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On Multi-head Automata with Restricted Nondeterminism
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Abstract

In this work, we consider deterministic two-way multi-head automata, the input heads of which are nondeterministically
initialised, i. e., in every computation each input head is initially located at some nondeterministically chosen position
of the input word. This model serves as an instrument to investigate restricted nondeterminism of two-way multi-head
automata. Our result is that, in terms of expressive power, two-way multi-head automata with nondeterminism in form
of nondeterministically initialising the input heads or with restricted nondeterminism in the classical way, i. e., in every
accepting computation the number of nondeterministic steps is bounded by a constant, do not yield an advantage over
their completely deterministic counter-parts with the same number of input heads. We conclude this paper with a brief
application of this result.
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1. Introduction

Multi-head automata, in their one-way, two-way, de-
terministic and nondeterministic versions, have been in-
tensely studied over the last decades (for a survey, see
Holzer et al. [1]). They were first introduced by Rabin
and Scott [2] and Rosenberg [3]. Although many results
on multi-head automata have been reported since then,
very basic questions still remain unsolved. One of these
open problems is to determine whether or not, in the two-
way case, nondeterminism is generally more powerful, i. e.,
whether or not the class of languages defined by two-way
nondeterministic multi-head automata (2NFA) is strictly
larger than the class of languages defined by two-way de-
terministic multi-head automata (2DFA). In other words,
we ask whether we can remove the nondeterminism from
an arbitrary 2NFA – compensated for, as appropriate, by
enlarging its set of states and adding several input heads –
without a detrimental effect on the computational power of
the automaton. It is known that 2DFA and 2NFA charac-
terise the complexity classes of deterministic logarithmic
space (L) and nondeterministic logarithmic space (NL),
respectively (see, e. g., Sudborough [4]). Thus, the above
described problem is equivalent to the L-NL-Problem, i. e.,
the long-standing open question of whether or not L and
NL coincide. This problem has been further narrowed
down by Hartmanis [5] and Sudborough [4], such that
in fact L = NL if and only if we can remove the non-
determinism from one-way nondeterministic two-head au-
tomata without changing the accepted language.
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In order to gain further insights into the role of non-
determinism for a certain computational model, it is com-
mon to restrict the amount of nondeterminism (see, e. g.,
Fischer and Kintala [6], Kintala and Wotschke [7] and
Kutrib [8]). With respect to multi-head automata, we can
try to enlarge the set of languages defined by 2DFA by
adding some amount of nondeterminism to the model of
2DFA and investigate the question of whether or not this
leads to a strictly more powerful device. If such a new
model really is more powerful and, in terms of expressive
power, still contained in the set of 2NFA, then the L-NL-
Problem is solved. If, on the other hand, we can show that
our modification does not yield any advantages, then we
have identified a special kind of nondeterminism that is not
responsible for an increase of expressive power regarding
2DFA.

We follow this approach and introduce two-way deter-
ministic multi-head automata, the input heads of which
are nondeterministically initialised (IFA). More precisely,
in every computation each input head is initially located
at some nondeterministically chosen position in the input
word; hence, the automaton, for each input head, guesses a
position in the input word. Similarly, the first state is non-
deterministically chosen from a given set of possible initial
states. After this initialisation, the automaton behaves
like a normal 2DFA, i. e., every transition is deterministic.
This model clearly is nondeterministic, but its nondeter-
minism is restricted. Although it is easy to see that IFA
are not more powerful than classical 2NFA, it is not obvi-
ous whether a 2NFA that, for some constant m ∈ N, per-
forms at most m nondeterministic steps in every accepting
computation (2NFAm), can simulate the special nondeter-
minism of initialising the input heads. This is due to the
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fact that the natural way to move an input head to a non-
deterministically chosen position of the input word is to
move it to the right step by step, and, in each step, to
guess whether it should be moved further on or stopped
where it is. This procedure clearly requires a number of
nondeterministic steps that depends on the guessed po-
sition of the input word and, thus, is not bounded by a
constant. The question arises whether or not the model of
IFA is more powerful than 2DFA and 2NFAm. We answer
this question in the negative by showing that the nonde-
terminism of 2NFAm and IFA can be completely removed,
i. e., they can be transformed into 2DFA, without increas-
ing their number of input heads.

2. Basic Definitions and Multi-head Automata

Let N := {1, 2, 3, . . .}. The symbol ⊆ denotes the sub-
set relation. For an arbitrary alphabet Σ, a word (over
Σ) is a finite sequence of symbols from Σ, and ε stands
for the empty word. The symbol Σ+ denotes the set of
all nonempty words over Σ, and Σ∗ := Σ+ ∪ {ε}. For the
concatenation of two words u, v we write u ·v or simply uv.
We say that a word v ∈ Σ∗ is a factor of a word w ∈ Σ∗ if
there are u1, u2 ∈ Σ∗ such that w = u1 ·v ·u2. If u1 = ε (or
u2 = ε), then v is a prefix of w (or a suffix, respectively).
The notation |K| stands for the size of a setK or the length
of a word K. If we wish to refer to the symbol at a certain
position in a word w = a1 · a2 · · · · · an, ai ∈ Σ, 1 ≤ i ≤ n,
over some alphabet Σ, we use w[i] := ai, 1 ≤ i ≤ n. For
an arbitrary class of automata models, e. g., the set DFA
of deterministic finite automata, the expression “a DFA”
refers to any automaton from DFA.

We assume the reader to be familiar with the concepts
of automata theory and particularly multi-head automata
(see, e. g., [1, 9]); thus, we define the automata models rel-
evant to this paper just briefly. All automata considered
in this paper are two-way models, i. e., their input heads
can be moved in both directions. Hence, we drop the pre-
fixes 1 and 2 used in Section 1 to distinguish between the
one-way and two-way case.

A Nondeterministic Multi-head Automaton (denoted
by NFA(k)) is a device M := (k,Q,Σ, δ, q0, F ), where
k ≥ 1 is the number of input heads, Q is a finite nonempty
set of states, Σ is a finite nonempty alphabet of input sym-
bols, q0 ∈ Q is the initial state, F ⊆ Q is the set of ac-
cepting states and the transition function δ is a mapping
Q × (Σ ∪ {¢, $})k → P(Q × {−1, 0, 1}k), where P(S) de-
notes the power set of a set S. An input to M is any string
of the form ¢w$, where w ∈ Σ∗ and the symbols ¢, $ (re-
ferred to as left and right endmarker, respectively) are not
in Σ. Let δ(p, b1, b2, . . . , bk) 3 (q,m1,m2, . . . ,mk). For
each i, 1 ≤ i ≤ k, we call the element bi the input symbol
scanned by head i and mi the instruction for head i and,
furthermore, we assume that bi = ¢ implies mi 6= −1 and
bi = $ implies mi 6= 1.

A configuration of an NFA(k) M on some input ¢w$
is a tuple containing a state and k positions in ¢w$. A

configuration c := (p, h1, h2, . . . , hk) can be changed into
a configuration c′ := (q, h′1, h

′
2, . . . , h

′
k) (denoted by the

relation c `M,w c′) if and only if there exists a transition
δ(p, b1, b2, . . . , bk) 3 (q,m1,m2, . . . ,mk) with ¢w$[hi] = bi
and h′i = hi + mi, 1 ≤ i ≤ k. To describe a computation
of M (on input ¢w$) we use the reflexive and transitive
closure of the relation `M,w, denoted by `∗M,w. The initial
configuration of M (on input ¢w$) is the configuration
(q0, 0, 0, . . . , 0). An accepting configuration of M (on input
¢w$) is any configuration of form (qf , h1, h2, . . . , hk), qf ∈
F , 0 ≤ hi ≤ |w| + 1, 1 ≤ i ≤ k. M accepts the word w if
and only if ĉ0 `∗M,w ĉf , where ĉ0 is the initial configuration,
and ĉf is an accepting configuration. For any NFA(k) M ,
let L(M) denote the set of words accepted by M .

A Deterministic Multi-head Automaton (denoted by
DFA(k)) is an NFA(k) M , where, for every state q and
for all b1, b2, . . . , bk ∈ Σ ∪ {¢, $}, |δ(q, b1, b2, . . . , bk)| ≤ 1.
A Nondeterministically Initialised Multi-head Automaton
(denoted by IFA(k)) is a DFA(k) M that has a set of pos-
sible initial states, denoted by I. An IFA(k) M accepts a
word w ∈ Σ∗ if and only if ĉ0 `∗M,w ĉf , where ĉf is some
accepting configuration and ĉ0 is any configuration of form
(q, h1, h2, . . . , hk), where q ∈ I and, for every i, 1 ≤ i ≤ k,
0 ≤ hi ≤ |w| + 1. For every f : N → N, an NFA(k)
that makes at most f(|w|) nondeterministic moves in ev-
ery accepting computation on input ¢w$ is said to have
restricted nondeterminism and is denoted by NFAf(n)(k).
If f(n) = m, for some constant m ∈ N, then we write
NFAm(k). For an arbitrary class of automata models A,
L(A) refers to the set of languages accepted by some au-
tomaton in A, i. e., L(A) := {L(M) |M ∈ A}.

3. The Expressive Power of IFA(k) and NFAm(k)

In this section, NFAf(n)(k), IFA(k) and DFA(k) are
compared with respect to their expressive power. First,
we note that by definition, for every k ∈ N, L(DFA(k)) ⊆
L(IFA(k)) ⊆ L(NFA(k)). This is due to the fact that,
since the unrestricted nondeterminism of NFA(k) can be
used to nondeterministically initialise the input heads and
to guess an initial state, an arbitrary IFA(k) can be simu-
lated by an NFA(k) and, on the other hand, we can easily
transform any DFA(k) M into an equivalent IFA(k) by
aborting every computation that does not start with con-
figuration (q0, 0, 0, . . . , 0), i. e., the initial configuration of
M .

As already stated in Section 1,
⋃
k L(DFA(k)) coin-

cides with L, the class of languages that can be accepted
by deterministic Turing machines working with O(log(n))
space, where n is the length of the input. We can show
that

⋃
k L(DFA(k)) =

⋃
k L(IFA(k)) and

⋃
k L(DFA(k)) =⋃

k,c L(NFAc log(n)(k)) by showing how arbitrary IFA(k)
and NFAc log(n)(k) can be simulated by deterministic Tur-
ing machines with O(log(n)) space. We sketch these sim-
ulations very briefly. A deterministic Turing machine can
simulate an IFA(k) M1 by enumerating all possible initial
configurations of M1 and, for each such configuration, it
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then simulates the deterministic computation of M1 start-
ing in this initial configuration. In order to investigate all
possible initial configurations, M needs to keep track of
the possible initial states of M1 as well as of the input
head positions. The numbers of input heads and possi-
ble initial states are constants, whereas each input head
position can be stored within log(n) space.

In order to simulate an NFAc log(n)(k) M2, the Turing
machine M simply enumerates all possible binary strings
α ∈ {0, 1}∗, |α| = c× log(n), and, for each such string α, it
simulates M2. If, in this simulation, M2 performs the ith

nondeterministic step in its computation, then M chooses
the next transition according to the ith bit in α. This
method can only be applied if the maximal nondetermin-
istic branching factor of M2 is 2, but it is straightforward
to change it for the general case.

It follows that an arbitrary IFA(k) or NFAf(n)(k) with
f(n) = O(log(n)) can be transformed into an DFA(k′).
However, the details of such a transformation are not pro-
vided by the above sketched simulations and the question
arises whether or not this can be done without increasing
the number of input heads. In the following, we shall prove
that, in fact, for every k ∈ N, L(DFA(k)) = L(IFA(k)) =
L(NFAf(n)(k)), provided that f(n) is a constant. Next, we
show that, for every k,m ∈ N, NFAm(k) can be simulated
by IFA(k).

Lemma 1. Let M ∈ NFAm(k), where k,m ∈ N. There
exists an IFA(k) M ′ such that L(M) = L(M ′).

Proof. There exists an m̂ ∈ N, such that we can trans-
form M into an NFAm̂(k) M̂ := (k, Q̂,Σ, δ̂, q0, F̂ ) with

L(M) = L(M̂) and, for every state p ∈ Q̂ and for all

b1, b2, . . . , bk ∈ Σ ∪ {¢, $}, |δ̂(p, b1, b2, . . . , bk)| ≤ 2. This
can be done by substituting a transition δ(p, b1, b2, . . . , bk)
with |δ(p, b1, b2, . . . , bk)| = l > 2, where δ is the transition
function of M , by l − 1 transitions that have exactly two
nondeterministic choices. Obviously, this requires l−1 new
states. In the following we assume some order on the two
options of a nondeterministic transition, such that we can
write nondeterministic transitions as ordered tuples rather
than as sets.

We shall now construct an IFA(k) M ′ with L(M ′) =

L(M̂). Let M ′ := (k,Q′,Σ, δ′, I, F ′). Before we formally
define M ′, we informally explain its behaviour. The au-
tomaton M ′ initially chooses one out of 2m̂ copies of the
initial state q0 of NFAm̂(k) M̂ . Each of these 2m̂ initial
states of M ′ uniquely corresponds to m̂ nondeterministic
binary guesses that may be performed in a computation of
M̂ . This is done by storing a binary sequence of length m̂
in the initial states of M ′. After M ′ initially guesses one of
the initial states, it simulates the computation of M̂ . De-
terministic steps are performed in exactly the same way
and whenever M̂ nondeterministically chooses one out of
two possible transitions, then M ′ chooses the next transi-
tion according to the first bit of the binary sequence cur-
rently stored in the state and this first bit is then removed.

We shall now give the formal definitions.
The set of states is defined by Q′ := {q(α) | q ∈

Q̂, α ∈ {0, 1}∗, |α| ≤ m̂}, the set of initial states is de-

fined by I := {q(α)0 | α ∈ {0, 1}∗, |α| = m̂} and the
set of accepting states is defined by F ′ := {q(α) | q ∈
F̂ , α ∈ {0, 1}∗, |α| ≤ m̂}. For every deterministic transi-

tion δ̂(p, b1, b2, . . . , bk) = {(q,m1,m2, . . . ,mk)} of M̂ and
for every α ∈ {0, 1}∗, |α| ≤ m̂, we define

δ′(p(α), b1, b2, . . . , bk) := (q(α),m1,m2, . . . ,mk) .

For every nondeterministic transition δ̂(p, b1, b2, . . . , bk) =
((q1,m1,1,m1,2, . . . ,m1,k), (q2,m2,1,m2,2, . . . ,m2,k)) and
for every α ∈ {0, 1}∗, |α| ≤ m̂− 1, we define

δ′(p(0·α), b1, b2, . . . , bk) := (q
(α)
1 ,m1,1,m1,2, . . . ,m1,k) ,

δ′(p(1·α), b1, b2, . . . , bk) := (q
(α)
2 ,m2,1,m2,2, . . . ,m2,k) .

This particularly means that if |δ̂(p, b1, b2, . . . , bk)| = 2,
then δ′(p(ε), b1, b2, . . . , bk) is undefined. Furthermore, in

every initial state q
(α)
0 , M ′ must check whether all input

heads scan the left endmarker and reject if this is not the
case.

Let q ∈ F̂ , α ∈ {0, 1}∗ and, for every i with 1 ≤ i ≤ k,
0 ≤ hi ≤ |w| + 1. It follows directly from the defini-

tion that, on every input ¢w$, M̂ reaches (q, h1, h2, . . . , hk)
from (q0, 0, 0, . . . , 0) by applying binary nondeterministic
choices according to α if and only if, for some α′ ∈ {0, 1}∗
with |α · α′| = m̂, M ′ reaches (q(α

′), h1, h2, . . . , hk) from

(q
(α·α′)
0 , 0, 0, . . . , 0) on input ¢w$. Consequently, L(M̂) =

L(M ′).

From Lemma 1, we can immediately conclude that,
for every k,m ∈ N, the class of languages described by
NFAm(k) is included in the class of languages given by
IFA(k):

Theorem 2. For every k ∈ N and m ∈ N, L(NFAm(k)) ⊆
L(IFA(k)).

Before we can show our second result, i. e., IFA(k) can
be simulated by DFA(k), we need to define a few more
concepts. First, every IFA(k) can be transformed into an
equivalent one that has exactly one unique accepting con-
figuration and it halts as soon as this configuration is en-
tered:

Definition 3. Let M ∈ IFA(k), k ∈ N, and let F be the
set of accepting states of M . M is well-formed if and only
if F = {qf}, (qf , 0, 0, . . . , 0) is the only possible accepting
configuration that can be reached in any computation of
M and no transition δ(qf , b1, b2, . . . , bk), bi ∈ Σ ∪ {¢, $},
1 ≤ i ≤ k, is defined.

We observe that every IFA(k) can be transformed into
an equivalent well-formed one by introducing a new state
that serves as the only accepting state and that is not
entered before all input heads have been moved to the left
endmarker.
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Proposition 4. Let M ∈ IFA(k), k ∈ N. Then there
exists a well-formed IFA(k) M ′ with L(M) = L(M ′).

Next, we define a special configuration graph for com-
putations of IFA(k), a concept that has already been in-
troduced by Sipser in [10], where it has been applied to
space-bounded Turing machines.

Definition 5. Let M be a well-formed IFA(k), k ∈ N, and
let w ∈ Σ∗. Let G′M,w := (V ′M,w, E

′
M,w), where V ′M,w :=

{(q, h1, h2, . . . , hk) | q ∈ Q, 0 ≤ hi ≤ |w| + 1, 1 ≤ i ≤ k}
and E′M,w := {(c1, c2) | c2 `M,w c1}. The backward con-
figuration graph of M on w, denoted by GM,w, is the con-
nected component of G′M,w that contains (qf , 0, 0, . . . , 0).

Since the vertex (qf , 0, 0, . . . , 0) of the backward config-
uration graph of a well-formed IFA(k) M cannot have an
incoming edge and since all the transitions of M are deter-
ministic, we can conclude that the backward configuration
graph is a tree rooted by (qf , 0, 0, . . . , 0). Therefore, from
now on, we shall use the term backward configuration tree.
For arbitrary IFA(k) M and w ∈ Σ∗, the backward config-
uration tree can also be used to decide on the acceptance
of w by M :

Proposition 6. Let M be a well-formed IFA(k), k ∈ N,
and let I be the set of initial states of M . For every
w ∈ Σ∗, w ∈ L(M) if and only if there exists a path from
(qf , 0, 0, . . . , 0) to some vertex (q0, h1, h2, . . . , hk), q0 ∈ I,
0 ≤ hi ≤ |w|+ 1, 1 ≤ i ≤ k, in the backward configuration
tree of M on w.

We can now state our next result, i. e., for every k ∈
N, every IFA(k) can be transformed into an equivalent
DFA(k). We shall prove this statement by applying a tech-
nique developed by Sipser in [10] in order to prove that
every space bounded deterministic Turing machine can be
transformed into a halting deterministic Turing machine
with the same space bound. Furthermore, this technique
has also been used by Muscholl et al. [11] in order to show a
similar result for deterministic tree-walking automata and
by Geffert et al. [12] in order to complement deterministic
two-way automata. More precisely, we show for an arbi-
trary IFA(k) M , how a DFA(k) M ′ can be constructed
that, on any input ¢w$, searches the backward configu-
ration tree of M on w for a path from (qf , 0, 0, . . . , 0) to
some (q0, h1, h2, . . . , hk), where q0 is an initial state of M .
It is not obvious how M ′ can do this, since the size of the
backward configuration tree of M on w does not only de-
pend on the constant size of M , but also on the size of the
current input ¢w$.

Lemma 7. Let M ∈ IFA(k), k ∈ N. There exists a
DFA(k) M ′, such that L(M) = L(M ′).

Proof. Let M̂ ∈ IFA(k), k ∈ N, be arbitrarily chosen. By
Proposition 4, we can conclude that there exists a well-
formed IFA(k) M := (k,Q,Σ, δ, I, {qf}) with L(M) =

L(M̂). By Proposition 6, for every w ∈ Σ∗, we can decide

on whether w ∈ L(M) by searching the backward config-
uration tree of M on w for a path from (qf , 0, 0, . . . , 0) to
some vertex of form (q0, h1, h2, . . . , hk), q0 ∈ I, 0 ≤ hi ≤
|w| + 1, 1 ≤ i ≤ k. Consequently, in order to prove the
lemma, it is sufficient to show that this task can be carried
out by a DFA(k) M ′ if ¢w$ is the input. More precisely,
M ′ needs to perform a Depth-First-Search on the back-
ward configuration tree of M on w starting at the root.
Obviously, it is not possible to store the entire tree in the
finite state control of M ′, as this tree grows with the in-
put length. However, we shall see that it is possible for
M ′ to construct the necessary parts of the tree “on-the-
fly” without having to store too much information in the
states. We shall explain the main idea in more detail.

For an arbitrary w ∈ Σ∗, let (q, h1, h2, . . . , hk) be an
arbitrary vertex of GM,w. The situation that M ′ visits
this vertex is represented in the following way: The input
heads of M ′ scan the positions hi, 1 ≤ i ≤ k, of the input
¢w$ and q, the state of M , is stored in the current state of
M ′. In order to avoid confusion, this state q shall be called
the currently stored state. Initially, qf is the the currently
stored state, which, according to the above mentioned
interpretation of how M ′ visits vertices of the backward
configuration tree, particularly means that the initial con-
figuration of M ′ corresponds to (qf , 0, 0, . . . , 0), i. e., the
root of the backward configuration tree. Now, M ′ has to
visit the next vertex of GM,w according to a Depth-First-
Search traversal. Let (p, h′1, h

′
2, . . . , h

′
k) be this next vertex;

so there is an edge ((q, h1, h2, . . . , hk), (p, h′1, h
′
2, . . . , h

′
k))

in the backward configuration tree, which, by definition,
implies (p, h′1, h

′
2, . . . , h

′
k) `M,w (q, h1, h2, . . . , hk). Hence,

in order to move from vertex (q, h1, h2, . . . , hk) to vertex
(p, h′1, h

′
2, . . . , h

′
k)), M ′ must simulate a step of M , but in

the opposite direction.
The main difficulty with this procedure is that, for any

vertex v in GM,w, there may be several children to visit
and, thus, we have to choose one of them and, furthermore,
the next time we visit v we need to know which children
have already been visited to decide which one to choose
next. To this end we define a rank for all possible children
of a vertex in GM,w, and an order of these ranks. To im-
plement the Depth-First-Search, M ′ then enumerates all
possible children of the currently visited vertex v with re-
spect to their rank and visits them. As soon as the subtree
rooted by some child u of v has been completely searched,
we move back to v and, in order to pick the next child of
v to visit, we need to know the rank of u. Obviously, for
every vertex, we cannot directly store the ranks of all its
children visited so far in the finite state control. However,
there is exactly one transition that changes M from the
child to the parent. Therefore, we interpret this transition
as the rank of u, which allows us to restore the rank while
moving from the child u back to the parent v. Next, we
shall formally define the set of ranks and then explain their
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role for the construction of M ′ in more detail:

Γ := {〈p,m1,m2, . . . ,mk, q〉 |
p, q ∈ Q,mi ∈ {−1, 0, 1}, 1 ≤ i ≤ k} .

As mentioned above, a rank 〈p,m1,m2, . . . ,mk, q〉 cor-
responds to a transition of M , i. e., the transition that
changes M from state p to q and moves the input heads
according to m1,m2, . . . ,mk. Let v := (q, h′1, h

′
2, . . . , h

′
k)

and u := (p, h1, h2, . . . , hk) be two arbitrarily chosen con-
figurations of M on input ¢w$. We say that u is an actual
child of v with rank 〈p,m1,m2, . . . ,mk, q〉 if, for every i,
1 ≤ i ≤ k, mi = h′i−hi, and δ(p, w[h1], w[h2], . . . , w[hk]) =
(q,m1,m2, . . . ,mk). If, for every i, 1 ≤ i ≤ k, mi = h′i −
hi, but δ(p, w[h1], w[h2], . . . , w[hk]) 6= (q,m1,m2, . . . ,mk),
then u is a ghost child of v with rank 〈p,m1,m2, . . . ,mk, q〉.
Obviously, u is an actual child of v if and only if u is also
a child of v in the backward configuration tree of M on
w, whereas ghost children do not exist in the backward
configuration tree. However, it shall be very convenient
to allow M ′ to visit ghost children and to interpret the
backward configuration tree to contain ghost children as
well. We also need an order over the set of ranks, but,
as any such order is sufficient for our purpose, we simply
assume that an order is given and we define a mapping
next : Γ → Γ ∪ {0}, such that, for every r ∈ Γ that is
not the last rank in the order, next(r) is the successor of
r and next(r) = 0 if r is the last rank. Now we are ready
to formalise the constructions described above.

We assume that M ′ visits vertex v := (p, h1, h2, . . . , hk)
of the backward configuration tree right now, i. e., p is the
currently stored state and the input heads scan positions
h1, h2, . . . , hk of the input ¢w$. We distinguish two oper-
ational modes of M ′: Either M ′ just moved to v from its
parent (mode 1) or it just moved back to v from one of
its children (mode 2). In order to distinguish and change
between these two different modes, M ′ uses an indicator
implemented in the finite state control.

If M ′ is in mode 1, then it just moved from the parent
vertex u := (q, h′1, h

′
2, . . . , h

′
k) to v. We assume that when

this happens, the rank rv := 〈p,m1,m2, . . . ,mk, q〉 of v is
already stored in the finite state control. By consulting the
transition function δ of M , M ′ can check whether or not
δ(p, w[h1], w[h2], . . . , w[hk]) = (q,m1,m2, . . . ,mk), i. e., it
checks whether or not v is an actual child or a ghost child.
If v is a ghost child, then M goes back to u by changing the
currently stored state back to q, moving the input heads
according to m1,m2, . . . ,mk and changing into mode 2.
This is possible, since all necessary information for this
step is provided by the rank r. If, on the other hand, v is
an actual child, then M ′ stores the smallest possible rank
rmin in the finite state control and visits the child of v with
rank rmin while staying in mode 1.

If M ′ is in mode 2, then it has just been moved back
to v from some child v′ and we assume that the rank
rv′ of v′ is stored in the finite state control. Now, if
next(rv′) = 0, then all children of v have been visited,

thus, M ′ must go back to the parent vertex of v and
stay in mode 2. Furthermore, this has to be done in
a way that the rank of v is restored. Again, let u :=
(q, h′1, h

′
2, . . . , h

′
k) be the parent vertex of v. By definition,

the rank of v is rv := 〈p,m1,m2, . . . ,mk, q〉, where, for
every i, 1 ≤ i ≤ k, mi = h′i − hi, and, since v is an actual
child, δ(p, w[h1], w[h2], . . . , w[hk]) = (q,m1,m2, . . . ,mk).
Hence, all required information to restore the rank of v
is provided by the transition function δ and the currently
stored state p. So M ′ stores rank rv in the finite state con-
trol and moves back to vertex v by changing the currently
stored state to q and moving the input heads according to
mi, 1 ≤ i ≤ k.

If, on the other hand, there exists a child of v with rank
next(rv′) = 〈q′,m′1,m′2, . . . ,m′k, p〉 that has not yet been
visited, then next(rv′) is stored in the finite state control
and M ′ visits the child corresponding to rank next(rv′).
This is done by changing the currently stored state from p
to q′ and moving the input heads exactly in the opposite
direction as given by m′1,m

′
2, . . . ,m

′
k, i. e., for every i, 1 ≤

i ≤ k, the instruction for head i is (−m′i). Furthermore,
M ′ changes into mode 1.

In the procedure above, it can happen that the next
child to visit has a rank that requires input heads to be
moved to the left of the left endmarker or to the right of the
right endmarker. By definition of an IFA(k), such a child
can only be a ghost child, thus, we can simply ignore it and
proceed with the next rank. As soon as a vertex of form
(q0, h1, h2, . . . , hk), q0 ∈ I, 0 ≤ hi ≤ |w| + 1, 1 ≤ i ≤ k,
is visited, M ′ accepts and if, in mode 2, M moves back to
(qf , 0, 0, . . . , 0) from the child with the highest rank, then
M ′ rejects w. This proves L(M) = L(M ′).

From Lemma 7, we can immediately conclude the fol-
lowing theorem:

Theorem 8. For every k ∈ N, L(IFA(k)) ⊆ L(DFA(k)).

Theorems 2 and 8 imply that, for every k,m ∈ N,
L(NFAm(k)) ⊆ L(IFA(k)) ⊆ L(DFA(k)) and, by combin-
ing this result with the fact that, by definition, for every
k,m ∈ N, L(DFA(k)) ⊆ L(NFAm(k)), we obtain the fol-
lowing corollary:

Corollary 9. For every k,m ∈ N,

L(NFAm(k)) = L(IFA(k)) = L(DFA(k)) .

Thus, with reference to the questions addressed in Sec-
tion 1, we conclude that if nondeterminism yields an actual
advantage, in terms of the expressive power of two-way
multi-head automata, then this nondeterminism must be
unrestricted. The proof of this insight is facilitated by
the use of IFA(k), which, in contrast to NFAm(k), provide
the neat property of initially performing only one non-
deterministic step followed by a completely deterministic
computation.

We shall conclude this work by a brief application of the
results above. To this end, we consider so-called pattern
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languages, which have first been introduced by Angluin in
[13] (for a survey see [14]). A pattern is a string comprising
variables and terminal symbols. The pattern language of
a pattern α is the set of all words that can be obtained
by uniformly substituting the variables in α by terminal
strings. For example, the pattern β := x1 · a · b · x2 · x1
(where x1, x2 are variables and a, b are terminal symbols)
describes the set of all words w that, for some words u and
v, can be factorised into w = u · a · b · v · u. Hence, words
of the pattern language given by β can be recognised by
guessing a factorisation of the word and checking it for the
above described properties.

We can implement this approach using IFA(k) and
state without proof that every pattern language given by
some pattern containing k different types of variables can
be accepted by an IFA(2(k + 1)). Naturally, the initial
nondeterminism of the IFA(2(k + 1)) is used to guess a
factorisation of the input word, which is then validated
in the deterministic computation that follows. Other ap-
proaches to the membership problem for pattern languages
discussed in the literature also make use of methods that
are intrinsically nondeterministic. In contrast to this, by
applying the results from above, we can conclude that for
every pattern α the corresponding pattern language can be
accepted by a deterministic two-way multi-head automa-
ton with a number of input heads linear in the number of
variables of α.
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