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ABSTRACT 

 

Leaky-waves have been a topic of increasing interest in the last years, with diverse practical  

applications in many different engineering fields. From periodic, FSS, EBG or even metamaterial 

leaky-wave based antennas to waveguide filters and higher efficiency energy guiding, they all 

share a common base structure: a travelling-wave propagating within a metal encapsulation, 

which can be open or closed, and altered by a planar metallization of periodic nature, from which 

the energy may radiate. Due to the fact that these antennas are usually electrically large and the 

periodic printed circuit requires a certain grade of complexity, simulations of such antennas using 

3D commercial software are prohibitively time consuming. Also, the homebrew methods 

developed up to this day are either not rigorous and accurate enough or unable to deal with 

complex periodic geometries. At this point, the evolution of leaky-wave antennas needs a solid, 

efficient and versatile tool where to base the future design research on. 

In this work a novel simulation tool for waveguide embedded leaky-wave antennas is presented. 

It is based on a full-wave Method of Moments applied to the spectral domain Green Functions for 

a rigorous modal analysis of the finite structure. The use of Subdomain basis functions allows the 

software to model complex periodic geometries, overcoming a main limitation, and the analytical 

nature of the method combined with its 2.5D approach, results in a significant computing time 

reduction. It is built on a modular coding philosophy and provided with a user-friendly graphical 

interface, and an intuitive working procedure, making the program not only fast and accurate, but 

also easy to use and extendable to new geometries. Finally, the educational potential of this new 

analysis software is remarkable, since it identifies higher order effects such as bandgaps and 

multi-harmonic radiation from a complete and simple modal approach. 
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CHAPTER 1 - INTRODUCTION 

 

Where the reader gets in contact with the basic knowledge necessary to situate this work 

in its proper background and to ease the full understanding of the concepts that will 

come in following chapters. 

 

 

 

1.1. Leaky Waves and Antennas: Review. 

 

Leaky wave antennas belong to the category of TRAVELLING WAVE ANTENNAS 

([Walter 1965] and [Milligan 2005] ch. 10), together with surface wave antennas and slot 

arrays. This whole family is based on the radiation of a propagative mode in a basic 

guiding structure (usually a waveguide of some sort), but the radiation mechanism 

changes drastically from one sub-category to another. The longitudinal propagation 

constant of any mode propagating along any waveguide is:     

 

                                                       y y yk j    

 

where   is the phase constant in rad/m, and   is the attenuation constant in nep/m, 

that accounts for both radiation and material losses, if existing any of them. As will be 

seen in detail in Chapter 2, the expression for the propagation constant in the transversal 

direction, i.e., into free space, is given by: 
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2 2

0z yk k k   that can be either    z zk j       slow-wave or surface-wave 

                                                  z zk           fast-wave or leaky-wave 

 

 

Figure 1.1.1 Longitudinal and transversal fields: a) Surface wave and b) Leaky wave. 

 

 

Surface-wave modes propagate energy along the longitudinal direction in dielectric 

waveguides, with only the losses related to the material, which will be considered as none 

from now on, for simplicity’s sake. This way, the longitudinal propagation constant is 

y yk   and z zk j  , meaning the fields surrounding the guide are reactive, decaying 

exponentially in the transversal direction and producing no radiation (see Figure 1.1.1 a). 

The only way a surface-wave may radiate is at curvatures or at resistive discontinuities, 

which can exist in an open waveguide, for example at its very end, in contrast with the 

either inductive or capacitive discontinuities in closed waveguides. This property was 

applied to the dielectric waveguide to obtain the so called surface-wave antennas, which 

are basically end-fire antennas. An excellent overview of these type of structures can be 

found in [Johnson 1993], ch. 12 and [Volakis 2007] ch. 10, both written by F.J. Zucker. 
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Leaky-wave modes radiate while propagating along the structure. Leaky waves have 

been extensively treated in the literature, [Tamir 1963-I] [Tamir 1963-II] [Johnson 1993] 

[Volakis 2007] [Balanis 2008]. A. Oliner defines a leaky-wave antenna (LWA) as a 

waveguiding structure that possesses a mechanism that permits it to leak power all along 

its length. The propagation constant is now complex,
y y yk j   , counting now with an 

attenuation constant that correspond to the energy leakage per unit length, see Figure 

1.1.1 b). The propagation features in its longitudinal direction are defined by its phase 

constant   and its leakage constant  . The value of the phase constant will determine 

the radiation angle m , also, large values of the leakage constant will produce short 

effective apertures and broad beams, while low values of   will result in very narrow 

beams, provided the antenna is long enough.  These two parameters depend on the 

frequency and the cross-sectional geometry. Once are known, the radiation features for an 

antenna of length WGL  can be directly obtained by a set of very simple approximations:  

 

                                                            
0

sin
y

m
k


                                               (1.1.1) 

                                                      
0

1

( / )cos mL


 
                                        (1.1.2) 

 

Where m  is the angle of maximum of the beam, measured from broadside direction, 

 is the beamwidth and the 0k  is the free-space wavenumber. The directivity of the 

antenna depends mainly on the length, but also on the value of the attenuation constant 

along said length, which will determine the aperture illumination.  It is also well-known 

the scan-angle behaviour with frequency of LWA. They start scanning at broadside 

right above cut-off and the pointing angle moves towards endfire as the frequency 

increases.   

 

One important aspect about leaky waves is its ‘improper’ or ‘nonspectral’ behaviour, 

observed in [Goldstone 1959] . By examining the wavenumbers, it can be seen how the 

amplitude of the forward leaky wave increases transversely away from the aperture of the 

guiding structure, which mean that the radiation at the infinite will not be zero, but 

extremely more intense than in the origin. This obviously, violates a basic physical law in 
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electromagnetics, but there is a simple explanation for this phenomenon [Balanis 2008] 

based on the ray diagram in Figure 1.1.2. In this plot, the closer the rays are, the higher 

level of the power flow in the direction of the arrows, so in the case of the forward wave, 

this power increases exponentially as the observation point moves vertically further from 

the structure.   

 

 

Figure1.1.2 Ray interpretation for leaky-waves  [Balanis 2008].  

a)Fordward wave and b) Backward wave. 

 

 

In the real case, when a feeding is considered as the source point, a ‘shadow boundary’ 

exists, where this improper nature indeed occurs. But above the limit of this boundary, 

m  , the field level decreases very quickly, being consistent with the radiation 

condition at infinite. This is shown in Figure 1.1.3, where the ‘shadow boundary’ (a) and 

a contour plot (b) of the field magnitude for a LWA radiating at 30ºm   with an 

0

0.02
y

k


  is calculated.  

 

 

Figure 1.1.3 Real case with a feeding source [Balanis 2008].  

a) Shadow boundary and b) Field magnitude. 
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Regarding the radiation, as previously mentioned, it is determined by the values of 
y  

and 
y , and depends on the frequency and the geometrical cross-section of the open 

waveguide. For a LWA with its geometrical parameters uniform along its length, 
y  and 

y  do not change and the aperture distribution has an exponential illumination. This 

corresponds with a high side lobe level for high directivity, since the antenna cannot be 

extremely long. It is therefore desirable some kind of tapering on the antenna, to 

control the alpha along the longitudinal direction by modifying geometrical parameters 

while maintaining beta constant, in order to obtain a specific aperture illumination with a 

convenient sidelobe performance.  

 

Figure 1.1.4 First LWAs [Balanis 2008]. a) Inset of Hansen and b) Holey WG. 

 

Leaky-wave antennas can be classified following several criteria, the most important 

being the distinction between uniform and periodic antennas. Also, they can be either 1D 

or 2D, and based on a closed or open waveguide. The different classifications came as a 

result of the evolution in the study and design of LWA, topic of much interest since the 

1950s. The first known LWA was presented by Hansen [Hansen 1940], and it was a 

rectangular waveguide with a longitudinal slot along the narrow wall, see Figure 1.1.4. 

Most of the initial studies of LWA were done on closed waveguides with uniform 

geometries.  Uniform LWAs produce scannable beams with frequency, but limited to the 

forward quadrant, since the values for the phase constant y will be always positive. The 

Hansen antenna had a very high leakage rate and therefore very low directivities. Another 

main drawback of these first attempts was the high losses. In consequence, the studies 

were focused on open waveguides, to reduce metal related loss. These antennas were 

based on non-radiative structures due to its inherent symmetry, working with surface 
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waves, and introducing some kind of asymmetry, the radiation of a leaky mode was 

achieved. This radiation mechanism by asymmetry will be explained in more detail in 

following chapters. A very complete overview of the evolution of uniform LWA can be 

found in [Volakis 2007].  

 

 

Figure 1.1.5: Several configurations for uniform LWAs. 

 

Just to mention some of them, the offset groove-guide (see Figure 1.1.5 a) and the stub-

loaded rectangular waveguide (see Figure 1.1.5 b) were studied respectively in 

[Lampariello 1987] and [Lampariello 1998], using both a single mode Transverse 

Equivalent Network (TEN) for the main Parallel Plate Waveguide (PPW) mode (m=0) 

and full wave Mode Matching technique, in which the whole spectrum of PPW modes 

was considered but only the main PPW mode radiation was modelled. The groove guide 

with an asymmetrical conductor strip (Figure 1.1.5 c) was first studied in [Lampariello 

1985], where again only m=0 PPW mode was considered to radiate. A more accurate 

full-wave method [Ma 1994], based on mode matching procedure, took into account all 

higher order PPW modes in propagation, but just the main PPW mode for radiation. Also 

the Non- Radiative Dielectric (NRD) leaky-wave antenna was (Figure 1.1.5 d) was 

studied with a multi-mode Equivalent Transverse Network, but the radiation impedance 

was applied only to the main PPW mode [Shigesawa 1986].  Printed circuit versions of 

these types of LWA have not been studied with so much detail. The slot-line leaky-wave 

antenna (Figure 1.1.5 e) was presented for the first time in 1987 [Lampariello 1987], 

considering the stub height was infinite. An infinite stub structure do not allow for a 

practical design. The problem is that the finite height of the stub allowed the propagation 

of a set of undesired channel-guide leaky-modes, which can deteriorate the performance 

of the antenna [Shigesawa 1994]. The properties of the slot-line infinite stub loaded leaky 

wave mode were studied with more detail [Lampariello 1990] by using the Equivalent 

Resonance procedure. The Mode Matching technique for planar laterally-shielded slot-
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line (Figure 1.1.5 e) or the laterally-shielded microstrip line (Figure 1.1.5 f) has also been 

used to study the dispersion characteristics of leaky-waves modes [Ma 1994]. Again, only 

the main PPW mode radiation was modelled in the equivalent circuit.   

 

 

Figure 1.1.6: Some examples of open dielectric LWA. 

 

Another less popular group of uniform LWA is the non laterally shielded Open Dielectric 

Waveguides, some examples studied using the Mode Matching technique can be found in 

[Peng 1981-I] and [Peng 1981-II] and are showed in Figure 1.1.6. As can be seen, since 

the classical slotted rectangular waveguide [Goldstone 1959], many original open 

waveguide structures were studied. Most of these configurations have in common that are 

formed by Parallel- Plate waveguides. It is important to notice that all of them share a 

stub at the top; the reasons for this will be discussed in further chapters. 

 

One step forward from the uniform structures, the periodic LWAs exhibit interesting 

features, such as frequency scanning capability, high directivity and large radiations 

bandwidths. These are structures which have been periodically modulated in some 

fashion in the longitudinal direction. This periodic modulation creates a guided wave that 

consists of an infinite number of space harmonics (Floquet waves). The antenna is 

usually designed so the second order Floquet harmonic is a fast wave, and hence 

radiative. These higher order harmonics posses a main beam that can point in either the 

backwards or forward direction. This backward radiation mechanism has been known 

for many ages [Johnson 1993]. Despite its many advantages, it has not been so widely 

studied as the uniform LWA, and the references in the literature are not as abundant. One 

of the first known periodic LWA appears in [Goldstone 1959], called the ´holey 

waveguide’ (see Figure 1.1.4). As happened with Hansen LWA, the radiation from this 

antenna was uncontrollable. But it was not until the 1970s that systematic experimental 

and theoretical investigations were carried out.  Different technologies have been used, as 
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the microstrip line [Tzuang 2000], the dielectric grating guide [Schwering 1983] 

[Jacobsen 1970], the strip loaded dielectric slab [Jacobsen 1970] [Mittra 1981] [Encinar 

1990], see Figure 1.1.7 below, and the strip-loaded inset waveguide [Guglielmi 1989] 

[Guglielmi 1991], see Figure 1.1.8 a). 

  

 

Figure 1.1.7: Some examples of periodic LWA technologies: 

a) Microstrip line, b) dielectric grating guide and c) strip dielectric slab. 

 

A hybrid planar waveguide technology, which makes use of a laterally-shielded top-open 

dielectric rectangular waveguide, in which a uniform strip o slot is asymmetrically 

located to provide radiation, was proposed in [Gómez June-2004I] [Gómez September-

2005] to design tapered uniform or periodic leaky-wave antenna for the millimetre 

waveband. Some differences arise between the method proposed in [Gómez September-

2005] and the techniques used in and [Guglielmi 1991]. In [Guglielmi 1989], Guglielmi 

and Boccalone proposed a more accurate Transverse Equivalent Network (TEN) to 

represent the unit cell of the PLWA, which is used to design a novel dielectric inset 

PLWA in [Guglielmi 1991]. The method proposed in [Guglielmi 1989] and [Guglielmi 

1991], although accurate, has two important restrictions which are overcome by the full-

wave analysis technique proposed in [Gómez September-2005]. The first restriction of 

[Guglielmi 1989], [Guglielmi 1991] is that only one-dimensional (1-D) periodic 

discontinuities can be studied, leading to the strip loaded PLWA shown in Figure 1.1.8 a) 

(the dielectric-inset PLWA). The novel PLWA shown in Figure 1.1.8 b) and c) allow the 

introduction of two-dimensional (2-D) perturbations to obtain interesting taper properties. 

The second difference is that the TEN developed in [Guglielmi 1989] and [Guglielmi 

1991] is valid only for the TE01 mode excitation, horizontally polarized electric field, as 

shown in Figure 1.1.8 a), so it did not modelled the effect of higher order parallel-plate 

modes in the antenna performance. 

 



Chapter 1                                                                                                                                         Introduction 

 

 

9 

 

Figure 1.1.8: Some examples of periodic LWA technologies: 

 

The capability to control the leakage rate without varying the pointing angle for LWA as 

the one showed in Figure 1.1.8 c) was probed in [Gómez September-2005], and a tapered 

PLWA based on a rectangular slot was presented. The main drawback of the Gomez 

technique is that it is limited to the analysis of rectangular patches or slots. The present 

work is based on the studies of Gomez and Melcón for periodic leaky wave antennas, to 

create a rigorous method able to analyze open waveguides loaded with printed circuits of 

complex shape, as crosses and loops, accounting for the higher order modes effects on 

radiation. 

 

 

 

1.2. FSS and EBGs: Review and Differentiation. 

 

As a general definition, Electromagnetic Band Gap (EBG) stands for 1-D, 2-D or 3-D 

periodic structures that prevent the propagation of the electromagnetic waves in a specific 

band of frequency, ideally for all angles and all polarizations. In these structures, two 

phenomena can be observed. First, the interference of waves reflected on the periodic 

array of elements, either printed circuits or apertures, which will produce pass-bands or 

stop-bands. The variation of the partially reflective properties will depend mostly on the 

periodicity, and may occur within large bands of frequency. Second, the resonant 

interaction of waves with the elements of the periodic structure, which will result in 

bandgaps at the resonance frequencies. This may be useful when working very close to 

the resonance frequency, in a very narrow band. In this case, the variation of the partially 

reflective properties of the structure will depend mostly of the physical parameters of the 
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single element geometry, such as the length in a resonant dipole.  In Chapter 4, these two 

different effects will be identified as ‘interference bandgaps’ and ‘resonant bandgaps’. 

 

Usually, when talking about EBGs, all these frequency phenomena are contemplated. 

There are other terms that belong to the category of EBGs but have slightly different 

connotations that must be taken into account. Frequency Selective Surfaces (FSS) are 

EGBs that work on a limited range of incidence angles of the wave and a certain 

polarization. This term is generally used in microwave terminology and  can be also 

called Partially Reflective Surfaces (PRS). In optics, the preferred term is Photonic 

Band Gap (PBG). 

 

The objective of this section is not to present the reader with all the studies and lines of 

work that have been carried out in the last decades about EBGs, nor to list all the 

different geometries analysed as FSSs. It is to explain the close relation these periodic 

surfaces have with leaky wave antennas, and the wide field of applications they, in 

combination, may be used for. 

 

 

 

1.2.1. Electomagnetic Bandgap Strucures 

 

EBG are periodic structures that are composed of dielectric or metallic elements. They 

are capable of controlling the electromagnetic waves in the same way semiconductors 

control the propagation of electrons. This control over the waves lies on its bandgap 

property. Based on [Yang 2009], by properly choosing the geometrical parameters, the 

EBGs have three main application fields: 

 

- High Impedance Surfaces (HIS) to suppress the surface wave, responsible for 

reducing the efficiency in antenna applications, see Figure 1.2.1.1 a) ([Gonzalo 

1999], [Yang 2003]) and undesired leakage in guided-wave circuits [Yang 1999-

I].  
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a) b)
 

Figure 1.2.1.1 a) Avoiding coupling btw patches [Yang 2003] and 

b) Low profile antenna [Yang 2001] 

 

- Artificial Surfaces, such as Perfect Magnetic Conductors (PMC) acting as 

substrates to design low profile antennas, as the one presented in Figure 1.2.1.1 b)  

([Sievenpiper 1999], [Yang 2001]) and create TEM waveguides ([Yang 1999-II], 

[Maci 2005]). There is also a very complete overview in [Balanis 2008] ch. 15 

about Artificial Impedance Surfaces (AIS) for those interested. 

 

- High Gain Resonator Antennas, with an EBG acting as a superstrate increasing 

the effective aperture and hence the gain. There are several configurations that 

can be used to produce this highly directive antennas: multilayer dielectric plates 

[Jackson 1993], [Thevenot 1999], [Neto 2007], [Kanso 2009], multilayer of 

dielectric [Thevenot 1999] [Lee 2005] or metallic rods [Diblanc 2005], and single 

or multilayer frequency selective surfaces. See Figure 1.2.1.2 below for an 

example of different types of high gain resonator LWA. 

 

 

Figure 1.2.1.2 a) Dielectric layers LWA, b) Dielectric Rods LWA and c) FSS LWA. 
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High gain resonator antennas are basically broadside 2D periodic leaky wave antennas. 

The general principles and formulas that model their behaviour can be found in [Jackson 

1985], [Zhao 2005-I], [Zhao 2005-II], [Zhao 2005-III], [Volakis 2007] chapter 11 and 

[Balanis 2008] chapter 7. They consist of a metal ground plane, a dielectric layer on it 

(may be air) and an FSS covering it. The FSS is used to create a leaky parallel plate 

waveguide region, with the leakage or radiation constant controlled by the reflectivity of 

the FSS. The antenna behaves as a Fabry-Perot resonator [Trentini 1956], increasing 

the directivity, since the reflection on the FSS is designed such as to increase the effective 

aperture and to achieve ‘in phase’ leakage, see Figure 1.2.1.3 a). In [Feresidis 2001] can 

be found the methodology to design said ‘in phase’ radiation, based on a metallic dipole 

FSS. In the community, the FSS used as a superstrate in this kind of antennas are called 

Partially Reflective Surfaces (PRS), since the decisive parameter is the reflection 

coefficient they present. It can be deduced that the phase constant, and therefore the main 

bean pointing angle, will depend mainly on the thickness of the substrate, and the 

attenuation constant on the properties of the PRS. Figure 1.2.1.3 shows the radiation for 

b) a pencil beam at 0ºm  and c) a conical beam for 0ºm  . They are typically excited 

by a simple source (a dipole, patch or waveguide), but multiple feeding has been probed 

to produce purer polarization and lower side lobes performances [Iriarte 2009]. 

 

a) b) c)

 

Figure 1.2.1.3 a) Fabry-Perot resonator [Iriarte 2009] , b) pencil beam  and c) conical beam. 

 

The 2D PLWA structure supports both TE and TM modes, so in order to produce a 

omnidirectional narrow pencil beam in broadside, the phase constant and the attenuation 

constant must be the same for both polarizations: 

 

                                                   
TE TE TM TM                                      (1.2.1.1) 

 



Chapter 1                                                                                                                                         Introduction 

 

 

13 

When the antenna is optimized to radiate at 0ºm  , the above condition (1.2.1.1) is 

automatically satisfied, even if the PRS of the LWA has very different periodicities in 

each dimension. As the main beam increases from 0ºm  , the response of the PRS to 

the TE and TM polarizations becomes increasingly differing and the beamwidths become 

different in the principal planes. 

 

Examples of single PRS 2D periodic LWA can be found in [Macci 2005] for printed 

dipoles, [Guerin 2006] for a single metallic grid, [Goussetis 2006] for metallic square 

patches, [Kosmas 2007], [Chantalat 2008] for circular holes and [Iriarte 2009] for square 

holes lattice. These antennas work at one frequency and the PRS is situated at about 

0.5 above the ground plane to produce the 2 offset in phase required. To increase the 

operating bandwidth, a second layer of PRS has to be added on top of the existing one, to 

produce a defect in the latter PRS and create an allowed band in the forbidden frequency 

band. The multilayer PRS LWA shows enhanced gain within the frequency defect band. 

This phenomenon is explained in detail in [Moustafa 2009] with a double layer EBG 

composed of a square loop FSS and a double square loop FFS on top, reaching a 8% of 

bandwidth. The ring resonator and round holes are combined in [Oses 2009] with similar 

results.  

 

Dual band PRS LWA require two PRS stacked one on top of another, with a separation 

of 0.5 , with gives a total height of the antenna of a wavelength, without the feeding. To 

produce more compact dual band LWA, [Lee 2007] proposes a new superstrate 

composed by a thin dielectric supporting layer with PRSs of different periodicity printed 

on top and bottom of it.  

 

Combinations of FSS and PMC LWA have been used to reduce significantly the profile 

of the antenna, see Figure 1.2.1.4. The metallic ground plane, until now a Perfect Electric 

Conductor (PEC), is replaced with a PMC, to reflect the incident wave in phase. This 

approach can be found in [Feresidis 2005], [Wang 2006] and [Mateo 2011] for metallic 

patches with different lattice and [Kelly 2008] for a combination of metal patches with a 

metallic mesh. It was probed that with this technique the cavity height can be reduced to 

a fourth of the wavelength. 
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Figure 1.2.1.4 a) PEC ground plane LWA  and b) PMC ground plane LWA, [Feresidis 2005]. 

 

The first EBG structures were analyzed using simple Lumped Elements Equivalent 

models, describing the periodic circuit in terms of LC resonant circuits. It is obvious that 

such a simplification could not render very accurate results. Another popular method is 

the Equivalent Transmission Line method, where the FSS or PRS is described by its 

equivalent admittance (see Figure 1.2.1.5), and then the equivalent transmission line 

modelling the cross-section of the LWA is solved by conventional numerical techniques. 

This resolution can be found in [Maci 2005], and in [Luukkonen 2008] for metal strips or 

patches. This method is simple and relatively accurate for the calculation of the reflection 

coefficient, but it considers an infinite structure, and cannot produce a Floquet modal 

dispersion results as a full-wave method would.  

 

 

Figure 1.2.1.5 a) TM Equiv.Tx. Line  and b) TE Equiv. Tx. Line  [Macci 2005]. 

 

More complex and rigorous methods appeared as the computing technology grew. Finite 

Difference Time Domain (FDTD) method seems to be the more popular to analyze 2D 

PLWA, as can be seen in [Thevenot 1999], [Sauleau 1999] [Yang 2003]  [Kosmas 2007] 

and [Kelly 2008]. Nevertheless, lately, the frequency domain Method of Moments is 

being applied to the analysis of 2D PLWA, based on Floquet modal expansion and Entire 

Domain basis functions, see [Goussetis 2006] and [Mateo 2011]. In Chapter 5 it will be 
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discussed how to apply the method developed in the present work to 2D PLWA to 

produce more rigorous and significant results that will account for the finite extension of 

the antenna and higher order radiation effects. 

 

 

1.2.2. Frequency Selective Surfaces 

 

In 1919, Marconi patented the first known periodic structure, [Marconi 1919]. But it was 

not until the 1960s that frequency selective surfaces were intensively studied. Since then, 

thousands of papers have come into light, in which the FSSs have evolved to more 

complex structures, its fields of application have been multiplied and new terminology 

and classification of such structures was settled. There are excellent books devoted to 

FSS [Wu 1995], [Vardaxoglou 1997] and [Munk 2000], and dedicated chapters in 

[Balanis 2008] ch.16 and [Volakis 2007] ch.56. FSS can be defined basically as 

frequency filters, able to produce the four standard filter responses: high-pass or 

inductive (metallic mesh with holes [Lee 1982] [Cwik 1987]), low-pass or capacitive 

(array of metallic patches [Lee 1982]), band-stop (arrays of metallic resonant geometries 

[Mittra 1988] [Tsao 1984]) and band-pass (periodic apertures of resonant elements 

[Mitra 1988]). Combinations of these four types will result in tailored frequency 

responses [Wang 1999].  

 

 

Figure 1.2.2.1 a) metal patches (low-pass) and b) metal grid (high-pass).  

 

Complementary apertures and metallizations will result in complementary filter 

responses as shown graphically in Figure 1.2.2.2, provided the structure is symmetric and 

no substrate is present, by direct application of Babinet´s principle, assuming the electric 

field has also a complementary polarization. 
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Figure 1.2.2.2 Babinet´s Principle [Volakis 2007].  

a) Dipole array, b) slot array and c) frequency response. 

 

Typically, FSSs work on its resonance frequency, which is determined mainly by the 

geometry of the single periodic element. However, the behaviour, both in frequency and 

radiation, of the FSS will depend on several factors: 

 

- The geometry of the single element. 

- The period of the structure. 

- The conductivity of the metallic material. 

- The permittivity of the dielectric material acting as substrate (if existing). 

- The finite number of cells. 

- The frame surrounding the FSS. 

- The number of layers and separation in stacked compositions. 

 

When designing 1D LWA, as seen in the previous section, the working frequency band 

does not have to be close to the resonance frequency of the geometrical element of the 

single cell, the reflectivity of the interface with the open air for a single frequency can be 

controlled by any of the geometrical parameters listed above, while maintaining the 

pointing angle fixed. To taper the antenna illumination it is necessary to count with 

enough grades of liberty, that is to say, geometrical dimensions, which will be only 

possible introducing more complex elements, as those showed in Figure 1.2.2.3. This is 

applicable too for those LWA designed specifically on their resonant frequency, the basic 

mode of operation in 2D broadside LWAs. 
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d fa c eb g
 

Figure 1.2.2.3 Some of the most common geometries in FSS. a) patch, b) double dipole, c) split ring,  

d) double split ring, e) cross, f) square loop and g) double square loop. 

 

The first numerical analyses of FSSs were based on the Mode Matching Technique 

[Zarrillo 1987] and Equivalent Circuit Method [Lee 1982] [Wang 1999], since these 

approaches were not too demanding in terms of computational cost. Said methods were 

not too accurate, as they assumed a plane wave incidence, with no possibility of 

modelling the effect of higher order modes at the aperture.  

 

As computers became more powerful, said methods became more refined [Wang 1991] 

[Ma 1994] and other techniques were developed, more rigorous and accurate, based on 

the Integral Equation Method and the induced currents on the metal expansion. This 

integral can be formulated by using Spatial-domain approach [Montgomery 1975] 

[Johnson 1993] [Gomez Sept-2005] or Spectral domain approach [Montgomery 1978] 

[Mittra 1988] [Becks 1992] [Wu 1995] [Vardaxoglou 1997]. Once the integral is 

formulated, the most well-known technique to solve it is the Method of Moments 

(MoM) [Chen 1970] [Wang 1991] [Bozzi 2005]. It is able of giving details of the 

frequency and polarization responses of the FSS, together with a physical understanding 

of their operation. It also can handle angles of arbitrary incidence. Briefly, due to the 

periodic nature of the structure, the fields can be expanded into a set of Floquet spatial 

harmonics. The electric field on the metallic surfaces must be zero, so an integral 

equation can be solved. In order to do so, the currents on the metal will be expanded into 

a set of complete orthogonal basis functions and the coefficients will be calculated by 

applying the MoM.  

 

Depending on the geometry under study, the MoM may take considerable amount of 

computing time and memory. The memory requirements can be reduced by using 

iterative methods, as the Conjugate Gradient Method (CGM) [Wang 1991], to solve the 

integral equation. A very illustrative summary of the use of MoM and CGM can be found 

in [Mittra 1988].  



Chapter 1                                                                                                                                         Introduction 

 

 

18 

 

The method developed in this thesis is based on the Spatial MoM combined with 

Parallel Plate modal expansion in a laterally shielded structure. For this kind of 

structure Spatial-domain approach is more suitable than Spectral-domain, since the 

Fourier transforms needed to model this geometry are very complex, and the 

computational requirements would be too high. This new method will be seen in detail in 

Chapter 2.  

 

 

 

 

1.3. Metamaterials: Review. 

 

In 1967, Russia, the physician Victor Veselago wrote a paper speculating about the 

existence of materials with negative permeability and permittivity, and the properties 

these substances would exhibit [Veselago 1967]. It was him who coined the term Left-

Handed to express that the electric field, magnetic field and the phase constant would 

form a left handed triad, opposite to the conventional right handed triad. It took more 

than 30 years for the first artificial metamaterial to be developed by Smith [Smith 2000]. 

It was a combination of metal thin wires with split ring resonators, resulting in a new 

material with negative constitutive parameters over a small range of frequency, as the 

negative refraction index probed in the experimental demonstration. This was the trigger 

that started the numerous studies on metamaterials up to this day.  

 

Metamaterials (MTM) are artificial effectively homogeneous electromagnetic structures 

with unusual properties not readily available in nature. The effective-homogeneity 

condition is ensured by choosing an average cell size P much smaller than the guided 

wavelength g , at least a quarter of it. Any material is defined basically by its 

constitutive parameters, the permittivity   and the permeability . These in turn define 

the refractive index n by  

 

                                                        
r rn                                          (1.3.1) 
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where 0/r    and 0/r   , being 0  and 0 the permittivity and permeability of 

free space respectively. Based on these two parameters, there are four combinations: 

( , )   , ( , )   , ( , )    and ( , )   , as can be seen in Figure 1.3.1. The latter is 

referred as Left-Handed Materials (LHM) or Negative Refractive Index materials 

(NRI). By definition they have antiparallel phase and group velocities.  

 

 
Figure 1.3.1  Permittivity- permeability diagram from [Caloz 2006]. 

 

 

 

The first metamaterials worked on the resonant frequency, which means high loss and 

very narrow bandwidth. The need for a different approach to obtain alternative structures 

resulted in the introduction of the Transmission Line (TL) Analysis method in 2002 by 

three different research groups: Eleftheriades [Grbic 2002-I], [Grbic 2002-II], 

[Eleftheriades 2003], [Eleftheriades 2007] and [Balanis 2008] ch.14, Oliner  and Caloz 

[Liu 2002], [Sanada 2004], [Lim 2004-I], [Lim 2004-II] [Caloz 2005] and [Caloz 2008]. 

In the last years, both Eleftheriades and Caloz have published a book devoted to 

metamaterials, see [Eleftheriades 2005] and [Caloz 2006]. They are a compendium of 

advances in the fields and a detailed explanation of the basic principles, but in equality of 

technical completeness, the author considers Caloz approach makes complex concepts 

simple and easily understandable by graphics, and because of this, will be the reference 

whenever possible. 
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a) b)
 

Figure 1.3.2  a)Transmission line model for the ideal LH metamaterial [Caloz 2006] and 

 b) LH microstrip strucuture [Liu 2002]. 

 

 

The basic model of the TL method is presented in Figure 1.3.2. a). By studying the 

characteristics of the LC transmission line, it was deduced that a structure could be 

conceived based on this model to achieve a left-handed medium with a non resonant 

nature, working on a selected bandwidth with low loss (demonstration may be found in 

[Caloz 2006]). One of the first examples is the microstrip line presented in [Liu 2002], 

constituted by a series of interdigital capacitors LC  and shunt stub inductors LL  as shown 

in Figure 1.3.2 b).  

 

The LC circuit used to model the left handed metamaterial is ideal. The associated 

currents and voltages in the real circuit induce other effects, as series inductance RL  in 

the interdigital capacitor and a shunt capacitance RC  between the upper printed circuit 

and the ground plane. A pure LH structure can not exist, for there always are side RH 

contributions. This concept of Composite Right/Left Handed (CRLH) is introduced in 

[Sanada 2004], and the equivalent transmission line model can be seen in Figure 1.3.3 a). 

In Figure 1.3.3 b), the dispersion diagram for the real TL model is presented in green line. 

At low frequencies the LC  and LL are dominant and the phase constant is negative, also 

at higher frequencies RL and RC  are dominant and the phase constant is positive. se  and 

sh are the series and shunt resonances respectively. For comparison, the dispersion for a 

pure LH structure ( RL = RC =0) and a pure RH structure ( LC = LL =0) are shown too in  

blue and red curves.  
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a) b)
 

Figure 1.3.3  a)Transmission line model for the real LH metamaterial [Caloz 2008] and 

 b) corresponding dispersion diagram. 

 

 

 

 

 

 

1.3.1. Periodic LWA vs. Metamaterial LWA. 

 

Both antennas are based on leaky-wave propagation and posses the capability of 

backward radiation, but the mechanism to achieve it differs greatly between them. In 

the conventional PLWA, the radiation in negative angles is well known and is associated 

to the higher order negative harmonics in the Floquet modes expansion, characteristic of 

periodic structures.  The cell period in these structures is typically one or several half 

guided wavelengths, since it is essential to generate leaky space harmonics. 

 

The Metamaterial LWAs, on the other hand, have periods much smaller than the guided 

wavelength, and the structure becomes a different material with an effective permittivity 

and permeability, chosen by design. The leaky-wave propagating within this effective 

material exhibits backward radiation in its main fundamental mode. In these LWAs, the 

periodicity is not implemented to obtain higher order Floquet harmonics to radiate 

backwards, but to obtain the LH effective material. In fact, the periodicity is not 

necessary, since it is working in its fundamental mode. 
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Figure 1.3.1.1 shows the dispersion diagram of the fundamental mode of a balanced 

CRLH TL. The behaviour is similar to that of the first high order negative Floquet 

harmonic, as will be explained in following chapters. It must be noticed that the circuit is 

designed for the resonance frequencies se  = sh = 0 . This is called balance condition, 

and it allows the antenna to radiate in broadside, avoiding the gap in the scanning region 

characteristic of the PLWAs.  The dashed lines represent the air-lines. The first crossing 

of the dispersion curve with the air-line occurs at BF when the phase constant is equal to 

the free space propagation constant 0k  . At this point the fundamental mode 

transforms from a guided wave to a leaky wave radiating at backward endfire. As the 

frequency increases, the negative angle scans towards broadside. In broadside 0  , 

since the antenna is balanced, there is no bandgap. After this, the angle becomes positive 

and scans towards forward enfire, reaching it at EF , where 0k   and the leaky wave 

becomes a surface wave below cut-off again.  

 

 
 Figure 1.3.1.1  Dispersion diagram for a balanced CRLH [Caloz 2006]. 

 

 

 

This backfire-to-endfire frequency scanning capability of the fundamental mode in a 

balanced CRLH structure was presented for the first time in [Liu 2002]. Its main 

advantages are that it achieves broadside radiation and that the feeding for this antenna 

can be simple and efficient, since it works with its fundamental mode.  
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It is clear how the use of metamaterials in combination with leaky-waves offers a series 

of advantageous behaviours, that should be studied oriented to radiation performances. 

The software tool developed in the present work will be able to support geometries that 

have been probed to exhibit LH properties, opening the door to an infinite number of 

possibilities in the field of PLWA, metamaterial based or not. This will be possible 

thanks to the rigorous full wave  analysis method and the radiation study based on 

Parallel Plate modes, able to model higher order effects on the radiation pattern.  

 

 

 

1.4. Objective. 

 

It is clear that the future of periodic leaky wave antennas research is oriented to the 

introduction of more complex elements in the periodic surfaces and the combination 

with metamaterial structures. Also, it has to take into account that real physical antennas 

are finite and usually encapsulated in some kind of metal box, both for structural reasons 

and performance requirements. The application of high lateral walls to suppress currents 

that may deteriorate the radiation pattern is commonly used in antennas. The effect of the 

height of these walls must be introduced in the analysis method, as well as the possibility 

of analyze unit cells of arbitrary shape. 

 

The objective of this thesis is to develop a simulation tool which is versatile, fast but still 

accurate and rigorous. This novel full wave method is based on the Space Domain PPW 

Modes expansion in combination with Subdomain basis functions. With it, the discrete 

PPW radiation spectrum can be related directly to the continuous radiation spectrum of 

this type of open-waveguide leaky modes, in an attempt to unify the theory of guiding 

and radiation phenomena.  

 

The advantages of using laterally shielded structures are many and well known: 

 

- Structurally, the antenna is more rigid and protected. 

- Pure horizontal polarization is easier to obtain, since the height will ensure higher 

order modes do not reach the aperture. 
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- Surface waves propagating in the substrate are eliminated, avoiding secondary 

lobes by diffraction. 

 

Previous methods that could deal with complex unit cell geometries for leaky wave 

antennas did not take into account the effect of the lateral walls. This is one of the main 

novelties, among others. Also, radiation patterns so far were deduced from 

approximations and took not into account the effect of higher order modes.  

 

For the first time a method that accounts for all the properties listed below is presented. 

This novel simulation tool is: 

 

-  a rigorous and accurate full wave method, based on MoM. It is able to analyze 

modes separately, even propagation of higher order modes. 

- highly efficient, since most of operations are analytical and presents very good 

absolute convergence. It simplifies a 3D problem into a 2D one. It will be shown 

that it is considerably faster than commercial software. 

- able to model the effect of the interference between different modes (bandgaps). 

- able to model finite height of lateral stubs at the top of the structure. 

- flexible, since it allows several dielectric layers and periodicity on either the 

narrow or broad waveguide wall.  

- able to rigorously calculate the radiation pattern, taking into account the 

contribution of higher order modes. It also gives a useful comparison between the 

propagating spectra of modes and the radiating spectra.                                                                                                                                                                                                                                      

- and, most important, able to model complex FSS geometrical elements, based on 

the use of Subdomain Functions.  

 

This software is the major novel contribution of the present work, not only because it is 

faster than other software, like HFSS, but also due to the wide range of information 

provided in the form of graphical results, based on the modal study of the structure. It 

will be shown how the results obtained with commercial software cannot explain most of 

times what is truly happening inside the structure. A second contribution will be the 

modal study of a LWA with printed elements of certain complexity. Such an in-depth 

analysis on said kind of antenna has not been done before. 
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This thesis represents the first step towards a novel approach to the research of periodic 

leaky wave antennas, since it produces as a final result the simulation software needed for 

said study. Usually, this initial stage involves a full and deep understanding of the maths 

related to the problem and dealing with abstract and arid concepts. The obtained results 

from all this effort is a powerful simulation tool, not a final optimized design of a 

practical antenna, since this will require a whole separate research on a chosen geometry, 

now that the program is ready to use.  Many different lines of research are proposed at the 

end of this work, and some of them will be followed in Loughborough University or 

through collaboration with other universities, and to the author, it is extremely fulfilling 

to have made it possible with the present contribution. 

 

 

 

 

 

 

 

1.5. Structure of this PhD. 

 

The present work is divided into five chapters. Chapter 1 is an introduction that will 

guide the reader along the evolution of leaky-wave antennas and will establish the basic 

knowledge necessary to comprehend the concepts that will be treated throughout this 

thesis. An overview of the state of art and the trends in the research of LWA, as well as 

the previously coded methods was necessary to provide a background to the creation of 

the novel method presented in following chapters. 

 

Chapter 2 is a complete and systematic presentation of the Spatial Domain Method of 

Moments combined with Parallel Plate modes expansion and, as the main innovation, the 

use of Sub-domain basis functions to model the induced currents on the metallic printed 

circuits. The maths working out related to the analysis method is explained in depth, as 

well as the advantages that presents in comparison with other similar methods. 
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Chapter 3 is dedicated to the presentation of Basis Functions and its kinds. Both Entire-

domain and Sub-domain basis functions are discussed in detail, since the simulation tool 

will support both approaches. Issues as suitability, meshing criteria and convergence will 

be dealt with, and last, validation of results obtained with this new method in comparison 

with previously studied LWA and precedent methods will be presented. 

 

The developed simulation software will be introduced in Chapter 4. A periodic leaky 

wave antenna based on an open laterally shielded waveguide loaded with square metallic 

loops on a dielectric ground will be studied and will serve as an example to discover the 

features of this analysis tool. It is the first time a complete full-wave modal study of a 

PLWA of this kind has taken place, since the previous studies were limited to rectangular 

patches or slots. Dispersion curves, current and fields results will be obtained. But the 

main objective of the software is not only generate accurate solutions, but to produce 

information enough for the user to reason and comprehend the inside workings of the 

electromagnetic structure. This way, several phenomena related to periodic structures will 

be identified and discussed. The radiation of the LWA will be analyzed based on the 

PPModes expansion and the equivalent magnetic currents they induce on the aperture, so 

the effect of higher order modes that may reach the aperture will be taken into account in 

the radiation pattern. Also, it will be shown that the program is extremely flexible and 

easy to extend in order to analyze other new geometries.  

 

And last, Chapter 5 will show the versatility of the developed simulation tool by 

presenting a selection of potential applications. Each of these applications may be future 

lines of interesting research, and WELAST will be the key in the analysis and also the 

design of new devices. The possibilities are endless. To finish, some extensions and 

improvements for the coded program, that the author had not the time to implement, are 

proposed.  
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AUTHOR´S NOTE 

 

Experienced researchers may find that the present work is explained in too much detail. 

The author has done purposely so, since it is her intention that this thesis may be 

understood and used by any student interested in microwaves, not only those specialised  

in the field of LWAs. It was always present during the development of the simulation 

software WELAST that the most important result, at the end of the day, was to truly 

understand the ‘what is happening inside the structure and why’. Getting to know in 

depth the inside working mechanism of the radiating device is not only a source of great 

satisfaction and personal achievement for any engineer, but a logical and efficient way to 

approach the analysis and design of any antenna. This is the reason why this work starts 

with the most basic concepts and moves from there to some maths of high complexity. 

Also, this software was conceived to be extended as need may arise to try new 

geometries. This objective could not have been fulfilled if all the information and 

explanations, necessary to understand the core of the program, would not had been given 

to the reader fully detailed. 
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CHAPTER 2 - THE METHOD 

 

Where the consistency and rigorousity of the full-wave numerical technique, specifically 

developed to analyze waveguide embedded LWA, are presented. 

 

 

The characterization of leaky-wave antennas requires the calculation of the dispersion 

diagram of the modes supported by the periodic structure. The electromagnetic analysis 

of periodic structures (FSSs, PRSs, EBGs…) can be based on several different methods, 

roughly divided in three main branches: Time Domain Methods, Spectral Domain 

Methods and Spatial Domain Methods, as discussed in Chapter 1. Traditionally, the 

preferred technique for open planar structure was the formulation of Green Functions in 

the Spectral Domain, for both 2D [Mittra 1988] and 3D problems [Becks 1992]. The 

infinite nature of the periodic structures yielded to continuous wavenumbers in the 

spectral domain, and Fourier transforms could be applied.  However, the required Fourier 

integrals are complex and come with a high numerical cost. When analyzing laterally 

shielded structures, the wavenumber must be treated in a discrete modal approach, so the 

method can be directly derived in the space domain, avoiding any kind of complicated 

Fourier transform. This is due to the existence of Parallel Plate modes and the 

correspondent modal expansion in the electromagnetic solution of the open transmission 

line, as will be explained in this chapter. 
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Independently of the method, all 3D problems are tedious to model, with a high 

computational cost. An equivalent simplified circuit will be used in this work to move 

from the analysis of a 3D structure to a 2.5D structure (that is to say, a problem where the 

fields are considered variable in 3 dimensions and the currents are considered variable 

only in 2D, in a plane transversal to the propagation direction of the structure), reducing 

severely the complexity of the formulation.  

 

Finally, there is a consideration, depending on the type of structure to analyze, an EBG or 

an FSS. Besides the pros and drawbacks of each method, when determining the 

dispersion curve is not really a big deal which, since most of the methods used for the 

analysis of FSSs can be used on the EBGs. But there is a fundamental difference: while 

in the FSS there is an incident plane wave with a specific angle causing a response, in the 

EBG there is not incident field and therefore no independent term in the analysis, and this 

leads to a homogeneous problem [Bozzi 2005]. The latter case is the one this thesis 

deals about.  

 

Focusing now specifically on the analysis methods for LWA, three main approaches have 

been used to study the complex leaky modes travelling along these structures: 

 

- The first one, [Lampariello 1987] and [Guglielmi 1991], was the use of the 

Transverse Resonance Equation on an equivalent network obtained for the main 

Parallel Plate Mode, responsible for the radiation. As a drawback, this method could not 

model the effect of higher order modes and the approximation of the equivalent network 

was not accurate enough for all the cases.  

 

- The second one, [Ma 1994], was a full wave approach for the entire PPM 

spectrum using the Mode-Matching technique. This method in the case of laterally 

shielded structures is accurate, but it requires solving the mode-matching integrals in 

each discontinuity using a high number of Parallel Plate Modes (PPM). In this case, the 

main drawbacks were the computation cost and the problems with relative-convergence. 

 

- The third one is the Spatial domain Method of Moments in [Gomez Sept-2005]. 

This technique did not require complicated Fourier Integrals and had full-wave nature, so 

it did not have restrictions regarding the PPM order. It is also remarkable the modal 
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approach to the Markuvitz Radiation Impedance, enabling the radiation not only of the 

main PPM, but the simultaneous radiation of Floquet armonics and higher order PPM, as 

well as other modes supported by the structure [Gomez March-2006]. This method 

modelled discontinuities in both directions of the transversal plane where the printed 

circuit was situated, allowing for tapered illuminations of the antenna. However, the main 

limitation of this technique was the use of simple Entire Domain basis functions, so that it 

can only model planar metallizations of regular geometries, that is to say, rectangular 

slots or patches. 

 

 

Figure 2.1: Basic layout of the proposed method. 

 

 

The work undertaken throughout this thesis is based on the third method. It will analyze 

the properties of the modes (leaky or not) existing in dielectric waveguide periodically 

loaded with planar metallizations (see Figure 2.1.1). To overcome the limitations of the 

previous computed models, the novel method proposed in this present work will be based 

on the Spatial Domain Method of Moments + Subdomain Approach of the geometry. 

By developing an equation system based on the number of subcells in which the basic 

periodic geometry is divided, this analysis is able to model the currents induced on a non-
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regular planar metallization. This way, it becomes a versatile general method for arbitrary 

printed geometries. As will be illustrated in later chapters, this method can study not only 

dipole and patch based LWAs, but also based on other well-known geometries as cross-

dipoles, square loops, double square loops, split rings, and so on. This novel contribution 

opens the door to a field of possibilities: the study of the arbitrary printed circuits applied 

to the shielded leaky wave antenna.  

 

The flow chart in Figure 2.1. shows an overview of the whole method. The Maxwell 

equations for the fields in the structure are expanded in a sum of Parallel-Plates modes, 

which will make possible to take into account the layered media (dielectric-air) and the 

radiation condition at the aperture, through an equivalent transmission line of the 

transversal section of the PPW.  The same way, a Floquet modes expansion will model 

the periodicity along the propagation direction. The currents induced on the metallization 

will be represented as a current source in the equivalent transmission line, and this will be 

expressed in terms of spatial Green functions. Appling the Method of Moments to the 

Green function, the currents can be expanded in term of a set of basis functions. 

Subdomain functions will be used for the first time to analyze this kind of laterally-

shielded leaky wave antennas, allowing for non-regular metallizations (see Chapter 3) as 

the main novelty of this method. Once the currents are expanded, the Electric Field 

Integral Equation (EFIE) is imposed to make the transverse electric field zero on the 

metallic patch (boundary condition). This way, a homogeneous problem is obtained and 

solved forcing the determinant of the MoM matrix to be zero. The longitudinal 

propagation constant is the result of this homogeneous system. After this, the currents, 

fields and radiation pattern can be calculated. 

 

Most mathematical workouts have been incorporated into the Appendix A, at the end of 

this work, for completeness. In order to make it easy to consult this added information at 

any point of the chapter, the reference numbers of the equations have been kept in the 

order in which they were developed (meaning the order is shared by both documents and 

jumps from one to the other), making it possible, for those interested, to follow the 

natural flow of the full working out of this method. 
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2.1. From Maxwell’s Equations. 

 

The basic structure to analyse is presented in Figure 2.1.1. It consists of an open parallel-

plate waveguide filled with dielectric material, and a planar metallization of arbitrary 

shape supported by the dielectric layer, which is the source of the electric currents. The 

coordinates system used for the mathematical formulation is presented as well, and it will 

be settled as such for the remaining of the present work. The transversal section (z-x 

plane) and the longitudinal direction of propagation (y-direction) will be treated with 

different approaches: 

- Transverse-longitudinal notation will be used in relation to the z-axis, that is to 

say, the z-axis will stand as the longitudinal direction during the initial analysis, 

although the modal propagation constant will be determined by the y-axis for the 

final structure. The z-axis stands for the propagating direction of the modal 

vector functions of the Parallel-Plate Waveguide (see next section), so this 

expansion will make possible to analyse in a simplified way the multilayered 

media (air-dielectric) and the radiation condition (both within the z direction). The 

x-y plane will be considered in this first approach as the transversal plane.  

 

- The propagation direction cannot be considered as a homogeneous medium due to 

its periodicity. So periodicity in the y-axis will be modelled using a Floquet 

modes expansion (see 2.3 section). For each Floquet mode, the associated PPM 

expansion will exist, resulting in a complete full-wave analysis method for the 

whole structure. 

a

L

D

H
z

x

y
ε0

ε1

P

Q

 

Figure 2.1.1: Basic structure. 



Chapter 2                                                                                                                                         The Method 

 

 

34 

The starting point will be Maxwell’s Equations for time-harmonic (steady-state 

sinusoidal) fields when surface currents do exist in a simple medium (linear, isotropic and 

homogeneous). The temporal dependence will not be explicitly specified, it is assumed to 

be 
j te 

 from now on. 

E j H         (2.1.1) 

sH J j E          (2.1.2) 

 

Where E  and H  are vector field phasors and sJ  is the superficial source phasor, all of 

them containing information on direction, magnitude and phase. 

 

As previously mentioned, it is along the z-axis where the multilayered media and the 

aperture to open space lay, so in order to take these discontinuities into account, it is 

necessary to assume the z-direction as the initial propagation direction for the Maxwell’s 

Equations (2.1.1) and (2.1.2). With this aim, the previous equations will be split into their 

transversal components (x-y plane) and longitudinal components (z-axis). The 

expression of the fields using this transverse-longitudinal notation is: 

ˆt zzE E E    (2.1.3) 

ˆt zzH H H   (2.1.4) 

 

From each Maxwell’s Equation is derived a pair of longitudinal-transverse equations, 

which are summarised below. For the complete mathematical workout, see Appendix A 

Workout 1. 

ˆ zt tE j zH           (2.1.9) 

 ˆt
t

t z H z
E

E j
z

 


  


              (2.1.16) 

ˆt t zH j zE                      (2.1.20) 

 ˆ ˆ
t

t
t z tz E

H
H j z J

z
  


   


     (2.1.29) 

 

As it can be seen, the transverse component equations (2.1.16) and (2.1.29) depend also 

on the longitudinal fields zE  and zH . The objective is to obtain a set of transverse 
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equations independent of the longitudinal component. For this purpose it is needed to 

express the longitudinal fields in terms of the transverse fields. The complete process can 

be found in Appendix A Workout 2, obtaining the following set of transverse Maxwell’s 

equations: 

 
1

ˆ ˆ( )t
t t t t

E
j H z H z

z j





        

     (2.1.40) 

 
1

ˆ ˆ( ) ˆ
t t t

t
t tz E z E

j

H
j z J

z 
       


   


     (2.1.41) 

 

This pair of equations shows the general relation between the transverse current tJ  and 

the coupled transverse fields tE  and tH  that it generates. As shown in Figure 2.1.1, the 

planar metallization extends on the x-y plane, so the only surface currents existing in the 

structure will be those induced on the patches and will be, using this notation, transversal 

currents. 

 

 

2.2. Parallel Plate Modes Expansion 

 

They are one of the main keys to the simplicity of the present method, allowing the 

modelling of the propagating fields within the structure in the space domain directly. It is 

fundamental to understand their nature and properties as a complete function set. 

 

 

Figure 2.2.1: Parallel – Plate Basic configuration. 
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A Parallel-Plate transmission line consists of two parallel conducting plates separated by 

a dielectric slab of uniform thickness and width “a” (see Figure 2.2.1).  In this sort of 

structure, Parallel- Plate modes propagate in form of plane waves ([Cheng 1989], [Cheng 

1997]). Each of them propagates in a certain direction and with a certain wavenumber 

vector: 

0
ˆ ˆ ˆ

x y zk x k y k zk       (2.2.1) 

 

And each of them must satisfy the boundary conditions of the parallel plates, so the 

propagation constant in the x axis is determined by: 

( / )mxk m rad m
a


                                    (2.2.2) 

where 1,2..m   is the modal index, meaning the number of harmonic variations in the x 

direction. This set of modes forms a complete base for the parallel plate structure, so any 

field existing within this structure can be defined as a contribution of these modes. 

 

The structure that is being analysed is a modification of the basic parallel plate 

waveguide (Figure 2.2.1). The transverse fields which can exist in this type of structure 

can be expanded as series of the vector mode functions of the parallel plate waveguide, 

since these modal functions satisfy the boundary conditions of the metal side walls, in 

which the multilayered media is contained. But, due to its complexity, the new boundary 

conditions (multilayered media, planar metallization, metallic bottom wall...) cannot be 

satisfied by these PPM alone. In following sections, it will be shown how these 

discontinuities are taken into account in the expansion and how its development will lead 

to the equivalent modal transmission lines. 

 

The following equations show the standard procedure to express the modal solutions of 

the structure in a sum of PPM, using the transverse-longitudinal notation. The z direction 

is chosen as the longitudinal propagating direction of the PPW. As the cross section of 

the PPW with a horizontal homogeneous dielectric slab of a given permittivity is uniform 

for each z position (in any point of the x-y plane), an analysis in the z direction can be 

done to account for the dielectric discontinuities, as it will be shown in later sections. The 

zjk ze variation on the longitudinal axis z is assumed, so it will be omitted within this 

development.  
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TE  MODES  

0Ez    

cos( ) ,m=0,1,2...ymjk yTE

m m xmHz k x e


    

ˆ ˆsin( ) cos( ) ymjk yTE

m m xm xm ym xmHt t k k x x jk k x y e


         

ˆ 1
ˆ ˆcos( ) sin( ) ymjk ym

m ym xm xm xm

TE TE

Ht z
Et jk k x x k k x y e

Z Z


       

ˆ ˆcos( ) sin( )
( , ) ymjk yym xm xm xm

m

m

jk k x x k k x y
e x y e

N

 
                                     (2.2.3) 

TM  MODES  

0Hz   

sin( ) , 1,2...ymjk yTM

m m xmEz k x e m


     

ˆ ˆcos( ) sin( ) ymjk yTM

m m xm xm ym xmEt t k k x x jk k x y e


                                  

ˆ ˆcos( ) sin( )
( , ) ymjk yxm xm ym xm

m

m

k k x x jk k x y
e x y e

N

 
        (2.2.4) 

 

It is important to note that, the same way the propagation coefficient mxk is expanded as 

series of vector mode functions, where “mx” stands for the Parallel Plate mode order, the 

propagation factor myk  is expanded too, but as series of Floquet Modes using the same 

expansion index “my”. The meaning of this second expansion will be developed 

thoroughly in the next section. 

 

Equations (2.2.3) and (2.2.4) express the normalized modal transverse vector electric 

functions (the expression for the normalization coefficient mN  will be deduced further on 

in this section). The dependence with the y coordinate that has been taken into 

consideration for the whole development of these expressions is that of a plane wave 

propagating in an infinite medium in the y axis, 
ymjk y

e


, and this scalar function can be 

separated from the modal vector functions dependence with the x coordinate: 

 

( ) ( )( , ) ( ) ymjk yp p

m me x y e x e


      (2.2.5) 
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This reasoning applied to equations (2.2.3) and (2.2.4) leads to the expression of the 

transverse vector functions for the electric fields: 

ˆ ˆcos( ) sin( )
( )

ym xm xm xmTE

m

m

jk k x x k k x y
e x

N

 
      (2.2.6) 

ˆ ˆcos( ) sin( )
( )

xm xm ym xmTM

m

m

k k x x jk k x y
e x

N

 
      (2.2.7) 

The relationship between the electric and the magnetic normalized transverse vector 

mode functions is presented below: 

( ) ( )ˆ( , ) ( , )p p
m mh x y z e x y       (2.2.8) 

( ) ( ) ˆ( , ) ( , )p p
m me x y h x y z       (2.2.9) 

 

Applying equation (2.8) on expressions (2.6) and (2.7), the transverse vector functions for 

the magnetic fields are obtained: 

ˆ ˆsin( ) cos( )
( )

xm xm ym xmTE
m

m

k k x x jk k x y
h x

N

 
   (2.2.10) 

ˆ ˆsin( ) cos( )
( )

ym xm xm xmTM
m

m

jk k x x k k x y
h x

N

 
   (2.2.11) 

 

The modal vector functions ( )( , )p
me x y  and ( )( , )p

mh x y  are the different type of plane 

waves (p=1, 2 for TE and TM) which can propagate in the PPW shown in Figure 2.2.1, 

with no other discontinuity but the two side metal walls. Before adapting them to the new 

structure, the inner product will be used in order to set these modal vector functions as a 

complete base. 

 

The definition of the inner product in terms of the scalar product of either electric fields 

or magnetic fields will be used to establish the concept of orthogonal coordinate system 

of a vectorial space. This orthogonality relation probes the completeness property of a set 

of normal modes. The establishment of this base is necessary to expand the fields as a 

linear combination of PPM (base vectors).  The general expression of the inner product is 

showed below: 
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*

( ) ( )* ( ) ( )*

0 0

( ) ( )*

0

( ) ( ) ( ) ( )

ˆ( ) ( )

m n

a a

p q p q

m n m nP Q

x x

a

p q

m n

x

I e x e x x h x h x x

e x h x z x

 



      

   

 


              (2.2.12) 

where m,n= 0,1…  is the order of the PPM and p,q=TE or TM. 

This definition has been studied before by many authors due to its importance to expand 

any electromagnetic field inside a given geometry [Collin 1960]. Note that the last 

expression corresponds with the density of power propagating in z. This way the inner 

product gives the idea of how much energy is coupled between modes (m and n modes 

with any polarization). This is especially important, since in the case of an open structure, 

the propagation constant becomes complex, and the inner product definition probes that 

the PPM base is not orthogonal [Gómez March-2004]. This is because PPM 
zTE  and 

zTM  leaky modes have not only a complex 
zk  propagating factor, but also a complex 

yk  propagating factor, due to the unbounded z and y directions. 

 

Evaluating in the first place the inner product between modes with electric fields with the 

same polarization, it results as follows: 

0 0

* *( ) ( ) ( ) ( )
a aTE TE TM TM

m n m nx x dx x x dxI e e e e       

                                                          

2
2

2

1

2

ym xm

m

k k
a

N


      if  m=n0 

                                               =         

2
2

2

ym xm

m

k k
a

N


          if m=n=0               (2.2.13) 

     0    if m  n   (orthogonal) 

 

It can be seen that those modes with the same polarization and different modal index are 

orthogonal. The normalization coefficient mN  is defined so that the set of modal vector 

functions is not only orthogonal, but orthonormal, obtaining: 

 

2
2

2
m xm ym

a
N k k         with  =1  if  m=n0 or   =2 if m=n=0    (2.2.14) 



Chapter 2                                                                                                                                         The Method 

 

 

40 

Evaluating now the inner product between modes with electric fields with different 

polarization, and taking into account that the xmk  conjugate is equal to xmk , since it is a 

real number, it results as follows: 

           

2
2 *

2 2

( )1

2 2

ym ym xm ym ym

xm

ym m m

k k jk k k a
jk a

k N N

  
 


   if  m=n0 

0

*( ) ( )
a TE TM

m nx x dxI e e           

*

2

( )xm ym ym

m

jk k k
a

N

 
    if m=n=0  (2.2.15) 

                                                          0    if m  n   (orthogonal) 

 

 

Just as in the case with the same polarization, the base vectors with different modal index 

are orthogonal among them, but in this case, it can be appreciated how the inner product 

between the same modal index PPM is not an unitary scalar, but a certain expression. 

This expression will be defined as the coupling coefficient mC , as shown: 

 

*

2

( )

2

xm ym ym

m

m

jk k k a
C

N



       with  =1  if  m=n0 or   =2 if m=n=0          (2.2.16) 

 It is interesting to notice that only in the case that 
ymk  is a real number, the coupling 

coefficient will be zero, and the basis will be orthonormal,  

 

Introducing the normalization and the coupling coefficients into the previous results and 

resuming both cases, those with same and different polarization, into one single 

expression  leads to the next relation of orthonomality that the PPM fulfil according to 

the inner product definition in (2.2.12): 

                                                                       1          if  p=q  and  m=n 

*
0

( ) ( )*
( ) ( )

m n

a

P Q

p q
m nI x x dxe e              0          if  m  n           (2.2.17) 

                                                                       mC       if  p  q and  m=n 

                                                                                               

The equation (2.2.17) can be explained under a physical point of view, knowing that the 

inner product express the cross power among modes that propagates in the z axis, that is 

to say, the coupled energy between different PPM. It was stated before that mC was zero 
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only if the propagation constant in the longitudinal direction 
ymk  was real. In other words, 

when there are no losses in the y direction (closed structure or non radiating modes), the 

PPM are orthogonal (there is no coupled energy). However, if there is any type of losses 

or attenuation in the longitudinal direction, 
ymk  will be complex and the coupling 

coefficient will have a certain value. This means that the modes TE and TM of the same 

order will be coupled and will not be orthogonal between them. This aspect must be taken 

into account when developing the analysis method, and will lead to a coupled set of 

equivalent transmission lines in the z-direction (section 2.5). 

 

It was expected that the modal vector functions ( )( , )p
me x y  and ( )( , )p

mh x y  are no more 

solutions in the new more complex structure, since they separately do not satisfy the new 

boundary conditions imposed in the z axis (bottom metal wall, metallization strips, 

multilayered media...). The key is that the fields which can exist in this structure can be 

expanded by a series of these modal functions adding an scalar amplitude for each mode 

( ( ) ( )p

mV z for TE and ( ) ( )p

mI z for TM) that will take into account the discontinuities in the z 

axis as will be shown in section 2.5. The following couple of equations model the PPM 

expansion for the complex structure: 

 

,
( )

0

( )( )( , , ) ( ) y

TE TM
yp

m

p m

jkp
mV zEt x y z e x e






      (2.2.18) 

,
( )

0

( )( )( , , ) ( ) y

TE TM
yp

m

p m

jkp
mI zHt x y z h x e






      (2.2.19) 

 

It must be noticed that originally, the z dependence of the PPM was defined by zjk ze , as 

a plane wave propagating freely in the z direction. In the new structure, more complex 

dependency in the z axis was needed to model wave reflections at the discontinuities, so 

new functions have been introduced for the expansion. The second thing to remember is 

that every mode propagating in the y direction (these Floquet modes will be seen in the 

next section), has a PPM expansion in the z-x plane, so those parallel-plate modes will 

share the same propagation constant in y axis, myk , the longitudinal direction of the final 

structure. 
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2.3. Floquet Modes Expansion 

 

Along the longitudinal y direction of the structure, the antenna presents a periodicity P 

which determines the unit cell length. The analysis of this sort of structure can be made 

applying Floquet theory ([Brillouin 1946], [Brillouin 1960], [Vardaxoglou 1997]). In 

[Gomez Sept-2005] it was used to analyze for the first time laterally-shielded periodic 

leaky-wave antennas. 

 

The electromagnetic fields in a periodic structure (periodic boundary conditions) are 

periodic with the exception of a propagation coefficient in the periodicity direction, 0yk , 

called bloch-wavenumber. Assuming periodicity along y direction, they can be 

expressed: 

0( , , ) ( , , )yjk y

pE x y z e E x y z


   (2.3.1) 

0( , , ) ( , , )yjk y

pH x y z e H x y z


   (2.3.2) 

 

The fields in each unit cell can be expanded using spatial harmonics in the y direction 

([Oliner 1993], [Tzuang 2000], [Schwering 1983]), the so called Floquet Modes: 

 

,
( )( , , ) ( , ) ym

TE TM
p

p
p my

jk y
myE x y z E x z e






     (2.3.3) 

,
( )( , , ) ( , ) ym

TE TM
p

p
p my

jk y
myH x y z H x z e






     (2.3.4) 

 

So, it all can be resumed: 

0
, ,

( ) ( )( , , ) ( , ) ( , )y ym my
TE TM TE TM

p p

p my p my

jk y jk y jk y
my myE x y z e E x z e E x z e

 

 

  
        (2.3.5) 

0
, ,

( ) ( )( , , ) ( , ) ( , )y ym my
TE TM TE TM

p p

p my p my

jk y jk y jk y
my myH x y z e H x z e H x z e

 

 

  
      (2.3.6) 

 

where    0 0

2
my ymy y my

P
k k k k


       (2.3.7) 
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It is important to note that due to radiation losses of the leaky waves, the bloch-

wavenumber 0yk  becomes complex, having a phase constant 
0y  and an attenuation 

constant 
y . In this way, the leakage effect makes the propagation constant of any space 

harmonic 
myk  complex: 

        
0 00

2 2
( )my y y y yymy j my my j

P P
k k k

 
   

 
        

 
           (2.3.8) 

 

In the last section, the Parallel Plate Modes were introduced to expand the fields in the 

structure, and as showed below, a mode expansion in the y direction was taken into 

account, but not yet explained. Now that myk  is defined, the Floquet modes expansion can 

be easily introduced in the expressions of the fields: 

,
( ) ( )

,
0

( ) ( )( , , ) myZ
TE TM

jk yp p
mx my mx

p mx my

V z e x eE x y z
 



 

       (2.3.9) 

,
( ) ( )

,
0

( ) ( )( , , ) myZ
TE TM

jk yp p
mx my mx

p mx my

I hz x eH x y z
 



 

       (2.3.10) 

 

In these expressions the notation can be changed as shown below. This will be useful in 

later sections. 

( ) ( )
, ( , ) ( ) myjk yp p

mx my mxe x y e x e


    (2.3.11) 

( ) ( )
, ( , ) ( ) myjk yp p

mx my mxh hx y x e


    (2.3.12) 

 

To probe that the series of Floquet modes are an orthogonal coordinate system of a 

vectorial space, the definition of the inner product (in terms of the scalar product of 

either electric fields or magnetic fields) will be used, in a similar way that it was done for 

the PPM.  The general expression of the inner product and its resolution are showed 

below:                                                             

*

0

0

my ny

my ny

P

P Q
x

jk y jk y my ny

P my ny
I ye e



   


 
                      (2.3.13) 

 

where     0

2
my yk k my

P


    and  0

2
ny yk k ny

P


  .                
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The normalization coefficient mN  is defined so that the set of modal vector functions is 

not only orthogonal, but orthonormal. It can easily be deduced from (2.3.13): 

1
mN

P
    (2.3.14) 

 

The conclusion is that there’s no coupling between any mode or polarization in this 

expansion, since the Floquet modes are orthonormal by definition, even for complex 

propagation constants.  

 

 

 

 

2.4.  Radiation Condition  

 

The open laterally-shielded leaky-wave antenna may or may not radiate, depending on 

certain conditions. This was one of the main improvements that [Gomez August-2005] 

introduced, opening the structure on the wide side of the rectangular waveguide. This 

simple change made a huge difference, from the previously studied LWA [Guglielmi 

1991] that radiated in any case and without any control, to the tapered continuous LWA 

in which the illumination, and so the radiation pattern, could be modified at will.  

 

The radiation mechanism is achieved, from the non-radiative open waveguide structure in 

which the transversal field would be defined by the 10TE  mode, by introducing a spatial 

asymmetry in the x̂  direction, in such a way that the fundamental PPW mode m=0 is 

excited. This fundamental mode is a non-homogeneous plane wave with horizontal 

polarization, that is to say, its electric field is perpendicular to the side walls.  

 

The physical explanation is that the asymmetrically located patch induces a difference of 

charge (unbalanced coupling of the 10TE  to the side walls). This way, the vertically 

polarized 10TE mode is transformed into a horizontal field in the parallel-plate region. 

This horizontal field can propagate, reaching the aperture at the top and inducing 

radiation. This mechanism is clearly illustrated by means of field lines on Figure 2.4.1. 
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Figure 2.4.1: Radiation Mechanism. 

 

 

At this point, it is interesting to remember that in the first attempts of the leaky-wave 

antenna, as in the INSET of Guglielmi, the mode responsible for the radiation was the 

01TE , which was able to radiate without the need of introducing any asymmetry due to its 

inherent horizontal polarization. It simply escaped from the open waveguide. This is an 

extremely important difference; it has evolved from a structure that radiated by intrinsic 

mechanism to a second one in which the radiation is intentionally caused by a variable 

parameter, the asymmetry. It is precisely that variability what provides tuneable control 

means for the radiation, and therefore, makes it possible to do taper designs with fixed 

aiming angle of the main lobe at a specific frequency.  

 

As probed in [Gomez 1994], the only mode responsible for the radiation is the PPW m=0, 

while the rest of higher order modes (m>0) spoil the radiation performance. The 

conditions for the fundamental PPW mode to be the only mode excited and responsible 

for the radiation, are given by the geometrical parameters. 

 

Once the PPW mode m=0 is excited, it has to meet a second condition in order to radiate,  

since this excitation by itself is not enough. The mentioned mode must have a 

propagative zk , what is known as fast wave. To achieve it, it is necessary zk  to be a real 

number. 
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                               0m    ,
0 0

0
m m

x x m
m m

k k m
a

 

 

                      (2.4.1) 

                              
2 2 2 2 2 2 2

0 0x y z z x yk k k kk k k k        

                                                     2 2

0z yk k k                                          (2.4.2) 

 

There are two possibilities: 

 

a) The propagation constant in the direction ẑ  is an imaginary number: 

                                                             
2 2
0 0yk k                                      (2.4.3) 

                                                     
0

1
yk

k
   z zk j                              (2.4.4) 

This is the case of a slow wave and therefore, it does not radiate. The energy decreases 

exponentially in the ẑ  direction and fades away before it can get out of the parallel plates 

of the waveguide. 

 

b) The propagation constant in the direction ẑ  is a real number: 

                                                              
2 2
0 0yk k                                      (2.4.5) 

                                                      0

1
yk

k
 

   

  z zk                                (2.4.6)       

In this case 
yk  is within the fast wave zone and zk  is real and propagative. It is called so, 

“fast wave” because the longitudinal phase velocity is bigger than the speed of light. The 

PPM mx=0 is able to propagate towards the aperture. It can be probed that the higher 

order PPM are evanescent in the structure, applying the same procedure: 

 

   1m    ,
0 0

m m

x x m
m m a

k k m
a

 

 

                          (2.4.7) 

    2 2 2 2 2 2 2

0 0x y z z x yk k k kk k k k        

   

222

2 2

0 0

0 0

1
y

z y

k
k k k k

a ak k

     
               

        (2.4.8) 
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In order for the PPM mx=1 not to propagate along the parallel plates it is necessary that: 

 

                                                              

2

0 0

1
yk

k ak

 
  

 
                        (2.4.9) 

The propagation constant of the 10TE , propagating in the y direction, can be 

approximated for that of a PPM mx=1 (as both have the same harmonic variation). For a 

waveguide filled with dielectric, as will be the case either partially or completely, this 

propagation constant can be written as: 

                                                           
10

2

0 0

TE

y

r

k

k ak




 
  

 
                      (2.4.10) 

 

It can be easily seen that, since 1r  , the PPM mx=1 will be evanescent in the z-

direction, and therefore so will be any other higher PPM. 

 

 

Figure 2.4.2 shows the theoretical behaviour of the three first Floquet harmonics 

associated to the PPM mx=0, in terms of how the normalized propagation constant 

increases with the frequency. The blue line represents the first Floquet harmonic, which 

after cut-off radiates only forward from broadside. The plot is focused on the radiation 

zone or fast-wave region of the second harmonic my=-1, in green. Said harmonic radiates 

while its normalised propagation constant is between [-1, 1]. This picture will help the 

reader to understand how the aiming angle of the leaky mode varies with the frequency 

from backward endfire to broadside, and finally to forward endfire and how it becomes a 

surface wave afterwards. These concepts will be dealt in depth in the final chapters, when 

analyzing the obtained results. 
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Figure 2.4.2 Theoretical propagation of a periodic LWA 

 

 

Summarizing: 

 

To produce a radiating 10TE mode it is necessary to meet two conditions: 

1.- The PPW m=0 mode must be excited   asymmetry in x̂ . 

2.- 
yk  must be within the  fast wave zone. 

 

 

 

 

2.5. Equivalent Transmission Line 

 

In order to obtain the desired Green Functions of an elemental electric source in a 

structure consisting of a parallel plate waveguide with a stratified dielectric media, it is 

necessary to express the equivalent modal transmission line equations of this structure. 

For this purpose, the transverse Maxwell equations (2.1.40) and (2.1.41), and the 

transverse-fields modal expansions (2.3.9) and (2.3.10), obtained in previous sections, 

will be combined in this section. 
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 
1

ˆ ˆ( )t
t t t t

dE
j H z H z

dz j



                                     (2.1.40) 

 
1

ˆ ˆ( ) ˆ
t t t

t
t tz E z E

j

dH
j z J

dz 
                             (2.1.41) 

 

, ,
( ) ( ) ( ) ( )

, , ,
0 0

( , )( ) ( ) ( )( , , ) my

t

TE TM TE TM
jk yp p p p

mx my mx mx my mx my
p mx my p mx my

x yV z e x e V z eE x y z
   



   

      

     (2.3.9)      

, ,
( ) ( ) ( ) ( )

, , ,
0 0

( , , ) ( ) ( ) ( ) ( , )my

t

TE TM TE TM
jk yp p p p

mx my mx mx my mx my
p mx my p mx my

H x y z I z h x e I z h x y
   



   

      

     (2.3.10) 

 

Remember that the indexes mx and my stand for the PPM order and Floquet modes order 

respectively. The modal expansions of the transverse fields are introduced into the 

transverse Maxwell Equations, resulting in the expressions showed below. First from 

(2.1.40):  

 

 ( )

,

( ), ,
, ( ) ( )

, ,
0 0

ˆ( , )
( )

( , ) ( ) p

mx my

pTE TM TE TM
mx my p p

mx my mx my
p mx my p mx my

h x y z
dV z

e x y j I z
dz


   

   

 
  

 

       

 

 
,

( ) ( )

, ,

0

ˆ( ) ( , )
1 TE TM

p p

mx my mx my

p mx my

t t I z h x y z
j

 

 

  
  

   

          (2.5.1) 

 

 

Second from (2.1.41): 

 

 
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 
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 
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Where the transverse current ( , , )tJ x y z has suffered both modal expansions as well: 

( ) ( )

, ,

, ,
( ) ( )

,
0 0

( , , ) ( ) ( )( ) ( , )myp p

t mx my mx my

TE TM TE TM
jk yp p

mx mx my
p mx my p mx my

J x y z z zj e x e j e x y
   



   

          

(2.5.3)  

The procedure applied on these two previous equations (2.5.1) and (2.5.2) can be found 

in Appendix A Workout 3, and it includes the following steps: 

 

1. The two different polarizations, TE and TM, will be separately considered and 

referred by a superscript index as (p) or (q), depending on the case. 

 

2. By applying the definition of the inner product for the Parallel Plates modes on each 

polarization’s expression, the summation in terms of “x” will be eliminated, obtaining the 

following set of equations: 

 

( ) ( )
, ,( ) ( )

my my

p q
jk y jk ymx my mx my

m
my my

dV z dV z
e C e

dz dz

 
 

 

           

 ( ) ( )

0 0

( ) ( )
, ,( ) ( )my myp q

m zm m zm

jk y jk yp q
mx my m mx my

my my

k I z e C k I z ej Z j Z
 

 
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                           

(2.5.15) 
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 
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(2.5.25) 

3. By applying the definition of the inner product for the Floquet modes on each 

polarization’s expression resulting from the step no.2, the summation in terms of “y” will 

be eliminated. 

( ) ( )

, , ( ) ( ) ( ) ( )

0 , 0 ,

( ) ( )
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p q
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(2.5.29)   
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4. Due to the previous steps, a pair of coupled equations in terms of polarization is 

obtained. The next step will be to decouple these expressions. 

 

The equations (2.5.27) and (2.5.29) describe the behaviour of the modal functions 

( ) ( )p

mV z  and ( ) ( )p

mI z , first introduced in the PPM expansion in section 2. At first sight, 

these equations remind of the system of differential equations from a transmission line, as 

shown in the Figure 2.5.1 below: 

 

Figure 2.5.1 Equations for the Equivalent Tx line 

 

This transmission line has as the propagation direction the z axis and an electric source in 

parallel, ( )mj z . It can be physically interpreted as shown in Figure 2.5.2, where an 

equivalent transmission line is created from the structure. 

z

x

y

jm

Zrad

ε1

a

L

D

H ε0

ε1

 

Figure 2.5.2: Equivalent transmission line. 
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However, in the equations (2.5.27) and (2.5.29) obtained from the analysis done so far, 

the TE and TM modes do not appear uncoupled, so the equivalent transmission line for 

the structure under study will not correspond exactly to the one in Figure 2.5.2, since that 

one does not take into account couplings. Next step is to consider separately both 

polarizations to get to a pair of coupled differential equations. 

 

If the two possible combinations of polarizations are taken into account, the following 

expressions are obtained from (2.5.27) and (2.5.29): 

 

p=TE and q=TM 
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Equations (2.5.30) and (2.5.31) for the TE, and (2.5.32) and (2.5.33) for the TM obtained 

above, are two systems of decoupled differential equations, corresponding to a 

transmission line for each polarization. Both transmission lines are related by mC , which 

has the couplings effects in it. This situation is represented graphically in the Figure 2.5.3 

below: 

Zrad

ε1

jm
TM

Zrad

ε1Cm

coupling

jm
TE

ZTM
ZTE

 

Figure 2.5.3: Coupling between TE and TM equivalent tx. Lines. 

 

Now it is defined, where ,m mx my : 

( ) ( ) 2 ( )

, ,( ) ( )p p p

mTOTAL mx my m mx myV V z C V z    (2.5.34) 

( ) ( ) 2 ( )

, ,( ) ( )p p p

mTOTAL mx my m mx myI I z C I z     (2.5.35)          

( ) ( ) 2 ( )

, ,( ) ( )p p p

mTOTAL mx my m mx myj j z C j z    (2.5.36) 

 

So the expressions (2.5.30)-(2.5.33) can be resumed and renamed as follows: 

( )
( ) ( )

0

p
p pmTOTAL

zm m mTOTAL

dV
jk Z I

dz
     (2.5.37) 

( )
( ) ( )

( )

0

p
p pmTOTAL zm

mTOTAL mTOTALp

m

dI k
V j

dz Z
j    (2.5.38) 

 

Two systems of uncoupled equations, or what is equivalent, two transmission lines of 

different polarization coupled with each other, have been obtained   this can be solved 

as a usual transmission line (see section 7). 
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To complete the fields expansion, three unknown expressions must be found: 

- Modal voltage functions, ( )
, ( )p

mx myV z  

- Modal current functions, ( )
, ( )p

mx myI z  

- Current source functions,
( )

, ( )p
mx myj z  

Voltage and current modal functions will be derived by solving the transmission line in 

section 2.7. Current source functions will be obtained using the Green’s Functions in 

section 2.6. 

 

At this point, and before deriving the Green functions, the author considers it necessary to 

clarify what has been established so far. Three different approaches have been applied to 

each of the dimensions of the periodic initial structure in order to express the fields in the 

open waveguide as expansions of modal functions. In the x dimension the variation of the 

fields has been modelled through the PPM expansion. The stratification and the aperture 

of the guide, on the z dimension, has been treated as an equivalent transmission line, and 

finally, the periodicity in the y dimension is contemplated in the form of Floquet modes. 

This will allow obtaining a modal solution for the modes that propagate along the y-

direction that takes into account the shape of the metallization and the discontinuities in 

the z-direction. This procedure is graphically illustrated on Figure 2.5.4 below. The 

currents modelled as a current source in the transmission line will be studied in the next 

section. 
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Figure 2.5.4: 3 dimensions  3 approaches. 
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2.6. Deriving Green’s Functions 

 

The next step is to find the value of the currents that appear in the Transmission Line 

Model developed in the previous section, that’s to say, the value of the coefficients 

( )

, ( )p

mx myj z of the expanded expression of the current existing in the planar metallic design 

on the dielectric layer. These values will depend on the chosen current distribution 

applied to feed the structure. This distribution was expanded in (2.5.3) as shown below, 

taking into account that it is a Parallel Plate guide containing a periodic circuit in the 

longitudinal direction ŷ . 

( ) ( )

, ,

, ,
( ) ( )

,
0 0

( , , ) ( ) ( )( ) ( , )myp p

t mx my mx my

TE TM TE TM
jk yp p

mx mx my
p mx my p mx my

J x y z z zj e x e j e x y
   



   

        

 (2.5.3) 

 

For this purpose, the Green’s functions, necessary to express the Integral Equation which 

relates the fields in any structure with the electric currents which exist inside it, will be 

used. In order to obtain these Green’s functions, it is considered a unitary element of 

transverse electric current, periodic in the ŷ  direction with a propagating factor 
0yk , and 

directed in both x̂  and ŷ  direction. It can be expressed as: 

 

0 ˆ( ') ( ') ( ') yjk yx

tJ x x z z y y e x  


         (2.6.1) 

0 ˆ( ') ( ') ( ') yjk yy

tJ x x z z y y e y  


         (2.6.2) 

 

The x´, z´ and y´ coordinates are the position of the elementary source in the z-x plane 

and that elementary source will be the same in each unitary cell but for the distance P in 

the ŷ direction (see figure 2.1.1). This current has only transverse components in x̂  and 

ŷ since it only exists on the metallic planar circuit. As a reminder, the dependence in 

ŷ is: 

0 0

2
my ymy y my

P
k k k k


        (2.3.7) 
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The modal coefficients 
( )

, ( )p

mx myj z  can be calculated, since equations (2.6.1) and (2.6.2) 

must be equal for each elementary source, directed in both x̂  and ŷ  direction. In the first 

case, it is considered a elemental current source directed on x̂ : 

                            ( , , ) x

t tJ x y z J    (2.6.3) 

 

Applying the definition of the inner product for PPM and Floquet modes and decoupling 

each polarization (see Appendix A Workout 4), it is obtained: 

2
( ) '

, * , *
,

, 2

( ) ( )
( ) ( ')

1

j my y
x TE x TMP

x TE mx m mx
mx my

m

e e x C e x
j z z z

P C








 


  (2.6.13) 

2
( ) '

, * , *
,

, 2

( ) ( )
( ) ( ')

1

j my y
x TM x TEP

x TM mx m mx
mx my

m

e e x C e x
j z z z

P C








 


  (2.6.14) 

 

It is important to notice that the superscript has been modified in order to indicate that 

these expressions are to be considered for the variation in x̂ . Again, the effect of the 

coupling between the modes 
zTE  and 

zTM  is reflected in the coefficient mC . 

 

If the same process is repeated again but this time for the elementary source directed in 

ŷ (2.6.2), ( , , ) y

t tJ x y z J , the following results are obtained: 

2
( ) '

, * , *
,

, 2

( ) ( )
( ) ( ')

1

j my y
y TE y TMP

y TE mx m mx
mx my

m

e e x C e x
j z z z

P C








 


  (2.6.15) 

2
( ) '

, * , *
,

, 2

( ) ( )
( ) ( ')

1

j my y
y TM y TEP

y TM mx m mx
mx my

m

e e x C e x
j z z z

P C








 


  (2.6.16) 

 

The ( ')z z   term means that the source of current 
( )

, ( )p

mx myj z  can only exist in the 

position 'z z  (the height of the metallization), that is to say, it is situated within the 

metallic strip. Taking that into account, that term can be omitted from now on, until the 

moment to apply the boundary condition in the next section arrives. 
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The transversal electric and magnetic fields (2.3.9) and (2.3.10) inside the structure were 

obtained in previous sections. In them appear the expressions of modal voltage 

( )
, ( )p

mx myV z  and current 
( )

, ( )p

mx myI z  functions of the equivalent transmission line. 

 

, ,
( ) ( ) ( ) ( )

, , ,
0 0

( , )( ) ( ) ( )( , , ) my

t

TE TM TE TM
jk yp p p p

mx my mx mx my mx my
p mx my p mx my

x yV z e x e V z eE x y z
   



   

                 

 (2.3.9)      

, ,
( ) ( ) ( ) ( )

, , ,
0 0

( , , ) ( ) ( ) ( ) ( , )my

t

TE TM TE TM
jk yp p p p

mx my mx mx my mx my
p mx my p mx my

H x y z I z h x e I z h x y
   



   

      

  (2.3.10) 

 

In order to derive the Green Function, it is required to express those fields in terms of the 

elementary current. The modal functions for voltage and current are normalized with 

respect to the current source. These elementary voltage ( )ˆ ( )p
mV z  and current ( )ˆ ( )p

mI z  can 

be calculated from the resolution of the equivalent transmission line. The final 

expressions for the transversal-longitudinal Green Functions are presented below (see 

Appendix A Workout 5).  

 

,
( ) ( ) ( ) ( )

0

( , )́ ˆ( )́ ( )́ ( ) ( ) mytt

EJ

TE TM
jk yp p p p

m m m mx
p mx my

r r X x Y y V z e x eG
 



 

        (2.6.25) 

,
( ) ( ) ( ) ( )

0

ˆ( , )́ ( )́ ( )́ ( ) ( ) my

TE TM
jk ytt p p p p

HJ m m m mx

p mx my

r r X x Y y I z h x eG
 



 

          (2.6.26) 

2

0

1 ˆˆ( , )́ ( ) ( )́ ( )́ ( ) myjk yzt TM TM TM TM

EJ m m m cm mx

mx my

G r r I z X x Y y k x e
j




 


 

          (2.6.40) 

2

0

1 ˆˆ( , )́ ( ) ( )́ ( )́ ( ) myjk yzt TE TE TE TE

HJ m m m cm mx

mx my

G r r V z X x Y y k x e
j




 


 

           (2.6.41) 

 

Where: 

( )* ( )*
( )

2

( ') ( ')
( )́

1

p q
p mx m mx

m

m

e x C e x
X x

C





    (2.6.23)          

2
( ) '

( ) ( )́

j my y
P

p

m

e
Y y

P




     (2.6.24)          

And   ,m mx my , which are the order of the PPM and Floquet modes respectively. 
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In matricial form, it can be resumed as follows: 

 

xt xx xy
EJ EJ EJtt
yt yx yyEJ

EJ EJ EJ EJ
zt

zt zx zyEJ
EJ EJ EJ

G
G

G G G
G

G G G G

G G

   
     
                 

     (2.6.42) 

xt xx xy
HJ HJ HJtt
yt yx yyHJ

HJ HJ HJ HJ
zt

zt zx zyHJ
HJ HJ HJ

G
G

G G G
G

G G G G

G G

   
     
                 

        (2.6.43) 

 

And the electric and magnetic fields created in the structure due to any transverse current 

distribution will be given by: 

   
´

( ) ( , )́ ( )́ ´EJ t
r

E r r r J r drG              (2.6.44) 

   
´

( ) ( , )́ ( )́ ´HJ t
r

H r r r J r drG           (2.6.45) 

 

As a reminder, the only existing currents are the transverse currents: 

ˆ ˆ( ,́ )́ ( ,́ )́ ( ,́ )́x y

tJ x y J x y x J x y y  ,           (2.6.46) 

 

since the currents induced in the lateral walls (parallel-plates) were taken into account in 

the PPM expansion, which fulfil the boundary condition imposed by those walls. Also, 

the currents induced on the bottom metallic wall is contemplated in the equivalent 

transmission line, through ( )ˆ ( )p
mV z and ( )ˆ ( )p

mI z . 
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2.7. Equivalent Transmission Line Solution 

 

In order to express the variation of the fields in the z-direction, Maxwell´s equations led 

to a system of differential coupled equations, which were identified as the equations from 

two coupled transmission lines of different polarization.  

 

               
( )

( ) ( )

0

p
p pmTOTAL

zm m mTOTAL

dV
jk Z I

dz
                  (2.5.37) 

        
( )

( ) ( )

( )

0

p
p pmTOTAL zm

mTOTAL mTOTALp

m

dI k
V j

dz Z
j          (2.5.38) 

where ,m mx my , and will be so for the remaining of the chapter. 

 

( ) ( ) 2 ( )

, ,( ) ( )p p p

mTOTAL mx my m mx myV V z C V z                  (2.5.34) 

( ) ( ) 2 ( )

, ,( ) ( )p p p

mTOTAL mx my m mx myI I z C I z                                (2.5.35) 

( ) ( ) 2 ( )

, ,( ) ( )p p p

mTOTAL mx my m mx myj j z C j z                     (2.5.36) 

 

The general solution for a transmission line consist of a standing wave which is the sum 

of a progressive wave travelling in the propagation direction (remember it was the z-

direction to take into account the stratification) and a regressive wave travelling in the 

opposite direction. This can be described with next equations: 
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m

k
Z 0    (2.7.5) 



Chapter 2                                                                                                                                         The Method 

 

 

60 

Therefore, to express the modal scalar functions Vm
(p)

(z) and Im
(p)

(z), the equivalent 

transmission line must be solved, in which the stratified medium is transformed in a 

equivalent network in the z-direction, see Figure 2.7.1 below for clarification. 

jm

Zrad

z
Z=0 Z= LZ= -DZ= -D-H

Z(p)VAC
Z(p)DIE

Z(p)VAC

x

 

Figure 2.7.1: Equivalent Transmission Line. 

 

Since the transverse electric currents only appear in the metal strip, the equivalent current 

sources are located in that position, which is also the origin point in the z direction, that is 

z=0. The dielectric substrate has a width of "D", and it is at a distance "L" from the top 

wall and a height “H” from the bottom metallic wall. The metallization width is "W", and 

it must be thin enough to neglect the thickness, and therefore not consider any current in 

z-direction. The width of the PPW side walls is "a". The mathematics related to the 

transmission line resolution can be found in Appendix A Workout 6. 

 

The impedances for each medium and propagation constants are defined as showed 

below:  
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The aperture at the top of the waveguide will be modelled as the Markuvitz radiation 

impedance, based on the studies developed in [Markuvitz 1951]. This impedance was 

modified in [Gomez Jan-2005] to extend it to higher order PPM of both polarizations, 

resulting in the modal impedance 
( )p RAD
mZ .  

 

With this working out, the solutions for the normalized modal functions ( )ˆ ( )p
mV z  and 

( )ˆ ( )p

mI z  are obtained. Note that the resolution of the transmission line will obtain a 

different solution for each PPM and Floquet mode, since it depends on the indexes mx 

and my. This way, this method presents the advantage of being able to study the effect on 

the radiation of higher order modes. At this point, the only unknowns left to solve are the 

propagation in the longitudinal direction of the LWA and the currents induced on the 

planar metallization. Both will be dealt with in the next section. 

 

 

 

2.8. Method of Moments 

 

In this section, the integral equation technique developed throughout this chapter will be 

used to solve a general case of the shielded microstrip-line structure under study. The 

particular transmission line model was derived and now the appropriate boundary 

conditions will be imposed to formulate the Electric Field Integral Equation (EFIE). 

Finally, the Method of Moments (MoM) will be used to solve the EFIE. 

 

2.8.1. Boundary Conditions 

 

Equations in the previous section model the voltage and current standing waves created 

in the equivalent transmission line represented in figure 2.7.1. They were developed in 

Appendix A Workout 6 and can be summarized as follows: 
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It can be checked how the voltage is zero on the top and bottom metal walls while the 

current reaches a maximum. These functions also satisfy the boundary conditions with 

the current source in z=0. It is also remarkable to say that, while the voltage is continuous 

in z=0 (V(z=0
+
)=V(z=0

-
) ), the current is not, since the current of the source is split into 

I(z=0
+
) and I(z=0

-
). Note also the sign minus in equations (2.8.1.4), since the direction of 

the equivalent current must not be changed for a correct analysis. 

 

All the functions needed in the integral equations can be expressed analytically, which 

will translate into a low computational cost. For the problem we are interested in, the 

fields described with the integral equations satisfy all the next boundary conditions: 

 Side metal walls in the x axis due to the modal vector functions of the PPW. 

 Stratified medium in z axis and top and bottom metal walls due to the modal scalar 

amplitude functions of the equivalent transmission line. 

 Maxwell´s equations, including coherence with the electric source located at z=0 

and propagation phenomena in all directions (including the y-axis). 

 

The only boundary condition which is not satisfied yet is the field behaviour on the 

printed circuit, at z=0, since: 

 

1. On the metallization strip located in z=0 with a width "W", the transverse electric field 

Et must be zero, and this condition is not satisfied by the modal vector functions Vm
(p)

(z) 

at z=0. In fact, although these scalar modal functions are not zero at z=0 individually, the 

modal summation should make the total transverse field be zero, accordingly to equation 

(2.6.32). The longitudinal magnetic field Hz, must be zero over the metallization as well, 

but as can be seen by equation (2.6.34), the behaviour of Hz is closed related to the 

variations of Et, and both boundary conditions are dependent. 
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2. The transverse magnetic field Ht is discontinuous at z=0, as we have just seen by 

equations (2.8.1.3) and (2.8.1.4). This discontinuity is due to the excitation source located 

at z=0, and therefore must exist only on the metal strip and must be coherent with the 

electric current density. The longitudinal electric field Ez must be also discontinuous 

since electric charge density might exist on the metal surface, but this boundary condition 

is again dependent on that of Ht, since the Continuity Equation relates the electric charge 

density variation with its corresponding electric current density. 

 

3. Therefore, outside the metallization of width "W", the transverse magnetic field Ht 

must be continuous, since no electric current density can exist. From equations (2.8.1.3) 

and (2.8.1.4), it can be seen that Im
(p)

(z) at z=0 is not a continuous function, and again, the 

modal summation must make the total field be zero outside the metallization. 

 

These three boundary conditions must be satisfied to find a valid solution for the 

electromagnetic fields in the shielded microstrip line. These conditions can be written 

mathematically as follows: 
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All of these equations are integral equations, since an integral between the Green´s 

functions (obtained in section 2.6) and the transverse currents Jt must be performed to 

obtain the fields. The first is called Electric Field Integral Equation (EFIE), while the 

second and the third equations are Magnetic Field Integral Equations (MFIE).  
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In this way, we can write the EFIE which describes the electromagnetic problem of the 

shielded microstrip transmission line using the expression for the transversal electric field 

that was obtained through the Green function in (2.6.32), in the Appendix A: 
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Where the coefficient
( )p
mA  is given in (2.6.31), and accounts for the contributions of 

each PPM and Floquet mode to the fields in the structure. This term also contains the 

transversal currents. Again, now that the problem has already been formulated, it is 

important to remark that the transverse distribution of current on the metal strip, Jt, is 

still unknown, and also the wave number in the y direction, kmy. 

 

 

2.8.2. MoM - Galerkin. 

 

The Method of Moments (MoM), introduced in Chapter 1, will be used to express the 

current density and obtain a homogeneous system of linear equations which can be 

solved only for certain kmy solutions, leading to the valid current and field distributions. 

The EFIE will be transformed to a matrix equation by the use of MoM, and the solution 

of the matrix equation will yield the surface current distribution on the microstrip. 

 

To discretize the EFIE (2.8.1.8), the unknown transverse current density Jt will be 

expanded with a set of basis functions. These functions are separated in two, ( ')nxf x  for 

the dependence in x and ( ')nyg y for the dependence in y, being nx and ny the 

coordinates where the basis functions exists. Depending on the nature of these basis 

functions (Entire Domain or Subdomain functions), the formulation of the problem will 

have a different approach. The use of Roof-top basis functions will be the main novelty 

introduced in the method developed throughout this thesis, and will be the object of study 

in next chapter. For now, a subdomain general case will be considered. 
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   (2.8.2.1) 

 

 

Next modal coefficients are obtained: 
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It can be seen how the continuous EFIE (2.8.1.8) has been transformed into a discrete 

equation in which now it appears ( )Cx Cy  unknown coefficients, namely 
X

Bx  

and
Y

By . The number of basis functions Cx and Cy, and therefore the number of 

coefficients needed, will depend on the number of cells necessary to describe the 

geometry, that is to say, the convergence of the problem, and will be dealt particularly for 

each structure. 

 

To solve those ( )Cx Cy  unknown current coefficients, it is needed ( )Cx Cy  

independent equations. As it was explained, the third step in the MoM procedure (after 

expressing the integral equation and discretizing the unknown function using basis 

functions) is to use test functions to obtain a set of "weaker" boundary conditions. 

 

The Galerkin technique, which employs identical basis and weighting functions, yields 

to more accurate and rapidly convergent numerical results than other testing methods, see 

[Wang 1991] and [Chan 1990]. It also leads to a simple analytic basis and test integrals 

and allows the re-use of code, reducing the computation time. 
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Basis and test integrals derived from equation above are defined as follows. For the 

complete mathematical solution, see Appendix A Workout 7.  
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                                                  ( )myjk yEY Y

TY ly
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I e g y dy

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Note that the indexes lx and ly stand for each different equation obtained when using the 

corresponding test functions. To understand the difference between them and the basis 

functions indexes, it must be clear that: 

 

 - xn  and yn  stand for the spatial coordinates where the basis functions, that model 

 the currents that produce the fields, exist (in other words, where the cell is 

 located). 

 - xl  and yl  stand for the spatial coordinates where the test functions, that average 

 the observed field, exist. 
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Note also that the integration variable in the test is "r" and not "r´", since the integration 

is performed in the domain where the electric field is evaluated, and not in the current 

domain, where the variable is "r´". In order to make clear the physical meaning of these 

integrals, a brief description of them could be: 

 

EX

BXI  stands for the current that varies on ˆ 'x  and depend on ˆ 'x . 

EX

BYI  stands for the current that varies on ˆ 'x  but depend on ˆ 'y . 

EY

BXI  stands for the current that varies on ˆ 'y  but depend on ˆ 'x . 

EY

BYI  stands for the current that varies on ˆ 'y  and depend on ˆ 'y . 

EX

TXI  stands for the field that varies on x̂  and its dependence on x̂  is being tested. 

EX

TYI  stands for the field that varies on x̂  but its dependence on ŷ  is being tested. 

EY

TXI  stands for the field that varies on ŷ  but its dependence on x̂  is being tested. 

EY

TYI  stands for the field that varies on ŷ  and its dependence on ŷ  is being tested. 

 

Both equations (2.8.2.4) and (2.8.2.5) are expressed using an infinite amount of modal 

functions of the PPW and the Floquet modes. However, these infinite series cannot be 

handled by a computer, and therefore the series must be truncated by a number "Mx" of 

modal functions (Mx for TE
z
 and Mx for TM

z
 modes) for the PPW and a number “My” 

of modal functions (again My for TE
z
 and My for TM

z
 modes) for the Floquet modes. 

This truncation problem will be dealt with when studying the convergence of specific 

geometries. 

 

The matrix "P" is called the Moment Matrix and it is defined as shown below in 

equation (2.7.2.18). By its application, equations (2.8.2.4) and (2.8.2.5) can be rewritten 

in following matricial form: 

 

,
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0

ˆ (0)EX EX EX EX EX

JX BX BY TX TY

TE TM
p

m
p mx my

P I I I IV
 

 

        (2.8.2.14) 

,
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0

ˆ (0)EX EY EY EX EX

JY BX BY TX TY

TE TM
p

m
p mx my

P I I I IV
 

 

        (2.8.2.15) 
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        (2.8.2.18) 

 

In a homogeneous system of linear equations, in order to ensure non trivial solution of 

the system, the determinant of P matrix must be equal to zero. It is in that assumption 

where the resolution of the electromagnetic problem, and therefore the solution for the 

myk  lies, since all the functions involved in the problem are analytical functions which 

depend on the unknown variable
myk . Note that this variable stands for the propagation 

constant of the transmission line in its longitudinal direction.  

 

Since the determinant is a complex function which depends on the complex variable 
myk , 

the search for the solution will become a search for a zero in the complex plane. For 

this purpose, the iterative algorithm developed in [Gomez Jan-2005] is used. The search 

starts with the real solution of 
myk for the completely closed structure and gradually, the 

top-wall is changed from the impedance of a short-circuit to the final modal Markuvitz 

radiation impedance, corresponding to the completely open structure. This transformation 

must be carried out in small steps in order to provide a smooth transition to the accurate 

solution. It is important to note that for a given PPM order, the Floquet harmonics will 

have a different phase constant my  but share the same attenuation constant my , since all 

the family of harmonics belonging to the same PPM are ‘coupled’. This complex search 

is the only numerical calculation required in the present method, representing the highest 

computational cost of this technique. All the expressions derived in this chapter and those 

expressions to calculate the currents, fields and radiation pattern from the complex value 

of 
myk  are analytical. 
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CONCLUSION 

 

In conclusion, the main advantages of the method developed in this chapter are: 

 

- The Spatial Domain approach avoids dealing with complex Fourier transforms. 

 

- The use of modal expansions (PPM, thanks to shielded nature of the structure) avoids 

the numerical resolution of the problem, since all the expressions will be analytical. 

 

- Galerkin technique allows for simple analytical expressions for the basis and test 

integrals, and a direct relation between them. 

 

- The solutions are accurate since it is a full-wave method: it accounts for all the PPM, 

not only the main one, responsible for the radiation. This is possible since the series of 

PPM are orthogonal (it is contemplated the case in which it is not as coupling between 

modes) and so are the Floquet modes. 

 

- The method allows the simultaneous radiation of Floquet harmonics, higher order 

PPM and other modes. This is important, since other modes radiating, apart from the 

main PPM, will lead to secondary lobes and degrade the radiation pattern. 

 

 

Until now, previously developed methods to analyze and design laterally shielded LWA 

were limited to the use of Entire Domain basis function to model the transversal currents 

in the structure. In this work, Subdomain basis functions are proposed for the first time 

to build a novel full wave method able to deal with arbitrary geometries for the planar 

metallization, which was not possible with the previous methods (restricted to rectangular 

patches or slots). Next Chapter is exclusively dedicated to the study and discussion of the 

Subdomain basis functions that will be introduced in this method, as well as to validate 

those results with this new approach. 
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CHAPTER 3 - BASIS FUNCTIONS 

  

Where a novel combination of Spatial Domain Method of Moments + Subdomain basis 

functions is developed and validated. 

 

 

In Chapter 2, the EFIE was defined and the MoM applied to it, modelling the currents 

with a set of basis functions and the corresponding set of unknown coefficients   , 

therefore discretizing the problem into the matrix equation    0P   . At this point, the 

propagation constant is obtained by solving  det 0P  , and after that, the calculation of 

the currents coefficients is straight forward. The maths were developed for a general case 

of subdomain basis functions. In the present chapter, different options for the basis 

functions are discussed: those used in previous computed models (Entire domain) and a 

new approach to analyze this type of LWA, the Subdomain basis functions. The latter 

will be the key to the high versatility of the proposed method. 

 

The choice of the appropriate set of basis functions and test functions is decisive to solve 

the electric currents density on the metallic printed circuit (or magnetic currents in the 

case of apertures), a priori unknown, with enough accuracy and at reasonable computing 
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cost. The basis and test functions will determine the complexity and size of the MoM 

matrix. There are two main families of these functions that can be found in the literature: 

  

 - Entire domain functions: They have support on the whole structure or object 

under analysis. It is plain that there’s no need to mesh the geometry. Examples of this 

kind of functions are polynomial functions (Tchebycheff), sinusoidal functions, Legendre 

functions, Maclaurin functions... 

 

 - Sub-domain functions: In this case the functions only exist within a cell defined 

by a mesh on the geometry of the structure. There are several types of mesh, as 

rectangular, triangular etc. Or even more, it can be uniform or not. 

 

 

Figure 3.1: a) Entire Domain basis functions and b) Sub-domain basis functions. 

 

 

 

3.1. Entire domain Basis Functions 

 

These are complete domain functions, since they exist on the entire element under 

analysis. Each function overlaps with itself and the rest of the functions of the set, since 

they share the domain, and they present a good convergence in simple regular 

geometries. They can be seen as “current modes”, so the coefficients 
i  are complex 

scalars defining the amplitude and phase of the corresponding current mode. This type of 

basis functions is more adequate when the shape of the unknown function is known a 

priori, although not the exact form. 
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To build a consistent and versatile analysis tool and to check its results with previous 

computed models, the method was first developed for a set of Entire domain basis and 

test functions. These functions must satisfy the boundary conditions of the currents at 

the edges of the metallization. Figure 3.1.1 shows the distributions of the currents 

induced on a periodic metallic patch on a LWA structure (see picture of the structure on 

Figure 3.3.1), obtained with a simulation with 5 basis functions for each x and y 

directions.  

 

Figure 3.1.1: Normalized surface currents for a metallic patch. 

 

The chosen set of basis functions is sinusoidal, as shown in the next equations. Due to 

the periodic nature of the structure, each of the current distributions on the patch ( xJ  

and yJ ) possesses two components. The upper index refers to the direction of the current 

that the basis functions models, either xJ  or yJ .  

 

( ') sin 'X

nxf x nx x
W

 
  

 
  (3.1.1)                      ( ') cos 'X

nyg y ny y
Q

 
  

 

  (3.1.3)                                 

( ') cos 'Y

nxf x nx x
W

 
  

 
  (3.1.2)                       ( ') sin 'Y

nyg y ny y
Q

 
  

 
  (3.1.4) 

 

Where nx and ny are the order of the sinusoidal basis functions, and W and Q are the 

width and length of the metallic patch, respectively. The expanded currents using the 

basis functions are of the form: 
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( ', ') ( ', ') ( ', ')x yJ x y J x y J x y                                                     (2.8.2.1)
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nx xy nx ny nx ny nx ny
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f x g y x f x g y y e 
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 

          

 

As explained in the previous section, the Galerkin method of resolution uses the same 

functions for the basis and for the test. The difference lies in the space where the 

functions are defined or evaluated, (x´, y´) in the case of the basis functions and (x,y) in 

the test functions. In the same way, the indexes that define the functions are named 

differently. It is important to notice that, while the indexes nx and ny in the case of the 

basis functions represent the harmonic variation of the functions that model the currents, 

the indexes lx and ly stand for the harmonic variations of the test functions that average 

the observed field in the integral equation. It can be seen how the meaning of the 

indexes in the Entire domain changes drastically from the one presented in Chapter 2 

section 2.8.2 for the Subdomain general case. While the index of the basis functions for 

the SD formulation depends on the cell which the function exists physically on, in the 

Entire domain case, it represents the order of the basis function, making a summation that 

will model the current. For a structure simulated with Nx basis functions in the x 

direction (nx =0,1..Nx) and Ny basis functions for the y direction (ny =0,1..Ny), the sizes 

of the matrices used to calculate the determinant of the MoM matrix, [P], presented in 

Chapter 2 section 2.8.2 are shown in Table below: 

 

EX

BXI  
EY

BXI  
EX

TXI  
EY

TXI   1xN  by (Floquet and PPM modes) 

EX

BYI EY
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TYI  
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EX

JXP  
EX

JYP EY

JXP EY

JYP    1 1x yN N  by   1 1x yN N   

 
EX EX

JX JY

EY EY

JX JY

P P
P

P P

 
  
 

 

 

2   1 1x yN N   by  2   1 1x yN N   

Table 3.1.1 Matrix dimensions for Entire Domain basis functions. 
 

 

The complete working out of the final expressions for both the basis and test integrals 

using the ED basis functions can be found in the Appendix A Workout 8. 
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The purpose of developing the method for ED basis functions was double. First, to make 

the software even more flexible, since the user can choose the suitable type of basis 

functions depending on the geometry to analyze (an advantage when the geometry is 

simple and the computing resources are limited), and second, as a milestone to verify part 

of the coded method before changing to a more complex kernel to add the Subdomain 

functionality. This is why the same set of sinusoidal basis functions than in [Gómez 

March-2006] was chosen. Along this Chapter, several simple structures analyzed in 

articles by said author and others will be studied for illustrative and verification purposes. 

 

To validate the results obtained with the ED basis functions, a periodic LWA analyzed by 

Guglielmi in 1991 using the Transverse Equivalent Network method [Guglielmi 1991] 

will be studied. This structure is presented at the top of Figure 3.1.2. The dimensions of 

this antenna are: a=1.4mm, D=1.4mm, L=2.8mm, P=3.38mm, Q=2.366mm and r =9. In 

the same Figure, the radiation angle of the main beam (left-hand figure) and the 

attenuation constant (right-hand figure) are shown. The results obtained with the method 

developed in the previous chapter using ED functions are plotted together with those 

obtained by Guglielmi. There is an excellent agreement between both results. Same 

analysis was developed in [Gomez March-2006], using the method for the ED functions, 

and the results obtained were practically identical to those shown in 3.1.2. The 

phenomenon of backward scanning and bandgap, which can be appreciated in both 

dispersion curves, will be introduced and explained in depth in later chapters. 

 

 

Figure 3.1.2 Dispersion curves for ED based Method vs. results from Guglielmi structure. 
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In Figure 3.1.3 the normalized surface currents induced on the metallic patch are 

modelled for the Guglielmi antenna using Entire Domain sinusoidal basis functions, at 

40GHz.  It can be checked that the current distribution obtained by this method fulfils the 

required boundary conditions. The currents in the longitudinal y direction are negligible 

while the currents in the x direction are not zero at the edges of the metallic patch, since it 

is touching the metallic side walls of the waveguide. On the right hand side of the same 

Figure, the transversal electric field at the same frequency is illustrated. As was 

previously explained in Chapter 2, it can be seen how the TE10 has an inherent horizontal 

polarization that radiates even if the planar geometry is perfectly symmetric. 

 

         

Figure 3.1.3 Normalized surface currents on the metallization and transversal electric field. 

 

 

The Entire Domain basis functions based method, results and convergence were 

extensively checked and validated in the literature (reader may refer to all [Gomez *] 

references). It can be seen that the developed code matches perfectly with these 

previous results, fulfilling the goal of this first step, which was to settle a solid base as a 

starting point to increase the complexity of the method. By extending the mathematical 

workout presented in Chapter 2, this method will be able to deal with general purpose 

basis functions, the main novelty in the analysis of this type of leaky-wave antennas 

presented in this work. 
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3.2. Subdomain Basis Functions 

 

The use of Entire Domain basis functions allows a significant reduction in the MoM 

matrix size compared to the case where Subdomain type functions are employed, 

provided the geometry is limited to a simple rectangular strip or slot. Geometries of light 

complexity as the cross-dipole, square loop and Jerusalem cross have been successfully  

modeled with the use of more elaborated Entire domain functions, tailored specifically 

for each one of those geometries, see [Tsao 1984] and [Bozzi 2005], resulting in 

extremely fast algorithms. An excellent overview of this element specific ED functions 

can be found in [Mittra 1988]. The major drawback is that the developed code is only 

applicable for the specific geometry; for any new geometry, a new set of suitable ED 

basis functions must be found, if ever possible, and introduced in the analytical integrals 

to create a new simulation code. 

 

Entire Domain functions appear as the logical choice to solve problems for electrically 

large structures, since the computing cost will be the main concern. However, as was 

detailed in Chapter 2, the analytical nature of the proposed method together with the 

simplification of the whole 3D problem into the analysis of a 2D current distribution (a 

general 2.5D problem) represents a more than considerable reduction of the 

computational cost. Also, matricial treatment of the data will speed up the calculations 

when using Matlab, as will be explained in Chapter 4. Furthermore, for arbitrary 

geometries, suitable ED basis functions are not, most of the times, available. Based on 

these premises, the way to move forward in the field of study of the LWA, was to open 

the door to the subdomain approach. The present work is aimed to be a general-use 

method, so the capability to analyze arbitrary shaped printed circuits, thanks to the 

Subdomain approach, has been chosen over the extreme reduction of computational cost, 

inherent to the use of ED functions. 

 

The most popular sub-domain functions found in literature are Pulse, Roof-Top and 

RWG basis functions. Pulse functions are uniform on each cell, which leads to 

discontinuities problems when modelling the current density. Roof-Top and RWG 

functions are not affected by this issue since they overlap on adjacent cells.  
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The use of sub-domain functions requires meshing the geometry of the structure under 

study. Different types of meshing can be applied depending on the chosen sub-domain 

basis functions, in order to get an acceptable accuracy modelling the contour of the 

geometry. For the development of the proposed method, rectangular mesh with Roof-

Top basis functions will be applied. 

 

 

3.2.1. Roof-tops basis functions 

 

The Roof-Top functions ([Becks 1992], [Mittra 1988]) are defined as the product of 

triangular or piecewise linear functions along the direction of the current flow (over two 

cells) and of step or piecewise constant functions in the orthogonal dimension (over one 

cell). The centres of the functions directed in x and directed in y, represented by red 

circles and black crosses respectively, are offset by ,
2 2

x y  
 
 

.  This type of functions are 

the most commonly used due to its good performance in convergence and accuracy in the 

estimation of the current density, unknown a priori, with a relative small number of basis 

and test functions.  

 

Jx

Jy

y

x

∆y

∆x

 

Figure 3.2.1.1 Roof-Top functions on a metallic patch. 
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Where nx and ny are the indexes for the cells in the x and y direction, respectively, and 

x  and y  are the lengths of the cell in each direction. Traditionally, it had to be 

necessarily an N x N cells mesh, so the FFT could be applied, which is not necessary in 

the present method. Since the method is developed in the spatial domain, it is possible 

to have a different number of cells in each direction. 

 

 

The current expansion for Subdomain basis functions varies from the one used in the case 

of the Entire Domain. Now the current is evaluated in each cell of the grid, so in the n
th

 

cell it can be expressed: 

 

( ', ') ( ', ') ( ', ')x yJ x y J x y J x y     0 '
ˆ ˆ( ') ( ') ( ') ( ') yjk y

x yf x f y x f x f y y e 


  

 

The basis and test integrals needed in the Green Functions obtained in Chapter 2 are 

now defined as shown in Table 3.2.1.1, introducing the roof-top expansion functions in 

expressions from (2.8.2.6) to (2.8.2.13). The analytical expressions for the basis integrals 

can be found in Appendix A Workout 9. 
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Table 3.2.1.1 Roof-Tops basis and test integrals 

 

 

Test integrals are more easily solved following a similar workout, producing similar 

results. They are not shown in the Appendix, since it does not present anything new. As 

can be figured out, there is a direct relation between basis functions integrals and test 

function integrals, which will make possible the re-use of modules of code, decreasing 

the computational cost. 

 

 

3.2.2. Edge conditions and current continuity.  

 

The current induced on a metallic patch is expected to have certain edges conditions. In 

order to minimize the number of functions required to model accurately the current, it is 

desirable that these functions satisfy the appropriate edge conditions.  

 

Some authors have suggested having an irregular grid for both dimensions, [Glisson 

1980] and [Pearson 1985], meaning the meshing is such that half a cell is left out of the 

analysis at the edges of the structure, so that the centers where the functions are evaluated 

do not fall along the edges (nor on corners or bends), where the charge is singular. This 

mesh can be used satisfactorily when using pulse or triangular basis functions, which are 

not separable in each dimension and do not satisfy the edge conditions by themselves. 

This mesh is not recommendable when using Roof-Tops, which have a different variation 

for the x-directed and for the y-directed currents. 

 

For a metallic patch, the Roof-top triangles approach zero in the direction of flow at the 

patch edges, and the Roof-top steps are non zero in the direction of flow parallel to the 
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edges, allowing for the representation of the edge singularity. As can be seen on Figure 

3.2.1.1, to satisfy this edge condition and generate correct results, the centers of the x-

directed and the y-directed roof-top functions need to be offset [Park 1998].  

 

Each subsection of the current (the triangle-step doublet) extends over two cells of the 

grid, longer in the direction of the current, with at least one x-directed and y-directed 

roof-top overlaying at each cell, ensuring the current continuity.  

 

           
Figure 3.2.2.1 Current distributions on the metallic patches. 

 

 

Figure 3.2.2.1 shows the obtained currents distributions for the periodic metallic patch 

structure using Roof-Tops at 10 GHz for a uniform mesh of 10x10 cells. It can be seen 

how the currents are continuous functions that fulfil the edge conditions discussed above. 

In previous section, Figure 3.1.1 showed the currents distributions modelled with 

sinusoidal Entire Domain basis functions for exactly the same patch geometry at 10 GHz 

too. Comparing both results, it can be easily seen that they have a very good agreement 

on normalized value and shape, validating the use of Roof-Tops with the MoM method. 

In any case, modelling the currents with the use of triangle and pulse variations over a 

meshed geometry results in less smooth plots, unless we use a very large number of cells. 

This is unnecessary in order to obtain accurate results, given that in the present example, 

a mesh of 5 by 5 cells of the metallic patch was enough to produce correct numerical 

results in terms of propagation constant and fields. The 10 by 10 mesh was merely used 

to present a matching between the ED and SD modelled currents plots. 
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3.2.3. Meshing criteria. 

 

The Roof-Top basis functions have been used for decades now, but there is still some 

confusion when it comes to choose the correct mesh or where exactly to place the 

function upon the cell. In this section it is intended to contemplate several options from 

the literature and contrast the results. 

 

 

The first issue to assess is the use of a uniform or non-uniform rectangular mesh. The 

first one will produce an N x N grid for each direction of the current. When working with 

Spectral Domain methods, this allows the use of the FFT for the summation in the MoM 

matrix. In [Mittra 1988] it was established that an N x N grid was strictly necessary, 

although two years later, the same authors extended the possibility to use the FFT for N x 

M grids [Chan 1990]. On the other hand, by choosing freely the size of the grid (Nx x 

Ny), the mesh can be optimized to accurately model the geometry with a minimum 

number of cells. As said previously, since the proposed method applies the Spacial 

Domain Green functions, there is no need for considerations about the grid being the 

same size for both dimensions, so Nx and Ny may be of different size. 

 

A general meshing for Roof-Top functions is presented in [Rubin 1983] and [Park 1998], 

illustrated in Figure 3.2.1.1, where a grid of (Nx x Ny) cells is applied, with uniform size 

of the cells defined by x  and y , so the same set of cells is applied for calculating both 

the distribution of current along the x-axis and y-axis. For geometries in which the metal 

extends across periodic cell boundaries, Roof-Top functions are placed such that the 

current is directed across the boundary into the adjacent periodic cell. Since the currents 

at both sides of the periodic boundary are related by Floquet, it is only necessary to 

analyze one of them. 

 

Figure 3.2.3.1 below shows the Ny by Nx cells mesh for the metallic square loop printed 

circuit. From the 132 total cells, only 76 of them are metal filled, pictured in gray. Only 

those will be considered for the existence of basis functions. This way, each blue filled 

cell will allocate a Roof-top basis function (in red), making a total of Cx=58 basis 

functions for the currents directed in x. Likewise, a basis function directed in y will exist 

on each pink shadowed cell, computing Cy=56 functions or unknowns.  
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y

x

Ny=11 by Nx=12 

132 cells mesh

y

x

y

x

Cy= 56 unknownsCx= 58 unknowns

 

Figure 3.2.3.1 Mesh for the Roof-Top basis funtions. 

 

 

For calculating the determinant of the MoM matrix, [P] must be square (see Chapter 2). 

Considering the case of a periodic metallization that do not extend to adjacent cells and a 

mesh of (Nx x Ny) cells, the sizes of the matrices used in the MoM are: 

 

 

EX

BXI  
EY

BXI  
EX

TXI  
EY

TXI  xC by (Floquet and PPM modes) 

EX

BYI  
EY

BYI  
EX

TYI  
EY

TYI  yC  by (Floquet and PPM modes) 

EX

JXP    xC by xC  

EX

JYP  xC by yC  

EY

JXP   yC by xC  
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JX JY

EY EY

JX JY
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P
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 
  
 

 

 

x yC C  by  x yC C  

Table 3.2.3.1 Matrix dimensions for rectangular uniform mesh. 
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yC  and xC  are the number of unknown coefficients for the y directed current 
yJ  and the 

x directed current xJ , and those will depend directly on the geometry. Note that the 

matrix dimensions containing the PPM and Floquet modes are not shown, since they are 

non-dependant on the planar metallization mesh. It can be seen that a square matrix P is 

obtained, for a rectangular mesh with any value of Nx and Ny.  

 

Comparing the matrix dimensions obtained for the Roof-top basis functions case with the 

Entire domain case, previously mentioned in Table 3.1.1, it can be easily noticed how the 

matrices of the basis and test integrals are significantly larger in the subdomain approach: 

considering the example above in Figure 3.2.3.1 for the square loop, 
EX

BXI  is of the order 

of 58 by (Floquet and PPM modes) versus the size in the case of working with Entire 

domain and assuming a square metallic patch, 6 by (Floquet and PPM modes). This is the 

reason for the rise in the computational cost in the case of Subdomain basis functions 

approach, since the calculation of the analytical expressions of these integrals represents 

a considerable part of the code. In Chapter 4, a way-round this inconvenience will be 

presented, with a formulation midway between the Entire Domain and the Subdomain 

approach.  

 

 

3.2.4. Convergence. 

 

As seen in Chapter 2, the fields inside the structure were expanded in a set of PPModes in 

the x-direction and, for each PPM, in a set of Floquet armonics in the y-direction, where 

the periodicity lies. When using sub-domain functions, as the number of cells increases, 

the number of PPW modes and Floquet modes needed to reach convergence grows 

exponentially. This is so because when the number of cells increases, so does the number 

of basis functions and more variations are contemplated in the currents expansion. It is 

logical that a larger number of PPM and Floquet modes are necessary to model the fields 

that those currents generate. Specifically for Roof-Top functions, it is documented that  

Galerkin procedure converges much faster than other testing procedures [Chan 1990]. 
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Figure 3.2.4.1 shows the variation of the function determinant of the MoM matriz P with 

the number of PPM and Floquet modes, for the rectangular patch analyzed in Figure 

3.2.1.2., at 10 GHz. Each determinant function is normalized so all the graphs could be 

plot on the same axis. Each line corresponds to a different number of cells, Nx for the 

divisions on the x-direction and Ny for those on the y-directions, resulting in lines for 16, 

25, 36 and 49 cells respectively, which are more than enough for this simple geometry. 

This type of convergence study is quite fast since it does not require a search in the 

complex plane and gives a very good first idea of the number of expansion modes that a 

certain number of cells needs to obtain accurate results. It can be observed how, as the 

number of cells increases, the number of modes does too in order to converge. In the case 

of the patch, for 25 cells (blue dashed line), by visual inspection, it is enough with 75 

PPM and 50 Floquet modes, for 36 cells it increases to 125 PPM and 75 Floquet modes 

and finally for 49 cells it reaches about 150 PPM and 100 Floquet modes. It seems an 

excessively large number of required modes, given that the number of cells is relatively 

small. 

 

     

Figure 3.2.4.1 Convergence of the function Det(P). 
 

 

This phenomenon should not be confused with the concept introduced by [Mittra 1963] of 

relative convergence that occurs using the Mode-Matching technique, in which unless an 

optimum number of modes was selected, correct results could not be obtained, even when 

using large numbers of modes. After [Mittra 1972], some authors believed that this effect 

was also applicable to integral equations solved by the Moment Method. Although it is 
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true that when using discontinuous basis functions convergence problems may arise, 

Mittra himself established in [Mittra 1990] that there was no proof that this phenomenon 

was applicable for the analysis of FSS and shielded microstrip configurations (similar to 

the structure analyzed in this work), and to obtain accurate results it is necessary to rely 

on absolute convergence.  In other words, since the present method uses continuous 

basis functions that fulfil the edge conditions, the number of those basis functions and 

modes necessary to converge must be obtained by experience, increasing the number of 

modes until the variation is practically non-existent. 

 

Although the study of the determinant of P variation was a good approximation to the 

number of modes required to reach accurate results in those previous works developed 

for the Entire Domain [Gomez March-2006], the author considers it is not so reliable for 

the case of subdomains functions. By practical experience, analyzing different geometries 

with the method presented in this work, it was probed that the amount of modes that 

resulted in convergent values for the propagation constant was far less than those 

predicted by the convergence study of the det(P).  

 

Figure 3.2.4.2 shows the new proposed convergence study, directly in the complex plane, 

where the search for the zero of the determinant takes place. Both graphs represent how 

the complex zero moves in the complex plane for the same patch structure, at 10GHz, for 

a mesh of 25 cells. Figure 3.2.4.2 a) represents the variation of the modal solution as the 

number of Floquet modes My increases from 5 to 60 (following the direction of the 

arrow). Figure 3.2.4.2 b) represents the same variation but for the number of PPM, from 

Mx=10 to Mx=80. It is important to remember that, while the number of PPM expands 

from 0 to Mx, the Floquet modes are defined from -My to +My. This is the reason why a 

smaller number of Floquet modes is always taken. From these results, it can be seen that 

with 40 PPM and 20 Floquet modes it is more that enough to obtain an accurate solution 

for the 25 cells patch. Comparing this with the previous estimation from the det(P), 75 

PPM and 50 Floquet modes, it can be concluded that the determinant function variations 

with the number of modes is superior to the variation of the position of the zero in the 

complex plane, and therefore, not to take into account when working with subdomain 

functions. 
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My=10

My=15

My=20
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Figure 3.2.4.2 Convergence in the complex plane.  a) My =Floquet modes. 

 

Mx=10

Mx=15

Mx=20

Mx=25

Mx=30

Mx=40

Mx=60

Mx=80

 

Figure 3.2.4.2 Convergence in the complex plane. b) Mx =PPM. 
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The convergence for subdomain based techniques depends mostly on the number of cells 

in which the planar metallization is meshed, which is not applicable to the entire domain 

dependence to the number of basis functions. In Figure 3.2.4.3 and 3.2.4.4, the same 

previous convergence study in the complex plane is extended to different number of cells. 

The blue dashed line for the 25 cells mesh from Figure 3.2.4.2 is exactly the same that the 

one in the next two figures. As expected, the more number of cells, the more modes to 

model the fields are needed, although given the scale of the axis, the variation is very 

low. It can be seen again that a larger number of PPM than Floquet modes is required for 

each of meshes. 

 

 

To My=50

From  My=5

To My=60

From  My=5

From  My=5
To My=70

 

Figure 3.2.4.3 Modal solution convergence in the complex plane for Floquet modes. 
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To Mx=60

From  Mx=10

To Mx=80

From  Mx=10

From  Mx=10

To Mx=90

 

Figure 3.2.4.4 Modal solution convergence in the complex plane for PPM. 

 

 

 

When working with Entire Domain basis functions, it was demonstrated in [Gomez 

March-2006] that the solution of the mode depended little with the number of basis 

functions used, it was much more dependant on the number of PPM and Floquet modes 

to converge. In the Subdomain approach, Figure 3.2.4.3 and 3.2.4.4 show how the 

number of PPM and Floquet modes affect relatively little to the result, in comparison 

with the effect that the number of cells has on it, which will be dominant and dependant 

on the geometry. Even more, due to the simplicity of the patch, in this case there is not a 

significant difference in the propagation constant results obtained for the 5 by 5 grid and 

the 7 by 7 grid. This little variation with the number of cells is best observed in Table 

3.2.4.1 below: 
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Ny \ Nx 5 6 7 

5 105.5738 - 47.0365i 105.8320 - 47.2794i 106.0229 - 47.4522i 

6 105.5859 - 47.0301i 105.8540 - 47.2719i 106.0448 - 47.4440i 

7 105.6038 - 47.0279i 105.8718 - 47.2690i 106.0674 - 47.4428i 

Table 3.2.4.1  Modal solution convergence with the number of cells. 
 

 

To give a rough idea of how little variation exists between these results, the aiming angle 

of the main beam for the 5 by 5 mesh solution is 30.27º and for the 7 by 7 mesh, it is 

30.42º. After the results of these studies, it can be concluded that the proposed technique 

presents a good numerical convergence behavior. In any case, before initiating the study 

of any new geometry, a convergence analysis must be done, in a certain order: 

 

- First, the number of cells must be chosen adequately to the geometry complexity. A 

study similar to that presented in Figures 3.2.4.3 and 3.2.4.4 is perfect for this purpose. 

 

- Second, truncating the PPM and Floquet modes summatories, by including more and 

more PPM and Floquet modes until the result does not change. Again, these results are 

included in the study of Figure 3.2.4.2. By zooming in, it can be decided the number of 

modes from which the variation in the complex plane for a given number of cells is 

negligible. 
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3.3. Validation Results 

 

A very simple LWA will be analysed in order to validate the results of the Subdomain 

code versus the Entire domain method based on the PAMELA software, and already 

checked in previous section. In this structure the width of the aperture a = 8 mm and the 

periodicity P =10 mm. A graphical description of the structure is presented at the top of 

Figure 3.3.1. and it is based on the one studied in [Vardaxoglou Apr-1997]. The metal 

patches are 5 mm x 7 mm, the dielectric ( r =3) is 0.37 mm thick and the length of the 

stubs at the top of the waveguide is L= 7mm.  The Table 3.3.1 below shows the number 

of Floquet/PPM basis functions for the Entire domain and the number of cells in the 

Subdomain case used in the simulation. Also the number of PPW modes and Floquet 

modes needed to reach convergence in the solution 
yk i    using sinusoidal basis 

functions and in the case of Roof-Tops functions respectively.  

 

 

 ED_ Sinusoidal SD_ Roof-Tops 

 1/4 Basis functions 25 cells 

No. PPW modes 10 50 

No. Floquet modes 41 61 
 

Table 3.3.1 Convergence comparison Entire Domain/ Sub-domain 
 

 

 

The Figure 3.3.1 presents the results obtained for the normalized phase constant and the 

normalized attenuation constant in the longitudinal direction of the first two TE modes, 

for the sinusoidal Entire domain basis functions vs. Subdomain basis functions (Roof-

Tops). It can be seen how in this range of frequencies both modes are within the radiation 

zone (fast-wave modes). The main beam moves towards endfire as the frequency 

increases. The radiation constant decreases as the main beam approaches endfire ( 0/   

close to 1) as expected, and eventually it will become a surface wave that propagates and 

is bounded within the waveguide. 
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Figure 3.3.1 Complex propagation constant. 
 
 

Upon inspecting the results, it can be seen a perfect agreement between the results 

obtained using entire domain and Roof-Tops basis functions. The slight difference in the 

values at higher frequencies was expected. As the frequency increases the electrical size 

of the cell also increases, reducing the accuracy. For this reason, as the analysis goes 

higher in frequency, a smaller cell size would be required, with the consequent rise in 

simulation time.  

 

 

Figures 3.3.2 and 3.3.3 present the induced currents on the metallic printed circuit 

obtained with the use of Roof-tops basis functions and sinusoidal Entire domain functions 

respectively. It can be appreciated that both results match perfectly, considering the 

differences between the different basis functions shape. 
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Figure 3.3.2 Induced currents for the Subdomain method. 

 
Figure 3.3.3 Induced currents for the Entire domain method. 
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CONCLUSION 

 

 In this Chapter, the Spatial Domain MoM technique to analyze LWAs embedded inside a 

waveguide, developed in Chapter 2, has been completed with the combination of Roof-

Tops basis functions to model the currents on the planar metallizations, developing a 

novel method able to study the modal solutions of LWAs with non-regular printed 

circuits. This new approach makes the present method much more versatile, and opens 

the door to different applications for this type of antennas, based on more complex 

geometries and the modified scanning behavior that those geometries may enforce. The 

results have been validated with previously computed models and measurements from 

literature, assuring its reliability. The consistency of this new approach has been taken 

into account, in terms of continuity and edge conditions. Finally, the convergence 

analysis demonstrated that the developed method is rapidly convergent providing 

accurate results. 

  

Now that the method is completely defined and formulated, it must be efficiently coded 

into a simulation tool. Next chapter will be dedicated to this software and its graphical 

interface, how to use it and how the user may extend its capabilities due to its full 

modular structure. 
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CHAPTER 4 - THE SOFTWARE 

  

Where an original study of a printed square loop PLWA using WELAST is presented and 

the novel capabilities and consistency of this new developed software is probed. 

 

 

The main objective of the present PhD was to create a novel and versatile simulation tool, 

able to analyse laterally shielded structures that may had any periodic printed circuit of 

arbitrary shape on the inner dielectric.  Previous simulation programs found in literature, 

p.e. P.A.M.E.L.A. [Gómez Aug-2006], were very limited, only capable of modelling 

simple rectangular metallic patches or slots. As will be explained in this chapter, although 

both programs count with common points, as the use of  MoM and the chosen coding 

language Matlab,  a completely new approach on modelling the 2D printed circuit of the 

PLWA is applied. The complexity of this new approach will allow dealing with the 

induced currents on arbitrary printed circuit geometries. The key for this evolution lies on 

the use of Sub-domain basis functions, instead of Entire domain basis functions, as was 

explained in previous chapters. This conceptual change will open the door to a new range 

of leaky wave antennas and their different behaviours, due to the printed circuit shape, to 

be studied and comprehended.  

 

Another aspect is the educational interest of the software. The study of the modal 

spectrum of closed waveguides (rectangular, circular or coaxial) is compulsory and 

extensively treated by any electrical engineer. However, surface and leaky-wave modes 
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existing in open waveguides, filled or not with dielectric, are not so well documented in 

literature. Recently, novel applications for open dielectric waveguides in millimetre wave 

technologies to reduce conductor loss have retaken this forgotten topic. As was 

previously discussed in Chapter 1, commercial simulation software, such as HFSS, 

produces reliable results in terms of field distribution and radiation pattern, but as a 

global result. A full understanding of those results can only come from a rigorous modal 

analysis of the structure. New analysis tools are necessary to efficiently study and design 

new kinds of LWAs, to obtain good results knowing the reason behind them. And now, 

with the arise of the EBGs and PRSs,   the software presented in this work will become a 

key tool to understand the theoretical and practical working principles of leaky-waves, 

and the conditions under they may exist in these open structures. 

 

This chapter has a double goal. It will present the major contribution of this work, the 

developed simulation tool for periodic LWAs, including how to use its friendly 

graphical interface, its capabilities and how to easily extend it to new geometries, thanks 

to its modular nature. At the same time, through this software internal working tutorial, a 

novel periodic LWA will be analyzed in full depth. The chosen geometry is the square 

loop printed circuit. Although it is simple enough for the illustrative purpose of this 

chapter, to the author knowledge, there is no previous modal analysis of this kind of 

antenna. This chapter will provide with a full understanding of the propagating modes 

supported by the structure and their individual contribution to the total radiation pattern, 

as well as how the geometrical parameters of the loop affect to specific performance 

effects, as Bandgaps or unwanted modes. 

 

 

 

4.1. Previous computed models: P.A.M.E.L.A. 

 

It is the predecessor of the software created in this thesis, and, in the author eyes, its ‘little 

sister’. The acronym stands for ‘Program for Modal Analysis of Laterally Shielded 

Structures’, in Spanish. It was the first interactive environment created for the analysis of 

leaky-wave modes in certain types of open waveguides. This program was presented for 

educative purposes [Gómez Aug-2006], to teach advanced concepts related to the 
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electromagnetic theory in open waveguides, since the study of leaky wave modes has 

been often underestimated in the academic formation of microwave engineers. 

P.A.M.E.L.A. studies the propagation characteristics of those modes supported by the 

open structure, both surface and leaky wave modes. Once a solution for the propagation 

constants (phase and attenuation) in the longitudinal direction of the waveguide is found, 

the field and currents inside, as well as the radiation pattern, are obtained.  

 

This tool was based on the use of sinusoidal Entire Domain basis functions to model the 

induced currents on the metallization. The advantage of this type of basis functions is that 

they converge rapidly with a reduced number of functions and, as a direct consequence, a 

small number of PPM and Floquet modes. This fact, combined with the analytical nature 

of the full wave method, made it possible to develop a fast and accurate software to 

analyze LWAs. The program was coded in Matlab, using its matrix based environment to 

speed up the calculations. Results of this software can be found in [Gomez Sept-2005].  

 

As has been already mentioned in Chapter 3, this predecessor had a major limitation. The 

Entire Domain approach, although simple and fast, can only support regular geometries, 

such as rectangular strips or slots. This main drawback exists no longer in the present 

work, where the new Subdomain approach allows for complex shapes printed on this 

PLWA configuration. 

 

Also, previous works used an approximation for the radiated pattern, based on an infinite 

radiating wire,  which did not produce closed and rigorous expressions. In the present 

work, said expressions will be obtained for both E and H radiating planes, taking into 

account the higher order  PPM contribution, as will be seen by the end of this Chapter. 

 

Also, it is important to highlight that the software developed this thesis was first coded 

using the same Entire Domain approach as its predecessor with a double purpose: first, to 

validate results, see Chapter 3, and second to build a complete simulation tool that offers 

the possibility to analyze simple structures using either type of basis functions.  
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4.2. A novel simulation tool: W.E.L.A.S.T. 

 

The acronym stands for ‘Waveguide Embedded Leaky-wave Antenna Simulation Tool’.  

The analysis with this program is interactive, with graphic results in real time and a 

sequential procedure in order to help the user to understand the inside workings of the 

leaky-wave modes. 

 

4.2.1. Novel subdomain approach and coding philosophy. 

  

The introduction of Subdomain basis functions opens the possibilities from the 

rectangular metallic patch to an infinite number of geometries that may be used as planar 

metallization inside the dielectric open waveguide. Some of the most popular geometries 

are showed in Figure 4.2.1.1, and their slots counterparts. These geometries, single and 

double square loops, split loops and so on, have been extensively studied as frequency 

selective surfaces (FSS) ([Wu 1995], [Vardaxoglou 1997]), and even some of them as 

LWAs, analyzing practical measurements in order to characterize the antenna. For the 

first time, a full-wave method developed for the modal analysis of laterally shielded 

periodic LWAs is able to integrate these more complex unit cells. This chapter will 

explain how the software allows the study of surface and leaky-wave modes that these 

metallizations may induce in the open dielectric waveguide, and the conditions necessary 

for them to radiate, even considering higher order modes and their unwanted effects on 

efficiency and radiation. 

 

 

d fa c eb g

lg i jh k m  

Figure 4.2.1.1 Subdomain basis functions supported geometries: strips and apertures. 
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The method is coded in Matlab v7. This programming language is well-known for its 

high-speed matricial treatment of the data and easy-to-build graphical interface tools. The 

fact that Roof-top basis functions are a complete set of continuous functions that fulfil the 

edge conditions of the currents, ensures the convergence of the solution with a reasonably 

small number of basis functions and PPM and Floquet modes associated to each of those 

functions. This translates into bearable matrix sizes in Matlab environment, which is 

crucial for a fast and efficient computation. The mathematical expressions for the basis 

and test integrals that conform the MoM matrix are completely analytical for the Rooftop 

basis functions, as presented in Chapter 3. It is important to remember that the only 

numerical calculation will be the complex search of the determinant zero. 

 

To apply the Roof-tops basis functions on the metallization, it must be meshed into a 

grid. The metal patch will be uniformly divided into a number of cells of dimensions x  

by y . Each rectangular cell will have associated its corresponding test and basis 

integrals, as seen in Chapter 3. At this point, based on the novel Subdomain approach in 

combination with the matricial treatment of the data, two different ways to deal with the 

MoM matrix are proposed. 

 

a) Unknowns-based matrix. 

 

The periodic unit cell is divided into an xN by yN mesh, but only those cells that 

contain metal are considered in order to fill the MoM matrix. This way the number of 

unknowns will be xC  for the xJ  currents and 
yC for the 

yJ currents. This was 

explained in depth in the previous chapter, section 3.2.3, for the square loop with a 

mesh of 11 by 12 cells. This discrimination between cells takes computational time, 

together with the fact that the basis and test integrals are not of xN  or 
yN size, but of 

a much larger xC  or yC size, as explained in Table 3.2.3.1. Although this method is 

applicable to any arbitrary geometry covered by the rectangular mesh, it will not be 

the most efficient option in a range of cases. 

 

 

 



Chapter 4                                                                                                                                       The Software 

 

99 

b) Spatial-based matrix. 

 

In section 3.2.3, it was discussed how the basis and integral matrices for the 

Subdomain method were considerably larger than those in the Entire domain 

approach (Table 3.1.1). The spatial-based MoM matrix [P] stands halfway, using a 

meshing for the Roof-tops functions, and at the same time, keeping the integral 

matrices to a minimum size, comparable to that of Entire domain ones. Figure 4.2.1.3 

shows this approach for the same square loop with the same mesh that in the 

unknowns based matrix. Instead of placing the basis functions only on those cells 

filled with metal, all the mesh will be considered, considering a value of zero for the 

empty cells. The MoM matrix is built following the same order of the mesh in the 

physical space. This is possible since all the cells in the same row share the same 

basis and test integrals dependent on x, and the cells in the same column share the 

same basis and test integrals dependent on y. The only operations are permutations 

and combinations of small ( xN or 
yN size) integral matrices, applied to all cells 

without distinction. 

 

 

Figure 4.2.1.3 Mesh for the Roof-Top basis funtions. 
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Table 4.2.1.1 shows the dimensions for the matrices following the spatial-based 

method. It can be seen how the integral matrices are smaller than in the unknown-

based approach, but at the same time, the size of the auxiliary P matrices are larger. 

Depending on this compromise, computations with spatial-based matrices will be 

much more efficient when the total number of cells is not too high. 

 

 

MATRICES 

 

SIZE  

EX

BXI   
EX

TXI    1xN   by (Floquet and PPM modes) 

EY

BXI EY

TXI  xN  by (Floquet and PPM modes) 

EX

BYI   
EX

TYI   yN  by (Floquet and PPM modes) 

EY

BYI EY

TYI   1yN   by (Floquet and PPM modes) 

EX

JXP    ( 1)y xN N   by ( 1)y xN N   

EX

JYP  ( 1)y xN N   by ( 1)y xN N  

EY

JXP   ( 1)y xN N  by ( 1)y xN N   

EY

JYP  ( 1)y xN N  by ( 1)y xN N  

 
EX EX

JX JY

EY EY

JX JY

P P
P

P P

 
  
 

 

 

( 1) ( 1)y x y xN N N N     by  ( 1) ( 1)y x y xN N N N    

Table 4.2.1.1 Matrix dimensions for the spatial-based matrices. 

 

 

 

Both methods can be used to solve any kind of geometries. The reason to include this 

second method in the software, is that it is much faster for a wide range of geometries of 

light complexity, that will not need a large number of cells to be accurately modelled and 

convergent. For comparison purposes, Table 4.2.1.1 shows the time in seconds to fill in 

the MoM matrix P for different sizes of mesh, for the same example of the metallic 

square loop. All cases consider the same 40 PPM and 20 Floquet modes for computation. 
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Nx x Ny 
No. of unknowns Time (sec) 

Spatial-based Unknowns-based Spatial-based Unknowns-based 

6 x 6 60 48 0.182 0.273 

8 x 8 112 72 0.337 0.441 

10 x 10 180 96 0.661 0.791 

12 x 12 264 120 1.328 0.954 

14 x 14 364 144 3.138 1.273 

16 x 16 480 168 5.889 1.671 

18 x 18 612 192 10.965 2.095 

20 x 20 760 216 19.402 2.516 

Table 4.2.1.2 Time to fill the MoM matrix comparison in seconds. 

 

In this specific square loop geometry, it is more efficient to use the spatial-based 

approach, up to roughly a mesh of 12 by 12 cells. After a convergence study, the results 

obtained with meshes of 8 or 10 cells were acceptable. Depending on the physical 

dimensions of the metallization, and the relation of empty cells with those containing 

metal, one method will be more efficient than the other. It is up to the user to assess the 

structure under study, maybe do a couple of trials and decide. 

 

 

4.2.2. User´s guide: General working description. 

  

To work with W.E.L.A.S.T. the user will have to follow a series of simple steps, in a 

logical order, to obtain the complete modal spectrum of the PLWA based on the chosen 

geometry. This sequence will lead the analysis from the closed WG structure to the final 

open LWA. The following sections will initiate the reader through the correct use of the 

program, making the most of its capabilities, as a new periodic LWA based on single 

square loops is presented throughout this chapter. Figure 4.2.2.1 shows the internal 

working of the software. First of all, the geometrical description of the structure to 

analyze must be introduced, from the type of metallization (strip or aperture), to the size 

of the waveguide containing the LWA. Also, the numerical parameters, depending on 

the method of analysis to apply (Entire Domain or Subdomain approach), such as the 



Chapter 4                                                                                                                                       The Software 

 

102 

number of PPModes, Floquet modes, etc. After the structure has been defined, the user 

shall start the complex search of the solution, in which the kernel will compute the 

determinant of the MoM matrix to obtain the value of the longitudinal propagation 

constant that makes it zero. Based on the obtained results, the user may find it necessary 

to undertake a convergence study, and readjust the numerical parameters previously 

introduced (number of basis functions or modes to model the fields) to produce accurate 

results. Once the program is satisfactorily tuned, the search for the solution will start 

again, for the modes supported by the closed structure and, from those, the complex 

modes corresponding to the solutions for the open LWA. For any given solution, the user 

may plot results for current, fields, power distribution and radiation pattern associated to 

it. A dispersion analysis can be also done, not only by sweeping the propagation 

constant with the frequency, but by sweeping any chosen geometrical parameter. 

 

 

Figure 4.2.2.1 Program functional block diagram 

 

 

The program counts with an intuitive Graphical Interface, which makes it even more 

agile to interact with. This GUI was developed using the tool GUIDE of Matlab v7. Each 

part of the main window will be presented and explained in detail. Figure 4.2.2.2 shows a 

direct correspondence between the functional block diagram illustrated in the figure 

above and the GUI of the software.  
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Figure 4.2.2.2 Program interface and correspondent functionality 

 

 

 

 

4.2.3. User´s guide: Closed Structure. 

  

The chosen LWA under analysis will be an open dielectric waveguide with a periodic 

planar metallization along the longitudinal direction, in the shape of single square loops. 

Figure 4.2.3.1 shows said structure. As explained in Chaper 2, the main mode of this type 

of structures (those in which the short wall has been removed) is the 01TE , and the only 

desired mode responsible for radiation. This mode has an intrinsic horizontal polarization 

between the parallel walls and is, therefore, radiative, even when the geometry is 

symmetric. This geometry is inspired in the work of Vardaxoglou and Blanos 

[Vardaxoglou Apr-1997], although slightly modified for illustrative purposes.  
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 Figure 4.2.3.1 New PLWA under study. 

 

To introduce the geometrical definition of the antenna, the user must first choose the 

inner printed circuit, using the button  Select Printed Circuit , at the top left of the main 

window. This will lead to several options, as the dialog window in Figure 4.2.3.2 below 

opens.  

 

 Figure 4.2.3.2 Printed circuit selection dialog window. 

 

Each of the buttons showed above relates directly with a specific  .m file, which will use 

the geometrical and numerical parameters introduced by the user to provide the proper 

rectangular mesh of the geometry. Some of the most known geometries modules are 

already implemented. This modular nature of the software allows the introduction of new 

periodic circuits whenever necessary. The corresponding meshing file must be loaded to 
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the program, making it extremely easy to extend the code at any time. How to widen the 

capabilities of the program will be discussed later in depth. Since the geometry of interest 

is a single metallic square loop, it is only necessary to press that option. The geometry 

mesh file will be uploaded and the picture at the top left of the main window is updated 

with the chosen geometry.  It is important to notice that the structure is always loaded in a 

closed waveguide, since the analysis will begin in this form (see Figure 4.2.3.3 a). Below 

this picture, there is the option to open the structure, which will be used in the next 

section. Secondly, the user must fill the values of the geometrical and numerical 

parameters. Figure 4.2.3.3 shows the dimensions of the selected structure, and those 

parameters necessary for the numerical analysis. 

 

    

 Figure 4.2.3.3 Geometrical and numerical input. 

 

In the Currents Domain section, the user must decide which method will be used to 

analyze the geometry, and include an appropriate fine meshing and a sufficiently large 

number of basis functions to assure convergence. Note that it is the absolute responsibility 

of the user to provide with a consistent mesh for the physical dimensions. As discussed in 

previous sections, for the square ring, the only option is the Subdomain approach, with the 

spatial-based procedure to fill in the MoM matrix. In the File menu, the user will find the 
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option to Save this configuration of the antenna as a data file (.mat), in order to Open it at a 

later time. 

 

Before starting the search for the real values of the propagation constant of the modes 

supported by the closed structure, a working frequency must be chosen. When the structure 

is new, as is the case, it is sometimes difficult to decide where to start. Since the structure is 

a closed waveguide partially filled with dielectric, it can be deduced that the 01TE  mode 

must have a cut-off frequency cf  between the cf expected for the empty rectangular WG 

and the cf  for the completely filled with dielectric WG. Pressing the  Help me  button, the 

user may obtain a valuable information relating the cf  for the first five modes that the 

structure supports, see Figure 4.2.3.4. Since the dielectric extends over more than two 

thirds of the waveguide and the fact that the field tends to confine itself more in the 

dielectric as its permittivity increases, it is expected that the main mode will appear soon 

after 4 GHz and before 7 GHz. It is also useful to know that the next mode will not appear 

until after 8GHz, so any other mode appearing before that, apart from the main 01TE mode, 

will be an unwanted mode (surface modes, channel-modes…) and must be avoided, not 

only because it may degrade the radiation pattern if radiative, but also for efficiency 

reasons. In any case, this table is only orientative, since the size of the periodic cell will 

have a considerable impact on the LWA behaviour with frequency. 

 

 

 Figure 4.2.3.4 Orientative cut-off frequencies. 



Chapter 4                                                                                                                                       The Software 

 

107 

For illustrative purposes, the frequency of analysis will be at 11GHz. When pressing the 

button  Initialize Simulation  the program will calculate the determinant of the MoM 

matrix P for those values of 
yk between the input parameters minr and maxr , given the 

relation : 

                                                           
0y rk k                                              (4.2.3.1) 

Where r  is the dielectric constant effective for the whole inhomogeneous closed 

waveguide. This constant will be a value between 0  (permittivity for the empty WG) 

and die (permittivity of the completely filled with dielectric WG). Choosing the values 

for minr =-3 and maxr = 3, the function Det(P) will be calculated for all possible values of 

yk  in which the r of this structure is comprehended. The resulting function will be 

showed as a graph in the middle of the main window. The real part and the complex part 

of the determinant will be plotted versus the r  separately, in the form of the continuous 

blue and red lines that appear in Figure 4.2.3.6.  

 

 Figure 4.2.3.5 Simulation parameters. 

 

Clicking the button  Find Mode  the program will obtain the solutions for the modes 

propagating at the chosen frequency. Since the ‘Closed’ option for the Waveguide was 

selected in the geometrical parameters (see Figure 4.2.3.3), the zeros of the function 

Det(P) will correspond to real values of 
yk , that is to say, 

y yk   with no complex part 

corresponding to attenuation. As showed in Figure 4.2.3.6, the program sweeps the real 

values of 
yk until it finds a zero for both real and complex part of the function 

determinant. Those real solutions are marked with a turquoise dot. The user may specify 

the order of the mode to search, since several modes may be propagating simultaneously 

at a given frequency. In Figure 4.2.3.5 can be seen how the first mode at 11GHz has a 

propagation constant of y = 361.3 rad/m and y = 0 nep/m. Eight modes were found in 

total as real solutions of Det(P) =0. As the order of the mode increases, the value for the 

real solutions y  of the mode decreases, as can be seen in the numbers of Figure 4.2.3.6. 

(ignore the small arrows for the time being). 
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12345678

 

 Figure 4.2.3.6 Determinant of the MoM matrix P. 

 

It is important to notice that negative values of r , and therefore 
y , were selected to 

compute the determinant. This is a direct consequence of the periodic nature of the 

structure, as explained in Chapter 2, where the propagating modes are composed by 

families of Floquet harmonics related by the spatial period P. For the closed structure, 

this relation is given by: 

               
0 0

2 2
( ) ( )y y yk my k my my my

P P

 
      ,     for [ , ]my          (4.2.3.2) 

 

The propagation constant may take negative values of 
y , since my can be a negative 

number. By observing the eight results and taking the mode 1 as the main mode my=0, it 

can be calculated for the next harmonic my=-1: 

                  
0

2 2
( ) 361.3 1 336.9 /

0.009
y ymy my rad m

P

 
                            (4.2.3.3) 

 

This is exactly the propagation constant of mode 7, from which it can be concluded that 

mode 1 and mode 7 are different harmonics belonging to the same propagative mode. 

The rest of the modes are checked and no other relation results, apart that the solutions of 

the positive part of the graph are exactly the same value that those in the negative part of 

r , so, intuitively, they must be related somehow. This is answered by both, 

mathematical and physical reasons. As a mathematical method, it gives the theoretical 

solutions that would exist when the waveguide is infinitely large, no specific feeding 

applied. In this hypothetical and unreal case, it is well known that two types of waves will 

be supported, progressive waves with positive phase velocity and regressive waves with 

negative phase velocity. The real case being analyzed has a feeding source from which 
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the waves will travel towards the positive longitudinal direction, assuming the antenna is 

long enough for most of the energy to be radiated before reaching the end of the 

waveguide. The only solutions with physical meaning are those in which the energy is 

propagating in the positive y-direction. It is known that the direction of the energy 

propagation is given by the group velocity: 

                                                              

1

groupV





 

  
 

                                          (4.2.3.4) 

 

To discriminate which modes exist physically in the structure, the variation of the 

propagation constant with the frequency must be obtained. By repeating the real mode 

search for a slightly higher frequency, 11.1 GHz, it can be obtained the direction the real 

solutions 
y  are moving towards with the frequency. The arrows above the modes in 

Figure 4.2.3.6 indicate the movement direction of the solutions. Only those modes with 

green arrows have a positive group velocity and, therefore, travel in the +y-direction. 

Only the solutions 1, 3, 4 and 7 are valid zeros for the real structure. From these modes 

with positive group velocity, 1, 3 and 4 have positive 
y  and only mode 7 has a negative 

propagation constant. The phase velocity of the first 3 modes is positive and they will be 

radiating forward. The phase velocity of mode 7 is negative, meaning that the energy is 

travelling in the opposite direction that the wave-front, and this mode will be radiating 

backwards. These type of ‘backwards waves’ inherent to periodic structures have been 

studied for years, see for example [Oliner 1993], [Johnson 1993], [Schwering 1983] and 

[Gomez Aug-2006].  

 

Once the modes that truly exist in the structure have been discriminated, the next step is 

to recognize the TE mode that each of them represent, since only the radiation due to the 

01TE mode is desired. To obtain this, the distribution of the fields must be plotted. With 

the  Plot Fields  button, the 2D graphs for a transversal section of the waveguide will 

appear for both electric and magnetic field. The user must introduce the number of points 

to calculate the fields in each dimension and the position in the y direction where the 

transversal cut will take place, if different from 0 0y  . The options for the representation 

of the radiated fields will be seen in next section. 
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Figure 4.2.3.7 shows the electric field in the x and z directions for the modes propagating 

in the waveguide. By visual inspection, it is deduced that modes 1 and 7 correspond to 

01TE , mode 3 is a 02TE mode and mode 4 corresponds to the typical strip-mode that goes 

from the inner conductor to the outer. All the field distributions are affected by the 

presence of the metallic square loop printed on the dielectric layer, as can be seen in the 

coupling of the field lines at z=0mm. 
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 Figure 4.2.3.7 Transversal electric field. 

 

This way the initial representation of the real solutions of the closed waveguide can be 

interpreted as showed in Figure 4.2.3.8, where one can see that the two first harmonics 

for the dominant TE mode are propagating, as well as the first harmonic of the 02TE mode 

and last, the strip mode due to the existence of two conductors.  

TE01

my=0
TE01

my=-1

TE02

my=0Strip

1347

 

 Figure 4.2.3.8 Modes existing in the closed WG. 
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To clarify how to distinguish between modes when analyzing the solutions obtained for 

one frequency, Tables 4.2.3.1 and 4.2.3.2 below resume what has been done in this 

section: 

 

Mode no. 
y  Group 

velocity 

Meaning energy travelling 

… 

Exists? 

1 361.3 rad/m + Towards +y  (progressive) Yes 

2 336.9 rad/m - Towards -y   (regressive) NO 

3 288.3 rad/m + Towards +y  (progressive) Yes 

4 91.9 rad/m + Towards +y  (progressive) Yes 

5 -91.9 rad/m - Towards -y   (regressive) NO 

6 -288.3 rad/m - Towards -y   (regressive) NO 

7 -336.9 rad/m + Towards +y  (progressive) Yes 

8 -361.3 rad/m - Towards -y   (regressive) NO 

 Table 4.2.3.1 Mode discrimination 

 

Mode no. 
y  Phase 

velocity 

Meaning it may 

be radiating … 

Field 

distribution 

Floquet 

armonic 

1 361.3 rad/m + forwards 
01TE  my= 0 

3 288.3 rad/m + forwards 
02TE  my= 0 

4 91.9 rad/m + forwards Strip my= 0 

7 -336.9 rad/m - backwards 
01TE  my= -1 

 Table 4.2.3.2 Classification of existing modes. 

 

 

4.2.4. User´s guide: Open Structure. 

 

In last section the propagating modes supported by the closed waveguide were obtained. 

In this section, the top wall will be removed to obtain the leaky modes radiating along the 

open waveguide. For illustrative purposes, it is preferable to show several Floquet 

harmonics close enough to understand their behaviour, for this reason P is increased to 

12mm in this section. The first step is opening the structure, changing the option for the 

Waveguide Tap showed in Figure 4.2.3.3. The short-circuit at the top of the waveguide is 
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substituted by the modal Markuvitz radiation impedance introduced in Chapter 2. In 

the open structure, some of the modes that were propagating in the closed WG, will 

radiate while propagating. This means that the propagation constant for those modes will 

have a real part 
y , the phase constant, and an imaginary part 

y  as the attenuation 

constant:  

 

                                                           
y y yk                                                     (4.2.4.1) 

 

The conditions under a propagative mode becomes a leaky-wave mode in an open 

structure were discussed in Chapter 2. As a quick reminder: 

 

- The PPM mx=0 has to be excited. 

- The mode has to be propagating in the fast-wave zone or radiation zone: 

                                       
0

1 1
yk

k
               1 1r                               (4.2.4.2) 

 

 

None of the propagative modes found at 11GHz seem to fulfil the second condition (see 

Figure 4.2.3.8), since they are outside of the -1,1 range of dielectric permittivity. The 

only solution that exists in the fast-wave zone is the strip mode, which does not posses 

the horizontal polarization necessary to radiate, nor excites the PPM mx=0 by 

asymmetry. For this reason, the open structure analysis will take place at a lower 

frequency, 4.5GHz, where the main mode was still radiating. The function determinant of 

the MoM matrix P at this new frequency for the closed structure is showed in Figure 

4.2.4.1 a), where the 01TE  is in the fast-wave zone. As the top wall is removed, by ticking 

the appropriate option on the GUI, the complex values of the radiation impedance that 

models the aperture will force the function determinant to have real and complex parts 

different from zero, as can be seen in Figure 4.2.4.1 b). When the WG is open, the 

solution for the 01TE is no longer in the real axis of yk , but in the complex plane, 

becoming a leaky-wave mode, that is radiating at a certain angle. 
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a)

b)

CLOSED STRUCTURE 

at 4.5GHz

OPEN STRUCTURE 

at 4.5GHz

 

 Figure 4.2.4.1 Function Det(P)for a)closed WG and b) open WG 

 

The search for the solutions of leaky-wave modes must take place in the complex plane. 

Tackling the complex solution search problem directly would require an enormous 

amount of computations and time, and it might not lead to a proper solution. For this 

reason, the program applies an iterative search in the complex plane implemented for 

the first time by [Gomez Jan-2005] for laterally shielded structures. This method uses as 

a starting point the real solution for the completely closed structure. After that, the top 

wall impedance is gradually changed from that of a perfect metallic wall to the final 

modal Marcuvitz radiation impedance. Figure 4.2.4.3 illustrates this iterative search for 

the complex solution, taking as a starting point the one obtained in Figure 4.2.4.1 a) at 

4.5GHz. After pressing  Find Mode , in fifteen steps, the real solution at 
y =74.24 rad/m 

follows a path through the complex plane until it reaches the final complex solution for 

the open LWA at 
yk =27.6 - 133.8i. This smooth evolution is the key to reach correct 

results, so it is important to make sure that the number of steps is large enough for the 

minimization algorithm not to end in a local minimum or to snap to other mode solution 

that may exist nearby. 

 

 

Figure 4.2.4.2 Currents, Fields and Radiation dialog box. 
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 Figure 4.2.4.3 Search for the Det(P) solution in the complex plane. 

 

There is another option for finding the complex solution of the structure, in case the user 

has an approximate idea of the complex solution of the propagation constant of the mode. 

The estimated values of 
y  and 

y can be introduced in the main window of the program. 

The user must tick the option ‘Find mode from’ and then press the button  Find Mode . 

This is very convenient when a structure has been already simulated at some frequency 

and the user wishes either to go back to that solution or to move in frequency. The user 

must remember to un-tick said option before sending the found solution to the Fields or 

Sweep calculations.  

 

Once the complex solution has been found, it is possible to obtain plots for the currents 

on the periodic printed circuit or the representation for electric and magnetic fields in the 

antenna. This can be done for both the closed and open case solutions by introducing  

which type of fields, where and the number of points to plot, then pressing  Plot Currents 

or the  Plot Fields  button (see Figure 4.2.4.2). 

 

As an example, the transversal electric field for the TE01 at 10.5GHz in the open structure 

is showed in Figure 4.2.4.4. a). One may compare it with the electric field for the same 

mode in Figure 4.2.3.7 in the closed WG. It can be seen how the TE01 mode now is also 
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perturbed by the periodic printed circuit and, since it has an inherent horizontal 

polarization from one of the metallic plates to the opposite, it reaches the aperture and 

will radiate, in opposition to the Strip mode, which has a vertical polarization and does 

not reach the top of the parallel plates (see Figure 4.2.4.5. b). The same occurred to the 

Strip mode with the closed tap. 

Exz Ey HyHxz

a) b) c) d)

Figure 4.2.4.4 Electric and magnetic fields for the TE mode in the open LWA. 

Exz Ey HyHxz

a) b) c) d)

Figure 4.2.4.5 Electric and magnetic fields for the Strip mode in the open LWA. 
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The same way, the currents for the mode TE01 in the closed structure and those for the 

qTEM or Strip mode in the open LWA are presented in Figure 4.2.4.6 and 4.2.4.7 below. 

Note that the 2D current representation is for the XZ and YZ planes crossing at the mesh 

centre. In the two different modes, it can be seen how the currents for the metallic square 

loop are in order with the conditions expected at the edges of the printed circuit, as seen 

in Chapter 3. Also, for the qTEM mode the currents directed in the x direction does not 

exist. This can be reasoned by looking at the fields’ distributions of said modes in Figures 

4.2.4.4 and 4.2.4.5 above. The existence of induced currents in the x direction depends on 

the longitudinal magnetic field (y direction) surrounding the metallization. It can be seen 

that, in the case of the TE mode, this Hy field is directed towards the +y direction, 

creating a Jx on the patch. On the other hand, the magnetic field Hy for the Strip mode is 

directed in the +y and -y direction on each side of the patch, cancelling the currents that 

could be induced on the perpendicular x direction.  To the author, the capability to plot 

the field and currents for each propagative mode separately is crucial to study and truly 

understand the inside workings of the LWAs, which can not be achieved with 

commercial software.  

 

 

 

Figure 4.2.4.6 Currents distribution for the TE mode in the open LWA. 
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Figure 4.2.4.7 Currents distribution for Strip mode in the open LWA. 

 

Apart from the validation results presented in Chapter 3 by comparison with previously 

analyzed structures by other authors, it is particularly interesting to check that resulting 

fields are compliant with the boundary conditions applied in the EFIE (2.8.1.5) used to 

solve the MoM and also in both MFIEs (2.8.1.6) and (2.8.1.7), at the interface between 

the dielectric and air, where the metallization lies. Figure 4.2.4.8 shows a 2D plot of 

electric field at the printed circuit (z = 0), for the TE01 mode at 10.5GHz. These plots 

represent the variation of the three components in the ZX and ZY planes, situated at the 

centre of the square loop metallization. 

 

Figure 4.2.4.8 2D Electric field at the metallization (z = 0). 



Chapter 4                                                                                                                                       The Software 

 

118 

It can be seen how the Ex and Ey fields are practically zero on the printed circuit. 

Different scales are applied to each component, so the shape of the field can be easily 

seen. The results are coherent with the EFIE. Figure 4.2.4.9 presents the 3D electric 

fields, showing how it is null above the whole metallic loop. 

Fi

gure 4.2.4.9 3D Electric field at the metallization (z = 0). 

 

To check that the magnetic field H is discontinuous at the interface where metal is 

present, inducing the existence of electric currents on the printed square loop, and a 

continuous function elsewhere, the currents will be calculated again, but this time from 

the obtained results of H. This is showed in Figure 4.2.4.10, where the difference of the H 

above the metallization and below it is represented. Comparing with Figure 4.2.4.6, the 

currents obtained matches perfectly with those calculated with the Roof-Top basis 

functions. Also, the currents are zero where there is no metal, probing that the magnetic 

field is exactly the same above and below z = 0. In conclusion, the obtained results agree 

with the boundary conditions expected in the structure, validating in a different way the 

developed method. 
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Figure 4.2.4.10 Currents on the metallization induced by H. 

 

 

4.2.5. User´s guide: Dispersion Analysis. 

 

Starting from a complex solution for a specific mode, the dispersion curves can be 

obtained, not only for the variation with frequency, but also for other geometrical 

parameters. This will allow studying the effect they have on the complex propagation 

constant and therefore, the radiation of the LWA. Fist of all, the complex solution must 

be selected as the Initial value of the sweep, by pressing the button  Send to Sweep  . 

Then a parameter, step and limit to sweep must be introduced. When the dispersion curve 

is obtained, the final point can be sent pressing  Send to Fields  to plot the fields and 

currents to make sure the results are correct and also  Set as Initial Value    to carry on 

with the sweep from the last swept point. 

 

Figure 4.2.5.1 Parametric Sweep dialog box. 
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Figures 4.2.5.3, 4.2.5.4 and 4.2.5.5 show the dispersion curves with the frequency for the 

LWA studied in previous sections. These curves provide with most of the information 

needed to ‘know’ the structure. In Figure 4.2.5.3, the phase constant divided by the 

propagation constant in vacuum is represented vs. frequency. The modes supported by 

the LWA appear in different colours, TE01 in blue, TE02 in red and the qTEM or Strip 

mode in green. As was introduced in Chapter 2.3, in periodic structures, the modes are 

composed by a sum of Floquet harmonics, related by: 

 

                                    0 0

2
my ymy y my

P
k k k k


                              (2.3.7) 

 

So there will be a main harmonic my=0 propagating at the lowest frequencies and a series 

of higher order harmonics that will start propagating as frequency increases, with a 

propagation constant related directly with that of the main harmonic. This is the case of 

the mode TE01 in Figure 4.2.5.3, where the main harmonic is plotted in a blue continuous 

line and the second Floquet harmonic that starts propagating at 10.2GHz in blue dash-dot 

line.  

 

Since this is an open structure, one or more of the harmonics that exist in the LWA may 

be radiating. In this case, the propagation constant for the whole family of harmonics 

belonging to the same mode is complex, of the form: 

 

        0 00

2 2
( )my y y y yymy j my my j

P P
k k k

 
   

 
        

 
           (2.3.8) 

 

Where the attenuation constant accounts for the losses due to radiation. The condition for 

the phase constant to be in the radiation zone was:

       

 

                                             0

1
yk

k
 

   

  z zk                                (2.4.6)       

 

Which means that all those harmonics with a normalized  phase constant 
0

my

k


between -1 

and 1 will be radiating. The phase constant of these harmonics will determine the angle of 

maximum radiation my , following the equation: 
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0

sin
my

my
k


                                         (4.2.5.1) 

 

Figure 4.2.5.4 comes directly from this relation. It shows the angle of maximum 

radiation of the first two TE modes. Note that the Strip mode does not appear in this 

Figure, since it cannot radiate by definition, as seen in last section. The main harmonic of 

the TE01 has its cut-off frequency at 6.4GHz where it starts radiating very close to 

Broadside with an angle of 0 18º  , and, as the frequency increases, so does the 

radiation angle towards Forward-endfire, until it reaches the 0 90º  at 9.3GHz. The 

second harmonic my=-1 starts radiating at 10.2GHz in Backward-endfire ( 1 90º   ). 

Since higher Floquet harmonics have a negative 
my  at low frequency, they have the 

inherent ability to radiate backwards. It will carry on with frequency until reaching 

Forward-endfire, passing through Broadside at about 14GHz. The harmonics stop 

radiating and become bounded after reaching Forward-endfire, and they continue 

propagating with frequency as surface waves. This same behaviour can be observed in 

Figure 4.2.5.4 for the harmonics of the TE02 mode. A graphic explanation the radiation 

sweep with frequency can be found in Figure 4.2.5.2 

 

 

z

x

y

FEED

Backward-Endfire

θ = -90º

Broadside

θ = 0º Forward-Endfire

θ = 90º

θBackward 

Radiation 

zone

Forward 

Radiation 

zone

 

Figure 4.2.5.2   Typical radiation behaviour for a periodic LWA. 
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Figure 4.2.5.3  Normalized phase constant dispersion for the SSL LWA. 

Bandgap 1

Bandgap 2

Bandgap 2

Bandgap 1

 

Figure 4.2.5.4  Radiation angle dispersion for the SSL LWA. 

Bandgap 1

Bandgap 1

Bandgap 2

 

Figure 4.2.5.5  Normalized attenuation constant dispersion for the SSL LWA. 
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It may happen that at a certain frequency more than one harmonic and/or mode is 

radiating at the same time. At 11.5GHz TE01 second harmonic and TE02 main harmonic 

are radiating with 1 37.5º    and 0 48º  respectively, and at 13.5GHz, the TE02 

second harmonic will start radiating too. This situation degrades the radiation 

performance of the antenna, since there are several main radiation beams. To avoid this, 

the geometrical parameters of the antenna should be modified. Observing equation 2.3.7, 

it can be deduced that decreasing the periodicity P will separate the Floquet harmonics 

one from another, extending the range of frequency in which only one harmonic will be 

radiating.  

 

Figure 4.2.5.5 shows the attenuation constant   in the same band of frequencies. It can 

be seen how, as frequency increases, the   decreases exponentially. All harmonics from 

the same mode have the same attenuation constant, whether or not are radiative. The   

for the Strip mode does not appear since it is zero. The radiation zone for a specific 

harmonic is defined by both the phase and attenuation constants. A widely accepted cut-

off frequency criteria for a mode is the frequency where the attenuation constant and the 

phase constant reach the same value. Observing Figure 4.2.5.6, the cut-off frequency for 

the first two modes propagating in the metallic square loop LWA are 6.4GHz and 

9.55GHz respectively. 

 

 

Figure 4.2.5.6  Normalized attenuation constant dispersion for the SSL LWA. 
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A very important phenomenon that appears in periodic structures is the existence of band 

of frequency in which there is no propagation or Bandgaps. Within these frequency 

bands, the modes do not propagate, nor radiate. The phase constant 
my  will stay 

constant or even decrease slightly as the frequency increases, meaning that the group 

velocity, 

1

my

gv





 

  
 

, is zero or negative and no energy is being propagated by the 

mode. At the same time, the attenuation constant will increase locally. In Figures 4.2.5.3 

and 4.2.5.4 these bandgaps can be easily identified. In the TE01 mode it can be seen the 

bandgap that always occurs at broadside 1 0º  , at 13GHz as Bandgap 1 . Several other 

bandgaps unrelated with broadside occur in TE02 mode, the first one Bandgap 1  seems to 

be related with the presence of the Strip mode and Bandgap 2 at 15 GHz  is the second 

most common kind of bandgap in periodic structures. It happens when two harmonics 

interfere with each other, in this case the TE02 main harmonic has a 0 289.4   and the 

TE02 second harmonic is 1 289.4   , meaning they are radiating at 0 67º   and 

1 67º   . These two harmonics cancel each other. 

 

To understand this, the attenuation constant   has to be seen as the sum of three 

contributions: the radiation losses rad , the ohmic losses due to the material 

conductivity mat  and a reactive contribution reac . Material losses will be considered 

negligible throughout this work. During the bandgaps, the major contribution to   is 

reactive and there is no rad . It can be physically interpreted as the effect of a destructive 

interference between the ongoing wave and a regressive wave formed by reflexion on the 

periodic discontinuities. Note that the high value for the attenuation constant when the 

mode is below cut-off is reactive too. 

 

Depending on the final purpose of the structure, these bandgaps are an undesired effect to 

avoid, in the case of a LWA, or in the case of FSS, they may be useful to block a 

specified band of frequency. The conclusion is that, either to avoid or use them, it is 

important to have a clear idea of where those bandgaps may appear and how to control 

them by modifying some of the structure geometrical parameters and studying how the 

different harmonics react. 
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4.2.6. User´s guide: Radiation Pattern and Modal contribution. 

 

Those propagative modes that excite the PPM mx=0 and are within the fast-wave or 

radiation zone, will radiate outwards with a certain radiation pattern. This pattern will be 

determined by the propagation constant of the harmonic that is radiating, 
my myk i   , 

and also of the family of Parallel Plate modes that compose said harmonic. Out of those 

PPmodes propagating in the harmonic, only the first order mode mx=0 has the horizontal 

polarization required to propagate in the outwards direction and radiate, but there may be 

other propagating longitudinally (y direction) higher order PPmodes that may reach the 

aperture, depending on the longitude L of the parallel metallic walls at the top of the 

structure. Previous works found in the literature and already mentioned (Guglielmi, 

Lampariello, Oliner….), that studied before the radiation pattern of these leaky wave 

antennas assumed a L large enough to ensure that only the PPM mx=0 was radiating. 

Only [Gómez 2004] considered for the first time the effects on radiation of higher order 

parallel plate modes, but only for the E plane radiation pattern and using an 

approximation based on a spherical wave from a radiating infinite wire of magnetic 

current on a ground plane. In the present work, a rigorous analysis for both the E and 

H radiation planes considering the contribution of all PPM is developed for the first 

time. Analytical expressions are obtained by applying the Fourier transform of the 

induced magnetic currents at the top aperture. And, on top of this main contribution, 

WELAST is not limited to the radiation of simple rectangular periodic patches, but is 

prepared to analyze more complex structures, such as the square loop used as example in 

this chapter. 

H PLANE

φ = 90º

E PLANE

φ = 0º

θ

z

x

y

θ

 

Figure 4.2.6.1  Main  radiation planes in the LWA. 
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In Chapter 2, the expression for the transversal electric field was obtained as: 
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( )ˆ ( )p
mV z  are the modal voltages obtained from the resolution of the equivalent 

transmission line, and depend on the situation point in the z direction. 
( )( )p
mxe x are the 

parallel plate mode expressions for the transversal propagation, and depend on the 

situation  point in the x direction. The same way, 
myjk y

e


represents the longitudinal 

propagation of the leaky mode and depends on the situation point in the y direction. 

Finally, 
( )p
mA  can be defined as the modal contribution to propagation, since it 

depends on the modal indexes my and mx, but is independent from the observation point.  
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To obtain the rigorous expressions for the radiation pattern, the top of the LWA will be 

considered as a radiating aperture, and the Equivalence Principle [Balanis 1982] will be 

applied to calculate the equivalent magnetic currents induced on said aperture. This 

principle says that the magnetic currents are rotational of the transverse electric field at 

the aperture: 

                                       
ˆ ˆˆ ˆ ˆ2 2 2x y

s t y x t tM n E M M E y E x                                (4.2.6.1) 

 

Knowing that: 
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The magnetic currents at the top aperture of the LWA are of the form: 
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Analyzing now the resulting expressions for the magnetic currents at the top aperture, it 

can be deduced that the amount of contribution that each PPM will have to the radiation 

pattern will depend on ‘how much they were propagating’, 
( )p
mA , now combined with 

‘how much intensity are reaching each PPM the top aperture with’, 
( )ˆ ( )p

mV z L . This 

is why the product 
( ) ( )ˆ ( )p p
m mA V z L  will be defined as the modal contribution to 

radiation. Note that both coefficients depend on mx and my but no on the positioning 

coordinates. 

 

The expression for the radiation pattern in the far-field of an aperture, based on the 

Fourier transform of its induced magnetic currents can be found in [Balanis 1982]: 

 

  ( sin cos sin sin )cos cos cos sin jk x y

S
L Mx My e ds   
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  ( sin cos sin sin )sin cos jk x y

S
L Mx My e ds   

                (4.2.6.6) 

 

L  corresponds to the horizontal polarization and L  correspond to the vertical 

polarization. An optimum pure polarized radiation pattern will be composed mainly by 

horizontal polarization and a negligible part of vertically polarized signal. 

 

Introducing (4.2.6.3) and (4.2.6.4) into (4.2.6.5) and (4.2.6.6), and resolving the integrals, 

the radiation patterns for the two main radiation planes can be easily obtained. Starting 

with the H radiation plane, or the main plane with the pointing angle, it is considered 

90º  , and the following expressions are obtained: 
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It is interesting to mention that for the main parallel plate mode mx=0, the expression 

obtained with (4.2.6.7) is  
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Which is exactly of the same shape that the expression used in PAMELA [Gómez 2004] 

as the radiation pattern for an exponential illumination ( ) myjk y
M y e

 
  shown below for a 

waveguide of a finite longitude. It makes sense, since this approximation only takes into 

account the radiation of the main PPM. 
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Now, for the E radiation plane, it is 0º  . Considering sinc jk  , the expressions 

obtained are: 
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In Figure 4.2.4.2 there were still two buttons to discuss about. Once a complex solution 

for a given radiating mode is sent to Fields, different radiation results may be displayed 

the same way that those for the electric and magnetic fields. By pressing the button  

Modal Contribution  the weights each parallel plate mode contributes to both propagation 

and radiation with are presented as bar plots. For the solution of the TE01 second 

harmonic my=-1 at 12GHz for a lateral walls of L=12mm, Ky= -128.8 -0.8i, the modal 

spectra is shown in Figure 4.2.6.2 below. 

 

a) b)
 

Figure 4.2.6.2 TE01 2
nd

 harmonic Modal Contribution at 12 GHz, for L=12mm. 

 

As can be seen in Figure 4.2.6.2 a), many PPModes are propagating along the structure 

for the same harmonic, if fact all 40 modes required for the method to converge are 

propagating. On the other hand, Figure 4.2.6.2 b) shows that, from those propagative 

modes, only the main parallel plate mode mx=0 is contributing significantly to the 

radiation pattern. This will have an impact on the polarization purity of the radiation 

pattern. Now, clicking on the button  Plot Radiation  the radiation patterns for the H 

plane, E plane or both will be displayed, depending on the radio buttons selected. In 

Figure 4.2.6.3, the radiation pattern for the H plane is presented for a LWA of 

10 0 long. The TE01 my=-1 is radiating backwards with a pointing angle of -31º, with 

secondary lobes at about 13dB below the main lobe, as expected for an exponential 

illumination of the aperture. Due to the nature of the main PPM, this PLWA are 

horizontally polarized, as can be seen in this Figure plotted in continuous blue line. A 

comparison between the approximation done in [Gomez 2004] in red and this work is 

presented, as a validation of the results. It can be seen how they present a very good 
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agreement, since, as shown in the modal contribution plots, this structure has all higher 

order PPModes under cut-off at the aperture, with the only contribution to radiation 

coming from the main parallel plate mode. As expected, the vertical polarization, shown 

in the same Figure, is negligible. 

 

Figure 4.2.6.3 TE01 2
nd

 harmonic H plane radiation pattern at 12 GHz, for L=12mm. 

 

The radiation pattern for the E plane is presented in Figure 4.2.6.4 a), as the sum of all 

PPM contributions, as a single main broadside lobe centered in 0º  , with no side 

lobes. The patterns for the parallel plate modes mx=0, 1 and 2 are represented in Figure 

4.2.6.4 b) c) and d) respectively. As was expected too, the main contribution comes from 

the PPM mx=0, and it has no vertical polarization. The radiation patterns for the higher 

order modes are shown merely for illustrative purposes, as they not radiate, but it can be 

seen how their patterns are formed by several main beams, which will degrade the 

performance of the antenna. In these plots, it can be seen the correspondence between the 

modal contribution to radiation already seen in Figure 4.2.6.2 and the scales of the 

patterns for each mode. As the order of the PPM increases, the more tilted are the main 

lobes and the higher is the vertical polarization. Based on the radiation patterns, it can be 

concluded that the length of the metallic walls L=12mm was enough to avoid radiation 
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from higher order modes, which is, most of the times, a design objective to ensure a 

single directive main lobe. 

a) b)

c) d)  

Figure 4.2.6.4 TE01 2
nd

 harmonic E plane radiation pattern at 12 GHz, for L=12mm. 

 

To test the effects that radiative higher order PPModes may have on the radiation 

properties of the antenna, the same TE01 my=-1 at 12GHz will be analyzed, now for a 

length of the lateral walls of L=1mm. This length is positively not enough to make sure 

all the high order modes are under cut-off, and do not contribute to the radiation pattern. 

First, the modal contribution to propagation and radiation is shown in Figure 4.2.6.5. : 

a) b)
 

Figure 4.2.6.5 TE01 2
nd

 harmonic Modal Contribution at 12 GHz, for L=1mm. 



Chapter 4                                                                                                                                       The Software 

 

132 

Although the propagation modal spectra remains basically the same, the radiation has 

now two main contributors, since the PPM mx=0 and the mx=2 are now able to excite 

equivalent magnetic currents at the top aperture. The main impact of this second 

contribution can be seen on the E plane radiation pattern, see Figure 4.2.6.6 a), where 

there is no longer a neat single beam aiming to 0º  , but two tilted lobes. It can be seen 

in Figure 4.2.6.6 d) how the contribution of the mx=2 is now significant. This 

degradation of the pattern is to be avoided. 

a) b)

c) d)
 

Figure 4.2.6.6 TE01 2
nd

 harmonic E plane radiation pattern at 12 GHz, for L=1mm. 

 

As a conclusion, it is of extreme importance to chose an appropriate value for the length 

of the lateral walls, long enough to make sure the PPM mx=0 is the only contribution to 

radiation, but at the same time, it must be not too long to allow the energy to couple from 

one wall to the other, creating new propagative modes called ‘Channel modes’, that may 

be radiating at the same frequency with a different angle. These modes have been studied 

in the literature already mentioned, and are one of the main drawbacks of the so called 

‘Inset’ structures (those with the aperture in the shortest wall of the waveguide). The 

other main drawback is that the leakage rate can be controlled to a very small extent, due 

to the horizontally polarized nature of the TE01 in these LWA. This translate in two 

consequences: one, the attenuation constant  has very large values right after cut-off, so 
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all the energy is radiated in a very short longitude. This reduces the effective aperture and 

renders the antenna useless due to extremely low directivities. And second, tapering on 

the illumination is most of the time not possible. 

 

 

Figure 4.2.6.7 H plane modal radiation pattern comparison with HFSS at 12 GHz. 

 

To check the radiation results calculated with this method, the structure was simulated in 

HFSS with 10 0 of longitude, at 12 GHz. As seen in Figure 4.2.5.4, at that frequency 

there are two harmonics radiating with different pointing angle, the TE01 mode Floquet 

harmonic my=-1, radiating backwards with 1 31º    in blue dotted line and the TE02 

main harmonic my=0 radiating forward with broad main lobe at 0 54º  , due to his high 

leakage constant, in green dashed line. The total radiation pattern obtained with HFSS is 

shown in Figure 4.2.6.7 in red continuous line. The two main pointing angles estimated 

with the developed method agree very well with those in the HFSS simulation. Also, in 

the HFSS simulation, another main lobe can be found at +31º and a much higher level of 

signal that expected is radiated around -54º. On top of that, the total radiation pattern 

seems to have some ‘noise’. All these added effects are due to the finite length of the real 

simulated structure.  

 

One must take into account that the developed method analyses an infinite periodic open 

waveguide, and the finite length of the real aperture is introduced when calculating the 
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radiation pattern from the equivalent magnetic currents at the aperture. The efficiency of 

a LWA is given by: 

                                                               
2

1 WGL
e

 
                                       (4.2.6.13) 

 

For the TE01 mode my=-1 and the length of this LWA, with an attenuation constant of 

0.8 /nep m  , the calculated efficiency is about a 33%. This means that a 66% of the 

energy is not radiated and reaches the end of the waveguide, creating a reflecting wave 

radiating backwards. It is obvious that a much larger open waveguide is needed to 

increase the efficiency of the LWA, which would translate in ridiculously long times of 

simulation with commercial software. The reflected wave is too high to obtain clear 

results with HFSS that could be used to validate those obtained with the present method. 

To minimize this effect, a port at the end of the LWA and a tapered transition were added 

in the structure simulated in HFSS (see Figure 4.2.6.8). Analyzing the S parameters, the 

attenuation of the now much lower reflected wave was calculated. This way, the sum of 

the radiating forward wave and the reflected backward wave can be plotted versus the 

HFSS result. This estimation was done too for the reflected wave corresponding to the 

TE01 mode. The previously mentioned ‘noise’ is unavoidable, since the transitions also 

radiate, due to the horizontal polarization of the TE01 and TE02 modes. 

 

Figure 4.2.6.8 HFSS modelled LWA at 12 GHz. 

 

To make a final validation of the method, all four contributions will be taken into 

account, the radiation from the two modes TE01 and TE02 calculated directly with the 

method, and the radiation coming from the reflected waves of those two modes. Figure 

4.2.6.9 presents the comparison between the HFSS radiation pattern in red continuous 
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line and the sum of all WELAST radiation contributions in blue dotted line. It can be 

seen how the method developed in this work produces very reliable results. 

 

Figure 4.2.6.9 H plane TOTAL radiation pattern comparison with HFSS at 12 GHz. 

 

It would have been impossible to discriminate the different contributions to radiation 

from the HFSS results. The capability to analyze each mode and harmonic separately is 

one of the main advantages of the present method. A rigorous modal analysis allows the 

user to understand where all the different contributions to radiation come from, why and 

where to expect a bandgap due to harmonic interference, since it can be foreseen once the 

modal spectra supported by the leaky wave antenna is known. 

 

Another very important advantage is the simulation time consumption. The simulation 

with HFSS took 19 minutes to simulate the structure, with an error below 0.1, with a 

Core2Duo Centrino. WELAST took 5.5 minutes to reach the complex solution, in a 

similar computer, with an iterative search of 10 steps. It must be said that same result can 

be obtained in 2.5 minutes for only 5 steps, but the user is recommended to start with 

more steps than necessary in order to ensure the correct result. And it takes 25 seconds to 

move from one result in frequency in steps of 0.1GHz.  It can be seen that the present 

software is much faster than 3D full wave based software, since it applies a 2.5D 

analysis, and only the metallization of one single cell has to be meshed. In HFSS the 

simulation time grows exponentially when increasing the length of the structure, 
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necessary to achieve higher efficiency. WELAST simulation time is not affected by the 

waveguide longitude.  

 

4.2.7. User´s guide: Resonance Study. 

 

One of the most important features when working with periodic metallization is the 

resonance phenomenon. The main motivation to develop a method able to support 

subdomain basis functions was to allow the user to study shapes that have interesting 

resonant behaviour, such a dipoles, square loops, split square loops, crosses… These 

circuits may be used to create a FSS to avoid the leaky wave antenna radiating at 

undesired frequencies, or even more, to use the nulls that the resonance will cause in the 

attenuation constant in order to modify the radiation at will, so the illumination along the 

aperture is shaped into a more convenient tapered radiation pattern. The concept of 

tapering is well known [Balanis 1982], and has been used before in very simple LWA 

structures [Gomez March-2006]. This tapering procedure was based on the radiation 

controlled by asymmetry, so it was achieved by modifying the position of the printed 

circuit on the dielectric. With this new simulation tool, not only the variation of the 

leakage constant due to is position can be analyzed, but also the combined effect of 

positioning with the different resonance effects of complex printed circuits can be 

studied. 
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Figure 4.2.7.1 Blanos and Vardaxoglou structure and measured results. 
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As an example of this, the dipole based Blanos and Vardaxoglou structure will be taken 

into the software. The button Resonance Study  is the only feature of this simulation tool 

that is completely open to the user to be modified. It is basically a tool to plot the 

dispersion of the phase of the induced currents on the metallization versus the frequency. 

This way, the resonances can be identified as nulls in the phase of the current. The author 

had it programmed so the centre point of the dipole was analyzed when studying the 

current distribution. This file must be modified to adapt to the structure under analysis, 

since the exact point of interest on the printed circuit may be different, depending on the 

shape, or maybe more than one interest point may be required. The user will have to edit 

the file ‘currents_vs_frec.m’, and modify it accordingly with his chosen printed circuit. It 

is easy and only basic Matlab programming knowledge is needed. In any case, this 

feature is a verification tool for resonances, since this information may be deduced by the 

analysis of the phase   and attenuation  constants dispersion versus frequency.  

 

In 1997, the results for the phase and leakage constant obtained directly from radiation 

pattern measurements reflected a resonance at 14GHz. It was then checked as the 

radiation pattern did not show any main lobe radiating at said frequency (continuous 

line). This can be seen in Figure 4.2.7.1. The geometry of the structure introduced in 

WELAST is a=9mm, H=14mm, D=0.3mm, L=7mm, P=7mm, the length of the dipole is 

W=8mm and Q=0.2mm thick. Figure 4.2.7.2 shows the main beam angle and attenuation 

constant dispersion curves for different values of the dipole length. At the sight of these 

two results, two bandgaps can be clearly identified, the first near 14GHz and the second 

close to 24GHz.  

Figure 4.2.7.2 Pointing angle and attenuation constant: W variation. 
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In the same Figure, the results for the length of the dipoles W= 7.4mm and W=6mm are 

also plotted. It can be seen how, as the length of the dipole decreases, the first bandgap 

moves up in frequency. On the other hand, the second bandgap remains at the same 

frequency for all dipole lengths. From this, it is easily concluded that the first is a 

resonance bandgap is due to the resonance effect of the dipole FSS, and the second is an 

interference bandgap is a consequence of the destructive interference between the 

harmonic my=0, radiating at 0 63º  at 23.8GHz and the second harmonic of the TE01 

mode my=-1 radiating at 1 63º    at the same frequency. 

 

This same conclusion can be reached via a resonance study. Figure 4.2.7.3 shows the 

value of the phase of the induced current on the metallic dipole. Only the current along 

the dipole (x direction) is of interest. In the zoom at the middle of this figure, it can be 

appreciated how the null in the current phase moves from 14GHz to above 17GHz as the 

length of the dipole decreases. Regarding the second bandgap, the current phase tends to 

be zero at 23.8GHz for all cases. 

 Figure 4.2.7.3 Pointing angle and attenuation constant for the Blanos structure. 

 

For tapering purposes, it is clear that the variation of the leakage constant due to the 

resonance bandgap can be controlled to an extent by modifying the dipole length.  
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In previous sections, it was studied that the position of the Floquet second harmonic can 

be controlled by modifying the periodicity P. Figure 4.2.7.4 shows the main beam 

radiation angle and the attenuation constant  for a fixed length of the dipole W=8mm. It 

can be seen how, as the periodicity decreases, the second harmonic separates from the 

main harmonic, which means that the forward wave of the my=0 and the backward wave 

of the my=-1 will be radiating with the same angle at a higher frequency, so the bandgap 

moves up from 21GHz to above 24GHz. Do notice that the resonance bandgap remains 

unmovable, since the W of the dipole is fixed. 

 

 

Figure 4.2.7.4 Pointing angle and attenuation constant: P variation. 

 

Again, bearing in mind a future tapering on the illumination of the antenna, there is a 

second variation of the leakage constant, although within a smaller range, related to 

interference bandgaps that can be controlled separately modifying the periodicity P. 

 

Finally, a study of the power radiated for the variation of the dipole length W and the 

periodicity P is shown on Figure 4.2.7.5. The Pointing vector in the z direction was 

calculated at the centre point of the aperture in the x direction. 
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 The same variation observed for the zero of the current phase in both cases of P variation 

and W variation can be identified for the null of the radiated power. For the resonance 

bandgap, the zero of the Poyinting vector moves up in frequency as W decreases. 
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Considering the interference bandgap, the smaller the periodicity, the higher up in 

frequency said zero appears. All results are consistent with each other.  

 

 

Figure 4.2.7.5 Radiated power at aperture: W and P variation. 

 

 

 

 

4.2.8. User´s guide: Introducing new geometries. 

 

As previously explained, the Roof-top basis functions can model the induced currents on 

metallizations of certain complexity. Examples have been mentioned as crosses, single 

and double square loops, splitted square loops, Jerusalem crosses… even periodic printed 

circuits consisting of two or more components, as dipoles of different length. As long as 

it has not rounded sections (the number of cells to model this would be prohibitive), 

almost every arbitrary shape can be modelled. WELAST is already loaded with the 

meshing files necessary to analyse some of these shapes, but it will happen that a new 

geometry is needed. Another of the advantages of this software is how easy is to add a 

new shape, it is only necessary to create a meshing file of said geometry, following some 

very basic rules, and since there are two ways to fill in the MoM matrix depending on the 

meshing, as seen in section 2 of this Chapter, there will be two types of meshing files, the 

spatial-based meshing and the unknowns-based meshing files. 
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a) The spatial-based meshing file. 

It starts with SD1_ and then the name of the new geometry. It meshes a rectangle that 

will contain all the metallization. This means that there will be empty cells that will be 

taken into account. The function is of the form: 

function [vertix,ies,equis,Cx,Cy]=SD1_name (W,Q,t,x1,y1,nx,ny) 

 

where nx: number of cells in the x direction 

 ny: number of cells in the y direction 

 vertix = [posY posX 1ny    ny   1ny   1nx    nx   1nx  ] 

  posY: ordinal position of the cell in the y direction (from 1 to ny) 

  posX: ordinal position of the cell in the x direction (from 1 to nx) 

  y, x: absolute position in meters. It is given for two adjacent cells. 

 ies: [ 1ny    ny   1ny  ] 

 equis: [ 1nx    nx   1nx  ] 

 Cx: number of unknowns in the x direction 

 Cy: number of unknowns in the y direction 

 

b) The unknown-based meshing file. 

It starts with SD2_ and then the name of the new geometry. It only meshes the actual 

printed circuit so all the cells will be filled with metal. The function is of the form: 

function [vertixX,vertixY,Cx,Cy,ies,equis]=SD2_name (W,Q,t,x1,y1,nx,ny) 

 

As explained in section 2, the number of unknowns or Roof-tops functions in each 

direction may not be the same. The only difference now is that each direction has a 

‘vertixY’ vector for the Roof-tops modelling the current in the y direction and another 

‘vertixX’ vector for those in the y direction. All the other output variables remain as the 

previous case.  

 

As can be seen, this method of introducing new geometries is extremely simple and 

flexible, since it is based on matrices containing the positioning coordinates of the cells. 

The plots for the currents and other results receive these absolute positions in the x-y 

plane to draw the metallization in 3D plots, so they are valid for all new shapes, as long 

as the format of the inputs is observed carefully.  
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CONCLUSION 

 

In this Chapter, a new simulation software has been presented, based on the Roof-tops 

basis functions method introduced in Chapters 2 and 3. This program allows studying for 

the first time leaky wave antennas based on an open waveguide loaded with complex 

periodic printed circuits, such as loops, crosses, or an arbitrary shape of the kind. A 

complete and rigorous modal analysis is carried out on the single square metallic loop 

LWA, as an example used to explore the features implemented in this simulation tool. An 

intuitive and simple graphical interface and the fact that results are plotted in real time, 

makes WELAST not only fast but extremely easy going. It is very flexible, since the user 

may choose between Entire Domain of Sub-domain based method, and from a wide range 

of plots of currents, fields, power and dispersion curves not only with frequency, but also 

significant geometrical parameters. The obtained results have been compared and 

validated with other authors’ methods and commercial software. This makes WELAST a 

powerful, reliable and versatile tool able to analyse novel PLWAs with printed circuits 

of certain complexity that could not be modelled until now. It also counts with the 

possibility to study resonances, based on the induced currents, characteristic of FSS 

metallization shapes mentioned before. But the most remarkable feature, in the author 

eyes, is that this software not only produces graphs and results characterizing a given 

LWA. Thanks to the modal analysis, the user can achieve a deep understanding of the 

electromagnetic phenomena taking place in the open structure, and use this knowledge 

to modify and optimize it at will.  
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CHAPTER 5 - CONCLUSIONS AND FUTURE WORK 

 

Where real applications of the developed simulation tool are presented and future 

extensions for the code are proposed. Finally, the conclusions of the presented work are 

synthesized. 

 

 

5.1. Potential Applications. 

 

Once the simulation tool is coded, provided with a graphical interface and validated, it is 

ready to use. In this section a wide range of possible applications for WELAST is 

presented, not only the straight forward ones, but also other possibilities the author came 

across during the method development stages. Most of the proposed applications are 

complex enough to become the initial triggering idea of new PhDs based on the 

electromagnetic software created in this work.   

 

5.1.1. 1D PLWAs 

 

This is the obvious main application of the simulation software developed in this work. 

As explained throughout previous chapters, this type of periodic LWA was studied in the 

Polytechnic University of Cartagena using a similar MoM based method with Floquet 
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and Parallel Plate modes expansion, to model the propagation characteristics in the 

laterally shielded waveguide for simple printed geometries, as strips or slots [Gomez 

March-2006]. Therefore, this full-wave method takes into account the radiation of higher 

order harmonics and phenomena related with the interference between harmonics, such as 

bandgaps. Said method was greatly limited by the use of Entire Domain basis functions 

to model the currents on the printed circuits. In the last years, another method has been 

used to analyze laterally shielded PLWA, based on a Transverse Equivalent Network 

(TEN) combined with the pole-zero matching method [García-Vigueras 2010]. Although 

considerably fast and reasonably accurate, this method only works for single Floquet 

mode propagation, and also shares the geometrical limitation to simple patches. 

 

The method coded in this thesis overcomes this major drawback by introducing Sub-

domain basis functions in the MoM to allow complex geometries in the design. With this, 

the possibility to combine the laterally-shielded PLWA with known FSS and even with 

metamaterial planar surfaces is open for research. In Chapter 4, a square loop PLWA was 

presented and used to introduce the simulation program. The same way, WELAST can be 

used to analyze, understand and efficiently design PLWAs based on loops, crosses, 

double dipoles or any combination or new element the user may decide is more 

convenient, since its modular nature makes it easy to extend to new geometries.  

 

It is most interesting the capability of tapering that this type of PLWA posses, that is, 

the ability to independently control the pointing direction and illumination function. The 

tapering procedure is well-known, the radiation pattern obtained by the conventional 

exponential illumination has 13dB side lobe level [Schwering 1983], which is not 

acceptable for some antenna applications. The illumination must be tapered with some 

specific pattern (cosine, triangular…) to reduce the side lobe level. An excellent 

discussion on different kinds of illumination and corresponding performances can be 

found in [Balanis 1982].   In [Gomez Sept-2005] a PLWA based on rectangular slots was 

studied to probe how the leakage rate could be controlled while the phase constant was 

maintained simultaneously changing two geometrical parameters of the periodic cell, see 

Figure 5.1.1.1 below. A cosine tapered illumination was achieved, with 23dB of side lobe 

level.  
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Figure 5.1.1.1 Tapered PLWA design in [Tornero Sept-2005]. 

 

This tapering was developed by running parametric analyses on the selected geometrical 

parameters and creating a cross-table for a given pointing angle. As seen in Chapter 4, 

WELAST is prepared to run parametrics on geometrical parameters, with the added 

advantage of dealing with complex elements. Circuits as double loops, double dipoles 

etc. offer more geometrical parameters to modify in order to achieve the proper tapering. 

Furthermore, they can be treated as resonant elements choosing the appropriate range of 

frequency, and the leakage constant can be controlled over a range by working near the 

resonance frequency by changing physical dimensions of the elements. This effect can be 

seen in Figures of section 4.2.7. in the resonance study. This way, there is no need to 

resort solely to the control of radiation by asymmetry to design a taper. 

 

 

 

5.1.2. 2D PLWAs 

 

2D periodic LWAs are cavities with a PRS at the top, at about half-wavelength, designed 

to obtain a pencil beam radiating at broadside, as was explained in Chapter 1. Although 

WELAST is a simulation software specifically developed for 1D periodic LWA, by 

applying the Equivalence Principle, it can be used to analyze 2D structures. This 

concept is illustrated in Figure 5.1.2.1 on a 2D PLWA with printed dipoles orientated in 

the x direction. 
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Figure 5.1.2.1 Equivalence Principle applied on a 2D PLWA. 

 

The structure above supports both TE and TM modes, the field of each represented by the 

arrow along the y axis and the x axis respectively, in Figure 5.1.2.1 a). To effectively 

model the E field corresponding to the TE mode, Perfect Electric Conductor (PEC) 

boundaries or Perfect Magnetic Conductor (PMC) boundaries are applied depending on 

the propagating direction. In Figure 5.1.2.1 b) PEC walls are applied along the y direction 

for the E field to exist normal to the z-y plane. Alternately, PMC walls can be applied 

along the x direction, with the same result, see Figure 5.1.2.1 c). It is easy to see that the 

analysis for the TM mode will be complementary. This kind of LWA works almost at 

cut-off condition, when 0  , radiating at broadside. As seen in Chapter 1, in this 

condition, TE mode and TM mode share the same propagation constant values, so only 

the analysis of the TE mode is necessary. As a conclusion, the study of a laterally 

shielded 1D PLWA will be equivalent to the infinitely periodic 2D structure. 

 

Until now, these doubly periodic structures were analyzed applying Floquet harmonics 

expansion on both directions. In [García-Vigueras 2010] this equivalence between 2D 

LWAs and laterally shielded 1D LWAs is used in combination with a method based on 

the TEN/pole-zero technique. As mentioned in last section, this method has notable 

limitations. Also, in [Mateo 2011] the double Floquet expansion is used in conjunction 

with a spectral domain MoM with Entire Domain basis functions for the study of 2D 

PLWA made of metallic patches. It can be seen how the most recently developed 

methods share the inherent limitations of the use of ED basis functions.  
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Now, with the use of subdomain functions, 2D PLWAs based on printed circuits of 

arbitrary shape can be analyzed. The mixed Floquet-Parallel Plate mode expansion used 

in this work, allows a complete modal study, modelling the undesired effect of higher 

order radiating harmonics and avoiding them in the final design, with the optimum length 

of the lateral walls. 

 

 

5.1.3. 1D Metamaterial LWAs. 

 

As introduced in Chapter 1, metamaterial leaky wave antennas have the capability to scan 

from backward to forward, as conventional PLWAs, but without the need to work with 

higher order harmonics. Since the new developed code allows complex elements as 

printed circuit, laterally shielded left-handed media can be fast and accurately 

analyzed. LH media found in the literature can be applied to hybrid waveguide printed 

circuit technology, as the one shown in Figure 5.1.3.1 from [Liu 2002]. In this Figure a 

new LH PLWA is proposed with the same features but some added advantages. 

 

a) b)
 

Figure 5.1.3.1 Proposed antenna based on [Liu 2002]. 

 

The parallel-plates provide a better focus of the radiated energy and also act as a direct 

way to connect the shunt inductive line to the ground, avoiding via-holes. The series 

capacitance is achieved by a simple capacitive gap, instead of the more complex 

interdigital capacitor. Also, the disposition of the open waveguide shown in Figure 

5.1.3.1 b) offers the possibility to control the leakage rate by the asymmetry mechanism 

explained in Chapter 2. Another example that can be used to design this kind of LH LWA 

was presented in [Grbic 2002-II] and can be seen in Figure 5.1.3.2. 
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Figure 5.1.3.2 Coplanar backward-wave radiating metamaterial [Grbic 2002-II]. 

 

So far, only commercial software has been used to analyze this type of LH LWA, which 

is too slow for an effective optimized design. In Loughborough University, several 

studies were carried out on modelling novel uniplanar LH materials, such as loaded 

dipoles [Goussetis 2006], rectangular loops and spiral loops [Guo 2005], as can be seen 

in Figure 5.1.3.3. The application of these geometries to the design of a 1D LH periodic 

LWA would be reasonably straight forward. In these studies, a MoM method combined 

with interpolation techniques was used with reasonably accuracy, but it did not 

contemplate any radiation performances, or the effect of lateral walls.  

 

Figure 5.1.3.3 Unit cells proposed in [Guo 2005] a) rectangular loop, b) split loop, c) loaded loop, d) spiral 

loop and in [Goussetis 2006] e) periodically loaded dipole. 

 

 

5.1.4. Closed Waveguides. 

 

The simulation tool WELAST is specifically developed for laterally-shielded radiating 

structures, but it does not mean that closed waveguide based devices cannot be analyzed 

the same. In Chapter 2 it was explained how, to achieve a solution in the complex plane 

for the leaky wave, it was necessary to start from the real solution of the closed structure. 

This analysis is especially interesting when designing waveguides with FSS inserted 
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within. In 1993, Langley designed a dual-band waveguide that could work in two 

separate frequency bands by creating a waveguide within a waveguide, using a single 

FSS layer as separator [Langley 1993], as can be seen in Figure 5.1.4.1. This idea can be 

adapted to other frequencies or requirements by using different geometries in the FSS. 

a) b)
 

Figure 5.1.4.1 Dual band WG proposed in [Langley 1993] a) Cross-section and b) frequency response. 

 

Using Langley configuration, virtually any kind of waveguide filter may be designed by 

studying the modal propagation of the appropriate FSS. Another examples using this 

configuration are the broadband transmission below the cutoff frequency of a given 

waveguide, achieved introducing a FSS layer of split ring resonators in [Lubkowski 

2007] and the idea for cavity miniaturization using ‘gangbuster’ dipoles FSS in [Caiazzo 

2004]. Even without stepping into the metamaterial field, this configuration may be used 

as a stop-band filter by controlling the electromagnetic bandgaps induced by the FSS, see 

[Goussetis 2007]. 

 

 

5.2. Future Code Extensions. 

 

The developed method is, as anything else, susceptible of extensions and improvements. 

Some of the code modifications proposed in this section were not implemented by the 

author due to time restrictions. It was more pressing the need to establish a solid base for 

the code, and now that this is achieved in the present PhD, limitless options to give even 

more versatility to the present method are open for the taking.  
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5.2.1. Stacked Metallizations Code. 

 

The current version of WELAST is able to analyze one layer of printed metallization on 

top of a dielectric substrate. The code can be extended to allow structures with stacked 

layers of printed circuit, as shown in Figure 5.2.1.1, by modifying the method presented in 

Chapter 2 to allow more than one current source. The boundary condition to obtain the 

EFIE should be applied on both metallizations, where the E field should be zero. Also, the 

‘coupling’ between both current sources has to be taken into account when solving the 

equivalent transmission line and deriving the fields in the structure. The geometries of each 

layer would be treated separately and their induced currents modelled by Roof-top 

functions, meaning they can be different from each other.  
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Figure 5.2.1.1. 1D PLWA stacked disposition Equivalent Transmission Line. 

 

In [García-Vigueras 2011] a second printed circuit was added at the bottom of the 1D 

PLWA acting as a HIS to increase the scanning angle sensitivity with frequency. 

Traditionally, when a 1D LWA has to scan a large range of angles, it requires a 

considerably frequency bandwidth, which translates in a complex feeding network. Said 

bandwidth can be reduced using dielectric filled LWA, with the increase of material losses. 

With the addition of the second printed layer, the hollow LWA may be designed to radiate 

from broadside to endfire within the desired frequency bandwidth and a minimum amount 

of dielectric. The TEN + pole-zero matching method [García-Vigueras 2010], described in 

section 5.1.2. and limited to rectangular patches, is used. 
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The same way, 2D PLWAs with two layers of printed circuit could be analyzed. In Chapter 

1, it was seen how the typical half-wavelength antenna profile could be reduced to quarter-

wavelength or even less with the addition of a PMC at the bottom of the cavity. An 

example of this can be found in [Mateo 2011]. 

 

This code extension could be used also in the field of closed waveguides, introduced in 

previous sections. As seen in Chapter 1, using EBGs acting as PMC inside waveguides 

could induce an abnormal TEM mode, with higher illumination efficiency for feeding 

purposes. In [Yang 1999-II] this is achieved by using EBGs on both sidewalls to provide 

magnetic boundary conditions, see Figure 5.2.1.2, generating a relatively uniform field 

distribution over a certain bandwidth. 

a) b)
 

Figure 5.2.1.2 a) Feeding waveguide proposed in [Yang 1999-II] and b) single cell detail. 

 

 

5.2.2. Arrays of 1D PLWAs 

 

As seen through this work, the 1D PLWA presents an inherent pointing angle scanning 

with the frequency in the H plane (along propagation direction). To obtain this same 

scanning capability in the E plane, an array of these antennas must be assembled. This 

mechanism is well known and has been used before, but the array of this type of antennas 

has the advantage of not needing complex spatial distributions, as they will be placed in 

parallel and feed from the same side. A clear and complete explanation about this kind of 

arrays can be found in [Volakis 2007], as well as several examples of related literature. 
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Figure 5.2.2.1 Array of 1D PLWAs (from [Volakis 2007]). 

 

 

The code extension proposed is based on the study of the equivalent currents induced at the 

apertures of the 1D LWAs, and the application of Floquet expansion to them, since they 

will be periodic on a second dimension thanks to the parallel walls separating them. This 

way, it will be possible to predict the behaviour of the whole array by studying the single 

antenna, including grating lobes and bandgaps, depending on the separation of the 

elements of the array. 

 

 

5.2.3. Design Side CAD tools. 

 

It has been previously introduced the importance of the tapering procedure in the design of 

LWAs. By appropriately choosing the illumination of the LWA aperture, desired 

performance in terms of directivity and side lobe level can be achieved [Balanis 1982]. It is 

based on the normalized illumination created by a leaky-mode with propagation constant 

( ) ( ) ( )y y i y    , along the antenna aperture in the propagation direction y: 

 

                                                    
( )( ) ( ) j y yM y M y e                                            (5.2.3.1) 

 

This illumination function depends directly on the phase constant and the attenuation 

constant of the leaky mode. All related formulation can be found in [Johnson 1993] Ch. 10. 

To understand the basic, it is sufficient so say that the radiation pattern is calculated 
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directly by the Fourier transform of ( 5.2.3.1) and that a simple expression for the 

attenuation constant ( )y can be obtained, based on the desired illumination function:  

                                
0
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0 0
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                     (5.2.3.2) 

 

This expression is based on the efficiency  , which is usually chosen not to be higher of 

90%, and the total length of the antenna Lg. With this, a single value of the attenuation 

constant is given for each point sampled in along the propagation direction y. 

 

It is possible to obtain a semi-automated design of tapered PLWAs, by using side CAD 

tools developed specifically for that purpose. Two additional programs were developed for 

PAMELA in [Gómez-Tornero July-2006]. The first one, LWA Designer is devoted to 

calculate the leakage function ( )y  needed to obtain the desired radiation pattern, for a 

specified frequency, guide length Lg and a given radiation angle.  Then, the Layout 

Designer uses PAMELA to run the simulations necessary to obtain a dispersion curve for 

the variation of the leakage constant for a fixed value of the phase constant. The program is 

coded so a map containing the combined variation of two geometrical parameters is plotted 

and the appropriate dimensions of said parameters identified in order to obtain the function 

of ( )y  defined by the LWA Designer. This process is defined graphically in Figure 

5.2.3.1. and the contour plot obtained for the variation of the asymmetry d  and the width 

of the metallization W is shown in Figure 5.2.3.2. Following the green continuous line 

corresponding to the pointing angle of interest, in can be chosen the required value of the 

leakage constant. The correspondence with the dimensions of the geometrical parameters is 

straight forward. 
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Figure 5.2.3.1 Semi-automated tapering process developed in [Gomez-Tornero July-2006]. 

 

 

 

Figure 5.2.3.1 Example of contour plot for two parameters variation [Gomez-Tornero July-2006]. 
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The same extension of the simulation software can be applied to WELAST, where the 

LWA Designer will have exactly the same functions, but the Layout Designer will require 

dealing with the combined variation of more than two geometrical parameters, since the 

main advantage of analyzing more complex cell elements is to obtain more grades of 

liberty. The full-wave analysis of the 2D cross section of the antenna to obtain the 

dispersion curves makes this method much faster than the analysis with commercial 3D 

electromagnetic software. In terms of optimization, where a large number of simulations 

are required to reach the goal, the proposed design process will provide a fast an accurate 

tool to obtain the final design in a fraction of the computational time commercial software 

will take. 

 

 

5.2.4. Curved Surfaces Basis Functions. 

 

The aim of this present thesis was to develop a new method of modal analysis of leaky 

wave antennas that could reduce a 3D problem into a 2.5D one, and that could deal with 

not only regular structures, as the precedent methods to date could, but with more 

complex geometries. Roof-tops functions are able to deal in an efficient way with the 

type of structures of interest in this present work: square loops, double square loops, split 

square loops and so on. These are basically rectangular geometries with rectangular kind 

of alteration. 

 

Roof-tops functions require a uniformly meshed surface with rectangular cells to operate. 

This is an obvious limitation in the capabilities of this mesh, since electrically large 

metallizations with very complex shapes, small discontinuities or curvatures will need a 

huge amount of cells to include these irregular parts of the geometry, meaning the MoM 

matrix size will become unbearable. If, in a future, this software is required to handle 

circular shapes or very intricate designs, it should be optimized to fit these new 

geometries, avoiding the considerable increase of the computational cost. There could be 

two possible solutions: 
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- The modification of the method to make it able to deal with Roof-top basis 

functions which operate on a rectangular and triangular mixed grid, as described 

in [Chang 1992]. 

 

- Use Rao, Wilton and Glisson (RWG) basis functions, with a triangular mesh. This 

type of cells can model practically any arbitrary shaped structure, and its size may 

adapt to the geometrical variation, optimizing the total number of cells, and so the 

computational cost. These functions are well known and can be easily found in 

literature, see for instance [Rao 1982]. 

 

The first option would be a mix between the method developed in the present work and 

the use of the RWG functions. The author personally sees the second option as the logical 

next step for the future work in the evolution of the method. 

 

 

 

 
Figure 5.2.4.1 Correspondence between basis functions and analyzable structures. 
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5.2.5. Accurate Modelling of the Aperture 

 

Traditionally, hybrid waveguide-planar LWAs have been employed to produce pure 

horizontally polarized radiation. It was desirable that only the main PPMode reached the 

aperture at the top of the lateral walls. But it is also possible to control the polarization 

properties of these antennas, in order to obtain vertical and even circular polarization, in a 

simple manner by controlling the radiation of the first higher order PPMode. In [Gomez-

Tornero 2007] it is shown how by modifying the asymmetry of a 1D LWA and the height 

of the parallel plates, pure horizontal, pure vertical and also balanced horizontal-vertical 

(circular) polarization can be achieved. Said studies were carried out using commercial 

software on uniform leaky-wave antennas, with an enormous computational cost, since 

the whole structure had to be analyzed. 

 

The method presented in Chapter 2 uses the Markuvitz Radiation Impedance [Markuvitz 

1951-I] to model the aperture at the top of the LWA. This impedance is a valid 

approximation for the fundamental PPMode, with pure horizontal polarization. However, 

said approximation is less accurate when modelling the radiation of the higher order 

PPMode. In [Gomez-Tornero 2008] a specific TEN is developed, based on the works of 

Sanchez and Oliner (see same reference), to obtain accurate expressions for the radiation 

impedance of the evanescent first higher order parallel plate mode. These expressions 

could be added to WELAST code to allow, for the first time, a rigorous and efficient 

analysis of circular polarization in periodic leaky wave antennas, with printed circuit of 

arbitrary shape. The computational cost would be considerably reduced, since only the 

chosen unit cell would be meshed.  

 

In any case, second and higher order PPModes, although never used, have not ever been 

modelled accurately. An extension of the analysis method to rigorously model the 

antenna aperture could be formulated. It is possible to model the antenna aperture using 

the equivalence principle, by expanding the equivalent magnetic currents at the top 

aperture. The original problem will be separated into two complementary ones, as seen in 

Figure 5.2.5.1, that must be solved and added to obtain an analytical expression for the 

rigorous modal impedance radiation of the aperture. It must be noted that for the 

second equivalent structure of the original problem, two conditions must be applied, the 

known EFIE on the metallization and a new MFIE to assure field continuity on the 
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aperture, which must be observed for both, the induced electric currents on the printed 

circuit and the induced magnetic currents in the aperture. 
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Figure 5.2.5.1 Equivalence theorem applied on the aperture. 

 

This new extension of the code will yield:  

 

- Perfectly accurate results (no approximation will be assumed). 

- No limitations in the shape of the aperture S (so far the parallel plates must be 

completely open to free space). See Figure 5.2.5.2 for illustration. 
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Figure 5.2.5.2 Evolution of Lateral Walls in PLWAs. 
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CONCLUSION 

 

The following points are a resume of the main contributions of the present work: 

 

- A rigorous full-wave method has been developed for the analysis of periodic 

leaky wave antennas laterally shielded and with planar metallization printed on 

dielectric substrate. The method is based on modal Floquet harmonics expansion 

along the propagation direction combined with Parallel-Plate modes expansion in 

the cross-section. A modal version of the Markuvitz Radiation Impedance has 

been used to model the top aperture. Method of moments was used to solve the 

EFIE applied on the printed circuit, and Green functions in combination with 

Subdomain basis functions were employed to model the fields and currents in the 

structure. It is the first time a method of these characteristics is able to analyze 

arbitrary shaped unit cell geometries. 

 

- A complete study of the Roof-tops basis functions has been carried out. The 

previously assumed behaviour of Relative Convergence for this kind of modal 

analysis has been checked and discarded, contrary to the precursors of this 

method. Also, a comparison between the results obtained with Entire Domain 

functions and Roof-top functions is presented.  

 

- The accuracy of the method is validated through comparison with previously 

coded methods found in the literature and 3D commercial simulation software 

(HFSS). The analytical nature of the method and the 2D cross-section analysis 

provides superior performances in terms of speed compared to the later.  

 

- A novel simulation software, WELAST, doted with an intuitive graphical 

interface has been developed. It is not only fast and versatile, but its interactive 

nature, and the wide range of results that it provides, make it easy to understand 

the propagation and radiation concepts that take place in the LWA. Its educational 

potential is an added value to its original analysis and design purpose. 

 

- Two different coding philosophies have been presented and compared, using a 

combination of meshing strategies and matricial coding approach. It was found 
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that computing times could be significantly reduced depending on the chosen 

approach, even when the number of unknowns to calculate was larger. WELAST 

allows the user to take advantage of this discovery. 

 

- A new PLWA based on printed metallic square loop is analyzed using the novel 

method. It is also used to show the capabilities of the simulation tool. The 

parallel-plate expansion allows modelling the effects that higher order modes may 

have on propagation and radiation, even when multi-harmonic radiation occurs. 

This way, induced currents, fields, harmonics interferences, bandgaps, modal 

contribution to both propagation and radiation and cross polarization effects on 

this novel leaky-wave antenna are studied. Also, a resonance analysis based on 

the effects that the variation of certain geometrical parameters have on the 

bandgaps of the structure has been carried out for the first time in this type of 

antennas. The interpretation of said results has given a full understanding of the 

inside workings of the periodic leaky-wave antenna. 

 

- Finally, the following steps in the study of PLWA and the extension of the 

developed simulation tool have been proposed and oriented. 

 

 

The present work means the closure of the first step (and most of the times the most 

difficult to take), in the open field of study of periodic and/ or metamaterial leaky-

wave antennas. It represents the first milestone required to start the analysis and 

understanding of new behaviours in periodic structures and efficient design of novel 

PLWAs. The birth of WELAST is just the beginning.  
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ACRONYMS/ ABREVIATIONS 

 

 

AIS    Artificial Impedance Surfaces 

CAD    Computer Aided Design 

CGM    Conjugate Gradient Method 

CRLH    Composite Right/Left Handed 

EBG    Electromagnetic Band Gap 

ED    Entire Domain 

EFIE    Electric Field Integral Equation 

FDTD    Finite Difference Time Domain 

FSS    Frequency Selective Surfaces 

GUI    Graphical User Interface 

HIS    High Impedance Surfaces 

LHM    Left Handed Materials 

LWA    Leaky-Wave Antenna 

MFIE    Magnetic Field Integral Equation 

MoM    Method of Moments 

MTM    Metamaterials 

NRI    Negative Refractive Index 

PBG    Photonic Band Gap 

PEC    Perfect Electric Conductor 

PLWA    Periodic Leaky-Wave Antenna 

PMC    Perfect Magnetic Conductor 

PPW    Parallel Plate Waveguide 

PRS    Partially Reflective Surfaces 

RHM    Right Handed Materials 

RWG    Rao-Wilton-Glisson 

SD    Sub-Domain 

TEN    Transverse Equivalent Method 

TL    Transmission Line 

WG    Waveguide 
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APPENDIX A 

 

 

 

Supplement to Chapter 2 and Chapter 3.  

 

WORKOUT 1 

 

The transverse-longitudinal fields are defined as: 

ˆt zzE E E    (2.1.3) 

ˆt zzH H H   (2.1.4) 

The expression of the nabla operator in the transverse-longitudinal notation is: 

ˆ ˆ ˆ ˆtx y z z
x y z z

    
   

 
   

  (2.1.5) 

Combining these expressions and replacing in (2.1.1) and (2.1.2) the transverse-

longitudinal notation Maxwell’s Equations are obtained. The first Maxwell Equation (1.1) 

can be rewritten as follows: 

E j H        (2.1.1) 

ˆ ˆ( ) ( )t z ztzE E j H zH      (2.1.6) 

ˆ ˆ ˆ( ) ( )t t z ztz
z

zE E j H zH
 

  
 

     (2.1.7) 

Applying the distributive law of cross-product, it is obtained: 

   ˆ ˆ ˆ ˆ ˆ( )t t t z t z ztE zE z E z zE
z z

j H zH
    

           
    

  (2.1.8) 

 

This expression can be split into two terms, one of them containing the transverse 

component (1.9) and the other one containing the longitudinal component (2.1.10). Note 

that the cross-product of two vectors with the same direction is zero ˆ ˆ 0zz zE
z

 
  

 
. 

ˆ zt tE j zH     (2.1.9) 

 ˆ ˆ
t z t tzE z E

z
j H

 
     

 
   (2.1.10) 
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The resulting expression for the transverse fields (1.10) can be simplified using the 

following vector identity, ( ) ( ) ( )A f f A f A      , obtaining: 

   ˆ ˆ ˆt t zz t tz EE z z E j H
z


 
  
 

  


    


  (2.1.11) 

Taking into account that, since ẑ  is a vector constant, then ˆ 0t z    and that ˆ tz E
z




 

can be rewritten as ˆ tE
z

z





, the resulting expression is: 

  ˆ ˆt z
t

tE
E

z z j H
z


 
 
 
 




   


  (2.1.12) 

ˆ t
t z t

E
E

z
z j H

 
  
 





      (2.1.13) 

Crossing equation (2.1.13) with ẑ  and making use of a second vector identity 

     A B A C B CC B A    , where it is considered ˆA C z    and  

t
t z

E
B E

z


 


, leads to the next expressions: 

 ˆ ˆˆt
t z t

E
z E H z

z
z j

  
    

   

      (2.1.14) 

   ˆ ˆ ˆ ˆˆt t
t z t z tz z z

E E
E E H z

z z
z j

     
      

     
    (2.1.15) 

Since  ˆ ˆ 1z z   and ˆ 0t
t z

E
E z

z

 
 
 
 


 


, (1.15) can be finally expressed as: 

 

 ˆt
t

t z H z
E

E j
z

 


  


  (2.1.16) 

 

The same process is applied to the second Maxwell Equation (2.1.2), and it will lead to a 

pair of similar equations to (2.1.9) and (2.1.16), one for the transverse term and the second 

one for the longitudinal term. Since the metallization plane is the x-y plane, only the 

transverse currents are taken into account, that is to say,  s t z tJ J J J   . 
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sH J j E          (2.1.2) 

ˆ ˆ( ) ( )t z t ztH zH E zEJ j        (2.1.17) 

ˆ ˆ ˆ( ) ( )t t z t t zz H zH J j E zE
z


 
 
 


      


   (2.1.18) 

   ˆ ˆ ˆ ˆ ˆ( )t t t z t z t t zH zH z H z zH J j E zE
z z


   
   
   

 
           

 
   (2.1.19) 

Again, it is known that ˆ ˆ 0zz zH
z


 


, so it is obtained the transverse-longitudinal 

notation: 

ˆt t zH j zE               (2.1.20) 

ˆ ˆzt t t tzH z H J j E
z


  
       




    


  (2.1.21) 

The transverse component (2.1.21) can be simplified applying the same vector identity  

than used in the first case ( ) ( ) ( )A f f A f A      , ˆ 0t z    and, as seen 

before, that ˆ tz H
z




 can be rewritten as ˆ tH

z
z





, resulting: 

   ˆ ˆ ˆt t zz t t tz HH z z H J j E
z


 
  
 

  


    


  (2.1.22) 

  ˆ ˆt z
t

t tH
H

z z J j E
z


 
 
 
 




    


    (2.1.23) 

ˆ t
t z t t

H
H

z
z J j E

 
  
 





          (2.1.24) 

 

Repeating the same process applied to equation (2.1.13) to the equation (2.1.24) now using 

the assignment t
t z

H
B H

z


 


,  it is obtained: 

 ˆ ˆ ˆt
t z t t

H
z H J j E

z
z z

  
    

   

        (2.1.25) 

   ˆ ˆ ˆ ˆ ˆt t
t z t z t tz z z

H H
H H J j E

z z
z z

     
      

     
        (2.1.26) 
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  ˆ
t t

t
t z J j E

H
H z

z
 


 


        (2.1.27) 

 ˆˆ
t

t
t z t E z

H
H J z j

z
 


   


       (2.1.28) 

 ˆ ˆ
t

t
t z tz E

H
H j z J

z
  


   


         (2.1.29) 

 

 

 

 

WORKOUT 2 

 

Taking equation (2.1.9), the longitudinal magnetic field zH  can be rewritten: 

ˆ zt tE j zH        (2.1.9) 

) )ˆ ˆ ˆ( ( zt tz E z j zH       (2.1.30) 

)ˆ( zt tz E j H        (2.1.31) 

The left hand side of the last equation can be transformed, so equation (2.1.33) is obtained. 

) ) ) )ˆ ˆ ˆ ˆ( ( ( (t t t t t t t tz E E z E z z E              (2.1.32) 

)ˆ( zt tz E j H            (2.1.33) 

ˆ( )t t
z

z E

j
H



 
          (2.1.34) 

The same development is applied to equation (1.20) to obtain a similar expression for the 

longitudinal electric field zE : 

ˆt t zH j zE       (2.1.20) 

) )ˆ ˆ ˆ( (t t zz H z j zE      (2.1.35) 

)ˆ( t t zz H j E              (2.1.36) 

) ) )ˆ ˆ ˆ( ( (t t t t t tz H H z H z           (2.1.37) 

)ˆ(t t zH z j E      (2.1.38) 

ˆ( )t t
z

H z

j
E



 
       (2.1.39) 
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Now if equations (2.1.34) and (2.1.39) are introduced into equations (2.1.9) and (2.1.20) 

respectively, the final set of  transverse Maxwell’s equations is formulated: 

 
1

ˆ ˆ( )t
t t t t

E
j H z H z

z j





        

     (2.1.40) 

 
1

ˆ ˆ( ) ˆ
t t t

t
t tz E z E

j

H
j z J

z 
       


   


     (2.1.41) 

 

 

 

 

 

WORKOUT 3 

 

From (2.4.1), the two different polarizations, p=TE and p=TM, are going to be 

considered separately, and taking into account that  ( ) ( )

, ,
ˆ( , )( , )p p

mx my mx mye h x y zx y  , it is 

obtained: 

, ,

, ,
0 0

( ) ( )
( , ) ( , )

TE TM
mx my mx myTE TM

mx my mx my
mx my mx my

dV z dV z
e e

dz dz
x y x y

   

   

      

, , , ,
0 0

( ) ( , ) ( ) ( , )TE TE TM TM
mx my mx my mx my mx my

mx my mx my

I z e x y I z e x yj j 
   

   

             (2.5.4) 

   , , , ,
0 0

1 1
( ) ( , ) ( ) ( , )TE TE TM TM

mx my t t mx my mx my t t mx my
mx my mx my

I z e x y I z e x y
j j 

   

   

          

 

Applying the following properties of the PPM (2.5.5) and (2.5.6), leads to (2.5.7):       

 , ( , ) 0TE
t t mx mye x y       (2.5.5) 

  2
, ,( , ) ( , )TM TM

t t mx my cm mx mye x y k e x y     (2.5.6) 

 

, ,

, ,
0 0

( ) ( )
( , ) ( , )

TE TM
mx my mx myTE TM

mx my mx my
mx my mx my

dV z dV z
e e

dz dz
x y x y

   

   

      

, , , ,
0 0

( ) ( , ) ( ) ( , )TE TE TM TM
mx my mx my mx my mx my

mx my mx my

I z e x y I z e x yj j 
   

   

       

2

, ,
0

1
( ) ( , )cm

TM TM
mx my mx my

mx my

kI z e x y
j

 

 

                             (2.5.7) 
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If (2.5.7) is multiplied by ( )*( , )p

mxe x y  and integrated in the interval from x=0 to x=a, that is 

equivalent to the definition of the inner product applied in the PPW modal expansion: 

                                                                       1          if  p=q  and  m=n 

*
0

( ) ( )*
( ) ( )

m n

a

P Q

p q
m nI x x dxe e              0          if  m  n                     (2.2.17) 

                                                                       mC       if  p  q and  m=n 

 

The aim of this procedure is to eliminate the summation in x from the equation, so it can 

be obtained a expression for the equivalent transmission line. Hence, the resulting 

expression for ( )*

0

(4.7) ( , )

a

p

mx

x

e x y dx


   is: 

, ,( ) ( )
my my

TE TM

jk y jk ymx my mx my

m

my my

dV z dV z
e C e

dz dz

 
 

 

                       (2.5.8) 

2

, ,( ) ( )my mycm jk y jk yTM TE
mx my m mx my

my my

k
j

j
I z C e I z ej




 
 

 

 
 

 
     

 

And the result for *

0

(4.7) ( , )

a

TM

mx

x

e x y dx


  is: 

, ,( ) ( )
my my

TE TM

jk y jk ymx my mx my

m

my my

dV z dV z
C e e

dz dz

 
 

 

                          (2.5.9) 

2

, ,( ) ( )my mycm jk y jk yTM TE
mx my mx my m

my my

k
j

j
I z e I z C ej




 
 

 

 
 

 
     

 

It is known that:  

22 2 2 2
0

2 2 2 2 2 2
0 0

mx my z

z mx my cm

k k k k

k k k k k k

    

    
         

 

where cmk  is the transverse wave number and 0 r   , so 2
0k is the propagation 

constant for whichever medium (actually it is more accurate to say 2
0 rk  ) . Hence it can 

be written: 

   2 2 2 2

0

2 21 1
cm cm

cm zk k k
k jk

j
j j j

 
   

        (2.5.10) 
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It is important to notice that there will be a different value of 2
zk  for every couple of 

values of (mx,my), so from this moment on it will be referred as 2
zmk  . If the transverse 

impedances are defined as follows: 

0
TE

m

zm

Z
k


    (2.5.11) 


zmTM

m

k
Z 0    (2.5.12) 

 

Introducing this expressions in (4.8) and (4.9): 

 

, ,( ) ( )
my my

TE TM
jk y jk ymx my mx my

m
my my

dV z dV z
e C e

dz dz

 
 

 

     (2.5.13) 

0 0, ,( ) ( )my myTM TE

m zm m zm

jk y jk yTM TE
m mx my mx my

my my

C k I z e k I z ej Z j Z
 

 

 

     

 

, ,( ) ( )
my my

TE TM
jk y jk ymx my mx my

m
my my

dV z dV z
C e e

dz dz

 
 

 

     (2.5.14) 

0 0, ,( ) ( )my myTM TE

m zm m zm

jk y jk yTM TE
mx my m mx my

my my

k I z e C k I z ej Z j Z
 

 

 

     

 

These two previous equations can be expressed as a single one, using the indexes p and q 

to refer to the different polarizations: 

 

( ) ( )
, ,( ) ( )

my my

p q
jk y jk ymx my mx my

m
my my

dV z dV z
e C e

dz dz

 
 

 

           (2.5.15) 

 ( ) ( )

0 0

( ) ( )
, ,( ) ( )my myp q

m zm m zm

jk y jk yp q
mx my m mx my

my my

k I z e C k I z ej Z j Z
 

 

 

     

 

where, if p=TE then q=TM. 
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The same procedure applied to (2.4.1) is going to be applied now to (2.4.2), taking the 

polarizations TE and TM separately and taking into account that 

( ) ( )

, ,
ˆ( , ) ( , )p p

mx my mx myh x y z e x y : 

 

( ) ( )

, ,( ) ( )

, ,

0 0

( ) ( )
( , ) ( , )

TE TM

mx my mx myTE TM

mx my mx my

mx my mx my

dI z dI z
h x y h x y

dz dz

   

   

     

( ) ( ) ( ) ( )

, , , ,

0 0

( ) ( , ) ( ) ( , )TE TE TM TM

mx my mx my mx my mx my

mx my mx my

V z h x y V z h x yj
   

   

 
 

 
       

   ( ) ( ) ( ) ( )

, , , ,

0 0

1
( ) ( , ) ( ) ( , )TE TE TM TM

mx my t t mx my mx my t t mx my

mx my mx my

V z h x y V z h x y
j

   

   

 
       

 
     

( ) ( ) ( ) ( )

, , , ,

0 0

( ) ( , ) ( ) ( , )TE TE TM TM

mx my mx my mx my mx my

mx my mx my

j z h x y j z h x y
   

   

       (2.5.16) 

 

Applying the following PPM properties (2.5.17) and (2.5.18) to (2.5.16), (2.5.19) is 

obtained: 

 ( ) 2 ( )
, ,( , ) ( , )TE TE

t t mx my cm mx myh x y k h x y      (2.5.17) 

 ( )
, ( , ) 0TM

t t mx myh x y       (2.5.18) 

 

( ) ( )

, ,( ) ( )

, ,

0 0

( ) ( )
( , ) ( , )

TE TM

mx my mx myTE TM

mx my mx my

mx my mx my

dI z dI z
h x y h x y

dz dz

   

   

     

( ) ( ) ( ) ( )

, , , ,

0 0

( ) ( , ) ( ) ( , )TE TE TM TM

mx my mx my mx my mx my

mx my mx my

V z h x y V z h x yj
   

   

 
 

 
             (2.5.19) 

( ) 2 ( ) ( ) ( ) ( ) ( )

, , , , , ,

0 0 0

1
( ) ( , ) ( ) ( , ) ( ) ( , )TE TE TE TE TM TM

mx my cm mx my mx my mx my mx my mx my

mx my mx my mx my

V z k h x y j z h x y j z h x y
j

     

     

       

 

 

The definition of the inner product is used again this time on (2.5.19): 

 

                                                                       1          if  p=q  and  m=n 

*
0

( ) ( )*
( ) ( )

m n

a

P Q

p q
m nI h x h x dx              0          if  m  n                     (2.2.17) 

                                                                       mC       if  p  q and  m=n 
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Hence, the resulting expression for ( )*

0

(2.5.19) ( , )
a

TE
mx

x

h x y dx


   is: 

( ) ( ) 2
, , ( )

,

( ) ( )
( )

TE TM

mx my mx my TEcm
m mx my

my my my

dI z dI z k
C V z

dz dz j
j




  

  

 
   

 
     

( ) ( ) ( )

, , ,( ) ( ) ( )TE TM TM

mx my mx my m mx my m

my my my

j z V z C j z Cj
  

  

        (2.5.20) 

 

And the resulting expression for ( )*

0

(2.5.19) ( , )
a

TM
mx

x

h x y dx


  is: 

( ) ( ) 2
, , ( )

,

( ) ( )
( )

TE TM

mx my mx my TEcm
m mx my m

my my my

dI z dI z k
C V z C

dz dz j
j




  

  

 
   

 
     

( ) ( ) ( )

, , ,( ) ( ) ( )TE TM TM

mx my m mx my mx my

my my my

j z C V z j zj
  

  

        (2.5.21) 

 

Using again the same equalities than before ,

22 2 2 2
0

2 2 2 2 2 2
0 0

mx my z

z mx my cm

k k k k

k k k k k k

    

    
, it can be 

written as follows: 

   2 2 2 2

0

2 21 1
cm cm

cm zk k k
k jk

j
j j j

  
   

        (2.5.22) 

 

And applying again the transverse impedances’ definitions already seen in (2.4.11) and 

(2.4.12), it is finally obtained: 

 

( ) ( ) 2
, , ( )

,

0

( ) ( )
( )

TE TM

mx my mx my TEz
m mx myTE

my my mym

dI z dI z k
C V z

dz dz Z
j

  

  

      

2
( ) ( ) ( )

, , ,

0

( ) ( ) ( )TE TM TMz
mx my m mx my mx myTM

my my mym

k
j z C V z j z

Z
j

  

  

 
   

 
          (2.5.23) 

( ) ( ) 2
, , ( )

,

0

( ) ( )
( )

TE TM

mx my mx my TMz
m mx myTM

my my mym

dI z dI z k
C V z

dz dz Z
j

  

  

      

2
( ) ( ) ( )

, , ,

0

( ) ( ) ( )TM TE TEz
mx my m mx my mx myTE

my my mym

k
j z C V z j z

Z
j

  

  

 
   

 
           (2.5.24) 
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And these two equations can easily be expressed as a single one: 

 

( ) ( ) 2
, , ( )

,( )

0

( ) ( )
( )my my my

p q

jk y jk y jk ymx my mx my pz
m mx myp

my my mym

dI z dI z k
e C e V z e

dz dz Z
j

  
  

  

              

2
( ) ( ) ( )

, , ,( )

0

( ) ( ) ( )my my myjk y jk y jk yp q qz
mx my m mx my mx myq

my my mym

k
j z e C V z e j z e

Z
j

  
  

  

 
   

 
                (2.5.25)  

 

where, if p=TE then q=TM and vice versa. 

 

Following the step no.3 in Chapter 2.5, the definition of the inner product (2.3.13) for the 

Floquet modes will be applied to (2.5.15) and (2.5.25). In the previous section, the 

electric and magnetic basis functions were defined as follows: 

( ) ( )
, ( , ) ( ) myjk yp p

mx my mxe x y e x e


           (2.3.11) 

( ) ( )
, ( , ) ( ) myjk yp p

mx my mxh hx y x e


                  (2.3.12) 

 

 

So far the x summation has been eliminated from (2.4.15) and (2.4.25) applying the PPM 

inner product definition. The same process will be followed on those equations to 

eliminate the y summation. 

                                               0      if m  n 

  *

0
my ny

my ny

P

P Q
x

jk y jk y
I ye e



 
                         P     if m = n  (2.3.13) 

 

If  that definition is applied to (2.4.15), *

0

(2.5.15) ny

my ny

P
jk y

P Q
x

I e y




   , is obtained: 

 
( ) ( )

, , ( ) ( ) ( ) ( )

0 , 0 ,

( ) ( )
( ) ( )

p q

mx my mx my p p q q

m m zm mx my m m zm mx my

dV z dV z
P C P jZ k I z jC Z k I z

dz dz

 
     

 
   (2.5.26) 

 

( ) ( )

, , ( ) ( ) ( ) ( )

0 , 0 ,

( ) ( )
( ) ( )

p q

mx my mx my p p q q

m m zm mx my m m zm mx my

dV z dV z
C jZ k I z jC Z k I z

dz dz
            (2.5.27) 
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Again, if it is applied to (2.5.25), *

0

(2.5.25) ny

my ny

P
jk y

P Q
x

I e y




   : 

( ) ( ) 2 2
, , ( ) ( ) ( ) ( )

, , , ,( ) ( )

0 0

( ) ( )
( ) ( ) ( )

p q

mx my mx my p p q qz z
m mx my mx my m mx my mx myp q

m m

dI z dI z k k
P C P V z j z C V z j

dz dz Z Z
j j

    
          

   

   (2.5.28) 

( ) ( ) 2 2
, , ( ) ( ) ( ) ( )

, , , ,( ) ( )

0 0

( ) ( )
( ) ( ) ( )

p q

mx my mx my p p q qz z
m mx my mx my m mx my mx myp q

m m

dI z dI z k k
C V z j z C V z j

dz dz Z Z
j j

 
     

 
    (2.5.29)   

 

It is important to notice that, due to the orthogonality of the Floquet basis functions, there 

is no couple between the modes with different polarization. 

 

 

 

WORKOUT 4 

 

As done in the previous section, the definition of the inner product for both expansions, 

PPM in x̂  and Floquet modes in ŷ , is applied, which leads to: 

( )* ( )*

0 0 0 0
( , , ) ( ) ( )my my

a P a Pjk y jk yp x p

t mx t mxJ x y z e x e dxdy J e x e dxdy
 

      (2.6.4) 

 

,
( ) ( ) ( )*

,
0 0

0

( ) ( ) ( )my my

TE TM
a P jk y jk yp p p

mx my mx mx

p mx my

j z e x e e x e dydx
 

 

 

      (2.6.5) 

  0 ( )*

0 0
ˆ( ') ( ') ( ') ( )y my

a P jk y jk yp

mxx x z z y y e xe x e dxdy  
 

        

,
( ) ( ) ( )*

,
0

0

( ) ( ) ( )
TE TMa

p p p
mx my mx mx

p mx

P j z e x e x dx




       (2.6.6) 

  0( ) '( )*

0
ˆ( ') ( ') ( ) my y

a j k k yp
mxx x z z xe x e dx 

 
      

  0

,
( ) '( ) ( ) ( )*

, ,
ˆ( ) ( ) ( ') ( ) my y

TE TM
j k k yp q p

mx my m mx my mx

p

P j z C j z z z e x e x
 

     (2.6.7) 

Remembering the definition of the propagation constant in the longitudinal direction 

(2.3.8), last equation can be rewritten as: 

 
2,

( ) '
( ) ( ) ( )*

, ,
ˆ( ) ( ) ( ') ( )

TE TM
j my y

p q p P
mx my m mx my mx

p

P j z C j z z z e x e x





     (2.6.8) 
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The x̂  term points out that this expression will only affect to the PPM, since those are the 

ones that model the variation in x̂ . Now, aiming to decouple the expression obtained, 

each polarization is going to be considered separately: 

A =  
2,

( ) '
*

, ,( ) ( ) ( ') ( )
TE TM

j my y
TE TM TE P
mx my m mx my mx

p

P j z C j z z z e x e





    (2.6.9) 

B =  
2,

( ) '
*

, ,( ) ( ) ( ') ( )
TE TM

j my y
TM TE TM P
mx my m mx my mx

p

P j z C j z z z e x e





    (2.6.10) 

mA C B   

   
2

( ) '
2 * *

, ,( ) ( ) ( ') ( ) ( )
j my y

TE TE TE TMP
mx my m mx my mx m mxP j z C j z e z z e x C e x






       (2.6.11) 

mB C A   

   
2

( ) '
2 * *

, ,( ) ( ) ( ') ( ) ( )
j my y

TM TM TM TEP
mx my m mx my mx m mxP j z C j z e z z e x C e x






      (2.6.12) 

2
( ) '

, * , *
,

, 2

( ) ( )
( ) ( ')

1

j my y
x TE x TMP

x TE mx m mx
mx my

m

e e x C e x
j z z z

P C








 


  (2.6.13) 

2
( ) '

, * , *
,

, 2

( ) ( )
( ) ( ')

1

j my y
x TM x TEP

x TM mx m mx
mx my

m

e e x C e x
j z z z

P C








 


  (2.6.14) 

 

It is important to notice that the superscript has been modified in order to indicate that 

these expressions are to be considered for the variation in x̂ . 

 

If the same process is repeated again but this time for the elementary source directed in 

ŷ (2.6.2), ( , , ) y

t tJ x y z J , the following results are obtained: 

2
( ) '

, * , *
,

, 2

( ) ( )
( ) ( ')

1

j my y
y TE y TMP

y TE mx m mx
mx my

m

e e x C e x
j z z z

P C








 


  (2.6.15) 

2
( ) '

, * , *
,

, 2

( ) ( )
( ) ( ')

1

j my y
y TM y TEP

y TM mx m mx
mx my

m

e e x C e x
j z z z

P C








 


  (2.6.16) 
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WORKOUT 5 

 
2

( ) '
,( )* ,( )*

( ) ( ) ,( ) ( )

, , , , 2

( ') ( ')ˆ ˆ( ) ( ) ( )
1

j my y
x p x qP

p p x p p mx m mx
mx my mx my mx my mx my
ELEM m

e e x C e x
V z V z j V z

P C





   


    (2.6.17) 

2
( ) '

,( )* ,( )*
( ) ( ) ,( ) ( )

, , , , 2

( ') ( ')ˆ ˆ( ) ( ) ( )
1

j my y
x p x qP

p p x p p mx m mx
mx my mx my mx my mx my
ELEM m

e e x C e x
I z I z j I z

P C





   


        (2.6.18) 

2
( ) '

,( )* ,( )*
( ) ( ) ,( ) ( )

, , , , 2

( ') ( ')ˆ ˆ( ) ( ) ( )
1

j my y
y p y qP

p p y p p mx m mx
mx my mx my mx my mx my
ELEM m

e e x C e x
V z V z j V z

P C





   


 (2.6.19) 

2
( ) '

,( )* ,( )*
( ) ( ) ,( ) ( )

, , , , 2

( ') ( ')ˆ ˆ( ) ( ) ( )
1

j my y
y p y qP

p p y p p mx m mx
mx my mx my mx my mx my
ELEM m

e e x C e x
I z I z j I z

P C





   


 (2.6.20) 

 

If the elementary tension and current are introduced in the expressions of the fields 

(2.3.9) and (2.3.10), the elementary transverse fields, or what’s the same, the Green 

Functions are obtained: 

 ( , , , ,́ )́( , , ) tt

t EJ
ELEM

x y z x yE x y z G      (2.6.21) 

2
( ) '

( )* ( )*,
( ) ( )

, 2
0

( ') ( ')ˆ ( ) ( )
1

my

j my y
p qTE TM P

jk yp pmx m mx
mx my mx

p mx my m

e e x C e x
V z e x e

P C




 


 







    

 

( , , ) ( , , , ,́ )́tt

t HJ
ELEM

H x y z x y z x yG      (2.6.22) 

2
( ) '

( )* ( )*,
( ) ( )

, 2
0

( ') ( ')ˆ ( ) ( )
1

  

my

j my y
p qTE TM P

jk yp pmx m mx
mx my mx

p mx my m

e e x C e x
I z h x e

P C




 


 


 


    

Now, it is renamed:         ,m mx my  

 

( )* ( )*
( )

2

( ') ( ')
( )́

1

p q
p mx m mx

m

m

e x C e x
X x

C





       (2.6.23)           

2
( ) '

( ) ( )́

j my y
P

p

m

e
Y y

P




       (2.6.24) 
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,
( ) ( ) ( ) ( )

0

( , )́ ˆ( )́ ( )́ ( ) ( ) mytt

EJ

TE TM
jk yp p p p

m m m mx
p mx my

r r X x Y y V z e x eG
 



 

           (2.6.25) 

,
( ) ( ) ( ) ( )

0

ˆ( , )́ ( )́ ( )́ ( ) ( ) my

TE TM
jk ytt p p p p

HJ m m m mx

p mx my

r r X x Y y I z h x eG
 



 

            (2.6.26) 

  

This way the transverse fields existing in the structure can be expressed: 
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S

p mx my

H r X x Y y I z h x e J r dr
 



 

      (2.6.30) 

It can be resumed in one coefficient the contributions from the PPModes and the Floquet 

modes to the fields, for every combination between them: 
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m m m t
S
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From the transverse fields, the longitudinal electric and magnetic fields can be derived. 

This relation is expressed in the longitudinal Maxwell Equations: 

ˆ( )t t
z

z E
H

j

 
      (2.6.34) 

ˆ( )t t
z

H z
E

j

 
      (2.6.35) 
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In the first place, the electric field is obtained: 
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Applying: ( ) 0TE

t mxe x    
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Applying:  
2 ˆ( ) ( )TE TE

t mx cm mxh x k x    

( ) 0TM

t mxh x    

 

2

0

1 ˆˆ ( ) ( ) myjk yTE TE TE

z m m cm mx

mx my

H A V z k x e
j




 


 

      (2.6.39) 

 

where   
cos( )ˆ ( )TE mx
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m

k x
x

N



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From the expressions of the longitudinal fields it can be deduced the longitudinal Green 

Functions: 
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Zone 3: -D-H 
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WORKOUT 7 

 

To solve the integral equation, the field variations in x̂  and ŷ  will be considered partly. 

In first place the variation in x̂ : 
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Now the test for the field variation in ŷ : 
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WORKOUT 8 

 

Before working out the expressions for both the basis and test integrals for the entire 

domain basis functions, it may be useful remember some of the expressions derived so 

far in previous sections: 
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From eqs, (2.2.6) and (2.2.7), can be directly obtained: 
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The basis integrals result as follows (references to equations are not required from this 

point on): 

( )

'
ˆ( ') ( ') 'EX p X

BX m nx
x

I X x x f x dx          

12
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1
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(1 )

1
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BX my m

m m
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BX m my

m m

I p TE jk C mx I
N C a

I p TM mx C jk I
N C a





 
    

  

 
    

  
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0 '

2
'

1
( ') ( ') '

jk yEX X

BY my ny
y

I Y y g y e dy I
P


      

( )

'
ˆ( ') ( ') 'EY p Y

BX m nx
x

I X x y f x dx           

32

32

1
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(1 )

1
( )

(1 )

EY

BX m my

m m

EY

BX my m

m m

I p TE mx C jk I
N C a

I p TM jk C mx I
N C a





 
    

  

 
    

  

 

0 '

4
'

1
( ') ( ') '

jk yEY Y

BY my ny
y

I Y y g y e dy I
P


      

 

The same way, the resolution for test integrals is shown below: 

( ) ˆ( ) ( )EX p X

TX mx lx
x

I e x x f x dx          

1

1

( )

( )

myEX

TX

m

EX

TX

m

jk
I p TE I

N

mx
aI p TM I

N




  

  

 

2( )myjk yEX X

TY ly
y

I e g y dy I


    

( )

'
ˆ( ) ( )EY p Y

TX mx lx
x

I e x y f x dx          
3

3

( )

( )

EY

TX

m

myEY

TX

m

mx
aI p TE I

N

jk
I p TM I

N



  


  

 

4
'

( )myjk yEY Y

TY ly
y

I e g y dy I


    

 

The so called temporal integrals (
1 2 3 4, , ,I I I I ) are taken from the main integrals since 

they are common for the basis and test integrals, and it makes more “handy” not only its 

resolution, but the forthcoming coding stage. These integrals are solved using a notation 

that may vary depending on the integrals they come from, basis or test.  

  

2

1 2 2 2 21

1
cos sin ( 1)

x

x

aW
I mx nx x x dx

a W mx W nx a

 



   
      

   
  
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cos 2 cos 2 cos 1

sin 2 sin 2 cos 1 sin 2 cos 2 1

cos 2 sin 2 sin 1

mx nx nx
nx a x x x

a W W

mx nx nx mx nx nx
mx W x x x mx W x x sen x
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  

     
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  

      

  

     
     
     

           
           
           

    
   
   

cos 1
mx

nx a x
a


  

 
 
 
 
 
 

      
      
 

2

3 2 2 2 21

1
sin cos ( 1)

x

x

aW
I mx nx x x dx

a W mx W nx a

 



   
      

   
  

sin 2 sin 2 cos 1

cos 2 cos 2 cos 1 cos 2 sin 2 sin 1

sin 2 cos 2 sin 1

mx nx nx
nx a x x x

a W W

mx nx nx mx nx nx
mx W x x x mx W x x x

a W W a W W

mx nx nx
nx a x x x

a W W

  

     

  

  

      

  

     
     
     

           
           
           

    
   
   

cos 1
mx

mx W x
a


  

 
 
 
 
 
 

   
   

     
 

In the case in which mx W nx a   , the integrals result as follows: 

 

2

1
1

cos sin ( 1)
2

x

x

W
I mx nx x x dx

a W nx

 



   
      

   
  
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  

    

 

  

  



      
           

 
        
               

 
  
 

   
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x

x

W
I mx nx x x dx
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 


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nx nx
x x
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  

    

 

 

  



      
           

 
        
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 
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 

   
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2
0

cos my
Q jk y

I ny y e dy
Q

  
  

 


 
2 2 2 2

cos( ) sin( )my myjk Q jk Q

my y my y y

y my

Q jk Qe n jk Q n e n

n k Q

  



 
  


 

 

4
0

sin my
Q jk y

I ny y e dy
Q

  
  

 


 
2 2 2 2

cos( ) sin( )my myjk Q jk Q

y y my y y

y my

Q n e n jk Qe n n

n k Q

   



 
  


 

 

In the case in which 
y myn k Q  , the integrals result as follows: 

 2

2

1
sin( )cos( ) cos ( )

2
my my my my

my

I k Q k Q k Q j k Q j
k

     

 2

4

1
sin( )cos( ) cos ( ) 1

2
my my my y my

my

I j k Q k Q k Q n jk Q
k

      

 

 

 

WORKOUT 9 

 

It can be noticed that 
EX EY

BY BYI I  and 
EX EY

TY TYI I . 

 

( )* ( )*
( )

2' '

( ) ( )
ˆ( ') ( ') ' ( ') '

1

X p X q
EX p mx m mx
BX m

x x
m

e x C e x
I X x x f x dx f x dx

C

 
    

   

For the ascending ramp: 
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1

( ) ( ) ' '
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TE TMX X
EX p mx m mx n
BX m

x x
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e x C e x x x
I p TE X x x f x dx dx

C x x





  
      

  

1

'
1

2'
1
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n

n

x
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m
x

m m m n n

mxjk x xamx x C mx x dx
C N a N a x x


 







 
     

        
     

 

  

  2
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



 
 
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2
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x x
mx x mx x mx x mx x
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a a a

   

  


 

 
         

            
          

 
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a


 

  



 
      
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 
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
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   
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 

 
         
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 
 

For the descending ramp: 
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e
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For the ascending ramp: 
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