shows how the applications communicate across Local Virtual Channels

(LVC), Global Virtual Channels (VC) and Transfer Connections (TC). These

connections are detailed in the blueprint document used to configure the emulator.

Each application need only be concerned with their LVCs.

Pub/Sub Middleware Application

Operating System

Hardware

Blueprints

Pub
1

Pub
2

Pub
N

Sub
1

Sub
2

Sub
N

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

199

Figure 62 - Test-Bed Implementation of QoS Framework

Each application, whether publisher or subscriber will have a LVC reserved for

publishing their QoS specification. Beyond this the application will have an LVC for

each subscribed or published data type that it is concerned with. The middleware

application will have LVCs set up to receive from, and send data to, applications. A

further six LVC are reserved for connecting to external nodes. These are grouped as

input/output pairs for sharing publisher details, issuing requests for service, and

receiving data to be passed on to local applications. Note that while it may be possible

for multiple middleware applications on separate nodes to connect to each other

through a single set of these six externally facing LVCs, there will then be a risk that

data may be overwritten before it can be collected.

Each application has three main entry points that can be triggered within the emulator.

Firstly for general initialisation, secondly when data is received, and thirdly when it is

the turn of the application to execute.

Middleware_App

Application Initialisation

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

200

Middleware_App is initialised and awaits incoming publisher or subscriber QoS

specifications.

Data Arrival

Data arriving at the middleware app can be of a number of different types depending

on the originating application. This is distinguished by the local virtual channel from

which it originated. These data types are; publisher QoS, subscriber QoS, publisher

data, remote node publisher lists, remote node request for subscriber service,

response for subscriber request, data originating from a publisher on a remote node.

The way that the middleware application responds to each of these differs based on

their purpose:

§ Publisher QoS - The publisher QoS is stored in the local publisher list, the

middleware checks if there are any local subscribers that require data from the

publisher and the updated publisher list is published to any connected remote

nodes.

§ Publisher Data - When a data sample is received from a publisher the

middleware application first stores a copy for future distribution and then checks

to see if a subscriber exists that requires the data. If the data is not required at

that time then it is not sent until it is.

§ Subscriber QoS - The subscriber QoS is stored in the local subscriber list and

the middleware checks for a compatible publisher (either local or remote).

§ Remote Node Publisher List - The middleware updates its details for remotely

connected publishers and checks for local subscribers requiring data from the

remote publishers.

§ Remote Node Subscriber Request – The middleware initiates the negotiation

process, determining whether adequate resources exist to service the remote

subscriber.

§ Remote Node Subscriber Request Response – The middleware registers the

response from the remote node as to whether or not the subscriber can be

accepted. If it is not accepted then (where possible) the middleware checks the

next available publisher.

§ Data from a Remote Node – The middleware application stores a copy for

future distribution and checks to see if a subscriber exists that requires the data.

If the data is not required at that time then it is not sent until it is.

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

201

General Execution

When it is the turn of the middleware application for general execution it checks to see

if any applications require data that is currently being held, sending it if necessary.

Echo_App_QoS

Application Initialisation

On initialisation the Echo_App_QoS application sends its QoS specification to the

middleware application and begins publishing data at its maximum rate and of a size

specified in the QoS specification.

Data Arrival

When an echo reply is received the application calculates the total round-trip time and

from this the transport latency is found.

General Execution

The application checks to see if it should send a data sample (based on the maximum

TBF value set in its QoS), sending it to the middleware application if necessary.

Sink_App_QoS

Application Initialisation

On initialisation the Sink_App_QoS application sends its QoS requirements to the

middleware application and awaits incoming data.

Data Arrival

As this application is simply serving as an example subscriber it simply prints any data

received to the screen and discards the sample.

General Execution

As the application simply subscribes to data and prints it to the screen upon receipt, it

passes control to the next scheduled application.

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

202

6.4.2 System Design

A number of high-level design decisions, not specifically related to the implementation

of the QoS framework were necessary:

Application Instances

For the purpose of experimentation distinct application instances shall be created for

each publisher, subscriber or middleware application required. This means that it can

be assured that the each application is capable of distinguishing between publishers of

the same data type or middleware instances for example.

Network Bandwidth

The network bandwidth capacity used to negotiate resources shall be artificially limited

within the middleware application so as to allow the accurate replication of previous

scenarios examined. From a practical point of view this also allows the implementation

to focus on the Quality of Service framework itself rather than on supporting features

such as network bandwidth monitoring.

Note also that due to limitations on the maximum size of a single data transmission

within the original IMS emulator design, sample sizes shall be considered to be in bytes

rather than kilobytes. The network resources allocated for negotiation shall likewise be

adjusted to be of a similar proportion but in bytes. While this would have an affect on

the response times of the test-bed implementation, it is the behaviour of the QoS

framework that is being examined here and therefore, other than the different units for

bandwidth usage, the results will be unaffected.

Resource Allocation

The QoS framework as examined in worked examples and simulation has so far not

considered the transmission overhead when allocating resources. Through this

implementation some insight has been gained as to what extra data will need to be

transmitted with data samples. While data transmitted between local publishers and

subscribers is largely overhead free (excluding the QoS specifications transmitted to

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

203

the middleware), data transmitted between nodes requires extra information to allow it

to be successfully passed on to the correct subscriber. As all data from an external

node is passed along the same TC it is supplemented with the ID of the subscriber for

which it is intended and the publisher from which it originated. The publisher ID is

currently required so the middleware can determine the correct size of the data sample

expected (note that this may not be necessary in future implementations through the

use of flexible arrays to allow different sized samples to be held within a data sample

structure). As data samples are currently transmitted individually, this extra data

amounts to an overhead of 8 bytes (4 bytes per integer value) per data sample. Note

that for an actual implementation this overhead could be reduced further through the

use of smaller data types (e.g. short integer), or by removing the publisher ID data

value and finding the data sample size as implied by the subscriber data type. While it

is possible to take this overhead into account when calculating resource allocations, as

it should be for an actual system implementation, the example scenarios that follow

shall use the same formula to calculate resource usage as specified in section 4.3.3

(which made the assumption that the overhead is taken into account in the sample

size) so as to allow the comparison of behaviours.

6.4.3 QoS Framework Implementation Validation

The QoS framework implementation shall be validated in the same manner as the

manual examples in section 4.4.3 and the simulation in section 5.3, using a number of

scenarios to confirm that the results returned are as expected.

6.4.3.1 Reproduction of Test-Bed Based Scenarios

Code relating to the IMS emulator applications, created as part of this implementation

feasibility study, is included on the accompanying CD. As QoS requirements are

currently contained within the code of each publishing or subscribing application,

different versions of these applications are included for the appropriate scenarios. A

copy of the appropriately composed blueprint configuration file (ims.conf), used to set

up all virtual channels and transfer connections is also included alongside each

scenario. The emulator is started using the command “./build/ims” from the main IMS

directory. The list of serviced subscribers found from running the emulator is saved to

the main IMS folder as “testBedOutput.csv”.

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

204

The screenshot in Figure 63 shows the emulator as it appears when running on two

separate machines, Rig10 (used as node 1 for experimentation) and Rig11 (used as

node 2).

Figure 63 - IMS Test-Bed QoS Framework Implementation Screenshot

6.4.3.2 Test-Bed Validation Results

As the test-bed implementation has recreated the QoS framework algorithms proposed

within section 4, it is reasonable to assume that the results observed shall match the

expected output from the manually worked examples in section 4.4.3, and the

simulation results in 5.3.

Scenario 1 is separated into three sections, showing the different ways in which the

QoS framework would handle a subscriber request for a publisher with a matching data

type but varying QoS levels.

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

205

Scenario 1a: Exact QoS Match

Expected Output

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 40ms Best-effort 4333.33 3750KB/s

Simulation Output

QoS Framework Negotiation Algorithm - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 40ms Best-effort 4333.33 3750KB/s

Test-Bed Output

Node 2 - Serviced Subscriber List

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 40ms Best-effort 4333.33 3750B/s

Summary

The test-bed results can be seen to exactly match those expected, confirming the

ability of the simulation to successfully match publishers and subscribers and calculate

reward and resource values.

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

206

Scenario 1b: Different but Compatible Levels of QoS

Expected Output

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 44ms Best-effort 4181.82 3409KB/s

Simulation Output

QoS Framework Negotiation Algorithm - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 44ms Best-effort 4181 3410KB/s

Test-Bed Output

Node 2 - Serviced Subscriber List

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 44ms Best-effort 4181.82 3409B/s

Summary

The test-bed implementation of the QoS framework has successfully recognised that

while the full QoS characteristics required by the subscriber cannot be fulfilled, it can

be accepted at a level equivalent to the maximum possible from the publisher. The

rounding error found from the Matlab simulation has not been repeated in the test-bed

implementation as the use of C allows closer control of when rounding occurs.

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

207

Scenario 1c: Incompatible Levels of QoS

Expected Output

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

N/A N/A N/A N/A N/A N/A

Simulation Output

QoS Framework Negotiation Algorithm - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

N/A N/A N/A N/A N/A N/A

Test-Bed Output

Node 2 - Serviced Subscriber List

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

N/A N/A N/A N/A N/A N/A

Summary

The test-bed implementation has successfully recognised that the publisher and

subscriber QoS levels are incompatible.

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

208

Scenario 2: 3 Publishers/5 Subscribers + 1 New Subscriber

Initial System State

Expected Output

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 40ms Best-effort 4333.33 3750KB/s
2 2 100ms Reliable 1680 225KB/s
3 3 25ms Best-effort 5600 1000KB/s
4 1 40ms Best-effort 4333.33 3750KB/s
5 2 100ms Reliable 1680 225KB/s
 Total 17626.66 8950KB/s

Simulation Output

QoS Framework Negotiation Algorithm - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 40ms Best-effort 4333 3750KB/s
2 2 100ms Reliable 1680 225KB/s
3 3 25ms Best-effort 5600 1000KB/s
4 1 40ms Best-effort 4333 3750KB/s
5 2 100ms Reliable 1680 225KB/s
 Total 17626 8950KB/s

Test-Bed Output

Node 2 - Serviced Subscriber List

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 40ms Best-effort 4333.33 3750B/s
2 2 100ms Reliable 1680 225KB/s
3 3 25ms Best-effort 5600 1000B/s
4 1 40ms Best-effort 4333.33 3750B/s
5 2 100ms Reliable 1680 225B/s
 Total 17626.66 8950B/s

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

209

Final System State

Expected Output

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

N
ex

t T
B

F
Le

ve
l

N
ew

R

ew
ar

d
at

N

ex
t Q

oS

Le
ve

l

D
ro

p
In

R

ew
ar

d

1 1 46ms Best-effort 4115.94 3260.87KB/s 48 4055.56 60.38
2 2 100ms Reliable 1680 225KB/s 200 1080 600
3 3 25ms Best-effort 5600 1000KB/s 50 3600 2000
4 1 40ms Best-effort 4333.33 3750KB/s 42 4254 79.33
5 2 100ms Reliable 1680 225KB/s 200 1080 600
6 3 25ms Best-effort 5600 1000KB/s 50 3600 2000
 Total 23009.27 9460.87KB/s

Simulation Output

QoS Framework Negotiation Algorithm - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 46ms Best-effort 4115 3260KB/s
2 2 100ms Reliable 1680 225KB/s
3 3 25ms Best-effort 5600 1000KB/s
4 1 40ms Best-effort 4333 3750KB/s
5 2 100ms Reliable 1680 225KB/s
6 3 25ms Best-effort 5600 1000KB/s
 Total 23008 9460KB/s

Test-Bed Output

Node 2 - Serviced Subscriber List

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 46ms Best-effort 4115.94 3261B/s
2 2 100ms Reliable 1680 225B/s
3 3 25ms Best-effort 5600 1000B/s
4 1 40ms Best-effort 4333.33 3750B/s
5 2 100ms Reliable 1680 225B/s
6 3 25ms Best-effort 5600 1000B/s
 23009.27 9460.87B/s

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

210

Summary

The test-bed output can be seen to match the expected output from the manually

worked example, correctly negotiating the acceptance of the new subscriber. Note that

for Subscriber 1, where the exact resource calculation results in a non-whole number

(due to the sample rate not working dividing equally within a second), this has been

rounded up by the test-bed to ensure resource availability.

Scenario 3: 3 Publishers/5 Subscribers at min QoS Levels + 1 New Subscriber

Initial System State

Expected Output

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d
1 1 50ms Best-effort 4000 3000KB/s
2 2 500ms Reliable 720 45KB/s
3 3 125ms Best-effort 2400 200KB/s
4 1 50ms Best-effort 4000 3000KB/s
5 2 500ms Reliable 720 45KB/s
 Total 11840 6290KB/s

Simulation Output

QoS Framework Negotiation Algorithm - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 50ms Best-effort 3999 3000KB/s
2 2 500ms Reliable 720 45KB/s
3 3 125ms Best-effort 2400 200KB/s
4 1 50ms Best-effort 3999 3000KB/s
5 2 500ms Reliable 720 45KB/s
 Total 11838 6290KB/s

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

211

Test-Bed Output

Node 2 - Serviced Subscriber List
Su

bs
cr

ib
er

N

o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

1 1 50ms Best-effort 4000 3000B/s
2 2 500ms Reliable 720 45B/s
3 3 125ms Best-effort 2400 200B/s
4 1 50ms Best-effort 4000 3000B/s
5 2 500ms Reliable 720 45B/s
 Total 11840 6290B/s

Final System State

Expected Output

Node 2 - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

Pe
na

lty

1 1 50ms Best-effort 4000 3000KB/s 0
4 1 50ms Best-effort 4000 3000KB/s 0
6 1 125ms Best-effort 2400 200KB/s 1500
 Total 10400 6200KB/s

Simulation Output

QoS Framework Negotiation Algorithm - Serviced Subscribers

Su
bs

cr
ib

er

N
o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

Pe
na

lty

1 1 50ms Best-effort 3999 3000KB/s 0
4 1 50ms Best-effort 3999 3000KB/s 0
6 3 125ms Best-effort 2400 200KB/s 1500
 Total 10398 6200KB/s

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

212

Test-Bed Output

Node 2 - Serviced Subscriber List
Su

bs
cr

ib
er

N

o.

Pu
bl

is
he

r
M

at
ch

TB
F

R
el

ia
bi

lit
y

R
ew

ar
d

R
es

ou
rc

es

U
se

d

Pe
na

lty

1 1 50ms Best-effort 4000 3000B/s 0
4 1 50ms Best-effort 4000 3000B/s 0
6 1 125ms Best-effort 2400 200B/s 1500
 Total 10400 6200B/s

Summary

The test-bed implementation of the QoS framework can be seen to have correctly

recognised that the penalty value outweighs the drop in reward that accepting the new

subscriber would cause and has correctly accepted it into the list of serviced

subscribers.

6.4.4 QoS Negotiation Execution Time Evaluation

A key cost of the proposed QoS framework identified through simulation is the

execution time required for the QoS negotiation algorithm. Scenarios 2 and 3 have

provided two examples of instances of negotiation; the first requiring the degradation of

serviced subscribers in order to accept the new subscriber, and the second requiring

the removal of three existing serviced subscribers. The negotiation required upon the

request for service from the final new subscriber was repeated 1000 times for each of

these examples. The QoS negotiation in scenario 2 took an average of 11.12

microseconds to execute (with a maximum of 24 microseconds and minimum of 8

microseconds), while scenario 3 took an average of 13.16 microseconds (with a

maximum of 118 microseconds and minimum of 9 microseconds). While the PC used

for experimentation may differ in specification to the final hardware within a platform

(using 3.2Ghz dual core Intel Pentium 4 processor) the execution times observed can

be seen to be roughly comparable to the context switching times of real-time operating

systems and within acceptable bounds for most applications. It should be noted,

however, that the QoS negotiation process will become increasingly complex as more

subscribers are serviced by a node.

6. Test-Bed Based Implementation Feasibility Study – Test-Bed Implementation Design

213

6.4.5 Summary & Discussion

The results from the scenarios examined here show that the output of the test-bed

based implementation of the QoS framework matches that which was expected, given

the previous worked examples and simulation based experimentation. Given the

matching in results it is reasonable to assume that the trends observed from more

complex system simulation in terms of performance and behaviour of the QoS

framework would also be applicable here.

The primary purpose of this implementation, beyond confirming those results already

observed through other methods of experimentation, is to prove the applicability of the

QoS framework to a real world system. The correct functioning of the test-bed based

QoS framework implementation observed here can thus be seen to confirm that this

has been achieved, albeit with some compromises to the dynamic behaviour of the

system.

6.5 Implementation Critique and Recommendations

In creating the test-bed implementation a number of design constraints were

encountered.

Simultaneous QoS Negotiation and Application Execution

Within the IMS emulator applications are executed in a “round-robin” manner. This

means that while an application is executing all others must remain dormant until it is

their turn. The middleware application responsible for all publisher/subscriber matching

and QoS negotiation is included within this schedule, potentially causing delays to

discovery response times. For example, the middleware application sends a message

containing a request for service to another middleware application on a separate node.

Once the message is sent the middleware application lies dormant awaiting a

response. In this time another application requires execution so it begins. If this

application (or applications) were to require execution for a significant length of time

then this would introduce a delay as to when the middleware application could deal

with a response. Were it possible to place middleware application within a different

CFM, however, such delays could be avoided, as it would have a processing element

of its own and thus deal with messages received in a timely manner.

6. Test-Bed Based Implementation Feasibility Study – Implementation Critique and

Recommendations

214

Non-Real-Time Operating System

The current IMS emulator has been built around a non-real-time operating system, with

applications allowed to execute for however long is necessary before handing control

onto the next. This means that while applications await their turn to publish data, the

latency allowed by the subscriber may pass.

The introduction of an underlying real-time operating system would provide the

opportunity for closer control of the scheduling process, ensuring that each application

executes for a fair amount of time. Further work would be necessary, however, for the

selection of appropriate scheduling mechanisms.

Limited Dynamic Behaviour

The design of the IMS emulator means that in its current state applications on a node

and their virtual channel configuration must be specified at design time and cannot

change while the system is running. This places limitations on the dynamic behaviour

of the QoS framework.

Lack of Policing for QoS Contracts

The current implementation has not included the policing of QoS contracts once

initiated. This decision was made so that the results gained would be comparable to

those found within the simulation, which also considered a static instance in time of a

dynamic system. Additionally, as previously stated, further work is required within the

IMS emulator to provide predictable application execution. Without this,

communication delays could be inherited from applications over-running their execution

time, thus making it difficult to correctly attribute any faults that occur. Future versions

could, however, incorporate this within the middleware as a means of facilitating online

value calculation.

Sample History

Currently a single data sample instance is stored within the middleware for each

publisher. Increasing this to store a set of samples would facilitate the retransmission

6. Test-Bed Based Implementation Feasibility Study – Implementation Critique and

Recommendations

215

of samples when communication errors occur and would allow multiple samples to be

transmitted at the same time (provided they would all arrive within the agreed latency),

thus overcoming potential delays in transmission while the middleware is carrying out

other tasks.

Link Between Publisher and Subscriber QoS

An issue not directly related to the test-bed implementation of the QoS framework, but

highlighted during this work is the relationship between publisher and subscriber QoS

capabilities. For example an application may receive data as a subscriber, perform

some function to it and provide the output as published data. The sample rate at which

the publisher outputs data can therefore be seen to be directly linked to the rate at

which it receives data as a subscriber. For this reason the publisher QoS of such

applications should be dynamic and updated based on the outcome of the negotiation

process for the subscribed data.

6.6 Overall Summary

This section has explored the feasibility of implementing the Quality of Service

framework in a real world system through the use of an IMS emulator based test-bed.

This work identified a number of different options for implementation including those at

the application level or integrated within the operating system. A high level application

based approach to implementation was chosen as it allowed the core IMS functionality

to remain unchanged. This implementation allows publishing or subscribing

applications to specify their QoS levels, which are then used by a separate middleware

application to negotiate for service based on the available resources. The middleware

app also takes on the remaining functionality necessary for the QoS framework, such

as adapting the rate at which data is sent to individual subscribers.

Initial results have compared results from the first three scenarios investigated

throughout this thesis. These results have showed that the output matches that

expected through manually worked examples and simulation, confirming the correct

functioning of the QoS framework. Potential issues with this approach to

implementation have been identified through critique, however. The most important of

these is the potential delays for communication that may be experienced while the

6. Test-Bed Based Implementation Feasibility Study – Overall Summary

216

middleware application waits for its turn to execute, potentially missing transport

deadlines for applications awaiting data. Two main options for addressing this have

been identified; either introducing stricter scheduling control into the IMS emulator, or

distributing the middleware functionality to a separate Common Functional Module.

Beyond this the implementation could be continued further exploring more complex and

larger scale systems. Additionally, the metrics used to assess performance in the

simulation (i.e. system utility, stability and execution time) the test-bed could be

expanded to measure the performance of the different negotiation algorithms in terms

of transport latency, or throughput, etc.

7. Wider Application and Implications of QoS Framework

217

7 Wider Application and Implications of QoS
Framework

7.1 Introduction

A QoS framework has been presented within this thesis that attempts to address

issues relating to dependable performance within dynamic systems. The simulation

conducted has considered the application of the QoS framework within a system

modelled around the military NEC example and the test-bed implementation has

addressed the feasibility of implementation within the IMS software architecture. This

section, however, shall discuss the potential wider application and implications of the

QoS framework beyond those already considered.

7.2 Potential Wider Application of QoS framework

7.2.1 Application to Other Software Architectures

The QoS framework was developed with a Data Centric Publish Subscribe (DCPS)

software architecture in mind. The dynamic software architectures investigated in

section 2.3 can all be seen to share similar properties, however, and as such could

potentially benefit from the application of some or all elements of the QoS framework.

Service Oriented Architectures (SOA) are a model for distributing functionality,

encapsulated as services. In this way they can be seen to differ to the data centric

architecture for which the QoS framework was developed. Additionally, in most models

investigated service producers (publishers) and consumers (subscribers) communicate

directly, once they have discovered each other through some kind of service broker.

This means that it is the service producer itself that would be responsible for tailoring

its output based on the current resource availability. While Service Level Agreements

(SLA) are not uncommon within SOAs (especially within the web services area where

SLAs are typically used to assure the quality of the output in exchange for some price),

this is not currently a process of negotiation (i.e. a proposed SLA is either accepted or

rejected) and such functionality could place a high overhead on the size and complexity

of services. This would therefore necessitate the inclusion of such resource

negotiation within either a separate entity, or within the service broker, currently used to

provide details of compatible matches.

7. Wider Application and Implications of QoS Framework – Potential Wider Application of QoS

Framework

218

Agent Based Architectures are distinguished by their use of artificial intelligence as a

means of achieving their goals. While individual agents are primarily focused on the

completion of their own goal, multi agent systems require the collaboration of agents to

complete a larger goal. In this way QoS negotiation process could be used by an

agent to decide whether or not to collaborate with another agent, based on their

potential reward. Additionally, one of the main principles of agents is that they are

aware of their environment and adapt to it. This feature implies the resource

awareness required for the QoS framework and is satisfied by the associated

negotiation process provided. In these ways agent based architectures could be seen

to fit well with the QoS framework taking advantage of the flexibility to resource use

and collaboration provided, albeit in a slightly more closed and individual goal

orientated way than it was intended for.

7.2.2 Application to Other Systems

The Generic Vehicle Architecture (GVA) standard discussed in section 2.2.3 can be

seen to have very similar requirements in terms of data communication dependability.

The GVA standard, however, explicitly mentions DDS as the mechanism for data

distribution both within a system and at a larger system-of-systems scale.

The systems investigated by this project have largely been based within the military

domain, as this is where the motivation for the project originated. It can be seen,

however, that the QoS framework could be applied to other non-military systems.

The QoS framework has been observed to perform best within those systems that have

a high processing capacity and low power constraints, but a limit on network resources.

It has also been seen, however, how the choice of negotiation algorithm (i.e. choosing

the less computationally complex prioritisation algorithm) will provide benefits to those

systems likely to experience periods of network overload. In this way it is easy to

envisage the application of the QoS framework to systems with any degree of dynamic

behaviour, beyond those military examples currently considered. It could therefore be

seen that the QoS framework could, for example, be applied to the internal networks of

buildings where there is a need to move networked equipment around (such as in a

hospital for example).

7. Wider Application and Implications of QoS Framework – Potential Wider Application of QoS

Framework

219

Dependable performance is not only important when mission critical or safety critical

applications are being used, but can also be important for the experience of the end

user. Take the example of a shop where product information and advertisements are

streamed to an individual’s mobile phone or other wireless device. It may not be

possible to provision adequate network resources for times when the shop is unusually

busy. It could portray a negative image of the company if such systems were to start

dropping data and stop functioning as required by the user. If the proposed QoS

framework were to be used, however, then at such times the system could simply

gracefully degrade the performance of devices, allowing an acceptable level of

functionality to be retained.

7.2.3 QoS Negotiation with Different Constraints

This work has considered the main constraining resource to be that of the network

bandwidth. It could be, however, for some systems (or indeed individual nodes within

those systems already considered), that other resources such as power, local memory,

or the financial cost levied on using certain publishers are a greater restricting factor.

As the QoS framework negotiates resource usage based on the availability at each

publishing node, there is no reason that systems (or individual nodes) could not tailor

their negotiation and still remain compatible.

The negotiation process becomes more complex when negotiating for more than one

resource constraint within the same node. Take the example that a node has both

limited network bandwidth and limited local memory (or CPU time). It has been

previously stated that, where possible, the QoS framework will match local publishers

and local subscribers, thus ensuring the greatest chance for stability and dependability

in performance. Publishing applications in a node could be set to remain dormant until

they are required (stored within permanent memory but not using active resources) and

therefore their invocation will cause local resources to be consumed. A local

subscriber requiring a publisher contained locally could therefore potentially avoid

consuming local resources by requesting a remote instance of the publisher. The QoS

negotiation algorithm would need to be adapted to weigh these resources against each

other, taking into account a penalty for the potential degradation in communication

dependability inherent in requesting off-board data.

7. Wider Application and Implications of QoS Framework – Potential Wider Application of QoS

Framework

220

The ability to tailor the negotiation process within the QoS framework in these ways

helps to increase its flexibility in application and therefore increases the range of

systems for which it could potentially be applied.

7.3 Potential Wider Implications of QoS Framework

7.3.1 Compatibility with Existing Methods of Supporting
Dependability

The QoS framework described within this work is intended to work alongside those

supporting network protocols and techniques that facilitate the dependable behaviour

required. It is important, therefore to consider the compatibility of the QoS framework

with such existing methods. This section shall therefore investigate the potential

implications of using the QoS framework with those network protocols concerning the

assurance of data transmission and resource allocation previously identified in section

2.4.4.

Traffic Class Differentiation

Integrated Services (IntServ) is a method of assuring QoS based upon the individual

classification of a packet. Applications define their own QoS groupings. The

Differentiated Services (DiffServ) method of QoS assurance over networks is based on

the assumption that applications working across a network can be separated into

different classes, for which there are predefined methods of access to the network.

These methods are usually based on the assumption that network resources have

been reserved in advance.

The approach taken by the QoS framework assumes that, once negotiation has taken

place, that traffic is all of one equal class. It may; however, be that specific system

implementations require differentiation between data transmitted across the network.

Such differentiation could be used to allow the prioritisation of data that is required to

be transmitted in a ‘reliable’ manner.

7. Wider Application and Implications of QoS Framework – Potential Wider Implications of QoS

Framework

221

Data could also be differentiated into different classes based on the judged importance

of the source or destination nodes. This would mean that adaptations would be

necessary for the calculation of reward as it is currently assumed that data from a

publisher is of equal worth regardless of the node from which it originated, or the

destination. Such a wide policy for data prioritisation could, however, risk discriminating

against those nodes that contain mostly lower priority applications, but can occasionally

need to send high priority data.

The complexity of the weighting mechanism used to allocate bandwidth between

different classes of data would depend on the diversity of data traffic being sent across

the network link. An equal allocation of bandwidth between nodes may be the fairest

approach, however, it may be wasteful of resources and not particularly reflective of the

dynamic system principles being embraced within the systems of consideration.

The QoS framework has been designed with a network that is not subject to

competition from other classes of traffic. While removing the ability to exclusively

allocate bandwidth for the QoS negotiation process would severely hinder the

dependability of communication between applications, gains could still be made from

the rational selection of subscriber fulfilment.

Resource Reservation and Allocation

The QoS framework works on the assumption that a set amount of bandwidth is

available with which to negotiate. This can be updated as the system, or environment

changes (and need not represent 100% of the actual bandwidth available), however,

the longer that a given measurement of network bandwidth remains valid the greater

the dependability in communications. The Resource Reservation Protocol (RSVP), as

previously discussed, is commonly used in conjunction with methods of traffic class

differentiation to assure the ability of the network to meet its deadlines. The RSVP

protocol allocates resources across the network between nodes and while the network

topology remains the same the allocation of bandwidth is assured. Each piece of

network equipment between the publisher and subscriber is required to be compatible

with the RSVP protocol. It can thus be seen that, while use of such a protocol, where

possible could only benefit the performance of the framework it is not possible to

assume it will always be available.

7. Wider Application and Implications of QoS Framework – Potential Wider Implications of QoS

Framework

222

Reliable Communication

Within IP based networks the most common protocols used to transmit data are TCP

and UDP. UDP data packets are sent best-effort, with the assumption being that the

application can either cope with any loss that occurs, or if not then by the time that it

was retransmitted it would be of no use anyway. This loss of accuracy is

counterbalanced by a reduction in the latency of data transmissions. Data sent via

TCP is expected to be retransmitted if found to be corrupted or missing. In this way it

can be seen to match the reliable communication required by the QoS framework.

Additionally it includes congestion control mechanisms that trigger in the event of data

packet loss, curbing data transmission rates in an effort to allow data buffers along the

network route to clear. This works well for wired networks, however, wireless networks

are prone to more transient errors (from temporary interference for example) and

traditionally TCP has no way of distinguishing that this has occurred. A need can be

seen, therefore for something different for dynamic systems such as those within the

NEC project.

The DDS specification has an accompanying Real-Time Publish Subscribe (RTPS)

wire protocol designed to provide the reliable communication features needed. This is

accomplished by supplementing UDP packets with ID numbers to facilitate the

detection of missing samples by the middleware. It is expected that a history of

samples (the length of which depends on implementation) should be stored within the

publishing node, thus enabling their retransmission if needed.

7.4 Summary & Discussion

This section has discussed the potential wider application of the QoS framework to

systems other than those for which it was explicitly designed, and the implications of

the framework for those supporting mechanisms.

The high-level, implementation independent, approach taken when developing the QoS

framework can be seen to directly contribute to its compatibility with other systems and

software architectural approaches. Those software architectures developed within

similar domains such as SOA or agent based architectures can be seen to potentially

7. Wider Application and Implications of QoS Framework – Summary & Discussion

223

gain from the adoption of elements of the QoS framework. The tailoring of the

framework for such architectures would require further research to ensure its

applicability.

It has been shown how support for the dependable network behaviour required by the

QoS framework can be found within existing network protocols. It is important to

remember, however, that such protocols were not explicitly developed with dynamic

systems in mind and it would therefore be likely that further research in this area would

identify issues with performance (arising from the ever changing and heterogeneous

nature of dynamic systems) and adaptations would be necessary.

8. Conclusions & Future Work

224

8 Conclusions & Future Work

8.1 Conclusions

This thesis has investigated the support that exists within flexible and adaptive software

architectures for providing the dependable behaviour required by future dynamic

systems in the military domain. This dynamic behaviour has not traditionally been

associated with dependable levels of performance. It has been shown, however, that

through the introduction of a newly proposed Quality of Service (QoS) framework

(consisting of a set of QoS characteristics with which to a range of acceptable

performance and a flexible QoS negotiation algorithm), improvements to the support of

dependable behaviour can be found, albeit at a potential cost to the execution time

required for reconfiguration.

Considering the original objectives set forth for this work, these can be seen to have

been addressed as follows:

[Obj-1] Identify gaps in research relating to dynamic and dependable system

architectures.

The literature review conducted in section 2 identified those adaptive software

architectures that are either currently in use within dynamic systems, or have

been proposed for use with future systems. Service Oriented Architectures,

Agent Based Architectures and the Data Distribution Service (DDS) software

architecture standard were all found to be capable of providing the necessary

adaptive behaviour, however, a general lack of support for dependable

behaviour was identified as a major gap in research. While DDS does provide

the means to specify a set of QoS characteristics in support of its

publish/subscribe model of communication, a lack of specification for the

implementation of supporting mechanisms means that it cannot be assumed

that they will be handled in the same way, if at all. The area of QoS negotiation

was highlighted as being particularly important for managing resource allocation

in a system where resource availability and demand may not be known prior to

run-time. A current lack of research for how QoS negotiation may be applied to

dynamic and dependable systems in the military domain was identified,

providing further direction for this research.

8. Conclusions & Future Work

225

[Obj-2] Construct a Quality of Service framework to improve support for

dependable behaviour in the communication networks of future large-

scale systems.

 To address the gap of support for dependable behaviour in dynamic systems,

found within the literature review, a Quality of Service framework was proposed.

This framework primarily consists of a set of publisher and subscriber QoS

characteristics, and a flexible QoS negotiation algorithm. A subscriber specifies

a flexible range of valid performance levels through the use of minimum,

maximum and interval Time Based Filtering values (used to determine the

amount of time between data sample transmissions), reliability (best-effort or

reliable) and latency (beyond which a data sample is no longer of use). The

publisher specifies its smallest possible Time Based Filtering value, reliability

level and the data sample size. A QoS negotiation algorithm is presented that

matches compatible publishers and subscribers based on their QoS

characteristics, gracefully degrading levels of service when resource availability

demands it, while trying to maximise the reward value gained (calculated

through implementation specific equations based on the desirable

characteristics of high priority applications).

[Obj-3] Determine the effect on system dependability of introducing the proposed

Quality of Service framework to future large-scale systems.

 The methodology identified in section 3 suggested the use of simulation

experimentation and a test-bed based feasibility study as a means of validating

the proposed QoS framework. Eight scenarios (representing systems of

increasing complexity) were developed for simulation to examine the behaviour

of the QoS framework and its effect on supporting dependable behaviour,

specifically in the areas of system utility, stability and resource utilisation. A

further scenario was used to examine the effect of specifying subscribers with

varying numbers of possible QoS levels (found from altering the TBF interval

value). The test-bed based feasibility study was developed to determine the

challenges and opportunities of implementation within such systems, replicating

the first three scenarios used for simulation.

8. Conclusions & Future Work

226

[Obj-4] Analyse results and critique solution.

It is shown through simulation how the choice of QoS negotiation algorithm

affects the ability of the system to make efficient use of the resources available

to it. The flexible reward/penalty based QoS negotiation algorithm adapted for

use within the QoS framework is demonstrated to be capable of providing:

• Greater system utility - found from varying the QoS levels used based

on the available resources.

• Improvements to system stability - found from the graceful degradation

of the QoS levels of currently serviced subscribers, as opposed to

stopping them completely.

To simplify the QoS negotiation process the QoS framework was designed to

seek a locally optimal solution. It is shown through simulation how within a

complex dynamic system this may not, however, always result in a global

optimisation. The ability of the framework QoS negotiation algorithm to flexibly

adapt and make use of network links that other algorithms may not have been

able to means that situations could arise where in the future it may appear to

have been beneficial to choose an alternative network link. As system scale

increases, however, the QoS framework algorithm is shown to ultimately result

in higher system utility.

Examining the resource utilisation of the negotiation algorithms shows that

these benefits come at a cost to execution time, taking longer to execute than

the computationally simpler compatibility matching or priority-based negotiation.

It is suggested given this cost that the choice of negotiation algorithm is

dependent on the processing resources available on the node. When

resources are limited the priority-based negotiation algorithm can still offer a

clear benefit over compatibility testing (currently used within DDS). Where

system resources are more abundant, however, the proposed framework

negotiation algorithm, based on reward/penalty principles, offers further

benefits.

The test-bed based feasibility study identified a number of different

implementation options for integrating the QoS framework at different levels

8. Conclusions & Future Work

227

within an existing modular avionics architecture, IMS. A high level, application

based, approach was chosen for the implementation study and this highlighted

the potential difficulty for integrating dynamic behaviour, while maintaining the

dependability of a static approach. Overall the potential viability of the QoS

framework was demonstrated, including showing that, for simple cases at least,

the average execution times for the QoS negotiation algorithm are within

acceptable bounds.

Through addressing these objectives a series of original contributions were developed:

[OC-1] Construction of a Quality of Service framework.

[OC-2] Evaluation of Quality of Service negotiation methods for dynamic,

distributed systems.

[OC-3] Test-bed based feasibility study for the implementation of dynamic

behaviour (specifically that found within the QoS framework) within an

existing static software architecture.

In addition to these contributions to knowledge, as an EngD this work has also

generated contributions to industry. This project has provided the opportunity for BAE

Systems to investigate a method of addressing issues with dependability that may arise

from attempting to introduce dynamic behaviour into systems. This work is of a low

technology readiness level and thus suited to being performed within a research

environment, with a view to further developing and exploiting the results within future

projects. Work on the resulting QoS framework shall be continued through a

Knowledge Transfer Account industrial secondment, investigating the exploitation of

this research, discussed further in section 8.2.

8.2 Future Work

The work conducted in this thesis has set the groundwork for a QoS framework to

provide support for dependability in dynamic systems. A series of opportunities for

future work can now be identified.

8. Conclusions & Future Work

228

Further Investigation of Platform Issues

The proposed QoS framework was developed to be platform independent, however,

regardless of the exact platform that is to be chosen there are a series of further

platform wide issues will need to be addressed. These are issues that concern the

practical deployment of the architecture within a platform that is part of a wider system.

A method will need to be established for the enforcement of agreed QoS levels. It

would be reasonable to expect this to be conducted in a common way across each

node, however, this need not necessarily be the case, if the characteristics of a node

imply a specific requirement for other methods. This enforcement will need to update

the reward levels received by publishing nodes based on the actual performance of the

subscriber. Where actual QoS levels drop below the accepted range of a subscriber

an appropriate response strategy would need to be selected. For example, the

publishing node could renegotiate the set of serviced subscribers based on the

reduced network conditions, or the subscriber’s middleware could search for an

alternative publisher.

A protocol will need to be developed for the communication between separate

middleware instances. This will require network resource utilisation and therefore

problems may be experienced when there is competition for this. It is expected that the

network resources reserved for sending data between publishers and subscribers will

not necessarily represent 100% of the available bandwidth as reserving a lower

amount will decrease sensitivity to slight fluctuations in resource availability. The

communication between nodes may therefore also have an amount of network

bandwidth reserved.

Implementation issues will need to be solved when deploying the QoS framework on

specific software architectures (eg. DDS, or SOA). There may be inherited behaviours

from this architecture that will change the way in which the QoS framework functions.

For example, DDS includes it’s own compatibility checking and service discovery

elements that may differ from the approach taken by the QoS framework.

8. Conclusions & Future Work

229

Multi-hop Communication

The QoS framework proposed has been based on the assumption that data is passed

between nodes directly connected to each other. Benefits can be found to system

utilisation, however, through the introduction of a multi-hop approach, where

intermediary nodes are capable of passing data to those that require it. Adopting a

multi-hop approach would require adaptations to several aspects of the QoS

framework, particularly the way that resources are reserved and reward is calculated.

If nodes are being used as intermediaries then their resources would be consumed by

this and a reward should therefore be associated that represents its contribution to

fulfilling the subscriber’s requirements. Renegotiations would also need to take into

account not only the affect that degrading or removing the service of an intermediary

subscriber has on the reward of the node itself, but also the affect it has to those other

nodes being used to fulfil the service. For example, a subscriber is matched to a

publisher 3 hops away meaning that there are 2 intermediary nodes used purely to

pass data through. If one of these nodes were to receive a request from a new

subscriber that meant that on renegotiation it would remove service as an intermediary

then this would affect the reward given to the three other publishing or intermediary

nodes. Care must also be taken, however, to not artificially inflate the value of a

subscriber when allocating the reward between nodes. In the short term this may have

an adverse effect on system stability as those publisher/subscriber matches using

multiple hops will be susceptible to being removed in favour of those matches

connected by less hops. Ultimately, however, this should achieve greater utility in

sacrifice for some short-term instability.

System Wide Optimisation

The issue of system wide optimisation (balancing resource usage throughout the

system) would need to be addressed once specific system implementation

requirements are derived. Particular consideration needs to be given to how often

system wide optimisation would occur, whether at set intervals of time or when network

links reach high usage levels.

Data Compression

The QoS characteristics selected for use in negotiation were those that were judged to

have the greatest effect on network resource usage when looking at data being sent

8. Conclusions & Future Work

230

periodically by a generic application. It could be, however, that the inclusion of

application specific characteristics could be used to further tune application

performance. It was assumed for this work that publisher sample rates were constant

based on the definition of their “data type”. For those applications that make use of

compressed streams of information (video, audio, etc.) it could be that there is value to

offering these with varying sample rates. To facilitate this it may be necessary to

include application specific compression functionality within the middleware. This

would mean that the application could publish uncompressed or nominally compressed

data that could then be further compressed by the middleware for each subscribing

application, based on their requirements. It could be that an application requires an

audio stream at full quality captured (CD quality for example), while another application

would be happy with a lower bitrate (telephone quality for example). This would

increase the ability of the middleware to tailor data towards different applications and

potentially further decrease network resource usage. The cost of this improvement

would be in terms of processing power required to compress the different streams and

the implementation of specific modules for compression within the middleware.

Redundancy

One of the main issues with supporting dependability in dynamic systems is that they

are by their nature ever changing and at some point it is possible that a node will move

out of range or stop providing data to a subscriber for some other reason. An

advantage of dynamic systems using a publish/subscribe model is that it is possible

that there will be multiple publishers capable of offering data to a subscriber at any

time. The QoS framework proposed within this thesis selects a single publisher to

match with a subscriber. It could however be worth investigating the benefit that

introducing redundancy in the form of a second publisher match could have.

Publisher matches could be seen as either interchangeable, where data samples

produced are identical, or compatible, where they may differ (in accuracy for example).

If a subscriber were to be matched with two interchangeable publishers then incoming

data samples could be accepted from either source. The removal of either publisher

would therefore not affect the performance of the subscriber, providing the second

publisher continued to transmit data samples.

8. Conclusions & Future Work

231

A subscriber matched with compatible publishers would need to choose one source to

accept samples from, while discarding those from the second source until the first

source is no longer available. With this approach there would be a period of transition

if the primary publisher were to be removed from the system, while the subscriber

adjusts to the new publisher. The main drawback to using redundancy in these ways is

the extra resources used and it would therefore probably need to be restricted to those

subscribing applications that are particularly susceptible to data loss.

Further Implementation

The research test-bed implementation of the QoS framework conducted chose to

approach from the application level, further research is necessary, however, on the

further integration of these dynamic features within the IMS architecture. Further work

has been proposed that will investigate this lower level implementation as part of an

EPSRC funded Knowledge Transfer Account industrial secondment, “Quality of Service

Negotiation for Improved Dependability in Distributed Systems”. This work will build on

the QoS framework proposed within this thesis applying it to an industrial system.

9. References Peter Bull – A738007

232

References

§ Abdelzaher, T., E. Atkins, and K. Shin. “QoS Negotiation in Real-Time Systems

and Its Application to Automated Flight Control.” IEEE Transaction on

Computers 49, no. 11 (November 2000): 1170-1183.

§ Aeronautical Radio, Incorporated (ARINC). “ARINC 651 - Design Guidance for

Integrated Modular Avionics.” 1997.

§ Aeronautical Radio, Incorporated (ARINC). “ARINC 653 - Avionics Application

Standard Software Interface.” 1997.

§ Alberts, D. S., J. J. Garstka, and F. P. Stein. Network Centric Warfare -

Developing and Leveraging Information Superiority. 2nd. 2000.

§ Alena, R. L., J. P. Ossenfort, K. I. Laws, A. Goforth, and F. Figueroa.

“Communications for Integrated Modular Avionics.” Aerospace Conference.

2007. 1-18.

§ Allsopp, D., et al. “The Coalition Agents Experiment: Network-Enabled Coalition

Operations.” Journal of Defence Science, 2003: 130 - 141.

§ Altova. “Web Services: Benefits, Challenges, and a Unique Visual Development

Solution.” Altova Whitepaper, 2006.

§ Artist2 Consortium. Artist2 Network of Excellence on Embedded Systems

Design. 2011. http://www.artist-embedded.org (accessed October 21, 2011).

§ Avionic System Standardisation Committee. “ASSC/120/2/77 - Guide to High

Speed Interface Standards.” 1999.

§ Bernat, G., A. Burns, and A. Llamosi. “Weakly Hard Real-Time Systems.” IEEE

Transactions on Computers, 1999: 308-321.

§ Beynon-Davies, P. Information Systems: an introduction to informatics in

Organisations. Basingstoke, UK: Palgrave, 2002.

§ Bondavelli, A., F. Di Giandomenico, and I. Mura. “Value-driven resource

assignment in object-oriented real-time dependable systems.” Proceedings of

the Third International Workshop on Object-oriented Real-time Dependable

Systems. Newport Beach, California, USA: IEEE Computer Society Press,

1997. 92-99.

9. References Peter Bull – A738007

233

§ Bouyssounouse, B, and J. Sifakis. Embedded Systems Design: The Artist

Roadmap for Research and Development. Springer, 2005.

§ Burns, A., and A. Wellings. Real-time Systems and Programming Languages.

Addison Wesley, 2001.

§ Burns, A., et al. “The meaning and role of value in scheduling flexible real-time

systems.” Journal of Systems Architecture, 2000: 305-325.

§ Cambridge University Press. Definition of framework. 2011.

http://dictionary.cambridge.org/dictionary/british/framework (accessed May 3,

2011).

§ Checkland, P. Systems Thinking, Systems Practice. John Wiley & Sons, 1999.

§ Cisco Systems, Inc. “Internetworking Technology Handbook - Resource-

Reservation Protocol (RSVP).” 2008.

§ Conmy, P., and J. McDermid. “High Level Failure Analysis for Integrated

Modular Avionics.” 6th Australian Workshop on Safety Critical Systems and

Software. Brisbane, Australia: ACS, 2001. 13-22.

§ Davies, J. K. “’Open and challenging research issues in dependable distributed

computing’ A personal view from the Defence Industry.” 25th IEEE Symposium

on Reliable Distributed Systems (SRDS’06), 2006.

§ Dickerson, C. “Towards a logical and scientific foundation for system concepts,

principles, and terminology.” Proceedings of the 2008 IEEE International

Conference on System of Systems Engineering. 2008. 1-6.

§ DiPippo, L. C., E. Hodys, and B. Thuraisingham. “Towards a real-time agent

architecture-a whitepaper.” Proceedings of the Fifth International Workshop on

Object-Oriented Real-Time Dependable Systems. 1999. 59-64.

§ DiPippo, L. C., V. Fay-Wolfe, L. Nair, E. Hodys, and O. Uvarov. “A Real-Time

Multi-Agent System Architecture for E-Commerce Applications.” Proceedings of

the 5th International Symposium on Autonomous Decentralized Systems. 2001.

357 – 364.

§ Gao, C., and J. Wei. “Checking Compatibility of Context-aware Service.”

Proceedings of The 6th IEEE International Symposium on Service Oriented

System Engineering (SOSE 2011). 2011. 335-340.

9. References Peter Bull – A738007

234

§ Gehlot, V., T. Way, R. Beck, and P. DePasquale. “Model Driven Development of

a Service Oriented Architecture (SOA) Using Colored Petri Nets.” First

Workshop on Quality in Modeling, ACM/IEEE 9th International Conference on

Model Driven Engineering Languages and Systems. 2006. 63 – 77.

§ Goeree, Jacob K., and Charles A. Holt. “Stochastic game theory: For playing

games, not just doing theory.” Proceedings of the National Academy of

Sciences. 1999. 10564-10567.

§ Goode, R., P. Guivarch, and P. Sevenich. “IPv6 for Coalition Network Enabled

Capability.” MILCOM, 2006.

§ Grigg, A, and J. McDermid. “Transitioning IMS to Support the Needs of Future

Military Systems.” Software Systems Engineering Initiative - SSEI-TR-000099.

May 2011.

§ Guedes, L. A., P. C. Oliveira, L. F. Faina, and E. Cardozo. “QoS Agency: An

Agent-based Architecture for Supporting Quality of Service in Distributed

Multimedia Systems.” Proceedings of IEEE Conference on Protocols for

Multimedia Systems - Multimedia Networking. 1997. 204 – 212.

§ Herssens, C., S. Faulkner, and I. Jureta. “Context-Driven Autonomic Adaptation

of SLA.” Service-Oriented Computing – ICSOC 2008, 2008: 362-377.

§ High, R., S. Kinder, and S. Graham. “IBM's SOA Foundation.” 2005.

§ Hiltunen, M., and R. Schlichting. “Is Collaborative QoS the Solution to the SOA

Dependability Dilemma?” Architecting Dependable Systems VII (Springer Berlin

/ Heidelberg) 6420 (2010): 227-248.

§ Houghton, R. J., and C. Baber. “Social Aspects of NEC: Information Sharing

and Decision-Making.” People and Systems – Who Are We Designing For,

2007: 109 – 116.

§ Hunt, G. A. “DDS - Advanced Tutorial: Using QoS to Solve Real World

Problems.” OMG - Real-time and Embedded Systems Workshop. 9 July 2007.

http://www.omg.org/news/meetings/workshops/RT-2007/00-T5_Hunt-

revised.pdf (accessed March 28, 2012).

§ Iivari, J., R. Hirschheim, and H. Klein. “A Paradigmatic Analysis Contrasting.”

Information Systems Research, 1998: 164-193.

§ Jolliffe, G. “Producing a safety case for IMA blueprints.” The 24th Digital

Avionics Systems Conference. 2005. 8.C.1-1-8.C.1-14.

9. References Peter Bull – A738007

235

§ Kątcki, A. “Polish Automated System for Air Forces – Polish Way to Introduce

Network Enabled Capability.” Radar Symposium, 2006: 1 – 10.

§ Ketfi, A., and B. Noureddine. “Dynamic Interface Adaptability in Service

Oriented Software.” Proceedings of the Eighth International Workshop on

Component-Oriented Programming. 2003.

§ Kurose, J., and K. Ross. Computer Networking - A Top-Down Approach. 4th.

Addison-Wesley, 2007.

§ Lin, W.L., C.C. Lo, K.M. Chao, and N. Godwin. “Multi-group QoS consensus for

web services.” Journal of Computer and System Sciences, 2009: 223-243.

§ Littlefield-Lawwill, J., and R. Viswanathan. “Advancing Open Standards In

Integrated Modular Avionics: An Industry Analysis.” IEEE/AIAA 26th Digital

Avionics Systems Conference, DASC '07. 2007. 2.B.1-1-2.B.1-14.

§ Liu, A., and N. Gu. “A Reliability Evaluation Framework on Service Oriented

Architecture.” 2nd International Conference on Pervasive Computing and

Applications. 2007. 466-471.

§ Lund, K., A. Eggen, D. Hadzic, T. Hafsøe, and F. T. Johnsen. “Using Web

Services to Realize Service Oriented Architecture in Military Communication

Networks.” IEEE Communication Magazine, 2007: 47 – 53.

§ Lyu, M. R., X. Chen, and T. Y. Wong. “Design and Evaluation of a Fault-Tolerant

Mobile-Agent System.” IEEE Intelligent Systems, 2005: 32 – 38.

§ Miles, M., and A. Huberman. Qualitative Data Analysis: An Expanded

Sourcebook. Thousand Oaks, 1994.

§ Ministry of Defence. “ASAAC Standards Part 1. ASSC - Standards & Guidance

Support for the UK Military.” Interim Defence Standard 00-74 Part 1 Issue 2.

2008.

§ Ministry of Defence. “Defence Industrial Strategy: Defence White Paper (CM

6697).” 2005.

§ Ministry of Defence. “Generic Vehicle Architecture (GVA).” 2010.

§ Ministry of Defence. “MODAF - OV-1a High-Level Operational Concept

Graphic.” 2007.

§ Ministry of Defence. “Network Enabled Capability, JSP 777.” 2005.

9. References Peter Bull – A738007

236

§ NASA. “Certification Processes for Safety-Critical and MissionCritical

Aerospace Software.” NASA Scientific and Technical Information (STI)

Program, 2003.

§ Nickull, D. “Service Oriented Architecture Whitepaper.” Adobe Systems, Inc.,

2005.

§ Object Computing Inc. 2007. http://www.opendds.org/ (accessed August 7,

2008).

§ Object Management Group. “The Real-time Publish-Subscribe Wire Protocol,

DDS Interoperability Wire Protocol, Specification.” 2009.

§ Object Management Group, Inc. CORBA Basics. 11 September 2007.

http://www.omg.org/gettingstarted/corbafaq.htm (accessed May 19, 2008).

§ Object Management Group, Inc. “Data Distribution Service for Real-time

Systems, v1.2.” 2007.

§ Object Services and Consulting, Inc. Quality of Service (QoS). 20 January

1997. http://www.objs.com/survey/QoS.htm (accessed June 24, 2008).

§ Objective Interface Systems, Inc. What is Real-time CORBA? 2008.

http://www.ois.com/Products/What-is-Real-time-CORBA.html (accessed August

8, 2008).

§ O’Brien, L., L. Bass, and P. Merson. “Quality Attributes and Service-Oriented

Architectures, Software Architecture Technology Initiative.” 2005.

§ Oikonomou, G., I. W. Phillips, L. Guan, and A. Grigg. “An Emulator for the

Network Stack of Integrated Modular Systems.” Proceedings of the Conference

on System of Systems Engineering. Loughborough, 2010. 1-6.

§ Olifer, N, and V. Olifer. “Quality of Service (QoS) Basics.” JANET. 2005.

http://www.ja.net/documents/development/network-engineering/qos/qos-

basics.pdf (accessed June 24, 2008).

§ Pardo-Castellote, G. “OMG Data Distribution Service: Architectural Overview.”

23rd International Conference on Distributed Computing Systems Workshops

Proceedings. 2003. 200-206.

§ Prisaznuk, P. J. “Integrated Modular Avionics.” Proceedings of the IEEE 1992

National Aerospace and Electronics Conference. 1992. 39-45.

§ QINETIQ/EMEA/TS/CR0702540. “Vetronics Standards and Guidelines.” no. 3.

June 2009.

9. References Peter Bull – A738007

237

§ Rao, A. S., and M. P. Georgeff. “Modelling Rational Agents within a BDI-

Architecture.” Proceedings of the 2nd International Conference on Principles of

Knowledge Representation and Reasoning. 1991.

§ Rasmussen, N., and S. Niles. Modular Systems: The Evolution of Reliability.

American Power Conversion, 2005.

§ Real-Time Innovations, Inc. Data Distribution & Enterprise Integration. 2008.

http://www.rti.com/products/data_distribution/index.html (accessed August 7,

2008).

§ RTI. BAE SYSTEMS Selects RTI's NDDS® Publish-Subscribe Middleware for

F-35 Joint Strike Fighter Program. 03 August 2003.

http://www.rti.com/corporate/news/BAESelectsNDDS_Aug03.html (accessed

January 07, 2012).

§ Russell, D. J., and J. Xu. “Service Oriented Architectures in the Provision of

Military Capability.” University of Leeds, 2007.

§ Russell, D. J., and J. Xu. “Service-Oriented Architectures for Network Enabled

Capability.” University of Leeds, 2006.

§ Russell, D., L. Liu, Z. Luo, C. Venters, D. Webster, and J. Xu. “Realizing

Network Enabled Capability Through Dependable Dynamic Systems

Integration.” Proceedings of the 10th IEEE International Conference on

Computer and Information Technology. 2010. 1269-1274.

§ Russell, D., N. Looker, L. Liu, and J. Xu. “Service-Oriented Integration of

Systems for Military Capability.” 11th IEEE International Symposium on Object

Oriented Real-Time Distributed Computing (ISORC). 2008. 33 - 41.

§ Schlesselman, J. M., G. Pardo-Castellote, and B. Farabaugh. “OMG Data-

Distribution Service (DDS): Architectural Update.” IEEE Military

Communications Conference. 2004. 961-967.

§ Schlesselman, J., and M. Hamilton. DDS and IPv6. September 2004.

http://www.usipv6.com/6sense/2004/sep/sep03.htm (accessed January 07,

2012).

§ Schulzrinne, H., S. Casner, R. Frederick, and V. Jacobson. “RTP: A Transport

Protocol for Real-Time Applications.” January 1996.

http://www.ietf.org/rfc/rfc1889.txt (accessed August 8, 2008).

9. References Peter Bull – A738007

238

§ Sim, Y. W., C. Wang, L. Gilbert, and B. Wills. “An Overview of Service-Oriented

Architecture.” University of Southampton, 2005: 1-8.

§ Sobral, Marcelo Maia, and Leandro Buss Becker. “The Real-Time Subject

Routing Protocol.” Proceedings of 7th International Workshop on Real-Time

Networks. 2008.

§ Stal, M. “Using Architectural Patterns and Blueprints for Service-Oriented

Architecture.” IEEE Software (IEEE Computer Society), 2006: 54-61.

§ Stanton, N. A., et al. “A Reconfigurable C4 Testbed for Experimental Studies

into Network Enabled Capability.” People and Systems – Who Are We

Designing For, 2005: 135 – 143.

§ Taylor, J. “Engineering the Information Age.” IEEE Review, November 1998:

250 - 252.

§ Tsai, W. T., Y. Lee, Z. Cao, Y. Chen, and B. Xiao. “RTSOA: Real-Time Service-

Oriented Architecture.” Proceedings of the 2nd IEEE International Symposium

on Service-Oriented System Engineering. 2006.

§ Tyrrell, P. “Network Enabled Capability - Dream or Reality?” Journal of the

Singapore Armed Forces 33, no. 3 (2007): 45-53.

§ University of Leeds. NECTISE Architectures Group. 2007.

http://www.comp.leeds.ac.uk/NEC/ (accessed January 07, 2012).

§ Urbano, P. “Agent Based Approach to Distributed Real-Time Systems

Development.” Proceedings of the 3rd International Symposium on Multi-Agent

Systems, Large Complex Systems and E-Business. 2002. 719 – 725.

§ van der Hoek, W., and M. Wooldridge. “Mulit-Agent Systems.” Chap. 24 in

Handbook of knowledge Representation, 1, by F., Lifschitz, V. & Porter, B. van

Harmelen. Elsevier, 2007.

§ Van Dyke Parunak, H. “Practitioners’ Review of Industrial Agent Applications.”

Autonomous Agents and Multi Agent Systems, 2000: 389 – 407.

§ Walker, G. H., et al. “Analysing Network Enabled Capability in Civilian Work

Domains: A Case Study from Air Traffic Control.” People and Systems – Who

Are We Designing For, 2005: 101 – 108.

§ Whitworth, I. R. “The Systems Design Challenge of NEC.” People and Systems

– Who Are We Designing For, 2005: 33 – 38.

9. References Peter Bull – A738007

239

§ Wooldridge, M. “Agent-Based Software Engineering.” Mitsubishi Electric Digital

Library Group, 1997.

§ Wooldridge, M. An Introduction to MultiAgent Systems. 2002.

§ Xiao, X., and L. Ni. “Internet QoS: A Big Picture.” IEEE Network 13, no. 2

(1999): 8-18.

§ Yin, H., Z. Wang, J. Chen, Y. Sun, A. Kouba, and Y. Song. “Dynamic

Management of Real Time QoS According to (m,k)-firm.” Proceedings of the 5th

World Congress on Intelligent Control and Automation. 2004. 5600-5604.

§ Zilberstein, S. “Using Anytime Algorithms in Intelligent Systems.” AI Magazine

17, no. 3 (1996): 73-83.

Appendix A

240

Appendix A - Systems Engineering Tools Results

Systemic Textual Analysis

The following systemic textual analysis has been conducted using the previously

derived system infrastructure requirements (found in section 2.2.5). The requirements

are first separated into their functional and non-functional groupings and an overall

operational requirement has been generated.

Operational Requirement:

To facilitate dynamic system and component changes while maintaining real-time

performance.

Functional Requirements:

- Given that these requirements are all at the infrastructure level there were

no non-functional requirements originally derived.

Non-Functional System Requirements:

[InfReq-12] The system should be able to cope with dynamic changes in

required configurations.

[InfReq-13] Performance of the infrastructure should be maintained with

varying system scales.

[InfReq-14] The system should be capable of meeting soft and hard real-time

deadlines as required.

[InfReq-15] The system should be capable of providing flexible levels of safety.

Appendix A

241

[InfReq-16] The system should meet security requirements within a dynamic

environment.

Non-Functional Implementation Requirements:

[InfReq-1] Applications should have defined Quality of Service (QoS)

characteristics.

[InfReq-2] Applications should adapt at run-time to changing capabilities in

hardware and software.

[InfReq-4] Applications should use open and durable standards.

[InfReq-5] The communication network should allow for Quality of Service

(QoS) guarantees.

[InfReq-7] Communication should use open and durable standards.

[InfReq-8] The system should provide dynamic network reconfiguration.

[InfReq-10] The system should provide dynamic resource allocation and

reconfiguration.

[InfReq-11] The system should provide facilities for the dynamic reconfiguration

of inter-process communication.

[InfReq-17] Facility should be provided for fault logging and recovery.

Appendix A

242

Non Functional Performance Requirements:

[InfReq-3] Applications should adapt to varying levels of communication

performance.

[InfReq-6] Communication should be robust to faults.

[InfReq-9] Communications should be scalable at run-time.

Following from this initial grouping of requirements a systemic textual was conducted

using the form shown below.

Requirements

Operational Requirement:

To facilitate dynamic system and component changes while maintaining real-time

performance.

Non-functional System Requirements:

• [InfReq-12] The system should be able to cope with dynamic changes in

required configurations.

• [InfReq-13] Performance of the infrastructure should be maintained with

varying system scales.

• [InfReq-14] The system should be capable of meeting soft and hard real-time

deadlines as required.

• [InfReq-15] The system should be capable of providing flexible levels of

safety.

[InfReq-16] The system should meet security requirements within a dynamic

environment.

Non-functional

Implementation
Requirement

Functional Requirement Non-functional

Performance
Requirement

Appendix A

243

[InfReq-1] Applications

should have defined

Quality of Service

(QoS) characteristics.

[InfReq-5] The

communication

network should allow

for Quality of Service

(QoS) guarantees.

Assure Service

[InfReq-3] Applications

should adapt to varying

levels of communication

performance.

[InfReq-6] Communication

should be robust to faults.

[InfReq-9]

Communications should

be scalable at run-time.

[InfReq-2] Applications

should adapt at run-

time to changing

capabilities in

hardware and

software.

[InfReq-8] The system

should provide

dynamic network

reconfiguration.

[InfReq-10] The

system should provide

dynamic resource

allocation and

reconfiguration.

[InfReq-11] The

system should provide

facilities for the

dynamic

Adapt Service

Appendix A

244

reconfiguration of

inter-process

communication.

[InfReq-4] Applications

should use open and

durable standards.

[InfReq-7]

Communication should

use open and durable

standards.

Facilitate Interoperability

[InfReq-17] Facility

should be provided for

fault logging and

recovery.

Manage Faults

The four functional requirements derived from this systemic textual analysis are all

fairly high level, however, that is to be expected given the open nature of the

infrastructure described.

Appendix A

245

Viewpoint Analysis

The following viewpoint analysis was conducted using the results of the previous

systemic textual analysis.

Appendix A

246

From this diagram it is apparent that requirement [InfReq-17] does not fit with the rest

of the requirements. While the requirement does appear separate to the other

functions within this system, upon further investigation it could in actual fact be

considered a sub-function of Assure Service and so for the sake of simplicity this

requirement shall be moved under this heading.

The functional areas could of course be separated into several sub-functions (for

example Assure Service could be separated into network and application categories),

however, given the broad nature of the original requirements this further division is not

necessary.

Appendix B

247

Appendix B - Full Simulation Experiment Results

Scenario 1:

Worked Example 1a

Worked Example 1b

Appendix B

248

Worked Example 1c

Worked Example 2

System State 1

Appendix B

249

Final System State

Worked Example 3

System State 1

Appendix B

250

Final System State

Appendix B

251

Scenario 2: 3 Node System

Appendix B

252

System Reward

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

30 17001 8358 10446 15887 8358 10446 14617

Network Link Utilisation (%)

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

30 7.71E+01 2.29E+01 3.94E+01 6.30E+01 2.29E+01 3.94E+01 7.13E+01

No. of Serviced Subscribers

N
o. of

Subscribers

Negotiation Algorithm
Fram

ew
ork

N
egotiation

A
lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

30 15 16 16 10 16 16 11

Appendix B

253

Scenario 3: 5 Node System

Appendix B

254

System Reward

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

50 45821 17394 21876 44710 17394 21876 44710

Network Link Utilisation (%)

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

50 3.87E+01 6.68E+00 1.16E+01 3.68E+01 6.68E+00 1.16E+01 3.68E+01

No. of Serviced Subscribers

N
o. of

Subscribers

Negotiation Algorithm
Fram

ew
ork

N
egotiation

A
lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

50 28 28 28 27 28 28 27

Appendix B

255

Scenario 4 - 5 Node Complex System:

System Reward

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

25 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0
75 1924 2190 2565 2603 2694 2537 2941
100 5844 5190 4723 4453 3768 3577 3664
125 7798 7608 6651 5892 3972 3724 3852
150 7798 7608 6651 5892 3972 3724 3852
175 7798 7608 6651 5892 3972 3724 3852
200 7798 7608 6651 5892 3972 3724 3852
225 7798 7608 6651 5892 3972 3724 3852
250 7798 7608 6651 5892 3972 3724 3852
275 7798 7608 6651 5892 3972 3724 3852
300 7798 7608 6651 5892 3972 3724 3852

Network Link Utilisation

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

25 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0
75 8.24E+00 1.28E+01 2.15E+01 1.83E+01 2.23E+01 2.23E+01 2.36E+01
100 2.43E+01 2.12E+01 2.17E+01 2.16E+01 2.43E+01 2.45E+01 2.39E+01
125 2.43E+01 2.21E+01 2.35E+01 2.23E+01 2.49E+01 2.46E+01 2.40E+01
150 2.43E+01 2.21E+01 2.35E+01 2.23E+01 2.49E+01 2.46E+01 2.40E+01
175 2.43E+01 2.21E+01 2.35E+01 2.23E+01 2.49E+01 2.46E+01 2.40E+01
200 2.43E+01 2.21E+01 2.35E+01 2.23E+01 2.49E+01 2.46E+01 2.40E+01
225 2.43E+01 2.21E+01 2.35E+01 2.23E+01 2.49E+01 2.46E+01 2.40E+01
250 2.43E+01 2.21E+01 2.35E+01 2.23E+01 2.49E+01 2.46E+01 2.40E+01
275 2.43E+01 2.21E+01 2.35E+01 2.23E+01 2.49E+01 2.46E+01 2.40E+01
300 2.43E+01 2.21E+01 2.35E+01 2.23E+01 2.49E+01 2.46E+01 2.40E+01

Appendix B

256

Execution Time of Algorithms

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

25 1.78E-02 1.45E-02 1.45E-02 1.46E-02 1.45E-02 1.46E-02 1.45E-02
50 3.32E-02 2.96E-02 2.96E-02 2.97E-02 2.96E-02 2.96E-02 2.96E-02
75 1.14E+01 7.31E+00 7.38E+00 7.73E+00 7.63E+00 8.18E+00 9.20E+00
100 5.40E+02 2.13E+01 2.13E+01 2.27E+01 2.54E+01 2.65E+01 2.67E+01
125 1.10E+03 3.56E+01 3.47E+01 3.74E+01 4.17E+01 4.27E+01 4.25E+01
150 1.10E+03 3.56E+01 3.48E+01 3.75E+01 4.17E+01 4.27E+01 4.25E+01
175 1.10E+03 3.56E+01 3.48E+01 3.75E+01 4.17E+01 4.27E+01 4.25E+01
200 1.10E+03 3.56E+01 3.48E+01 3.75E+01 4.18E+01 4.27E+01 4.25E+01
225 1.10E+03 3.56E+01 3.48E+01 3.75E+01 4.18E+01 4.27E+01 4.26E+01
250 1.10E+03 3.56E+01 3.48E+01 3.75E+01 4.18E+01 4.27E+01 4.26E+01
275 1.10E+03 3.56E+01 3.48E+01 3.75E+01 4.18E+01 4.28E+01 4.26E+01
300 1.10E+03 3.57E+01 3.48E+01 3.75E+01 4.18E+01 4.28E+01 4.26E+01

No. of Serviced Subscribers

N
o. of

Subscribers

Negotiation Algorithm
Fram

ew
ork

N
egotiation

A
lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

25 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0
75 6 8 8 6 12 9 6
100 12 12 9 7 18 14 10
125 13 12 9 6 20 15 11
150 13 12 9 6 20 15 11
175 13 12 9 6 20 15 11
200 13 12 9 6 20 15 11
225 13 12 9 6 20 15 11
250 13 12 9 6 20 15 11
275 13 12 9 6 20 15 11
300 13 12 9 6 20 15 11

Appendix B

257

No. of Stopped Subscribers

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

25 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0
75 6 4 4 6 0 0 0
100 19 18 22 19 0 0 0
125 30 29 32 24 0 0 0
150 30 29 32 24 0 0 0
175 30 29 32 24 0 0 0
200 30 29 32 24 0 0 0
225 30 29 32 24 0 0 0
250 30 29 32 24 0 0 0
275 30 29 32 24 0 0 0
300 30 29 32 24 0 0 0

Appendix B

258

Scenario 5 - 10 Node Complex System:

Reward

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0
300 4588 3447 2928 3208 2691 2630 837
400 4819 3819 3390 3890 2691 2630 837
500 5037 4188 4520 3890 2691 2630 837
600 5037 4188 4520 3890 2691 2630 837
700 5037 4188 4520 3890 2691 2630 837
800 5037 4188 4520 3890 2691 2630 837
900 5037 4188 4520 3890 2691 2630 837
1000 5037 4188 4520 3890 2691 2630 837
1100 5037 4188 4520 3890 2691 2630 837
1200 5037 4188 4520 3890 2691 2630 837
1300 5037 4188 4520 3890 2691 2630 837
1400 5037 4188 4520 3890 2691 2630 837
1500 5037 4188 4520 3890 2691 2630 837
1600 5037 4188 4520 3890 2691 2630 837
1700 5037 4188 4520 3890 2691 2630 837
1800 5037 4188 4520 3890 2691 2630 837
1900 10914 9597 9262 8273 6111 5792 4134
2000 12865 10104 9701 8533 6111 5792 4134
2100 13809 10902 11801 11773 6111 5792 4134
2200 14861 12366 13684 13007 6111 5792 4134
2300 17677 14694 15097 17288 6111 5792 4134
2400 17677 14694 15097 17288 6111 5792 4134
2500 17677 14694 15097 17288 6111 5792 4134

Appendix B

259

Network Link Utilisation

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0
300 3.40E+00 3.28E+00 2.86E+00 2.76E+00 3.44E+00 3.40E+00 3.31E+00
400 4.31E+00 3.35E+00 3.06E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
500 3.73E+00 3.43E+00 3.41E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
600 3.73E+00 3.43E+00 3.41E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
700 3.73E+00 3.43E+00 3.41E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
800 3.73E+00 3.43E+00 3.41E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
900 3.73E+00 3.43E+00 3.41E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
1000 3.73E+00 3.43E+00 3.41E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
1100 3.73E+00 3.43E+00 3.41E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
1200 3.73E+00 3.43E+00 3.41E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
1300 3.73E+00 3.43E+00 3.41E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
1400 3.73E+00 3.43E+00 3.41E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
1500 3.73E+00 3.43E+00 3.41E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
1600 3.73E+00 3.43E+00 3.41E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
1700 3.73E+00 3.43E+00 3.41E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
1800 3.73E+00 3.43E+00 3.41E+00 3.33E+00 3.44E+00 3.40E+00 3.31E+00
1900 1.15E+01 1.02E+01 1.01E+01 9.97E+00 1.03E+01 1.02E+01 1.00E+01
2000 1.06E+01 9.79E+00 9.21E+00 8.96E+00 1.03E+01 1.02E+01 1.00E+01
2100 1.06E+01 1.03E+01 1.03E+01 1.00E+01 1.03E+01 1.02E+01 1.00E+01
2200 1.09E+01 1.01E+01 1.02E+01 1.00E+01 1.03E+01 1.02E+01 1.00E+01
2300 1.08E+01 1.03E+01 9.86E+00 9.33E+00 1.03E+01 1.02E+01 1.00E+01
2400 1.08E+01 1.03E+01 9.86E+00 9.33E+00 1.03E+01 1.02E+01 1.00E+01
2500 1.08E+01 1.03E+01 9.86E+00 9.33E+00 1.03E+01 1.02E+01 1.00E+01

Appendix B

260

Execution Time of Algorithms

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 6.89E-02 6.90E-02 6.92E-02 6.94E-02 6.95E-02 6.97E-02 6.94E-02
200 1.39E-01 1.38E-01 1.39E-01 1.39E-01 1.39E-01 1.40E-01 1.39E-01
300 1.27E+03 2.84E+00 2.85E+00 2.92E+00 2.86E+00 2.83E+00 2.78E+00
400 4.17E+03 7.19E+00 7.05E+00 7.00E+00 6.92E+00 6.80E+00 6.66E+00
500 5.99E+03 9.67E+00 9.57E+00 9.41E+00 9.29E+00 9.11E+00 8.94E+00
600 5.99E+03 9.74E+00 9.64E+00 9.48E+00 9.36E+00 9.18E+00 9.01E+00
700 5.99E+03 9.81E+00 9.71E+00 9.55E+00 9.43E+00 9.25E+00 9.08E+00
800 5.99E+03 9.88E+00 9.78E+00 9.62E+00 9.50E+00 9.32E+00 9.15E+00
900 5.99E+03 9.95E+00 9.85E+00 9.69E+00 9.57E+00 9.39E+00 9.22E+00
1000 5.99E+03 1.00E+01 9.92E+00 9.76E+00 9.64E+00 9.46E+00 9.29E+00
1100 5.99E+03 1.01E+01 9.99E+00 9.83E+00 9.71E+00 9.53E+00 9.36E+00
1200 5.99E+03 1.02E+01 1.01E+01 9.90E+00 9.78E+00 9.60E+00 9.43E+00
1300 5.99E+03 1.02E+01 1.01E+01 9.97E+00 9.85E+00 9.67E+00 9.50E+00
1400 5.99E+03 1.03E+01 1.02E+01 1.00E+01 9.92E+00 9.74E+00 9.56E+00
1500 5.99E+03 1.04E+01 1.03E+01 1.01E+01 9.99E+00 9.81E+00 9.63E+00
1600 5.99E+03 1.04E+01 1.03E+01 1.02E+01 1.01E+01 9.88E+00 9.70E+00
1700 5.99E+03 1.05E+01 1.04E+01 1.02E+01 1.01E+01 9.95E+00 9.77E+00
1800 5.99E+03 1.06E+01 1.05E+01 1.03E+01 1.02E+01 1.00E+01 9.84E+00
1900 1.54E+04 2.13E+01 2.15E+01 2.12E+01 2.17E+01 2.15E+01 2.12E+01
2000 2.58E+04 3.15E+01 3.20E+01 3.10E+01 3.22E+01 3.20E+01 3.14E+01
2100 3.61E+04 4.14E+01 4.18E+01 4.08E+01 4.20E+01 4.17E+01 4.10E+01
2200 4.11E+04 5.28E+01 5.31E+01 5.20E+01 5.29E+01 5.26E+01 5.17E+01
2300 4.30E+04 6.11E+01 6.14E+01 6.00E+01 6.06E+01 6.03E+01 5.93E+01
2400 4.30E+04 6.11E+01 6.15E+01 6.00E+01 6.07E+01 6.04E+01 5.93E+01
2500 4.30E+04 6.12E+01 6.16E+01 6.01E+01 6.07E+01 6.05E+01 5.94E+01

Appendix B

261

No. of Serviced Subscribers

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0
300 8 4 3 2 8 5 3
400 8 4 3 3 8 5 3
500 8 5 6 3 8 5 3
600 8 5 6 3 8 5 3
700 8 5 6 3 8 5 3
800 8 5 6 3 8 5 3
900 8 5 6 3 8 5 3
1000 8 5 6 3 8 5 3
1100 8 5 6 3 8 5 3
1200 8 5 6 3 8 5 3
1300 8 5 6 3 8 5 3
1400 8 5 6 3 8 5 3
1500 8 5 6 3 8 5 3
1600 8 5 6 3 8 5 3
1700 8 5 6 3 8 5 3
1800 8 5 6 3 8 5 3
1900 25 16 13 9 22 18 13
2000 22 14 13 7 22 18 13
2100 23 16 16 11 22 18 13
2200 22 17 18 10 22 18 13
2300 23 17 19 13 22 18 13
2400 23 17 19 13 22 18 13
2500 23 17 19 13 22 18 13

Appendix B

262

No. of Stopped Subscribers

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0
300 10 21 22 8 0 0 0
400 13 44 42 13 0 0 0
500 15 45 45 13 0 0 0
600 15 45 45 13 0 0 0
700 15 45 45 13 0 0 0
800 15 45 45 13 0 0 0
900 15 45 45 13 0 0 0
1000 15 45 45 13 0 0 0
1100 15 45 45 13 0 0 0
1200 15 45 45 13 0 0 0
1300 15 45 45 13 0 0 0
1400 15 45 45 13 0 0 0
1500 15 45 45 13 0 0 0
1600 15 45 45 13 0 0 0
1700 15 45 45 13 0 0 0
1800 15 45 45 13 0 0 0
1900 30 81 81 44 0 0 0
2000 47 115 99 67 0 0 0
2100 55 138 115 73 0 0 0
2200 60 155 122 80 0 0 0
2300 82 170 135 87 0 0 0
2400 82 170 135 87 0 0 0
2500 82 170 135 87 0 0 0

Appendix B

263

Scenario 6 - 15 Node Complex System:

Reward

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0
300 0 0 0 0 0 0 0
400 0 0 0 0 0 0 0
500 2693 1734 2035 2654 1734 2035 2615
600 15390 11580 10439 13185 6915 7013 7636
700 19015 15633 13849 17847 6915 7013 7636
800 19015 15633 13849 17847 6915 7013 7636
900 19015 15633 13849 17847 6915 7013 7636
1000 19015 15633 13849 17847 6915 7013 7636
1100 19015 15633 13849 17847 6915 7013 7636
1200 19229 15762 14008 18061 7044 7172 7850
1300 39302 35481 30714 30889 14301 15264 14446
1400 43632 35931 31140 34841 14301 15264 14446
1500 43632 35931 31140 34841 14301 15264 14446
1600 43632 35931 31140 34841 14301 15264 14446
1700 43632 35931 31140 34841 14301 15264 14446
1800 43632 35931 31140 34841 14301 15264 14446
1900 43632 35931 31140 34841 14301 15264 14446
2000 43632 35931 31140 34841 14301 15264 14446
2100 43632 35931 31140 34841 14301 15264 14446
2200 43632 35931 31140 34841 14301 15264 14446
2300 43632 35931 31140 34841 14301 15264 14446
2400 43632 35931 31140 34841 14301 15264 14446
2500 43632 35931 31140 34841 14301 15264 14446

Appendix B

264

Network Link Utilisation

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0
300 0 0 0 0 0 0 0
400 0 0 0 0 0 0 0
500 5.06E+00 1.78E+00 2.78E+00 4.87E+00 1.78E+00 2.78E+00 3.60E+00
600 7.95E+00 7.40E+00 7.52E+00 7.21E+00 7.67E+00 7.64E+00 7.63E+00
700 7.73E+00 7.52E+00 7.39E+00 7.65E+00 7.67E+00 7.64E+00 7.63E+00
800 7.73E+00 7.52E+00 7.39E+00 7.65E+00 7.67E+00 7.64E+00 7.63E+00
900 7.73E+00 7.52E+00 7.39E+00 7.65E+00 7.67E+00 7.64E+00 7.63E+00
1000 7.73E+00 7.52E+00 7.39E+00 7.65E+00 7.67E+00 7.64E+00 7.63E+00
1100 7.73E+00 7.52E+00 7.39E+00 7.65E+00 7.67E+00 7.64E+00 7.63E+00
1200 8.48E+00 7.77E+00 7.81E+00 8.40E+00 7.92E+00 8.06E+00 8.37E+00
1300 1.03E+01 9.94E+00 9.93E+00 1.01E+01 1.02E+01 1.02E+01 1.02E+01
1400 1.03E+01 1.01E+01 9.90E+00 1.02E+01 1.02E+01 1.02E+01 1.02E+01
1500 1.03E+01 1.01E+01 9.90E+00 1.02E+01 1.02E+01 1.02E+01 1.02E+01
1600 1.03E+01 1.01E+01 9.90E+00 1.02E+01 1.02E+01 1.02E+01 1.02E+01
1700 1.03E+01 1.01E+01 9.90E+00 1.02E+01 1.02E+01 1.02E+01 1.02E+01
1800 1.03E+01 1.01E+01 9.90E+00 1.02E+01 1.02E+01 1.02E+01 1.02E+01
1900 1.03E+01 1.01E+01 9.90E+00 1.02E+01 1.02E+01 1.02E+01 1.02E+01
2000 1.03E+01 1.01E+01 9.90E+00 1.02E+01 1.02E+01 1.02E+01 1.02E+01
2100 1.03E+01 1.01E+01 9.90E+00 1.02E+01 1.02E+01 1.02E+01 1.02E+01
2200 1.03E+01 1.01E+01 9.90E+00 1.02E+01 1.02E+01 1.02E+01 1.02E+01
2300 1.03E+01 1.01E+01 9.90E+00 1.02E+01 1.02E+01 1.02E+01 1.02E+01
2400 1.03E+01 1.01E+01 9.90E+00 1.02E+01 1.02E+01 1.02E+01 1.02E+01
2500 1.03E+01 1.01E+01 9.90E+00 1.02E+01 1.02E+01 1.02E+01 1.02E+01

Appendix B

265

Execution Time of Algorithms

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 9.20E-02 7.87E-02 7.88E-02 7.88E-02 7.90E-02 7.89E-02 7.92E-02
200 1.71E-01 1.58E-01 1.58E-01 1.58E-01 1.59E-01 1.59E-01 1.59E-01
300 2.51E-01 2.37E-01 2.38E-01 2.38E-01 2.38E-01 2.39E-01 2.39E-01
400 3.30E-01 3.17E-01 3.18E-01 3.17E-01 3.18E-01 3.19E-01 3.19E-01
500 4.01E+00 3.47E+00 3.46E+00 3.49E+00 3.47E+00 3.46E+00 3.50E+00
600 6.18E+03 3.47E+01 3.52E+01 3.62E+01 4.08E+01 4.00E+01 4.04E+01
700 1.22E+04 5.01E+01 5.14E+01 5.34E+01 6.12E+01 5.97E+01 5.93E+01
800 1.22E+04 5.02E+01 5.15E+01 5.35E+01 6.13E+01 5.98E+01 5.94E+01
900 1.22E+04 5.03E+01 5.16E+01 5.36E+01 6.14E+01 5.98E+01 5.95E+01
1000 1.22E+04 5.03E+01 5.16E+01 5.37E+01 6.14E+01 5.99E+01 5.96E+01
1100 1.22E+04 5.04E+01 5.17E+01 5.38E+01 6.15E+01 6.00E+01 5.96E+01
1200 1.22E+04 5.06E+01 5.19E+01 5.39E+01 6.17E+01 6.02E+01 5.98E+01
1300 2.01E+04 6.09E+01 6.33E+01 6.44E+01 7.31E+01 7.17E+01 7.09E+01
1400 1.71E+05 7.81E+01 7.85E+01 7.91E+01 8.80E+01 8.65E+01 8.50E+01
1500 1.71E+05 7.82E+01 7.86E+01 7.92E+01 8.81E+01 8.66E+01 8.50E+01
1600 1.71E+05 7.83E+01 7.87E+01 7.93E+01 8.81E+01 8.67E+01 8.51E+01
1700 1.71E+05 7.84E+01 7.88E+01 7.93E+01 8.82E+01 8.68E+01 8.52E+01
1800 1.71E+05 7.84E+01 7.88E+01 7.94E+01 8.83E+01 8.69E+01 8.53E+01
1900 1.71E+05 7.85E+01 7.89E+01 7.95E+01 8.84E+01 8.69E+01 8.53E+01
2000 1.71E+05 7.86E+01 7.90E+01 7.96E+01 8.85E+01 8.70E+01 8.54E+01
2100 1.71E+05 7.87E+01 7.91E+01 7.97E+01 8.85E+01 8.71E+01 8.55E+01
2200 1.71E+05 7.88E+01 7.92E+01 7.97E+01 8.86E+01 8.72E+01 8.56E+01
2300 1.71E+05 7.88E+01 7.92E+01 7.98E+01 8.87E+01 8.72E+01 8.57E+01
2400 1.71E+05 7.89E+01 7.93E+01 7.99E+01 8.88E+01 8.73E+01 8.57E+01
2500 1.71E+05 7.90E+01 7.94E+01 8.00E+01 8.89E+01 8.74E+01 8.58E+01

Appendix B

266

No. of Serviced Subscribers

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0
300 0 0 0 0 0 0 0
400 0 0 0 0 0 0 0
500 9 9 9 8 9 9 8
600 33 32 23 17 33 27 19
700 37 44 27 23 33 27 19
800 37 44 27 23 33 27 19
900 37 44 27 23 33 27 19
1000 37 44 27 23 33 27 19
1100 37 44 27 23 33 27 19
1200 38 45 28 24 34 28 20
1300 69 73 44 33 52 46 29
1400 74 66 45 37 52 46 29
1500 74 66 45 37 52 46 29
1600 74 66 45 37 52 46 29
1700 74 66 45 37 52 46 29
1800 74 66 45 37 52 46 29
1900 74 66 45 37 52 46 29
2000 74 66 45 37 52 46 29
2100 74 66 45 37 52 46 29
2200 74 66 45 37 52 46 29
2300 74 66 45 37 52 46 29
2400 74 66 45 37 52 46 29
2500 74 66 45 37 52 46 29

Appendix B

267

No. of Stopped Subscribers

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0
300 0 0 0 0 0 0 0
400 0 0 0 0 0 0 0
500 0 0 0 1 0 0 0
600 35 44 41 37 0 0 0
700 49 64 61 45 0 0 0
800 49 64 61 45 0 0 0
900 49 64 61 45 0 0 0
1000 49 64 61 45 0 0 0
1100 49 64 61 45 0 0 0
1200 49 64 61 45 0 0 0
1300 75 92 89 76 0 0 0
1400 95 126 126 100 0 0 0
1500 95 126 126 100 0 0 0
1600 95 126 126 100 0 0 0
1700 95 126 126 100 0 0 0
1800 95 126 126 100 0 0 0
1900 95 126 126 100 0 0 0
2000 95 126 126 100 0 0 0
2100 95 126 126 100 0 0 0
2200 95 126 126 100 0 0 0
2300 95 126 126 100 0 0 0
2400 95 126 126 100 0 0 0
2500 95 126 126 100 0 0 0

Appendix B

268

Scenario 7:

Original System (100-10) Results

Reward

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 0 0 0 0 0 0 0
200 5493 3033 3605 5333 3033 3605 5294
300 8341 6156 6674 7723 6798 5670 7636
400 8341 6156 6674 7723 6798 5670 7636
500 19047 16587 17402 14772 14103 13921 14446
600 26913 25155 24746 18995 14103 13921 14446
700 26913 25155 24746 18995 14103 13921 14446
800 26913 25155 24746 18995 14103 13921 14446
900 26913 25155 24746 18995 14103 13921 14446
1000 26913 25155 24746 18995 14103 13921 14446

Network Link Utilisation

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 0 0 0 0 0 0 0
200 7.21E+00 2.61E+00 4.14E+00 6.07E+00 2.61E+00 4.14E+00 4.80E+00
300 7.92E+00 7.63E+00 7.41E+00 6.99E+00 7.65E+00 7.46E+00 7.63E+00
400 7.92E+00 7.63E+00 7.41E+00 6.99E+00 7.65E+00 7.46E+00 7.63E+00
500 1.05E+01 1.02E+01 9.76E+00 9.51E+00 1.02E+01 1.00E+01 1.02E+01
600 1.05E+01 1.01E+01 9.97E+00 8.88E+00 1.02E+01 1.00E+01 1.02E+01
700 1.05E+01 1.01E+01 9.97E+00 8.88E+00 1.02E+01 1.00E+01 1.02E+01
800 1.05E+01 1.01E+01 9.97E+00 8.88E+00 1.02E+01 1.00E+01 1.02E+01
900 1.05E+01 1.01E+01 9.97E+00 8.88E+00 1.02E+01 1.00E+01 1.02E+01
1000 1.05E+01 1.01E+01 9.97E+00 8.88E+00 1.02E+01 1.00E+01 1.02E+01

Appendix B

269

Execution Time of Algorithms

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 3.41E-02 3.85E-02 3.49E-02 4.06E-02 3.49E-02 3.42E-02 3.41E-02
200 1.80E+00 1.77E+00 1.78E+00 1.78E+00 1.74E+00 1.79E+00 1.83E+00
300 3.79E+02 6.14E+00 6.35E+00 6.72E+00 6.70E+00 7.05E+00 7.03E+00
400 3.79E+02 6.18E+00 6.39E+00 6.75E+00 6.74E+00 7.09E+00 7.07E+00
500 5.76E+02 7.55E+00 7.72E+00 8.15E+00 8.19E+00 8.55E+00 8.55E+00
600 7.36E+02 8.91E+00 9.22E+00 9.65E+00 9.85E+00 1.02E+01 1.01E+01
700 7.36E+02 8.95E+00 9.26E+00 9.69E+00 9.89E+00 1.02E+01 1.02E+01
800 7.36E+02 8.98E+00 9.30E+00 9.73E+00 9.93E+00 1.03E+01 1.02E+01
900 7.36E+02 9.02E+00 9.34E+00 9.77E+00 9.97E+00 1.03E+01 1.02E+01
1000 7.36E+02 9.05E+00 9.38E+00 9.81E+00 1.00E+01 1.03E+01 1.03E+01

No. of Stopped Subscribers

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 0 0 0 0 0 0 0
200 0 0 0 1 0 0 0
300 15 22 22 19 0 0 0
400 15 22 22 19 0 0 0
500 21 29 35 38 0 0 0
600 35 41 45 42 0 0 0
700 35 41 45 42 0 0 0
800 35 41 45 42 0 0 0
900 35 41 45 42 0 0 0
1000 35 41 45 42 0 0 0

Appendix B

270

No. of Serviced Subscribers

N
o. of

Subscribers

Negotiation Algorithm

Fram
ew

ork
N

egotiation
A

lgorithm

Priority
B

ased (Low
)

Priority
B

ased
(M

edium
)

Priority
B

ased (H
igh)

C
om

patibility
Test (Low

)

C
om

patibility
Test
(M

edium
)

C
om

patibility
Test (H

igh)

100 0 0 0 0 0 0 0
200 13 13 13 11 13 13 11
300 26 24 19 14 32 23 19
400 26 24 19 14 32 23 19
500 48 45 36 20 50 42 29
600 54 52 40 21 50 42 29
700 54 52 40 21 50 42 29
800 54 52 40 21 50 42 29
900 54 52 40 21 50 42 29
1000 54 52 40 21 50 42 29

Appendix B

271

Combined Results for Varying Interval Ranges

Reward

N
o. of

Subscribers

Negotiation Algorithm

1-1

50-5

100-10

150-15

200-20

250-25

300-30

350-35

400-40

100 0 0 0 0 0 0 0 0 0

200 5532 5528 5493 5440 5413 5390 5371 5237 5222

300 8349 8659 8341 9135 8735 8959 8852 8353 9045

400 8349 8659 8341 9135 8735 8959 8852 8353 9045

500 19360 19160 19047 20087 19814 19843 20024 19195 19876

600 27396 27687 26913 28293 28258 28038 27950 26426 25916

700 27396 27687 26913 28293 28258 28038 27950 26426 25916

800 27396 27687 26913 28293 28258 28038 27950 26426 25916

900 27396 27687 26913 28293 28258 28038 27950 26426 25916

1000 27396 27687 26913 28293 28258 28038 27950 26426 25916

Network Link Utilisation

N
o. of

Subscribers

Negotiation Algorithm
1-1

50-5

100-10

150-15

200-20

250-25

300-30

350-35

400-40

100 0 0 0 0 0 0 0 0 0

200
7.61E+
00

7.57E+
00

7.21E+
00

7.08E+
00

6.81E+
00

6.58E+
00

6.38E+
00

6.19E+
00

6.04E+
00

300
7.74E+
00

8.21E+
00

7.92E+
00

8.34E+
00

8.15E+
00

7.98E+
00

7.60E+
00

7.57E+
00

8.18E+
00

400
7.74E+
00

8.21E+
00

7.92E+
00

8.34E+
00

8.15E+
00

7.98E+
00

7.60E+
00

7.57E+
00

8.18E+
00

500
1.03E+
01

1.08E+
01

1.05E+
01

1.09E+
01

1.07E+
01

1.05E+
01

1.02E+
01

1.01E+
01

1.07E+
01

600
1.02E+
01

1.07E+
01

1.05E+
01

1.08E+
01

1.07E+
01

1.05E+
01

1.01E+
01

1.01E+
01

1.07E+
01

700
1.02E+
01

1.07E+
01

1.05E+
01

1.08E+
01

1.07E+
01

1.05E+
01

1.01E+
01

1.01E+
01

1.07E+
01

800
1.02E+
01

1.07E+
01

1.05E+
01

1.08E+
01

1.07E+
01

1.05E+
01

1.01E+
01

1.01E+
01

1.07E+
01

900
1.02E+
01

1.07E+
01

1.05E+
01

1.08E+
01

1.07E+
01

1.05E+
01

1.01E+
01

1.01E+
01

1.07E+
01

1000
1.02E+
01

1.07E+
01

1.05E+
01

1.08E+
01

1.07E+
01

1.05E+
01

1.01E+
01

1.01E+
01

1.07E+
01

Appendix B

272

Execution Time of Algorithms

N
o. of

Subscribers

Negotiation Algorithm

1-1

50-5

100-10

150-15

200-20

250-25

300-30

350-35

400-40

100
3.37E-
02

3.44E-
02

3.41E-
02

3.22E-
02

4.16E-
02

3.59E-
02

3.26E-
02

3.54E-
02

3.35E-
02

200
6.10E+
00

1.81E+
00

1.80E+
00

1.69E+
00

1.93E+
00

1.72E+
00

1.61E+
00

1.65E+
00

1.70E+
00

300
5.60E+
03

5.09E+
02

3.79E+
02

2.02E+
02

1.20E+
02

1.66E+
02

1.36E+
02

4.48E+
01

9.03E+
01

400
5.60E+
03

5.10E+
02

3.79E+
02

2.02E+
02

1.20E+
02

1.66E+
02

1.36E+
02

4.49E+
01

9.03E+
01

500
7.04E+
03

7.59E+
02

5.76E+
02

2.18E+
02

1.42E+
02

1.79E+
02

1.48E+
02

5.90E+
01

1.08E+
02

600
1.28E+
04

1.03E+
03

7.36E+
02

3.47E+
02

2.53E+
02

2.25E+
02

2.00E+
02

3.39E+
02

3.83E+
02

700
1.28E+
04

1.03E+
03

7.36E+
02

3.47E+
02

2.53E+
02

2.25E+
02

2.00E+
02

3.39E+
02

3.83E+
02

800
1.28E+
04

1.03E+
03

7.36E+
02

3.47E+
02

2.53E+
02

2.25E+
02

2.00E+
02

3.39E+
02

3.83E+
02

900
1.28E+
04

1.03E+
03

7.36E+
02

3.47E+
02

2.53E+
02

2.25E+
02

2.00E+
02

3.39E+
02

3.83E+
02

1000
1.28E+
04

1.03E+
03

7.36E+
02

3.47E+
02

2.53E+
02

2.25E+
02

2.00E+
02

3.39E+
02

3.83E+
02

No. of Stopped Subscribers

N
o. of

Subscribers
Negotiation Algorithm

1-1

50-5

100-10

150-15

200-20

250-25

300-30

350-35

400-40

100 0 0 0 0 0 0 0 0 0

200 0 0 0 0 0 0 0 1 1

300 20 15 15 16 17 10 14 21 16

400 20 15 15 16 17 10 14 21 16

500 31 22 21 27 29 22 25 34 30

600 41 34 35 37 36 32 37 39 40

700 41 34 35 37 36 32 37 39 40

800 41 34 35 37 36 32 37 39 40

900 41 34 35 37 36 32 37 39 40

1000 41 34 35 37 36 32 37 39 40

Appendix B

273

No. of Serviced Subscribers

N
o. of

Subscribers

Negotiation Algorithm

1-1

50-5

100-10

150-15

200-20

250-25

300-30

350-35

400-40

100 0 0 0 0 0 0 0 0 0

200 13 13 13 13 13 13 13 12 12

300 26 28 26 29 26 29 29 23 27

400 26 28 26 29 26 29 29 23 27

500 45 49 48 48 43 46 47 38 41

600 54 56 54 57 54 56 55 46 46

700 54 56 54 57 54 56 55 46 46

800 54 56 54 57 54 56 55 46 46

900 54 56 54 57 54 56 55 46 46

1000 54 56 54 57 54 56 55 46 46

