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Abstract 
Towards having a one size fits all solution to cocaine detection at borders; this 

thesis proposes a systematic cocaine detection methodology that can use raw data 

output from a fibre optic sensor to produce a set of unique features whose decisions 

can be combined to lead to reliable output. This multidisciplinary research makes 

use of real data sourced from cocaine analyte detecting fibre optic sensor 

developed by one of the collaborators - City University, London.  

This research advocates a two-step approach: For the first step, the raw sensor 

data are collected and stored. Level one fusion i.e. analyses, pre-processing and 

feature extraction is performed at this stage. In step two, using experimentally pre-

determined thresholds, each feature decides on detection of cocaine or otherwise 

with a corresponding posterior probability. High level sensor fusion is then 

performed on this output locally to combine these decisions and their probabilities at 

time intervals. Output from every time interval is stored in the database and used as 

prior data for the next time interval. The final output is a decision on detection of 

cocaine.    

The key contributions of this thesis includes investigating the use of data fusion 

techniques as a solution for overcoming challenges in the real time detection of 

cocaine using fibre optic sensor technology together with an innovative user 

interface design. A generalizable sensor fusion architecture is suggested and 

implemented using the Bayesian and Dempster-Shafer techniques. The results from 

implemented experiments show great promise with this architecture especially in 

overcoming sensor limitations. A 5-fold cross validation system using a 12 – 13 - 1 

Neural Network was used in validating the feature selection process. This validation 

step yielded 89.5% and 10.5% true positive and false alarm rates with 0.8 

correlation coefficient. Using the Bayesian Technique, it is possible to achieve 100% 

detection whilst the Dempster Shafer technique achieves a 95% detection using the 

same features as inputs to the DF system.  

Key words: Data Fusion, Bayesian, Dempster Shafer, feature selection, spectral, 

Neural Network  
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Definitions and Acronyms 

Basic Probability Assignment (bpa) – the basic probability assignment 

represented by m is a basic measure representing confidence in a 

hupothesis. 

Cargo – A cargo can be defined as any kind of goods ready and packed for 

shipping. 

Cocaine – Cocaine is as addictive drug C17H21NO4 which is derived from 

coca plant and can also be prepared artificially. 

Contraband - Goods prohibited by law or treaty from being imported or 

exported 

DF – Data Fusion 

FAR – False Alarm Rate (see False Positives) 

False Negatives – False negatives usually known as missed detections are 

simply cases where real threats are passed off as non-threats. 

False Positives (1 – Specificity) – False positives also known as false 

alarms can be defined as a situation where for a system that detects threats 

for example, non-threats are inappropriately signalled as threats.  

Features – A feature is a distinctive attribute of a substance which identifies 

it from other substances. 

Ferret - A weasel like, usually albino mammal often trained to hunt rats or 

rabbits. 

Frame of discernment (Ω) – this is a set containing all possible events. 

Mutually Exclusive events - Two events are mutually exclusive (or disjoint) 

if it is impossible for them to occur together 
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Plausibility ((Pls(.)) – The plausibility is defined as the total mass of all 

states which do not contradict the target state. 

ROC – Receiver Operator Characteristics curve is a graphical curve which 

shows the performance of a system as its discriminant threshold is varied. In 

this case, it is the plot of the true positives vs the false positive rate. 

Sensor Fusion is the combining of sensory data or data derived from 

sensory data such that the resulting information is in some sense better than 

would be possible when these sources were used individually. 

Support (Spt (.)) – The support for a target is defined as the total mass of all 

states implying the target state. 

True Negatives (Specificity)  – True negatives are cases where non-threats 

are correctly classified as non-threats. 

True Positives (Sensitivity) – True positives or true detection are cases 

where real threats are correctly identified as threats 

Precision - The ratio of the true positive rate to the sum of the true positive 

rate and false positive rate or represents the probability that substance A is 

detected given that the sample is actually substance A. 
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CHAPTER 1 

1 
INTRODUCTION AND 

MOTIVATION 
 

Sensors are typically used for gathering information from the environment. 

This step of gathering information from the environment is the first step in 

building intelligent Human – Computer Interaction (HCI) (Wu, 2003). In 

building intelligent systems, it is important to retrieve as much information 

from the environment as possible. In many cases, the data received is 

usually in raw form and not useful unless further processing is performed on 

it to extract useful features. Depending on the aim of the intelligent system, 

multiple sensors may be required to obtain as much information as possible. 

These sensors may differ in terms of what physical quantities they measure 

or in what format they generate data. Using the combined information from 

these sensors thus outlines the importance of a data fusion process. In the 

case of a single sensor, asides from smart sensors which can extract 
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features automatically from raw data, many sensors deliver only raw data 

which need further processing. Extracting features from the data is 

necessary for further processing so as not to overburden the processing 

system. The decisions from each individual feature can also then be 

combined to give a more ‘intelligent’ result. Sensor fusion is thus in addition 

to fusion of data from multiple sensors, also a combination of information 

/decisions from features of the same sensor. 

According to Erhard et al (2011), data fusion technology was initially 

developed for military applications mainly due to the high costs of sensors 

used. However, as sensors got cheaper and technology advanced, it began 

to have more civilian applications. Today, sensor data fusion is applied in 

robotics, and biomedical applications (Luo et al., 2011). For border security, 

data fusion has attracted varying research into how to improve current border 

security systems. For example, a combination of ultra-fast infrared and near-

infrared cameras in combination with a Laser Doppler Vibrometer (LDV) was 

used in the study of how to capture psychophysiological and behavioural 

cues for deception to help border security agents determine when an 

interviewee is lying (Derrick et al., 2010). Tromp (2006) mentions fusion of 

information from existing detection systems at United States security borders 

to help detect, screen and intercept chemical, biological, radiological, nuclear 

and explosive (CBRNE) materials. In particular, the challenge at cargo 

screening is increasing as smugglers take advantage of low ratio of border 

agents to cargo entering via the borders on an annual basis. The fact that the 
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cargo usually has to undergo spot checking exposes a challenge of difficulty 

in checking all cargo and an increase in false positives.    

In addition, smugglers have devised new means of ferrying drugs via 

borders. In a recent event, Heroin worth up to £1.5 million has been found by 

customs officers partly concealed in a car's airbag (Anon., 2009). The drug 

was also discovered in a false bulkhead behind the rear seats of the Kia 

Clarus car after it arrived at Dover on a ferry from Calais. In a similar case, a 

former England sportsperson was accused of trying to smuggle in cocaine 

with an estimated street value of £200,000 through Gatwick Airport (Gysin & 

Mills, 2008). 

Also on the 10th of November 2008, 15.6 kilos of cocaine valued at between 

£750,000 and £1million were discovered in a passenger’s luggage by UK 

border Agency officers working at Edinburgh airport. This was described as 

Scotland’s largest class ‘A’ drugs seizure as an airport (UKBA, 2009). 

Cocaine is one of the most frequently abused drugs and as such is a very 

viable product for smugglers (Grabherr et al., 2008). Accordingly, smugglers 

have devised several ways of smuggling cocaine and other drugs including 

body packing (Hergan et al., 2004) (Beck & Hale, 1993) which is a 

dangerous means since it involves hiding packs of concealed drugs in one’s 

body (rectum, vagina and bowels via swallowing) and hiding in luggage or 

cargo (Vogel & Brogdon, 2003). In both cases, application of industrial x-

rays, gamma ray, conventional and back scatter radiography and 
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sonography1 all of which are imaging techniques have been proved to be 

successful in detection of hidden stowaways and other contrabands (Vogel & 

Brogdon, 2003); (Vogel et al., 2006); (Grabherr et al., 2008) (see Figure 1.1).  

 

 

Figure. 1.1 A vehicle going through an X-ray Scanner 

These imaging techniques have the capability of displaying high detailed 

images of both moving and stationary vehicles. Chemical compounds such 

as drugs are mainly detected via analysis of scatter radiation. This however 

requires highly trained operators to be able to distinctly detect specific 

substances. The dangers involved in the exposure of food and human to x-

ray and gamma ray radiation are disadvantages of some of these techniques 

(Vogel & Brogdon, 2003). This exposure is not only a risk to the contents of 

the cargo but also a risk to the operators of the detecting devices (Vogel & 

Brogdon, 2003). Therefore the challenge of dangerous exposure to radiation 

and high dependence on trained operators to adequately interpret images is 

                                                           
1 Sonography is the use of sound frequencies to produce images 
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some of the short coming of the above methods. There is thus a need for a 

non-invasive system that relies less on the operator but still able to deliver on 

accuracy. 

Other existing methods available for the analysis of cocaine include gas 

chromatography mass spectrometry (GC/MS) which distinguishes and 

quantifies cocaine and its metabolites and other coca alkaloids. Its high 

sensitivity of 1-5 ng/ml makes it a more attractive option than High-pressure 

liquid chromatography which is less sensitive with a sensitivity of 20ng/ml) 

(Warner, 1993). However, its shortcoming lies in the fact that it requires a 

clean-up of the sample and derivatization of cocaine and its metabolites 

before use rendering it an expensive process (Devine et al., 1995). Other 

commercially available kits for screening for cocaine have lower sensitivities 

(>300 ng/ml) (Devine et al., 1995). Current cargo screening technology 

involves swabbing suspicious containers and testing with a trace-detection 

portal machine2 (Figure 1.2) which will give off an audible/visual alarm if 

cocaine is detected. The challenge with this is that the operator has to 

physically enter the container to swab the contents. This might be dangerous 

especially if there are any harmful substances in the container. In addition, 

the operator has to know where/what to swipe to get an accurate detection. 

                                                           
2 Trace Detection portal machine is a machine used to detect trace elements of a class A drug 

and/or explosives. The operator uses a swab which he rubs against suspect items. The swab is then 

inserted into the machine which gives an indication if the chemical substance is present. 
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To date, this is done randomly and may lead to missed detections. Having to 

move from container to trace-detector machine also means that sample may 

be contaminated mid-way leading to false positives. To meet this challenge 

will require a means of taking the sensor right inside the container.   

  

Figure.1.2. Trace-detector portal machine 

1.1 Fibre Optic Sensors 

The recent advances and reduction in cost have increased the interest in 

fibre optic sensors. In addition, they have the advantage of being small, 

lightweight and able to transmit light over long distances with minimal loss in 

energy. They have found applications in a diverse fields including sensing of 

positions, vibration, chemicals and other environmental factors (Fidanboylu & 

Efendioglu, 2009). In border security, fibre optic sensors have been 

successfully used in the detection of biological threats like Staphylococcal 

enterotoxin3 type-B, Francisella tularensis4, Bacillus anthracis, and Bacillus 

globigii spores (Jung et al., 2003). In particular, for cocaine detection, fibre 

                                                           
3 Staphylococcal enterotoxin is an enterotoxin produced by the bacterium Staphylococcus aureus 
and is a common cause of food poisoning, 
4 Francisella tularensis is a pathogenic species of gram-negative bacteria and the causative agent of 
rabbit fever. Due to its ease of spread by aerosol and its high virulence, F. tularensis is classified as a 
Class A agent by the U.S. government 
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optics technology has been used in detecting cocaine, its metabolites and 

other coca alkaloids using a monoclonal antibody (mAb) against a 

derivatized benzoylecgonine (Devine et al., 1995) and for detecting cocaine 

metabolites in urine (Nath et al., 1999). The impracticality of the above cases 

for cargo screening application includes the need to treat the cocaine with 

other compounds in both cases.  

The cases presented above show that the current techniques available for 

detection of cocaine hidden in cargo containers at borders have their short 

comings. The imaging systems which make use of gamma rays, x-rays, 

sonography technology in spite of their abilities produce high quality images 

are reliant on the ability of the operator to visually identify contrabands. New 

generation x-ray machines for cargo screening not only ensures greater 

penetration allowing for deeper scrutiny of objects but also allows operators 

to view images in 3 dimensions and also in colour while being able to 

manipulate a containers contents’ 3-D image on the computer screen. This 

also implies greater reliance on the operator to reliably determine if a hidden 

object is cocaine or if it just fits the parameters of a packed cocaine object. 

The implication of this is that any error of judgement by the operator would 

mean a missed detection or a false alarm. In addition, the exposure of  the 

contents of container and operators to radiation in the case of gamma and x-

rays is an increasing concern. The use of trace-detector portal machine is 

less dependent on operator’s training compared with the techniques above. 

However, using a trace detector implies that container contents would be 
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unloaded and swiped with a pad which is then inserted into the machine. 

Although not all containers are opened and the border agency security relies 

on intelligence to determine which container to screen based on the most at-

risk container, the time taken to open selected containers and swipe the 

contents is a cause for concern especially if it turns out to be a false alarm; 

this will greatly affect operator confidence. Also, the fact that operators need 

to enter containers to unload them of their contents before performing tests 

exposes the operators to unnecessary risks.  

1.2 Data Fusion  

The concept of receiving information can be broken down into two stages – 

sensor measuring and data processing. The sensor measuring aspect 

involves the collection of data or measurements of quantities dependent on 

the characteristics of the immediate environment. In the data processing 

stage, the measurements from the sensor measuring stage is taken through 

different stages including removal of noise, alignment and extraction of 

useful information. The final result is intelligent information which offers a 

more satisfactory meaning to the user than the raw data (Wald, 2000). In 

some cases, one set of data from a sensor may not be enough to totally 

characterise a system. In such a case, multiple data is collected at different 

time intervals. In other cases, one sensor may not be enough to characterize 

the system and as such, additional sensors are brought in to complement the 

sensor. The two cases mentioned are called Data Fusion. It is a multilevel, 

multifaceted process dealing with the automatic detection, association, 
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correlation, estimation and combination of data from single and multiple 

sources (U.S. Department of defense, 1991). 

In general, data fusion techniques can combine data either from multiple 

sensors or as explained above from a single sensor over time (tracking) with 

information/data from databases with the aim of giving improved results than 

can be achieved from raw data alone.  

Applications of data fusion can be found in diverse engineering and science 

disciplines including remote sensing (Haack & Bechdol, 1999), robotics (Zou 

et al., 2000), automated target recognition (Bethel & Paras, 1998) (Brown & 

Swonger, 1989) and medical applications (Hernandez et al., 1996) 

(Hernandez et al., 1999). Fusion of data can be achieved via various 

techniques including (Ma, 2001): Control theory (Sossai et al., 1999), signal 

processing (Soumekh, 1999), statistical estimation (Smith & Kelly, 1999) and 

artificial intelligence (Matia & Jimenez, 1998). The technique to use is 

dependent on various aspects including type of data, requirements of the 

application and the grade of reliability targeted (Carvalho et al., 2003).  

 

1.3 Background to the collaborative research 

This thesis (referred to as Loughborough University in this section) is a part 

of a collaborative research (called the Cargo Screening Ferret Project)) with 

the University of Sheffield and City University in conjunction with the British 

Home Office and Qinetiq funded by the Engineering and Physical Sciences 

Research Council (EPSRC).   
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The University of Sheffield will investigate different methods for robot designs 

with the aim of building a robot that will manoeuvre around the cargo 

container. The cargo container’s design and fabrication material will guide 

the design selection for the robot. For this aspect of the collaborative 

research, this thesis will contribute to the design for the robot controls and 

communications while the British Home Office will aid in terms of possible 

design support. The role of the robot is to deliver the sensor into the 

container. This fibre optic sensor will be built and calibrated at City University 

in London. After fabrication and development of the sensor, City University 

and Loughborough University will perform specific experiments designed by 

Loughborough University with the aim of Loughborough University 

processing the raw data and extracting features which will serve as inputs 

into the data fusion model also developed at Loughborough University. In 

addition, the user interface to display the detection results and to provide 

motion control for the ferret will be developed by this thesis. 

The overall aim of this collaboration is thus to build a ferret to detect illegal 

substances (in this case cocaine) being smuggled into the UK via its borders.  
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Figure1.4 below shows the interaction and contribution of this thesis and 

other project partners. 

 

 

 

 

Figure1.4 Interaction between project partners 

1.4 Aim and Objectives 

This thesis is an important part of the collaborative research and aims to 

devise an automatic sensor fusion system for positive detection of cocaine 

using an optical fibre sensor. Specifically, using data fusion techniques, 

characteristic features from the sensor data will be extracted and combined 

in such a way as to provide improved results on the sensor output.  

The objectives of this thesis are to –  

• To explore existing data fusion techniques so as to identify 

suitable/robust ones. 

Ferret Robot (The 
University of 

Sheffield) 

Data Fusion, User 
Interface 

Development 
(Loughborough 

University thesis) 

Fibre Optic Sensor 
Development (City 

University) 

British Home 
Office 

Qinetiq,  System 
Ergonomics 
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• Characterise the characteristics of the cocaine detecting optical fibre 

sensor by analysing the raw data with close collaboration with City 

University 

• Extract unique features from the sensor data 

• Develop a model for the fusion of multiple decisions from sensor 

• Capture User requirements for this system (in collaboration with 

Qinetiq, The University of Sheffield and the Home Office) 

• Design a user interface to display appropriate information in a 

meaningful way and instilling confidence in the operator. The user 

interface will also serve as a controller for robot manipulation (with 

close collaboration with the University of Sheffield) 

• Make recommendations for the implementation of an integrated 

cocaine detection system 

This sensor developed for this thesis is a cocaine detecting sensor using 

optical fibre technology. The fibre optic sensor was developed by City 

University in London and the results detailed in a report (Nguyen, et al., 

2010). The fibre-optic chemical sensor developed is based on molecularly 

imprinted polymer (MIP) which contains fluorescence in moiety as the 

signalling group and exhibits an increase in fluorescence intensity in 

response to cocaine in concentration range of 0 - 500μM in aqueous 

acetonitrile mixtures and has good reproducibility over 24 h (Nguyen, et al., 

2010). Chapter 2 of this report will discuss more details on the optical fibre 

sensor. 
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1.5 Outline of the dissertation 

The outline of this thesis is explained below. 

Chapter 2 of this thesis is a comprehensive literature review of sensors, data 

fusion and border security in general. Specifically, the literature review will 

look at the concept of data fusion as discussed in several researches and its 

applications. The way data is fused is dependent on application. The chapter 

will thus also look at suggested methods by which data can be fused. This 

chapter will also discuss some of the advantages of data fusion including 

applications of data fusion in both military and non-military environments. It 

will then narrow down to current techniques used in cargo screening at 

borders including detection of cocaine at borders and the challenges faced 

by these techniques. Finally, the chapter will discuss the principle behind 

fibre optic sensor detection with a follow up introduction into detection of 

cocaine using fibre optic sensors. 

Chapter 3 of the dissertation will discuss the different models used for data 

fusion and human computer interaction issues. It will begin by looking into 

the JDL model developed by the Data Fusion Group set up by the Joint 

Directors of Laboratories (JDL). All six levels of this JDL model will be 

discussed. Other models including the waterfall, omnibus amongst others will 

also be discussed. The various levels and support systems in this model will 

be highlighted in chapter 3.  The HCI is an important part of many data fusion 

models thus this chapter will also dovetail into the issues surrounding the 

human computer interaction.  
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Chapter 4 will give a brief background into the experimental set up and data 

collection. The chapter will then discuss data fusion algorithms used in this 

thesis – Bayesian and Dempster Shafer with the aim of giving an insight into 

the systematic process of developing a model for single sensor fusion for 

cocaine detection.  

Chapters 5 will outline the process of extraction of valid features from the 

raw data. The feature selection stage is preceded by a data pre-processing 

stage which involves cleaning the data, normalising and other processes. 

Cleaning the data removes noise which could be due to background errors, 

normalizing ensures all data from the sensor are in the same domain. Finally, 

the steps involved in validation using neural networks will be highlighted and 

the results will be discussed. 

Chapters 6 will outline the implementation of the data into the data fusion 

model using the Bayesian and Dempster Shafer techniques. The model 

developed in Chapter 4 is the same model used for both implementations 

but because of the underlying differences in outputs for the two approaches, 

the output results may defer. The chapters will show the results given by 

each approach in terms of percentage true positive, false positive, true 

negative and false negative. A comparison of the output results from these 

techniques will also be outlined. The chapter will round off by discussing the 

Human Computer Interaction and highlight the features of the Interface 

designed to output results. It will also give a brief description of the ferret 

robot.  
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Chapter 7 concludes the dissertation and will summarise the achievements 

and will also highlight some of the thesis contributions, its limitations and 

suggestions to industry.  
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CHAPTER 2 

           2 
REVIEW OF DATA FUSION 

SYSTEMS AND CARGO 
SCREENING 

 

Many practical problems arising in monitoring and detection can be modelled 

with the aid of parametric models in which the parameters are subject to 

abrupt changes at unknown time instants. These changes are normally 

associated with some form of disorder, which is highly undesirable and 

should be quickly detected with a few false alarms as possible. Multiple 

sensors are used in these systems in order to reduce uncertainty and obtain 

more complete knowledge of the state. Data fusion helps to combine the 

data from these sensors leading to a more efficient and thus reliable system. 

This chapter will outline a review of sensors, sensor systems, data fusion 

and its applications and then x-ray cargo screening at borders. It will begin 
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by discussing sensors and sensor data with a look at different types of 

sensors, especially the fibre optic sensor which is the sensor used in this 

dissertation. The applications of the fibre optic sensor and how it is used in 

detection of certain compounds will also be discussed. Following this will be 

a highlight of data fusion with definitions, applications and its advantages 

presented. In addition, an overview of current applications of data fusion with 

respect to border security will be outlined. The application of data fusion is 

dependent on the specific issue to be resolved. Data can be fused over time 

from a single sensor or by combining results from multiple sensors. The 

applications of data fusion will also be examined in this chapter which will 

then delve into cargo screening and the use of data fusion in cargo 

screening.  

Finally, the chapter will discuss the menace of cocaine smuggling via borders 

citing recent examples. 

2.1 Data Fusion 

The history of data fusion dates back to over forty years ago when it was 

used as a mathematical model for data manipulation. In 1986, the US 

Department of Defence founded the Data Fusion Group as a Data fusion 

subpanel  of the Joint Directors of Laboratories (JDL) to unify research 

terminology and to promote technology transfer and cooperation between 

groups (Hall, et al., 2009). 

In general, data fusion involves combinations of data or of sensory data or 

data derived from sensory data from disparate sources such that the 



29 
A. Akiwowo (2012) 
 

 

resulting information is in some sense, more accurate, more complete or 

more dependable than it would be possible when these sources were used 

individually. However, more particularly, several bodies and individuals have 

come up with different definitions for data fusion, the basics however, remain 

the same.  

In terms of application, at the early stages, data fusion was at first used 

mainly in military intelligence. However, with time the application has been 

extended to weather prediction, remote sensing, air traffic control and 

navigation. Other applications include Intelligent Transportation System (ITS) 

and missile detection and tracking.  

2.1.1 Definitions 

One of the earliest definitions of Data Fusion came from the North American 

Joint Directors of Laboratories who defined Data Fusion as (U.S. Department 

of defense, 1987) 

“A multilevel, multifaceted process dealing with the automatic 

detection, association, correlation, estimation and combination of data 

from single and/or multiple sources”. 

However, Charniak et al (1987) further modified this definition by defining 

data fusion as follows:  

“A multilevel, multifaceted process dealing with the detection, 

association, correlation, estimation and combination of data and 

information from multiple sources to achieve a refined state and 
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identity estimation, complete and timely assessments of situation and 

threat”.  

These definitions focus on three (3) major aspects – 

1. that data fusion is a process 

2. that data fusion includes detection, association, correlation, estimation 

and combination of data. 

3. that the results of data fusion include state and identity estimates at 

the lower levels and assessments of overall tactical situations at the 

higherlevels. 

Also, Mitchell (2007) defines Data Fusion as  

“The theory, techniques and tools which are used for combining 

sensor data, or data derived from sensory data, into a common 

representational format’’ (Mitchell, 2007). 

This definition further adds that the data fusion process uses both sensor 

data and data derived from sensory data. The importance of this is that it 

shows that the process of data fusion not only fuses data but also exploits all 

combinations of data that may be available thus making it an efficient 

process. 

In summary, data fusion helps to improve confidence in the system by 

reducing uncertainty in the measurement outputs (Keller, 2008). The use of 

data fusion for any process should however be weighed against factors such 

as additional costs and complexity. 
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2.1.2 Structure of data fusion 

Data is fused from either a single sensor taken at separate times or by 

combining data from multiple sensors at a specified time. Bearing this in 

mind, it can then be said that data can be fused across sensors, across 

attributes, across domains or across time (Boudjemma, et al., 2004). 

Across Sensors – In this case, a number of sensors measuring the same 

property are fused together 

Across Attributes – Sensors measuring different properties but for the same 

experimental situation are fused.  

Across Domains – sensors measure the same attribute over a number of 

different ranges. 

Fusion across time (temporal) – For this, several measurements are taken 

over time and current measurements are fused with historical information.  

For un-identical data i.e. data from different types of sensors, the data is first 

analysed and converted to the same format whereas, if the sensors to be 

fused together are identical, this is not necessary as the data should already 

be in similar format. 

Dasarathy classifies a multisensory data fusion system according to its 

input/output characteristics as shown in Table 2.1 (Dasarathy, 1994): 
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Table 2.1 Dasarathy’s Input/Output Data Fusion Model (Dasarathy, 1994) 

Name Description 

Data Input/Data Output Input is filtered 

Data Input/Feature Output Generation of features from input data 

Feature Input/Feature Output Input features are fused and new features 

are generated 

Decision Input/Decision Output Input decisions are fused together to give a 

final output decision 

Feature Input/Decision Output Input features are fused together to give 

output decision 

 

2.1.3 Advantages of Data Fusion 

There are several advantages of fusing data from sensors, however, as 

stated above, data fusion is not always the best solution and the process 

should be weighed against other factors. Factors to be considered include: 

• Improving the performance of a system by providing more information 

than a single sensor would normally provide. For instance, in a 

camera surveillance system, a single roving camera while scanning a 

particular area is bound to have a lower coverage within a time frame 

than a system of multiple cameras.  

• Reducing false positives and false negatives. False positives are 

otherwise known as false alarms. They occur when a system detects 

a problem when there is none. However, false negatives are more 

dangerous because they do not detect when there is something to be 

detected. False positives can be managed but will in time reduce 
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operator confidence. By increasing the number of sensors/ sensor 

data, the system becomes less prone to false alarms and will be more 

accurate thus reducing or eliminating false negatives. 

• Sometimes, data fusion involves fusing data from different types of 

sensors. This thesis for instance, will be fusing data from sensors that 

are individually set to achieve different purposes. One sensor will 

search for illegal drugs and another will search for contraband and 

human beings. Individually, the sensors will achieve only a specific 

task. Fusing them together gives a more complete and balanced 

purpose and a wider task is achieved.  

In addition to the above, Thomopoulos (1989) gives further advantages of 

data fusion including: 

• Higher signal-to-noise ratio;  

• Information regarding independent features in the system can be  

obtained; 

• Increased robustness and reliability in the evident of sensor failure;  

• Increased dimensionality of the measurement;  

• Improved resolution;  

• Reduction in measurement time, and possibly costs - there is a trade-

off to consider in this issue. Thus, an optimal number of sensors to 

extract the required information from a system should be ideally 

pursued.  
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• Increased hypothesis discrimination with the aid of more complete 

information arriving from multiple sensors; 

2.1.4 Applications 

In the past, data fusion has been mainly utilized in the area of defence. 

However, in recent times, the application of data fusion has spread over to 

non-military areas. Some examples include (Hall, et al., 2009):  Monitoring of 

manufacturing processes, environmental monitoring, robotics and medical 

fields. 

2.1.4.1 Military Applications.  

In 1986, the Joint Directors of Laboratories (JDL) came together and 

introduced terminologies related to data fusion. This was necessary because 

of the lack of a unifying terminology stood as a barrier to technology transfer 

in data fusion. Within the U.S. Department of Defence (DoD), sensor fusion 

falls in the same category as the overall definition of information fusion, as 

specified by the Joint Directors of Laboratories (JDL). The JDL’s definition of 

information fusion includes four levels, ranging from identifying and tracking 

targets of interest, to determining whether these targets are threats.  
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Specifically, military applications include (Hall, et al., 2009): 

Table2.2 Data Fusion applications for Military Systems (Hall et al., 2009) 

Application Purpose 

Ocean Surveillance Detection, tracking, identification of targets. 

Air-to-air and surface-to-air 

defense 

Detection, tracking, Identification of aircraft 

Intelligence/surveillance and 

target acquisition 

Detection and identification of potential ground 

targets 

Strategic warning and defense Detection of impeding strategic actions, detection and 

tracking of ballistic missiles and warheads 

2.1.4.2 Non Military Applications 

In addition to military systems, data fusion also has non-military applications. 

In recent times, the study of data fusion techniques has received high 

interests in this area.  Sample applications are (Hall, et al., 2009) shown in 

table 2.3. 

Table 2.3 Application of Data Fusion in non military systems [4] 

Application Purpose 

Environmental 
Monitoring 

Used basically in identification of natural phenomena like weather, 

earthquakes, etc 

Medical 
diagnoses 

Identification of tumours, abnormalities and disease. 

Robotics Object detection and avoidance 

Multimodal 
biometric 
Systems 

Detection and identification of traits to uniquelydefine a human being 

Surveillance Detection and tracking 
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2.2 Cargo Screening 

The Oxford English Dictionary defines cargo as  

 car·go / ˈkärgō/ • n. (pl. -goes or -gos) goods carried on a ship, 

aircraft, or motor vehicle: transportation of bulk cargo | a cargo of oil (Oxford, 

2011) 

These goods are transported over the border enclosed in containers. Goods 

are transported for various uses. People moving from one country to another 

have to transport the bulk of their personal belongings in these large 

containers.  

The sizes for a cargo container according to the International Standard 

Organization vary by shipping and air freight containers. For shipping 

containers, there are five common standard lengths: 20-ft (6.1 m), 40-ft (12.2 

m), 45-ft (13.7 m), 48-ft (14.6 m), and 53-ft (16.2 m). Container capacity is 

often expressed in twenty-foot equivalent units (teu). An equivalent unit is a 

measure of containerized cargo capacity which does not consider the height 

of the container and is equal to one standard 20 ft (length) × 8 ft (width) 

container (Emase, 2007). 

The maximum gross mass for a 6.1 m dry cargo container is 30,480 kg, and 

for a 12m including the 2.87 m high cube container, it is 34,000 kg. Allowing 

for the tare mass of the container, the maximum payload mass is therefore 

reduced to approximately 28,380 kg for 6.1 m, and 30,100 kg for 12 m 

containers (Emase, 2007). 

http://en.wiktionary.org/wiki/standardization
http://en.wikipedia.org/wiki/Twenty-foot_equivalent_unit
http://en.wikipedia.org/wiki/Tare_weight
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A picture of a typical container is shown in Figure 2.1: 

 

Figure 2.1 A typical standard sea container (Transit Logistics) 

 

Cargos represent a security issue to most countries especially developed 

nations like the US and the UK especially after the September 11 and July 

7th terrorist attacks on both nations respectively. The challenge therefore, is 

for border security agents to be able to scan these cargos for illegal goods, 

contrabands and illegal immigrants. 

2.2.1 Cargo Screening in the UK 

Cargo screening refers to non-destructive methods of inspecting and 

identifying goods in transportation systems. In the UK, it is the responsibility 

of the Home Office and the UK Border force to make sure that cargo is 

checked for illegal substances.   

Hitherto, sensors have been used individually to detect for drugs, 

contraband, stowaways and explosive elements in cargo. The novelty of this 

http://www.hiwtc.com/photo/products/39/00/78/7817.jpg
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research is in the use of data fusion for fusing data from a single sensor for 

the detection of cocaine to provide a more effective and a more reliable 

result. 

Key to many data fusion systems is the User interface. The user interface 

provides a means for which an operator interprets results from a data fusion 

system. This thesis also discusses a user interface that was developed for 

this project and will be outlined in subsequent chapters. 

The Oxford English Dictionary defines contraband as “goods that have been 

imported or exported illegally” (Oxford Dictionary 2005). Goods which are 

illegal to possess, such as stolen materials, are also called contraband. 

However, this thesis is focused on contraband as goods which are imported 

illegally. Consequently, contraband goods will vary from country to country 

as what may be illegal for importation into the UK, for instance, may be legal 

in another country.  

2.2.2 Existing Technologies in Cargo Screening 

2.2.2.1 Background 

The issue of border security has always been a problem for most countries. 

As early as 1904, in the United States of America, Mounted watchmen of the 

U.S. Immigration Service patrolled the border in an effort to prevent illegal 

crossings. These were called Mounted Guards and they patrolled the 

borders at El Paso, Texas. However, in March 1915, the US Congress 

authorized a separate group called the Mounted Inspectors which was a 
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separate group from the Mounted Guards and some of whom rode on 

horseback while others rode cars and some patrolled in boats. 

Over the years, with the advances in technology, a number of technologies 

have been developed for screening illegal substances. As technologies are 

developed, the offenders became even more sophisticated and constantly 

seek new ways of beating new controls. This threat has increased in various 

borders world wide. In the UK, for instance, the UK Border control stopped 

over 21,700 people trying to cross the Channel illegally between April and 

December 2008 (UKBA 2009). It should be noted that over 809,000 frieght 

vehicles were searched to make the above discovery (UKBA 2009). Also, 

within the same time frame, officers seized in excess of 800 million 

cigarettes, representing a potential loss of £149 million in tax revenue, 

£260.6 million worth of prohibited drugs (UKBA, 2009). The police, border 

agencies, immigration and other security agencies involved in screening 

have more responsibility in constantly improving methods of detection. More 

importantly, screening technology must be improved to be more effective in 

terms of accuracy of detection and speed. 

Current technology in use can be grouped in two (2) categories – Imaging 

and Non-Imaging technologies. 

• Imaging Technologies 

These include X-ray, Gamma ray and Neutron Technologies. The challenge 

for X-ray technology is in its ability to maintain a balance of being dense 

enough to penetrate the densest cargo while not being dense enough to 
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cause health issues. There is also a challenge of image quality. A sample of 

X-ray image is shown in Figure. 2.2. 

 

  

Figure 2.2(a) X-Ray Ganter scanning a 
vehicle (side view) 

Figure.2.2(b) X-Ray Ganter scanning a 
vehicle (rear view) 

Gamma ray technology has a lower radiation field when compared to a 

similar X-ray technology, thus providing a smaller safety exclusion zone 

(Neumann, 2008). 

The Neutron system creates gamma-ray signals when it interacts with the 

elemental ingredients of the inspected object. The gamma-ray energies are 

unique to the elements in the inspected object. If the gamma-ray signatures 

match those in a threat database, the system automatically alarms indicating 

the possible presence of the threat. 

In all, imaging technology depends much on the quality of the image and the 

penetration of the rays used. Their disadvantages however include their size 

(see figure 2.2), and the time delay caused by analysing cargo using this 

technique. The use of highly dangerous radioactive materials also makes it 
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important that a safety exclusion zone must be created when the system is in 

use thus adding to the already large space needed.  

• Non-imaging Technologies  

Non-imaging technologies as the name depicts do not require a computer 

rendering of the internal contents of a container. In this case, the observed 

object is scanned and an alarm is given if the object’s features match 

signature features stored on the database. Examples include dogs and 

vapour phase chemical detection systems. 

The use of dogs as drug detectors can be termed as a non-imaging 

technique. Trained K-9 dogs are trained to detect certain drugs using their 

ability to detect even very faint scents (Marks, 2007). These dogs scent 

individuals and luggage as they pass through security at borders and let off 

an alarm by barking whenever it detects a scent that matches the scent he is 

trained to detect (see Figure 2.3). 

The challenges here are obvious. Dogs and human detectors may become 

tired and thus less effective over time. Repetition of the same duty may lead 

also to boredom leading to the same consequence. This will lead to a 

significant number of false negatives, allowing for illegal substances going 

undetected. 

Also for gamma resonance technology which is used for detecting 

explosives, the Gamma Resonance occurs when the energy of a gamma 

beam is precisely tuned to coincide with a nuclear excitation level in a 
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nucleus of an element of interest. Similar to the imaging technology 

counterpart, they are usually too large. Some of them are mobile and can be 

transported from point to point but locating them at the border is a major 

challenge. Also, the situation of exposing operators to likely dangerous 

materials is also an issue.  

 

Figure.2.3 Customs Inspectors using specially trained dogs to sniff out drugs and other 
contraband (courtesy US Customs Service) 

 

Other non-imaging techniques that exist include: 

Vapour Phase Chemical detection Systems 

Olfactory sensing is the means by which sensors are developed to mimic the 

human nose in the detection of substances usually in based on their 

signature ‘scent’. It is a complex but very specific system which has attracted 

the interest of researchers over the years (Stubbs et al., 2005). The 

applications of this type of sensors are diverse including in areas like 

medicine, anti-terrorism, environment and biotechnology. 
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Generally, there are two main features that characterise a vapour sensing 

detection system – sensitivity and specificity (Stubbs et al., 2005). The 

specificity is defined by the nature of the ‘chemically sensitive’ film on the 

surface of the system while the sensitivity is defined by the sensor’s modality 

and design. 

Usually, the aim for many researchers in this field is the quest to develop 

commercially viable and portable systems which would take the place of 

trained dogs as is being used today (Figure. 2.3). As can be seen in Figure 

2.2, dogs are trained and used at ports to sniff through baggage for 

contraband mostly explosives and illegal drugs. However, as mentioned in 

the previous section, there are issues which arise in the use of these dogs. 

The cost of training and caring for the dogs and some other issues has been 

previously discussed. For cocaine detection, Stubbs et al (2005) suggest that 

because it is still unclear what the dogs are actually detecting which may 

vary depending on what dog is used, the response of dogs to a cocaine 

sample may thus also defer. Hence whilst dogs have been shown to be 

effective in the detection of illegal compounds, their effectiveness is limited 

by the issues raised and by the inability of researchers to perfectly analyse 

the system behind their process of detection.  

2.2.2.2 Existing cocaine detection sensors 

Much research has been done in the area of developing commercially viable 

portable sensors for real time, on-site detection of a range of compounds 

including cocaine due to the potential numerous applications of such sensors 
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including healthcare, environmental monitoring and so on (Yu & Yi, 2011; 

Daar, 2002; Fan et al., 2005). The key phrases that should be noted in the 

above are “portable” and “commercially viable”. Montagnana et al., 2009 and 

Yu & Yi, 2011, have postulated that the Personal Glucose Meter (PGM) 

(Figure 2.4 below) is arguably the most successful of such sensors. 

However, (Yu & Yi, 2011) stated that one of the obvious short comings of the 

PGM is that it has only one target. They then went on to develop a novel 

methodology which extends the ability of the PGM from a single target to the 

detection and quantification of a wide range of targets including biological 

cofactors, such as adenosine and of course, contraband drug, cocaine. The 

proposed extension work uses functional DNA-conjugated invertase to link 

the detection of glucose to that of other targets such as cocaine and at the 

same time, use the concentration of glucose to estimate that of the targets of 

interest. 

 

Figure.2.4 A simple Personal Glucose Meter (PGM) 

 

The success of this research was based on its ability to detect more targets 

in addition to glucose. However, despite its low cost, the “extended – PGM” 
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cannot be used in cargo screening due to the ‘pre-processing’ that needs to 

be done and the method by which the analyte is passed on to the meter5. 

Another attempt at developing a cocaine sensing device was made by 

(Stubbs et al., n.d.). Using an ST-Quartz resonator with centre frequency of 

about 250MHz, the researchers were able to detect a shift in the transient 

frequency alongside a baseline frequency shift. They claimed in their 

research that they were able to achieve real time molecular detection of 

cocaine molecules using their anti-benzoylegonine coated sensor. Again, 

while this may seem interesting, its application to cargo screening does not 

show any advantage over any of the current techniques discussed above.  

Challenges  

The preceding section has shown the various attempts at developing 

portable sensors that can detect a range of compounds and in particular 

cocaine and their limitations also highlighted. Most importantly, the issue of 

how effective in terms of detection rates and reliability of the detection 

system are major areas of concern. 

Although there are different approaches to cocaine detection as discussed 

above, the commercially available systems use a test strip to test for the 

presence of cocaine based on the reaction of the compound on the strip. 

They are known as immunoassay tests (Crouch et al., 1998; Concheiro et 

al., 2007). The shortcoming of this test is that it may need preparation of a 

                                                           
5 The ‘extended PGM works by using a specific custom designed analyte reagent and then mix with a 
little amount of sugar which is converted into glucose. The PGM is then put into the vial and it goes 
on to measure a target compound. 
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sample of the compound before testing thus requiring that the staff be trained 

to be able to use and interpret the result. Another disadvantage of the staff 

having to use the test strips especially in the area of cargo screening is the 

time expended in swiping the material with the strip and then moving to test 

for the detection of cocaine.  

To add to the cocaine detection short comings, traditional cargo screening 

methods also inhibit the flow of passengers, baggage and cargo mainly due 

to the size of the systems. This, in turn, adds a high price to operations in 

terms of added costs, overheads, delays and lost business. Thus, there is a 

pressing need to make the screening process more reliable, effective, 

efficient and less intrusive. There is also the challenge of having to offload 

containers for full inspection and inspectors having to go into containers 

thereby exposing themselves to contaminants which may be in such 

containers. 

Unfortunately, due to the challenges raised above, only a very small 

percentage of suspect items are thus inspected leading to vulnerability of 

borders. Thus, a new, cost efficient, efficient, reliable and fast means of 

detecting illegal substances are required.  

This thesis which introduces techniques in the detection of cocaine and 

interpretation of results aims at reducing the checking time. Using a sensor 

fusion approach, necessary features will be extracted from newly developed 

cocaine sensors and the features will be combined using data fusion 
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algorithms to lead to more reliable results than individual features. The 

expected advantages of this approach are  

(1) By depending on more than one feature, the reliability of the system is 

improved upon, with lower false positives and higher detection rates and 

(2) Updating the system with information from past data also adds to the 

reliability because the system can now learn from past experience. 

Its application will be in the cargo screening at ports and borders but can be 

applied also in the areas of medicine, environment, etc. It is also expected to 

be more accurate in terms of detection rate.  

For the overall project, by carrying the sensors to the containers rather than 

working remotely like current systems do, safety of border patrol personnel is 

guaranteed and sensitivity of the sensors need not be too high while still 

expecting better results in terms of reduced false negatives and false 

positives.  

2.3 Cocaine detection at Borders 

Illegal substances smuggling is increasingly becoming a challenge for border 

agency officials. Cocaine is one of the illegally smuggled drugs over the UK 

borders. Chapter one of this thesis has highlighted some high profile cases 

of cocaine smuggling around the world. One common way of smuggling in 

cocaine over the borders is by a method called body packing where the drug 

courier dangerously inserts well packed cocaine packets into their rectum or 

vagina or by swallowing them (DeMarco et al., 1999) (Hergan et al., 2004).  
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This thesis is focused on the smuggling of cocaine via the sea and land 

borders. Using sea and land borders, Cocaine is also smuggled via cargo 

containers (see fig2.1 above for the picture of a typical container). Using this 

means, smugglers sometimes hide the cocaine in wax (Jellema, 2011), beer 

or milk cans (Anon., 2011), or even baseball caps (Anon., 2003). To combat 

the threats of smugglers, some of the techniques used have been discussed 

in Chapter one. The various techniques used are as follows: 

 

 

Figure.2.5 Cocaine hidden in baseball caps (courtesy the United States Department of 
Justice Drug Enforcement Administration)  

 

Back- scatter technology uses computer algorithms to develop an outline of a 

container and displaying on a computer screen any item inside the container. 

A trained technician is needed to detect which of the items displayed on the 

screen is suspected to be illegal drugs. Due to the fact that this is mainly a 

visual system, it is almost impossible to decide whether the concealed item is 

cocaine or not, without further testing.  
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Figure 2.6 Back scatter technology revealing smuggled cigarettes (in red box). (Image 

courtesy American Science and Engineering, Inc.) 

Detection of cocaine using this technology is in two stage. The first stage 

consists of the container passing through a ganter (see Figure 1.2 in Chapter 

one) and the x-ray image of the container displayed on a screen. Once the 

border agency official suspects packed substances may contain cocaine, 

he/she then recommends the container for further inspection. Further 

inspection involves unloading the container and passing the suspected 

item/items through further tests. 

One can see that one major challenge with this is that detection is largely 

dependent on the border agency official. The operator needs to be able to 

make an informed decision based on what he/she can see. Any oversight will 

lead to false alarms and missed detections. Additional drawbacks include the 

size of the detectors, availability and costs (Meijer & Bots, 2003) 

In addition to the above, there is also the health issue. In addition to the 

smuggling of cocaine, smugglers also try to smuggle in stowaways. Although 

the Transportation Security Administration (TSA) contends that the levels of 

ionizing radiation emitted by approved X-ray back-scatter technology is well 

below levels considered safe for human exposure (TSA, 2011), some 
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researchers have disputed this claiming that although the radiation dose 

received from the system would be safe if distributed throughout the body but 

because it is concentrated only on the skin and underlying tissue, the dose to 

the skin may be “dangerously high” (Sedat et al., 2010). Therefore, in terms 

of safety, this technology was proven to be unsafe for use at borders. 

Another method in the detection of cocaine at borders in Cargo containers is 

in the use of high speed gas chromatograph with surface acoustic wave 

sensor (Staples & Viswanathan, 2008). This procedure uses a single, 

uncoated, high Q surface acoustic wave sensor, along with a high-speed 

chromatograph and column, a programmable gate array microprocessor, and 

a vapour pre-concentrator.   

In some cases, the cocaine contraband is dissolved in liquids and extracted 

once it has reached its destination. In cases such as this, current scanning 

methods involve the use of an immunologic test using a drug-test panel. 

These panels use a random sample of the cargo contents as a control 

sample and this is opened and the test performed on it. Unfortunately, there 

is a possibility of missing the boxes containing the drugs because they are 

well hidden amongst legitimate boxes. As a result, there are high cases of 

false alarms and missed detections in cases like this as mentioned by border 

officials during the author’s visit to the site. 

All the above show the drawbacks in the detection of contraband at borders 

especially in cargo containers. The drawbacks stem from over reliance on 

the ability of border officials to make the right judgement based on visuals 

from x-ray pictures and/or failure of existing systems to give reliable results in 
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terms of false alarms and true detections. Another drawback is the intrusive 

nature of existing systems. It is thus imperative that a non-intrusive system 

that will lead to reliable high true positives and low false positives while 

delivering real-time solutions is required. In addition, a well-designed user 

interface that increases operator confidence is needed. This thesis 

implements a two-step methodology to implement a data fusion algorithm for 

the detection of cocaine using a fibre optic sensor. The sensor developed 

and the methodology are described in Chapter three of this thesis. 

2.4 Sensors 

A sensor can be described as an instrument that detect or measure physical 

phenomena. Specifically, 

“Sensors are devices that convert a physical parameter such as room 

temperature, humidity, smell or wind speed into a signal that can be 

measured electrically or sometimes, visually (e.g. visual output from a glass 

thermometer)” (Waltz & Llinas, 1990). 

Many sensors are typically just data extracting systems. They can either be 

active (laser fluoro-sensor, radars, x-ray machines) or passive (cameras, x-

ray detectors) with the latter simply observing emissions from a target and 

the former provides its own energy source and emits this energy to induce a 

detectable phenomenon from an observed target (Hall, 1992). Due to the fact 

that active sensors do not depend on an external source of energy, they 

have the advantage of being able to gather measurements at any time of the 
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day regardless of the energy from for example, the sun. The fibre optic 

sensor used in this thesis is an active sensor.  

Due to the advances in sensor technology and the subsequent increase in 

funding for sensor systems there has been an increase in the volume of data 

in sensor systems. Research shows that this volume will continue to increase 

due to the increasing interest in sensor technology. According to researchers 

at ON World consultancy, sensor sales have been growing "well over 50 per 

cent a year" for three years, and will keep growing at least that fast for the 

next few years. In fact according to the San Diego-based consultancy, by 

2012, ON World projects, sales of wireless sensor networking equipment in 

just four areas – industrial, commercial building, advanced metering 

infrastructure and residential applications – will total $14 billion (Smith, 

2008). 

Applications of sensors are now seen everywhere around us. Temperature 

sensors, light sensors, are all a part of our everyday lives. The human body 

is a combination of several sensors (sensory organs) each working 

independently and also in conjunction with other sensors (sensory organs) to 

detect or track objects.  

The eyes for instance can detect the size, shape and colour of an object and 

can track the movement of objects too. The nose, another human sensor, 

can ‘smell’ the odour coming from different objects sending out a smell 

(signal) while the skin can detect how hot or cold (temperature) an object is. 
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Similar to every sensor, human sensors work based on the signal sent out by 

objects they are meant to sense. If the signals are not strong enough (e.g. 

wind direction taking the smell of food away from the position of the person) 

or the strength of the sensor has been weakened (e.g. a short sighted or 

long sighted person), then the accuracy of detection/tracking is reduced.  In 

most cases, the human body adapts to this problem by using additional 

sensory parts to complement the effort of one. For instance, if the nose 

cannot detect what a substance is from its smell, the person can touch to feel 

or taste to determine what it is. Sometimes in drug (cocaine) detection, 

human detectors combine the use of the taste buds and touch to detect the 

drug. The coordination is performed in the brain. 

Man-made sensors work using basically the same principles. They are 

manufactured to ‘sense’ (detect/measure) a physical phenomenon. 

Thermometers measure the temperature of a body using heat variations, 

potentiometers detect change in voltage and so on and they can measure 

either directly or indirectly. When sensors are not needed to make direct 

contact with the object, it is called “remote sensing” (Hall, 1992). Examples 

are in satellite imaging, thermal imaging, etc. Other sensors however, need 

physical or near physical contact with the detection phenomena (Waltz & 

Llinas, 1990). Examples include switches, thermometers, transducers, etc. 

In plain terms therefore, it can be seen that for every sensor, there is a 

parameter that would be measured; there is an output for every input. This is 

explained as the system’s transfer function which gives us the relationship 
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between the input and output (Fowler & Schmalzel, 2004). The input into the 

sensor is the parameter to be measured also called the measurand. Some 

measurands can be measured by more than one sensor and the sensor 

used depends on the property of the material and the system. For example, 

in a temperature measuring system, the bi-metallic strip, the property that 

metals expand and contract at changes in temperature is used. The two 

metals have different linear expansivity values and thus expand and contract 

in different direction when the temperature (measurand) heats or cools. In 

the clinical thermometer, mercury is the material used. It expands when 

temperature increases and contracts when temperature decreases. The 

readings for both are read off a standardized scale. 

Properties of sensors to be considered before using one for a project 

includes the following (Waltz & Llinas, 1990) (Fowler & Schmalzel, 2004): 

• Sensitivity – this is the smallest change in input that will yield an 

output. If a small change in the measurand can be measured by the 

sensor, then it is said to be very sensitive. If the reverse is the case, 

the system is said to be ‘not sensitive’. The sensor’s insensitivity to 

small measurand changes is also used to define its ‘robustness’. 

• Repeatability – this tells how many times a sensor can measure the 

same value and give an almost the same value at all times.  

• Threshold – this is the maximum and minimum values outside of 

which the sensor will not give any value. For instance, in many 
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thermometers, the minimum temperature is 0oC (32F) and the 

maximum is 100oC (212F). 

• Noise – this includes all additional ‘unwanted’ data which may be from 

the environment, the user or from the sensor itself.  

• Accuracy – how much does the measured value deviate from the true 

value of the measurand? Does the sensor offer the accuracy required 

by the application?  

In addition, the economics involved in terms of cost is also an important 

factor to consider. If there are more than one sensor offering the same 

qualities, then the cost can be a deciding factor in making a choice. 

2.4.1 Sensor Data 

The sensor data is an important aspect to be considered in multisensor data 

fusion since it serves in one form or the other, as the input to a data fusion 

system. In a multisensor data fusion system, there are three main sources of 

data inputs: 

1. The sensors themselves 

2. a priori data stored in the database 

3. the inputs in form of commands by the users. 

In an example of a typical active sensor, the sensor may emit energy such 

that a certain phenomenon is detected in a target. Examples of this are 

radars that send out short, high-intensity burst of high-frequency radio waves 

and receive the echo. It then uses this time to determine the distance of the 

object (example: ship or airplane). The radar can also measure the Doppler 
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shift very accurately and determine the speed of the airplane (Hall, 1992). 

Basically, in moving from input (sending out waves and receiving echo) to 

output (determining the distance and speed of plane), there are several steps 

in between. These are outlined in figure 2.5: 

 

Using the radar as example explained by Hall, when the radar sends out 

radio waves and receives the echo, it then goes on to produce an output 

showing the distance and (if required) speed of the airplane. To do this, as 

shown in the diagram above, the first step is a pre-processing stage which 

involves conditioning the signal so that it is referenced to a particular 

frequency. It is important to align signal at this stage so that all signals are at 

the same domain.  

2.4.1.1 Signal Processing 

When a sensor receives energy, it receives not only the energy of interest, it 

also receives other forms of energy depending on the sensor. The signal 

processing stage isolates the energy of interest and may also include 
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Figure 2.5 A sensor architecture (Hall, 1992) 
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transformation from time to frequency domain and background noise 

removal. 

2.4.1.2 Information Processing/ Decision making 

Information processing involves the use of classification and pattern 

recognition techniques to identify patterns in the signals. It is also at this 

stage that a decision is made on the identity of the target. For instance, in the 

radar example, the sensor determines if the target is an airplane, bird, etc 

based on the shape and size detected. The decision is based on a 

comparison of the detected information with heuristic data stored in the 

database. 

2.4.1.3 Output Processing 

Once the decision is made, the result is output. The processing at output 

level may include buffering, data unit conversion, transformation smoothing 

and filtering. For the radar example, the position and velocity of the plane 

may now be estimated. According to Hall[12], the form of the output of a 

sensor can be any of the following: 

• A continous waveform (amplitude, frequency or phase versus time) 

• A vector consisting of parametric positional data, target state data, or 

straight forward declaration of the target identity 

• A 2-D image consisting of image coordinates and spectral data. 

For the fibre active sensor used on this dissertation, the form of the output 

consists of intensity count data against the wavelength pair. The sensor also 
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simply using a light source, directs light towards the sample compound and 

based on the signature of the compound, a set of output data is generated.  

Generally, there is no single perfect sensor. No single sensor can accurately 

detect, locate and identify targets under all conditions. Just as the sensors in 

the human body have their strengths (nose – smell, tongue – taste, eyes – 

sight, etc), man made sensors also have their strengths. Some sensors are 

accurate at detection, some are best suited for locating and tracking. Also, 

the environment which the sensor will work will also affect its performance. 

Therefore while some sensors perform very well in the atmosphere, some 

may not give accurate results. In addition, just as some human sensors 

require further processing of features to give an intelligent output, some 

sensors also need to extract features and fuse the information from these 

features to make more informed decisions, hence sensor data fusion. 

2.5 Sensor Detection 

A typical sensor is a device which makes observations by taking 

measurements of physical quantities such as temperature, angle, distance, 

using the mapping relationship which exists between the measured quantity 

and the state of nature to output the necessary information.  

In this regard, the interpretation of sensor measurements and sensor 

environment is extremely important. However, physical descriptions of 

sensors (sensor models) are unavoidably only approximations owing to 

incomplete knowledge and understanding of the environment. This, coupled 

with the varying degrees of uncertainty inherent in a system itself and the 
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practical reality of occasional sensor failure, results in the lack of confidence 

in sensor measurements. Some researchers have claimed that despite 

advances in sensor technologies, no single sensor is capable of obtaining all 

the required information reliably, at all times, in often dynamic environments 

(Punska, 1999). One of the solutions to this is to use additional sensors to 

extract as much information as possible (Punska, 1999). Another solution 

would be to extract information over a period of time from the environment 

using the same sensor and then fusing the data so collected. In the case of 

the latter, multiple sensors of the same kind could be used to measure the 

same quantities. This is especially helpful in the case of sensor failure. In the 

cases mentioned above, the uncertainty is significantly reduced thus making 

the system more reliable. 

2.5.1 Optical Fibre Sensors 

Optical fibre sensors have become an important part of sensor technology 

and have found application in clinical, military and other areas. The 

advantage they have is the excellent ability to deliver light and ability to 

excite target molecules and also capture the emitted light from the target 

(Bosch et al., 2007). A fibre optic sensor is a silica glass or plastic optical 

fibre which in principle uses the principle of total internal reflection to transmit 

light. The fibre optic sensor produces a signal which is proportional to the 

concentration of a chemical to which the biochemical reacts (Bosch et al., 

2007). 



60 
A. Akiwowo (2012) 
 

 

Fibre optic sensors have been used for the detection of several substances. 

In food technology for instance, it is used in the detection of bacteria in food 

samples. For example, it is used in the detection of foodborne pathogens 

(Morgan et al., 2006). Using a portable and automated fiber-optic biosensor 

called “RAPTOR”, Salmonella enteritidis bacteria was detected in food 

samples. The detection of these bacteria using this biosensor could detect 

104 cfu/ml of the bacteria in less than 10 minutes of the assay time. This time 

taken proves far better than conventional methods for pathogen detection 

which would normally take days (Morgan et al., 2006).  

Also, in detecting bacteria in food samples, a fibre optic biosensor was used 

in detecting Escherichia coli O157:H7 in seeded ground beef samples 

(DeMarco et al., 1999). This biosensor worked on the principle of “a 

sandwich immunoassay using cyanine 5 dye-labelled polyclonal anti-E.coli 

O157:H7antibodies for generation of a specific fluorescent signal”. The 

biosensor developed detected E.coli O157:H7 to 3 to 30 CFU/ml in seeded 

ground beef samples (DeMarco et al., 1999). 

2.5.1.1 Fibre Optic Sensor for cocaine detection 

This section looks at the Fibre Optic sensor in general, the operating 

principles and then delves into the fibre optic sensor developed and used in 

this research. Furthermore, this section will show how the sensor works for 

the detection of cocaine and the shortcomings giving a justification for this 

research. 
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An Optical fibre is a very thin (less than the diameter of a strand of human 

hair) glass made fibre which is typically flexible and transparent. Its main 

function is to transmit light from one end of a fibre to the other with minimal 

loss of signal using the total internal reflection (TIR) phenomenon.  It consists 

of a core which is surrounded by a cladding layer made of dielectric materials. 

Optical fibres can be used in the fabrication of sensors (remote sensing) and 

also as light guides in medical applications. They are also used in signs, toys, 

alarms, and Christmas trees. Their main positives include low cost, small 

size and portability.  

A typical Fibre-Optic Fibre sensor works by using absorbance measurements 

to determine any change in concentration of analytes that absorb a given 

wavelength of light (Bosch et al., 2007). There are three types of fibres used 

in developing a fibre optic sensor: (1) Step Index Multimode (2) Graded 

Index Multimode and (3) Single mode. For this thesis, a UV multimode fibre 

was used.  

 

Figure 2.6. Cocaine probe prepared in this work showing the active distal end of the 

sensor 
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The aim was to develop an optical fibre based sensor for cocaine detection 

which would also allow a fluorescence enhancement response to cocaine.  

The focus was on cocaine in solution while targeting vapour detection.  

The fibre optic sensor is based on a molecularly imprinted polymer (MIP6) 

containing a fluoresce in moiety as the signalling the presence and 

concentration of the analyte. The molecular imprinting is used as a method 

for generating chemically selective binding sites. 

The resulting data is a pair of wavelength (nm) and number of counts and the 

graph is plotted. Though one can differentiate the presence of cocaine from 

other substances from the graph when the concentration of the substance is 

known a priori, it is not possible to do this without further analysis. For 

practical purposes, it is not always possible to know the concentration of the 

substances a priori and as such, there is need for a fusion algorithm which 

would use extracted features from the data as inputs into a model to 

determine the presence or otherwise of cocaine from a solution. 

2.6. Need for research 

As shown in section 2.2.2, existing cargo screening technologies have their 

short comings when it comes to cocaine detection. Some of them rely on the 

ability of the operator to be able to visually detect the substance. For others, 

the dangerous emission of rays when in contact with humans implies that 

their use is limited.  

                                                           
6 MIP – Molecularly Imprinted Polymer  
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Also in section 2, existing current cocaine detection systems were discussed 

and their limitations highlighted. Some of the limitations include that many of 

these systems require that a swab be used to wipe the surface of container 

contents and passed through a cocaine detecting device (for example a trace 

detector). The time taken to wipe surfaces of all container contents implies 

that operators may randomly select contents to wipe with swab and thus 

there is a possibility of missed detection. In addition, there the false alarm 

rate in this case is high due to possible contamination of swab from external 

sources (the author was informed about this by operators during a site tour of 

one of the borders in the UK). This possible contamination will lead to false 

alarms and if the false alarm rate is high, it will in turn lead to a lack of 

operator confidence in the system. Perhaps one major downside of some of 

the current systems is that operators have to physically enter into containers 

to unload their contents thus exposing them to danger or possible 

contamination by harmful substances. 

The optical fibre sensor provides one solution to cocaine detection. However, 

in the fibre sensor developed for this thesis, its shortcomings ensure that 

detection of cocaine cannot be achieved without prior knowledge of the 

concentration of the substance, a scenario which is not ideal in real life.  

All the above show that there is therefore a need for a non-invasive system 

which will take the sensor to the container via a platform that will be remotely 

monitored by an operator. This system should provide high reliability with low 

false alarms and high true positives to ensure operator confidence. The 

drawback of the sensor also implies that a new method must be designed 
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which will not depend on prior knowledge of the concentration to determine 

presence or otherwise of cocaine. In this thesis, features will be extracted 

from sensor measurements. These features will be trained to individually test 

for cocaine and their results will be fused using models also developed in this 

thesis.        

2.7. Chapter Summary 

This chapter has presented a literature review of data fusion techniques. It 

should be noted that there are different ways data can be fused and the 

various ways were highlighted to include Data Input/Data Output, Decision 

Input/Decision Output and so on. In this dissertation, a decision input, 

decision output model is implemented. This chapter also shows the 

advantages of using data from sensors, applications with focus on 

applications in cargo screening. This section of the chapter concluded that 

data fusion helps to increase confidence by reducing uncertainty in 

measurement outputs. To serve as a form of background to the overall 

project, this chapter also looked into border security issues and current 

techniques used at borders to detect for contraband with a focus on several 

means used by smugglers to traffic cocaine via borders. The challenges are 

in two fold – the first is that the goods are stored in a container and the 

second is that usually, cocaine is usually discretely hidden within the goods. 

Current techniques are shown to be inadequate due to over reliance on the 

abilities of the operator which could to an increase in false alarms and 

missed detections. In addition, smugglers have continuously devised new 
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techniques in cocaine smuggling and some of them were discussed in the 

chapter. There is thus a need for a robust portable system aimed at 

increasing true positives and reducing false alarms. The subsequent 

chapters discuss the development of this system. In terms of sensors, this 

chapter also highlights a review of the principle behind sensor detection 

dovetailing into optical fibre sensors and then a short introduction to the 

optical fibre sensor for cocaine detection developed for this dissertation.  

 

  



66 
A. Akiwowo (2012) 
 

 

  

CHAPTER 3 

3 
 

REVIEW OF SENSOR 
FUSION ARCHITECTURES 

 

This chapter discusses data fusion models and investigates possible fusion 

techniques based on the outcome of highlighted research in literature. 

Deciding on the appropriate method suitable for cocaine detecting fibre optic 

sensor with cargo screening application requires an understanding of the 

challenges identified in the previous chapter. For example, the D-S 7 

technique has advantages over some other techniques when the application 

is trying to mimic human response and that is why it is used in applications 

like context awareness (Wu, 2003) and robotics (Zou et al., 2000) even 

though it may be computationally demanding (Koks & Challa, 2005). 
                                                           
7 D-S or DST is the Dempster Shafer Technique is a generalization of the Bayesian technique which 
combines evidence from multiple sources and gives a belief function which takes into account all the 
available evidenced. It was developed by the works of Arthur P. Dempster (1968) and Glenn Shafer 
(1976) (Shafer, 1990).  
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However, before deciding on a technique, it is important to decide on where 

to combine the data as the design choice also affects the quality of the 

eventual output (Hall & Llinas, 1997). Researchers have come up with a 

number of data fusion architectures (Asheq, 2004) (Hall, 1992). Some of 

these architectures will be discussed in the following section. 

3.1 Data Fusion Architectures 

3.1.1 The JDL Architecture 

A general architecture was prescribed by the Joint Directors of Laboratories 

(JDL) from the United States Department of Defence (figure 3.1 below) in 

1986 (Estebani et al., 2004). The JDL model is shown to include four levels 

(or five levels since level zero was added in 1998 (Steinberg et al., 1999)) – 

The first level (level 0) involves the estimation of signal states. This implies 

identifying patterns inferred from sensor measurement; the second level 

(level 1) estimates and predicts the parametric and attributive states of the 

entity to be identified; the third level (level 2) is the situation assessment level 

and involves estimation of relationships among entities and the implication of 

these relationships for the state of the entities; the fourth level (level 3) is the 

impact assessment stage where the system performs a self-check to 

estimate the cost of signal, entity or situation states, given the system’s 

alternative courses of action (Steinberg & Bowman, 2009); the fifth level 

(level 4) performs an assessment of all the remaining levels to rate their 

performance against expectations. Variants of the JDL model have been 

used in research.  
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Since the JDL model was introduced, various other architectures and 

algorithms have been proposed as data fusion methods to improve 

performances of sensor systems.  

 

Figure.3.1(a) The JDL Data Fusion model 

 

Figure.3.1(b) The revised JDL model (Estebani et al., 2004) 

Figure. 3.1. JDL DF model (Steinberg et al., 1998) 

 

Despite the attempt at making this model robust, there have been efforts in 

recent times to revise this model with the aim of expanding it to ‘remedy 

some deficiencies’ (Steinberg et al., 1998). It is described as a paper model 

which should not be used as a blue print for system design (Hall & Garga, 

1999). Some presumed deficiencies of the JDL model is that it has a military 

focus (Steinberg et al., 1998). This explains why the JDL model’s taxonomy 
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is filled with military jargons such as threat refinement, targets and so on. 

This made it difficult to associate data fusion concept with other applications. 

Steinberg et al tried to revise this by updating the taxonomy and replacing 

the levels with more robust and refined levels. The refined JDL model 

replaced the previous levels 1, 3 with the Event Management and Impact 

Assessment levels (Figure 3.1). 

Besides this, another presumed shortcoming of the JDL model is that it only 

allows for a sequential ordering of the flow from level 0 to level 4. This strict 

adherence to processing flow does not allow for flexibility amongst levels. 

However, Bedworth and O’Brien claimed that this assumption is not correct 

(Bedworth & O'Brien, 1999). They claim that the JDL model was not intended 

to be strictly implemented sequentially from the first to the last level.  

The revisions and development of further models show that the JDL model 

may not fit all data fusion applications. Even Bedworth & O’Brien (1999) 

admit that the JDL model is sometimes not appropriately implemented which 

may be due to its non-robust definition of levels and militarised taxonomy. 

3.1.2 The Thomopoulos Architecture  

The Thomopoulos architecture was proposed in 1989 (Thomopoulos, 1989) 

as a three-level architecture. These levels - signal, evidence and dynamics 

levels collate data measurements in such a way that the new set of data is 

integrated with prior data/information using a predetermined order (Velosos 

et al., 2009). 
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Signal level fusion – at this level, data measurements taken from a sample 

the measurements are processed and correlated with prior information from 

database using learning techniques. 

 

Evidence level fusion – at this level, using a statistical model and decision 

making assessment specified by the user, the data from the signal level is 

combined. 

Dynamics level fusion – it is at this level that a mathematical model is used 

for fusing the data at different levels of inference.  

 

 

 

 

Figure 3.2. The Thomopoulos architecture (Thomopoulos, 1989) 

The figure above shows the three levels as proposed by Thomopoulos and 

their interactions with each other and an important data fusion assessor – 

database. The three levels can work together either sequentially or 

interchangeably so for instance, in the case of cocaine detection, the signal 

level will represent new data measurements from sensor being correlated 

with information previously stored in the database while the evidence level 

will deal with the use of statistical models to make detection decisions based 

Signal Level 

Sensor Evidence Level 

Dynamics Level 

Database 
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on features. The dynamics level will involve the use of data fusion techniques 

to fuse the decisions made by the features. 

3.1.3 The Omnibus Architecture 

The Omnibus architecture (also called the omnibus model) was proposed by 

Bedworth and O’Brien in 1999 (Bedworth & O'Brien, 1999). This model 

similar to the Thomopoulos architecture, involves three levels – Observe, 

Orientate and Decide (OOD). The outline of these levels is as follows: 

• Observe – this level like the name suggests involves measuring and 

gathering of data from the environment using sensors. It also involves 

processing of the data collated. The processed data is then passed on 

to the next level. 

• Orientate – this level accepts processed data from the Observe level 

and fuses the data while extracting main features from the data using 

feature extraction and selection algorithms. The extraction of features 

helps to reduce the amount of data. 

• Decide – at this level, the processed data from level 2 is presented to 

the human operator and then acts on the environment.  

Unlike the Thomopoulos architecture, this model must be performed 

sequentially and forms a closed loop with a control module which is used for 

calibrating the sensors (Velosos et al., 2009). 
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Figure.3.3. Omnibus model 

3.1.4 The Waterfall Architecture 

As proposed by Harris et al (Harris et al., 1998), the waterfall architecture is 

a stratified architecture involving three levels with each level encompassing 

some data processing steps. 

Level one of the waterfall model is the signal level. This level involves the 

gathering of data from the environment using the sensors. The data is then 

pre-processed and the processed data and sensor information is passed on 

to the next level. 

Level two involves using feature extraction and feature selection methods to 

extract and select features from the pre-processed data from level 1. These 

features are then fused using fusion techniques. This thus reduces the 

amount of data transmitted from the previous level. 

Level three is called the interrogation level and this is where the situation 

assessment and decision making takes place. It uses processed information 
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from previous levels to create possible events and possible course of 

actions. 

 

 

 

 

 

 

 

 

 

 

 

Figure.3.4 The Waterfall Model 

Similar to the other models described, this model also has some similarities 

with the JDL model. The major drawback may be the omission of a feedback 

from this model (Bedworth & O'Brien, 1999) although this has been 

‘corrected’ with the addition of a control stage which acts as feedback 

(fig.3.4). This does not however, make room for feedback in between levels. 

Usually, data fusion systems need iterative processes within levels to allow 

for updating of information before a final decision on identified target is 

made. Not providing a means for iteration within levels is a shortcoming of 

the Waterfall model.  
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In addition, the waterfall model suffers from the same criticism of the JDL 

model in that it is strict in the ordering of steps from level one to three. What 

is more, even within levels, the processes are strictly sequential so for 

example, the pattern processing must follow the feature extraction process. 

3.1.5 Justification for a New Data Fusion Framework 

The list of data fusion models highlighted above is certainly not exhaustive. 

They are however, attempts at providing a means to deal with multisensory 

data fusion issues. In most cases, they are constrained in the sense that 

their application is usually in situations where multiple sensors (similar or 

dissimilar) are involved. In situations where only a single sensor is used (as 

in this thesis), it is imperative that the models above be adapted to suit this 

need. To achieve, this, key features of the models and in general, of a data 

fusion model must be identified.  

A cursory investigation of the models listed above will reveal that although 

they may differ in terms of implementation, three major levels are prominent 

in all investigated models. These are – Data collection, Feature extraction 

and Decision making levels. Within each of these levels, several processes 

may take place. In addition, acting as a form of complementary accessory is 

the database. The database stores information used in the fusion process 

which may include prior information as inputted by the operator, decision 

thresholds for features and so on. 

It is therefore important that a data fusion process includes at least these 

three processes.  These steps will form the basis of the new framework 
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developed in this thesis. Complementary steps within each process include 

data pre-processing which may take place after the data collection stage. 

This pre-processing involves cleaning of data to remove outliers and other 

forms of noise, normalization to align data in different forms into a common 

temporal and/or special space.  

Depending on the application, the next stage should be the feature extraction 

level although in some applications if the data measure the same physical 

phenomena as in image fusion (Hall & Llinas, 1997). In the feature extraction 

and selection stage, the data is interrogated for unique features which will 

represent the raw data but have a lower dimension than the raw data. The 

features can then act as inputs into the data fusion system. In single sensor 

data fusion, once the features have been extracted, they go through a 

feature selection process to select an optimum number of features using 

established techniques like principal components analysis (PCA). The 

decisions of each selected feature can then be fused using statistical 

combination techniques. 

3.2 Single Sensor Data Fusion 

As mentioned in chapter two, data fusion can be performed on data either 

from single or multiple sensors. In the case of multiple sensors, it is known 

as multi-sensor data fusion. In the case of the former, it is sometimes called 

single sensor tracking or filtering (Koks & Challa, 2005).  

In single sensor tracking, process of identity declaration follows a systematic 

process from the sensor output to feature extraction and then identity 
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declaration (Hall, 1992). Many of the architectures which apply to multi 

sensor data fusion can also apply to single sensor fusion. The main 

advantage in single sensor fusion relative to multi-sensor fusion is that in 

single sensor fusion, because the sensor measures the same entity and as 

such there is less computational challenge in terms of data alignment as in 

the case of multiple sensor fusion. Asides this however, single sensor fusion 

proceeds just as multi-sensor. The data output from the sensor can be used 

as input to a data fusion process or features extracted from this data output 

can act as the inputs. The levels at which data can be fused are described 

below: 

3.2.1 Raw Data level (see Figure 3.5a): the raw data acquired from the 

sensor are fused directly if the data are of the same standards. If not, the 

data could be pre-processed before fusing. Data association is performed on 

the raw data to ensure that the data being fused measure the same 

substance. Once the data has been fused, features can be extracted from 

the new set of data generated. For example, in the case of detecting for 

cocaine presence, the raw data can be collected at two time intervals (from 

different areas of a cargo container) and the two sets of data are fused 

together to form a new set which would then be subjected to feature 

extraction and identity identification process.  
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Figure.3.5(a) Raw Data-Level fusion 

 

3.2.2 Feature level fusion (see Figure 3.5b): a set of features may also be 

extracted from a data set and can then be fused to create a new set of 

features which can then be fused to make a decision on the identity of the 

substance. For example, in the identification of cocaine using a fibre optic 

sensor, features such as peaks, band size and so on can be extracted from 

the raw data and fused into a joint feature vector which will then represent 

the substance generated. Several feature extraction techniques are available 

and include neural network, cluster analysis, etc (Hall, 1992). 

 

 

 

 

Figure.3.5(b) Feature level fusion 

3.2.3 Decision Level Fusion (see Figure 3.5c): At decision level, the 

sensor output data is analysed for features which then go on to form a 
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feature vector. The individual feature in this set is then used to make a 

decision on identity based on a pre-set threshold. This threshold is 

determined either by modelling the system or laboratory based experiments 

and then testing various thresholds based on sensor requirements. Once the 

decisions have been made, they are then passed through a fusion process. 

Common techniques used for fusion include Bayesian and Dempster-Shafer 

techniques. 

In general, depending on the application, data fusion can be performed at 

any of these levels or a combination of these levels. Feature level fusion 

however has some advantages over others. In single sensor fusion where 

there is a vast amount of data in each set, fusing at the data level will cause 

problems due to the curse of dimensionality and may cause over fitting of the 

data. Extraction of features will help reduce the dimension of the data. It also 

implies less computational work and will improve processing time. These are 

the main reasons this was the selected method of fusion in this dissertation. 

 

 

 

 

 

 

 

 

Figure.3.5(c) Decision Level Fusion 
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3.3 Human Computer Interaction 

The design of a human computer interface affects effectiveness of a data 

fusion system (Hall, 1992; Waltz & Llinas, 1990).  It provides the means by 

which the data fusion results are passed on to the operator whilst also giving 

the operator a means of inputting into the DF process. The human operator’s 

input includes verification of data, inputting the a priori information and so on. 

In designing a user interface for a data fusion process, it is important for the 

interface to present to the user as much information as possible with care 

taken that this amount of information does not create a clutter on the 

interface. Usability criteria in the design of a user interface for DF systems 

are described in Chapter 7 of this dissertation. 

3.3.1 Key Features 

The user interface for the cargo screening ferret will be used for both robot 

control and manoeuvres and for displaying DF results. Key features of the 

user interface should include: 

1. Visual aids: The operating environment of the robot will mostly be 

within cargo container. It is important for the operator to be able to 

view the environment real time from his remote position. The visual 

aid relaying feeds from a camera will make this possible. 

 

2. User input: Prior information like details about the container under 

investigation should be inputted and stored by the operator via the 

interface.  
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3. Robot controls: A means of navigation for the robot should be 

made available on the interface 

 
4. Cargo Summary: A summary of the container under investigation 

should be available on the interface. The summary should include 

information such as the name of shipper, origin of container, date, 

etc. 

3.3.2 Key Considerations 

This section will present high level considerations and guidelines in the 

development of a Human-Computer Interaction design. These guidelines 

form the background to the development of the User interface designed for 

this dissertation. As mentioned earlier, the user interface meets two uses – 

control of robot and presentation of DF results. 

3.3.2.1 Design 

The design of as interface should take into the consideration the operator or 

user. The user’s knowledge of the task is key and thus his strengths and 

weaknesses are important factors. The user in this case is the Border Force 

Officer (BFO) and his experience is based on the operation of different 

detection machines including x-ray ganders, trace detection machines and 

so on. The BFO is also experienced in the use of sniffer dogs as a 

contraband detection means. With the preceding factor in mind, and in terms 
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of design considerations, Farry (2009) recommends the following factors 

which should be considered: 

1. User’s perception of the user interface – it is important that the 

interface does not deviate too much from user interfaces the operator 

is used to. In terms of words, colours, icons, the operator must be 

familiar with these visual representations and where technical 

information is included; operator must be intimated with such via 

training or experience. This gives the operator a feel of the interface 

and makes it easy for his use. 

2. Use of simple and easy to understand concepts – concepts and 

operations used in design must be simple and easy to understand and 

must not require expert knowledge.  

3. The state of the system at any point in time based on the interface 

must be understood by the user. 

4. The interface must provide clear feedback which should be in close 

proximity to the event that led to the feedback.  

5. Robot location and effectiveness including current state of battery 

level must be provided on the interface. This can be done via video 

camera feeds and battery level icons on the interface. 

6. Current information on successful detection must be provided in a  

clear and simple manner. 

7. Control of the robot must be easy enough for anyone to manipulate. 
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8. Interface must be consistent both with other popular interfaces but 

also within itself. 

9. Interface must be simple to operate. Not more than two keystrokes 

should be required for important operations. 

10.  Alarms indicating detection should be embedded on the interface. 

However, the scale should match the level of the problem. For 

instance, if there is a low probability of detection, it should still be 

reported but not with the same intensity as a high probability. This will 

give the operator the opportunity to make a decision on what to do 

(ignore/overlook the former). 

11.  The interface must provide error messages which in turn should be 

able clear and easy to understand. The error massages must also 

provide a simple explanation on how to avoid the error. 

The steps above served as guidelines for the design of the Ferret Robot user 

interface. Additional guidelines including the interface developed are 

highlighted in chapter 7.   

3.4 Chapter Summary 

There are many different data fusion models and architectures. A few of 

these models are generic in the sense that other models can be extracted 

from these models. Some of these so called generic models were discussed 

in this chapter. There are also three levels common to majority of the 

models. The importance of these levels makes them important to data fusion 

architecture. In addition to these levels, there are also complementary 
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supports which aid the fusion process. The database is one of these 

supports and acts as a store for information such as prior probability and 

past data in time series sensor fusion. The chapter also includes a 

discussion on the levels at which data can be fused listing them as raw data 

level, feature level and decision level fusion. The furthest assessor on the 

right of the JDL model is the user interface. A discussion on the set of 

guidelines to be followed in the development of an interface for the ferret 

robot concludes the chapter. 
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CHAPTER 4 

4 
NEW FRAMEWORK FOR 

DATA FUSION 
 
This chapter will outline the systematic development of a model for the 

detection of cocaine using a fibre optic sensor. The experimental set up and 

the process of collection of data and development of a generic model which 

can be adapted for different data fusion techniques will be discussed.  

4.1 Data Collection 

The process of fusion of data begins with the interaction of the sensor(s) with 

the environment and proceeds to the measurement and collection of data 

from sensor(s). Depending on the type of sensor, the measurements may 

need further processing before fusion can take place. In this dissertation, 

experiments were carried out in the laboratory at City University to collect 

measurements corresponding to the response of the fibre optic sensor to 

various analytes. An overview of sensor quality, experimental set up and 

results are discussed in the following sections. 
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4.1.1 Experimental Set Up 

In developing this sensor, the following aims were targeted: 

• Size and portability of the sensor 

• Immunity to electromagnetic interference 

• Resistance to chemicals 

• Remote sensing capability 

• Low cost and long shelf life 

The fibre optic sensor fitted adequately with the above aims (Grattan & 

Meggitt, 1999) (Lee et al., 2001) (Haupt & Mosbach, 2000).  

The preparation of the optical fibre only involved cleaning and polishing of 

the distal end multimode fibre. 

The experiment was performed over a period of 3 months. Several tests 

were performed over this period to test for reproducibility. The tests were 

performed in a laboratory at City University, London.  

The experimental set up is as shown in figure 4.1 

The apparatus used are: 

1. A light emitting diode (LED) emitting at a centre wavelength of 374nm 

used in exciting the material 

2. Ocean Optics USB2000 spectrometer used for detection 

3. A desktop computer 

4. 2 by 1 Y fibre coupler connected using two multimode UV/Visible 

fibres 

5. Sensor probe 
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The active region of the probe is at the distal end of the fibre. This region of 

the probe was inserted into the cocaine solution. Once this end comes in 

contact with the cocaine solution, the intensity (counts) for varying 

wavelengths is recorded and the graph of wavelength against intensity is 

displayed on the screen. The senor was tested on cocaine solutions with 

varying concentrations (from 0 to 1000 µM) in MeCN/H2O*. All aqueous 

solutions were prepared using distilled water. The experiment is fully 

reported in (Nguyen et al., 2010). 

 

Figure. 4.1 Photo of experimental set up showing apparatus used. (Galbraith & Nguyen, 
2009) 

4.1.1.1 Output 

The output shows the response of the sensor probe to cocaine solution and 

is a graph of Intensity (counts) against the wavelength. The output graph is in 

two sections. The first section shows a high intensity value against 
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LED Light Source 
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wavelength representing the light source and is not useful for the results. The 

second output is the cocaine fluorescence spectrum for the compound. 

4.1.1.2 Data Collection Results and discussion 

The sensor was tested with different drugs asides from cocaine. The drugs 

codeine, ketamine, ecgonine methyl ester, amphetamine sulphate, 

buprenorphine.HCl were used to investigate selectivity of the sensor. The 

results showed that the sensor had lower fluorescence enhancing values for 

other drugs than cocaine (Nguyen et al., 2010). From the spectrum output, at 

similar concentrations, a study of the peaks shows that cocaine has the 

highest intensity followed by codeine, Amphetamine sulphate, Buprenorphine 

HCL, Ecgonine methyl ester and Ketamine in that order (Appendix B). The 

values of the intensity at those peaks vary depending on the concentration. 

However, the florescence enhancing values are calculated for drugs with 

similar concentrations thus, selectivity is dependent on prior knowledge of 

the concentration of the compound. When the concentrations of the drugs 

tested differ, detection of a particular drug using just the fluorescent 

spectrum cannot be achieved. To be able to detect for a specific drug (in this 

case cocaine) without prior knowledge of the concentration, this thesis will 

employ data fusion. 

4.2 Data Fusion Algorithms 

This section will review basic algorithms used in the literature for the fusion 

of data. It will focus on algorithms employed in this thesis – Neural Network, 
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Bayesian and Dempster Shafer. This review lays a foundation for the data 

fusion process undertaken in chapters 6. 

Over the years, many algorithms have been developed and can be applied to 

data fusion. However, the common ones remain: Neural Network, Bayesian 

inference, Dempster-Shafer theory of evidence.  

4.2.1  Classical inference 

As a prelude to the Bayesian Inference discussed in the next section, this 

section will introduce the Classical Inference to serve as a background. The 

Classical inference method aims at validating a hypothesis at the expense on 

another based on empirical probabilities (Hall, 1992). It uses observed 

sample data to draw conclusions on an underlying distribution (Hall, 1992).  

In simple terms, the empirical probability concept states that the relative 

frequency distribution of a long run trend of events is approximately equal to 

the probability. Mathematically, 

    𝑃{𝐸𝑖} = limk→∞ �𝐾{𝐸𝑖}
𝐾
�  (4.1) 

That is, for K trials of events, as K tends to infinity, the relative frequency of 

occurrence Ei is equal to the probability of events Ei. For a sensor detecting 

the presence or otherwise of a contraband drug in a container, the use of 

classical inference will compare two hypotheses i.e. Null Hypothesis H0 

which supports that the observed sample data are caused by the presence of 

the drug and the alternative hypothesis H1 which supports that the observed 

sample data are NOT caused by the presence of the drug.  
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It then proceeds by assuming that H0 is true and goes on to calculate the 

probability of the observed data given that H0 is true. An hypothesis test is 

performed and if the probability of observing the data is high based on H0 

being true, then the declaration is made that the data does not contradict H0 

and if otherwise, the declaration is made that the data contradicts H0. 

Possible means of hypothesis testing include (Hall, 1992): 

1. Maximum likelihood which accepts the null hypothesis H0 as true if 

[P(H0|y)]*[P(y| H0)] is greater than P(H1)*P(y|H1). 

2. Maximum a posteriori which accepts hypothesis H0 as true if [P(H0|y)] 

is greater than P(H1|y). 

3. Neyman-Pearson which accepts H0 as true if the ratio H0:H1 is less 

than or equal to a threshold c. 

Given that  

[P(H0|y)]*[P(y| H0)] > P(H1)*P(y|H1). 

As can be seen, this probability can only be applied to repeatable events and 

thus lies one of its disadvantages in data fusion application. Other limitations 

include (Klein, 1999): (1) only two hypotheses can be assessed at the same 

time, (2) there are complexities which arise when multivariate data is 

encountered, (3) its non-ability to make use of a priori likelihood probabilities. 

4.2.2 Bayesian inference method 

Some of the limitations of the classical inference are resolved using the 

Bayesian inference (Berger, 1980). This technique, given new observations 

and a previous likelihood estimate, updates the likelihood of a hypothesis. 
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Other advantages of the Bayesian inference is that it also uses prior 

estimates of the likelihood of a hypothesis being true and in the absence of 

the empirical data, Bayesian inference allows the use of subjective 

probability which does not require probability density functions (Wu, 2003). 

For mutually exclusive hypotheses, H1 .... Hi for an event E occurring (say 

an illegal substance being discovered), Bayesian inference suggests that if 

(Klein, 1999) 

    ∑ 𝑃(𝐻𝑖) = 1𝑖      (4.2) 

then, 

    𝑃(𝐻𝑖|𝐸) = 𝑃(𝐸|𝐻𝑖)∗𝑃(𝐻𝑖)
∑ 𝑃(𝐸|𝐻𝑖)∗𝑃(𝐻𝑖)𝑖

   (4.3) 

where  

P(Hi) is the a priori probability that an illegal substance has been detected 

P(Hi|E) is the a posterior probability or the likelihood of the illegal substance 

i.e. Hi being detected and 

P(E|Hi) is the probability of observing evidence E given that an illegal 

substance has been detected. 

Therefore, for multiple detections, i.e suppose a sensor can detect more than 

one substance (say 3 substances – S1, S2 and S3), and observation O1 

from the sensor then the likelihood of each will be 

  𝑃(𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒1|𝑂1) =  𝑃(𝑂1|𝑆1)𝑃(𝑆1)
∑ 𝑃(𝑂1|𝑆𝑖)𝑃(𝑆𝑖)𝑖

 (4.4) 

   𝑃(𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒2|𝑂1) =  𝑃(𝑂1|𝑆2)𝑃(𝑆2)
∑ 𝑃(𝑂1|𝑆𝑖)𝑃(𝑆𝑖)𝑖

 (4.5) 

  𝑃(𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒3|𝑂1) =  𝑃(𝑂1|𝑆3)𝑃(𝑆3)
∑ 𝑃(𝑂1|𝑆𝑖)𝑃(𝑆𝑖)𝑖

 (4.6) 
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Using the maximum a posterior (MAP) criterion, the detected substance is 

most probably the substance whose joint probability (from Eq. 4.4, 4.5 and 

4.6) is a maximum. 

In spite of the strong points demonstrated by the Bayesian inference over the 

classical inference, it however has its own drawbacks. As shown above, 

unlike the classical inference, the Bayesian inference can be used when 

more than two hypotheses are compared.   

However, (Klein, 1999) lists the limitations of the Bayesian inference method 

as:  

(a)  The prior probability incorporated in determining the posterior 

probability is difficult to define in some cases.  For this reason, non-

informative priors are used in some cases to provide unbiased prior 

information (this is explained further in section 2 of Chapter 6). 

(b) Complexities when there are multiple potential hypotheses and 

multiple conditionally dependent events. However, for this thesis, only 

two hypotheses are involved - detection of cocaine or non-detection of 

cocaine. 

(c) Difficulty in maintaining mutual exclusivity of hypotheses as required 

for the Bayesian inference. Again, this does not arise in this thesis as 

the events are clearly mutually exclusive. 

(d) Difficulty in being able to assign general uncertainty for example, 

when the sensor is not able to determine if the substance detected is 

cocaine or not cocaine. 
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The Dempster-Shafer theory of evidence methods seeks to improve on the 

Bayesian evidence by addressing (c) and (d) above. 

4.2.3 Dempster-Shafer Theory of Evidence method 

The Dempster-Shafer (D-S) method is a generalization of the Bayesian 

theory which corrects the Bayesian inference limitation (d) mentioned above 

(Casti, 1990). That is, the D-S method allows for a general level of 

uncertainty. Based on multiple evidences, the D-S method determines the 

likelihood of hypotheses using probability and uncertainty intervals.  

In particular, the D-S method is closer to the way humans think which 

involves the assignment of measures of belief to unions of hypotheses rather 

than assigning these evidence/belief to a set of mutually exclusive and 

exhaustive hypotheses. By doing this, the D-S gives room to allow for 

uncertainty in the likelihood function and allowance for cases where there is 

an ‘unknown’ event. 

 According to David, et al., (2008), when the situation under consideration 

contains hypotheses that are mutually exclusive and there are no general 

levels of uncertainty i.e. the set of hypotheses is exhaustive, then the D-S 

and Bayesian will yield identical results.  

General propositions in D-S are obtained by using Boolean operator ‘OR’ to 

combine elementary propositions therefore, a situation of overlapping or 

conflicting hypotheses may arise. 
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Basic definitions (Campos, et al., 2005) 

A. Frame of Discernment (𝛩) 

In D-S, the Frame of Discernment is the set of hypotheses which contains all 

possible hypotheses defining a system. It must satisfy two major rules: 

1. It must be complete and exhaustive containing all possible 

hypotheses and 

2. The subset hypotheses must be mutually exclusive elements. 

 

B.  Mass Function (m) 

The mass function or basic probability assignment (bpa) assigns belief, m(A) 

to the hypotheses in the Frame of Discernment. The bpa assigns a number 

between [0,1] with 0 implying no belief in the hypothesis and 1 implying total 

belief in the hypothesis. For a given frame of discernment, the sum of all 

m(Ai), where i is the number of hypotheses in the Frame of Discernment, is 

equal to 1.  

 

C. Belief Function (Bel) 

The belief function bel(.), is defined as the sum of all the masses of subsets 

of the set of interest. It is mathematically given as: 

Bel(A) = ∑ 𝑚(𝐵)𝐵⊆𝐴     (4.7) 
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D. Plausibility (Pl) 

The plausibility function Pl(.), is a measure of the extent to which evidence 

supporting the proposition leaves room for belief in the proposition. 

Mathematically for a proposition A, 

Pl(A) = 1 – Bel(~A)     (4.8) 

As an example, suppose a sensor’s data was analysed and a feature from 

the sensor gives the belief of 0.6 and a plausibility of 0.7 for the proposition, 

A = ‘presence of cocaine’. This can be interpreted as availability of evidence 

that supports the proposition is true with a confidence of 0.6 and a 

confidence of 0.3 (1- 0.7) which supports the proposition B = ‘no cocaine’. 

The difference 0.6 – 0.3 = 0.3 is the possibility of either cocaine or not 

cocaine detection or a state of ‘unknown’ as illustrated in the table below.  

Table 4.1 D-S process for a single feature 

 Proposition Mass Belief Plausibility 
Null (~A and ~B) 0 0 0 
A 0.6 0.6 0.7 
B 0.3 0.3 0.4 
Either (A or B) 0.1 1.0 1.0 

From the table above, the null proposition does not exist as it negates both 

the cocaine and not cocaine detection. The probability masses for  A and B 

i.e. m(a) and m(B) are 0.6 and 0.3 respectively while the mass for the either 

proposition m(AUB) ensures that the previous two masses sums to unity by 

taking up the balance. 

E. Confidence Interval 

The confidence interval is simply the interval covering the Belief function as 

an upper limit and the Plausibility function as the lower limit i.e. [Bel(A), Pl(B)] 
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In Dempster-Shafer technique, if 𝜃 = {𝐴1,𝐴2,𝐴3, … ,𝐴𝑛}  is a set of n 

elementary (mutually exclusive and exhaustive) propositions, then 𝜃 is called 

the frame of discernment. In illegal substance detection using sensor S1, 

elements A1 ... An represents all possible illegal substances that can be 

detected by the sensor (say for example 6) and 2𝜃 (or 26 = 64) is the power 

set of 𝜃  which contains all possible general propositions. Thus, A1 ... A6 

represent – Cocaine, Ketamine, Codeine, Amphetamine sulphate, Ecgonine 

methyl ester and Buprenorphine HCL. ... The aim is to determine, at 

unknown concentration, when cocaine is detected. 

Thus,   

Θ = �𝐶,𝐾𝑒,𝐶𝑜,𝐴𝑚,𝐸𝑐,𝐵𝑢, {𝐶,𝐾𝑒}, … {𝐶,𝐾𝑒,𝐶𝑜,𝐴𝑚,𝐸𝑐,𝐵𝑢}, {𝜑}�. (4.9) 

where C* = Cocaine 

 Ke* = Ketamine 

 Co* = Codeine 

 Am* = Amphetamine sulphate 

 Ec* = Ecgonine methyl ester 

 Bu* = Buprenorphine HCL.  

 𝜑 = Unknown 

EQ.4.9 show that there are 26 (64) possible scenarios representing possible 

detections. This corresponds to a need for a large computational ability and 

represents one of the challenges of D-S method. For example, the first six 

scenarios indicate detection of ONLY cocaine or any of the other five 

substances was detected. The following five scenarios from EQ4.9 indicate 

the presence of one of the combination: cocaine OR ketamine, cocaine OR 
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codeine, cocaine OR Amphetamine sulphate, cocaine OR Ecgonine methyl 

ester, cocaine OR Buprenorphine HCL. Other scenarios include 

combinations of any two of the substances with no combination repeating 

itself i.e. {cocaine, codeine} is the same as {codeine, cocaine} and so only 

one is represented in the frame of discernment, Θ . The next set of 

combinations in Θ , take any combination of three of the substances 

indicating detection of one of the three for example, 

{...{cocaine,codeine,ketamine}...} indicates detection of one of cocaine, 

codeine, ketamine. This format continues and the next set takes a 

combination of any four and then five of the substances. The last but one 

‘subset’ {...{ 𝐶,𝐾𝑒,𝐶𝑜,𝐴𝑚,𝐸𝑐,𝐵𝑢}...} indicates detection of any one of the six 

substances and is an indication of ignorance and the final scenario, ′𝜑′ is an 

indication of exception (Wu, 2003). 

In Bayesian inference, probability is assigned to all hypotheses. However, 

the D-S approach assigns evidence to all propositions including single and 

general propositions once all elements of the frame of discernment, Θ are 

defined. At this point, the D-S assigns a probability mass, m(𝜃) representing 

each evidence supporting the belief. The total belief equates to unity just as 

total probability equals to 1 in Bayesian and classical inference. Thus,  

     ∑𝒎(𝜽) = 𝟏    (4.10) 

The probability of a proposition, also known as the Support (Spt) or Belief, is 

thus the sum of all probability mass, 𝒎(𝜽) for the elements in the frame of 

discernment, Θ, i.e. 

    𝑆𝑝𝑡(𝐴𝑖) =  ∑ 𝑚(𝜃)𝐻𝑖𝜖𝜃1     (4.11) 
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which translates that the belief in Hi is the sum total of all probability masses 

m(𝜃 ) that supports Hi only. Note that as EQ4.9 has shown, evidence is 

assigned not only to mutually exclusive propositions (i.e. Ai in 𝛩), but also to 

general propositions that involve overlapping and nonexclusive general 

propositions. From EQ4.9, it is also shown that a probability mass can also 

be assigned to the general proposition {...{  𝐶,𝐾𝑒,𝐶𝑜,𝐴𝑚,𝐸𝑐,𝐵𝑢 }...} which 

implies that the sensor cannot determine which of the substances it has 

detected. 

However, in the case where there is evidence against the support of Ai’s 

exclusivity, this is called the plausibility of Ai and is simply  

      Pls(Ai) = 1 – Spt(~Ai)    (4.12) 

The interval between the Belief (or Support) and the Plausibility in D-S is 

known as the Confidence Interval which measures the support and 

respective plausibility for Ai and is shown below: 

   [Belief(Ai), Plausibility(Ai)] or    (4.13a) 

   [Belief(A1), Plausibility(A1)]    (4.13b) 

   [Belief(A2), Plausibility(A2)] 

      ⋮. 

   [Belief(An), Plausibility(An)] 

Thus for a D-S, the inputs are probability masses, m(Ai), while the outputs 

are the confidence intervals (EQ4.13b). 

All the above represent scenarios where only one sensor is used. However, 

when more than one sensor is used, with all sensor measurements 

independent of each other, the D-S combination rule, similar to the Bayes 
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formula for combining probabilities, provides a means for combining their 

probability masses. For example, if there are two sensors detecting for illegal 

substances and for i number of propositions, then the D-S combination rule 

states that the joint probability mass of propositions 𝑚1,2(Ai) is given as: 

  𝑚1,2(𝐴𝑖) =  ∑ 𝑚1(𝐴𝑘)𝑚2(𝐴𝑗)
1− ∑ 𝑚1(𝐴𝑘)𝑚2(𝐴𝑗)𝐴𝑘∩𝐴𝑗=∅

𝐴=𝐴𝑘∩𝐴𝑗   (4.14) 

The denominator in EQ4.14 is the normalization factor which takes into 

consideration, all propositions that conflict (i.e. should have an empty set) but 

has been assigned with non-zero values. The numerator gives the probability 

mass function of the products of the observed evidence of the two sensors 

which gives proposition A. The order of the combinations has no effect on 

the joint probability masses implying that they are commutative and 

associative (Lowrance & Garvey, 1982). 

Two main shortcomings of the Bayesian Inference highlighted in the previous 

section are addressed in this section. 

a. Difficulty in maintaining mutual exclusivity of hypotheses as required 

for the Bayesian inference and which the D-S addresses by providing 

a means of assigning evidence to hypotheses which overlap. 

b. Difficulty in being able to assign general uncertainty which the D-S 

addresses by allowing assignment of evidence to a union of all 

possible hypotheses which is the sensor’s way of declaring its inability 

to determine what substance is present (Klir, 1999) (Rocha, n.d.). 
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The D-S method has done well in addressing the short comings faced by the 

Bayesian method. However, D-S itself has its own shortcomings some of 

which are (Liu et al., 2002): 

a. Impractical assumption that evidence are independent 

b. The D-S will only be applicable when sets of hypotheses are mutually 

exclusive and exhaustive 

c. Compared with Bayesian, the D-S has a higher level of complexity 

and thus requires more computational resources 

In explaining (c) above, EQ4.9 reveals that the number of elements (general 

propositions) in the frame of discernment Θ, increases exponentially (2n) with 

the increasing number of elemental propositions, n. One of the requirements 

of D-S is that all mutually exclusive and exhaustive hypotheses including the 

case of the ‘unknown’ must be represented in Θ. This ensures that in many 

cases, there is a sufficiently large number of elemental propositions. With 

increasing n and thus increasing size of Θ, more computational resources 

will be needed and thus lays one limitation of the D-S method.    

However, in this dissertation, while the sensor can detect for cocaine and five 

other substances, its application relies on its being able to detect the 

presence or not of cocaine. Thus, there are only three propositions i.e. 

cocaine, not cocaine and unknown with the ‘unknown’ case capturing 

situations where the model may not be able to decide whether the detected 

substance is cocaine or not cocaine. 
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4.2.4 Neural network technique 

As stated above, the D-S method compared with the Bayesian method 

needs more computational power, especially as the size of the elemental 

propositions increases. When the problem is not well defined and requires a 

high computational power, one method that can be used in this situation is 

the Neural Network method. Neural networks are robust and versatile when it 

comes to characterizing input-output behaviour of unknown systems (David, 

et al., 2008), (Bishop, 1995). 

A neural network consists of separate layers of interconnected nodes. The 

first layer on the leftmost side of the network of a neural network is known as 

the input layer. It consists of one or more several nodes representing the 

input to a multisensory data fusion system. At the far right side of the network 

is the output layer. Artificial Neural Networks (ANNs) mimic the biological 

neurons of the nervous system. 

As the data in entered into the network via the input nodes, the network 

performs a nonlinear transformation achieved by weights attached to each 

node in the layers, eventually giving an output as shown in figure 4.2. In 

between the input and output layers is the hidden layer. In a network, it is 

possible to have more than one hidden layer depending on the complexity of 

the system. The number of nodes in each hidden layer is also not fixed.  
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Figure. 4.2 showing inputs and output for a 2 layer NN 

 

When data is entered into the network via N number of input nodes, the 

inputs a = (a1, a2, a3, ... an) is non-linearly transformed to give an output z. If 

‘b’ is a bias or threshold, this transformation is a computation of weighted 

values of ‘a’, i.e. 

    𝑧 = 𝑓[∑ 𝑤𝑖𝑎𝑖 +  𝑏𝑛
𝑖=0 ]   (4.15) 

 

The function f(.) can be any of a number of non-linear transformation, 

including a step function, sigmoid function.  

The output value, z, is then compared to the expected output value say z’. 

The mean square difference between the expected and real output values 

(the error) for each node, starting from the output node, is then used to 

iteratively adjust the weights to reduce the errors until the desired output is 

achieved (Rumelhart, et al., 1986). This process is called training the 

network and this method of iteratively adjusting weights from the output 

backwards is known as back-propagation algorithm.   

The input data can be the set of data collected by a sensor which can detect 

any of six substances if given a liquid containing one of the substances. If the 
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content of the liquid is previously known and the data collected is mapped to 

the known output, for instance say a user wants to detect for cocaine and the 

remaining substances are not important for our purpose, then data may be 

collected for when the substance is cocaine and used as the input while the 

output may be given as unity (‘1’) and data is also collected for other 

substances and output is tagged as ‘0’. The network may then be trained 

using a specified number of layers such that when a new ‘unknown’ set of 

data is inputted into the system, it will (with little error) classify whether the 

set belongs to the ‘1’ or ‘0’ category. This is discussed more in Chapter 3 of 

this thesis.  

Other applications of neural network abounds and includes Robotics: Joris, 

et al (1996) used neural network in converting sensor data for an 

autonomous mobile robot, Hu (2010), used fuzzy logic and neural network to 

solve the motion planning problem of a mobile robot; Remote sensing: 

Neural network is used in the attitude control of remote sensing satellites 

(Wei-feng, et al., 2002); 

In spite of the strong positives presented by the use of ANNs, there are 

limitations too. A common limitation when back propagation is used is the 

local minima challenge – since back propagation uses a gradient descent 

technique and this exists on a non-linear surface, the result may end up with 

local minima rather than a global solution (David, et al., 2008). Another 

common limitation is that the training of a network is generally slow. 
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4.3 Model Development 

The methodology implemented in this thesis was based on the target results. 

We aim to collect data from the environment with the sensor as the ferret 

robot moves around the container. Data collected is analysed at time 

intervals t1, t2 … tn. the Time interval is determined by how long it takes for 

the sensor to collect data and output decisions. The final output is a decision 

on whether cocaine is detected or not along with a probability of detection.  

The architecture shown in Figure 4.3 assumes that sensors A and B acquire 

two different measurements which characterise three different contrabands. 

The combination from the two probabilities of the sensors decides on which 

substance is detected (Akiwowo & Eftekhari, 2010). The trackers are used 

for updating probabilities after each time interval. This architecture is 

expanded into the model used in this thesis. 

 

Figure. 4.3 Data Fusion model with updating tracks (Koks & Challa, 2005) (Akiwowo & 
Eftekhari, 2010) 

The model adopted in this dissertation has two stages. In the first stage, the 

sensor collects data from the surrounding atmosphere and stores the 

intensity values against corresponding wavelength. Once data has been 

collected, stage two involves pre-processing and feature extraction 

processes. The features based on a certain threshold, T1 determined 
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empirically (see section 5.7 in chapter 5), will make decisions on cocaine 

detection or otherwise with a corresponding probability of detection (D1…D12 

with corresponding P(Dn|Hn). This threshold is determined by comparing 

cocaine and non-cocaine data measurements for each feature and 

determining what threshold value gives the optimum performance criteria 

(low false alarm, high true positives). The steps involved are highlighted in 

Appendix C. At this stage, a fusion of all decisions is performed using the 

posterior probabilities from above. The result from this based on a pre-set 

threshold, T2 (this threshold is determined by the operator and is dependent 

on a priori knowledge of the origin of the shipment). If the posterior 

probability exceeds this threshold, a positive detection of cocaine is 

concluded. However, if the result is not conclusive or negative, the ferret 

robot moves to a new location, collects data and is analysed as above.  
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Figure. 4.4 gives a diagrammatic model of the description. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Data Fusion Model 

4.5 Conclusions 

The model employed for any data fusion process is critical to the success of 

the data fusion itself. Whilst there are many algorithms for combining data, 

this chapter has highlighted a few and discussed their advantages and short 

coming. The chapter began by describing the data collection and 

experimental set up used in this thesis. The results from the data collected 

were also highlighted and discussed and the need for data fusion was given. 

Smuggling of cocaine into the UK via the sea borders in containers has 
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posed a big threat to UK border officials and the economy at large. The 

challenges are in two fold – the first is that the goods are stored in a 

container and the second is that usually, cocaine is hidden within the goods. 

Current technology used by border officials is not sufficient enough to detect 

the contraband. This thesis proposes a two-stage methodology to be used to 

meet the challenge of detecting cocaine. In the first stage, a state of the art 

fibre optic sensor developed for this purpose is used to identify cocaine 

signature from the environment. This signature also matches that of many 

other similar compounds at same concentration. This leads to the second 

stage of the methodology. At this stage, using data fusion techniques, the 

output of the sensor is broken down into 12 separate features in a feature 

extraction process. Based on the training data, each feature then makes a 

decision on whether cocaine is detected or not and these separate decisions 

then act as inputs into a data fusion system. The resulting output is the 

probability of detection of cocaine. 

The methodology takes into consideration that the process of data collection 

is separate from data analysis and the fusion process. The first step takes 

care of collection of data while the second step takes care of data analysis. 

The analysis of the data including pre-processing of the data, feature 

extraction stages was also analysed in this chapter. Implementation of the 

model after pre-processing and feature extraction using neural network 

technique, the Dempster-Shafer technique and Bayesian Technique is then 

outlined in subsequent chapters with their corresponding results shown. 
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CHAPTER 5 

5 
FEATURE SELECTION AND 

VALIDATION 
 

The inputs into a data fusion model are selected from the output of the fibre 

optic sensor. The output of the fibre optic sensor is the intensity (counts) 

versus the wavelength (nm). One set of data of intensity versus wavelength 

contains over a thousand pairs of raw data. It is important that features are 

extracted from these pair of dataset. In addition it must be ensured that the 

number of selected features is an efficient representation of the underlying 

structure.  

This chapter will be looking at the method of extracting features from the raw 

data.  In many data fusion applications, the feature extraction stage helps to 

identify important features from the raw data. It is these features that are 

then used as inputs into the data fusion system. Technically, using the raw 

data as inputs into the system is not advised and one of the reasons is to 

avoid the curse of dimensionality, this is discussed further in following 
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sections. However, before feature extraction can be performed on the data, 

the data needs to be pre-processed (cleaned8, data alignment and data 

association).  

5.1 Data Pre-processing 

 Data preprocessing is an important part of data fusion. It helps to identify 

data that do not fit into the overall pattern of the data. Issues such as outliers 

and missing values are identified at this stage and dealt with. Not dealing 

with these errors at this stage could lead to unreliable results. It also helps to 

align previously unaligned data either in the spacial or temporal domain or 

both. 

The data used in this thesis were sourced from  another arm of the project 

(Nguyen, Sun, Grattan, & Hardwick, 2010). One important issue to consider 

in the implementation of this sensor is its reproducibility in use  (Nguyen, 

Sun, Grattan, & Hardwick, 2010). To test the reproducibility of the sensor, it 

was calibrated with different cocaine concentrations from 0 to 500 μM and 

recalibrated after 24 h. The results showed that the data were mostly the 

same with no significant differences, thus proving its repeatability and 

reproducibility. To maintain data integrity, the data used in the analysis stage 

of this thesis were collected on the same day within the same environmental 

conditions. 

 

                                                           
8 Sensor data are usually corrupted with background noise and outliers thereby affecting the 
integrity of the data. Cleaning of data involves separation of noise and outliers from the data. 
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5.1.1 Normalization 

Normalization is an important step in data pre-processing. It aligns all sets of 

data to fit into the same domain. In Neural Networks for example, it is 

imperative that output values are selected within the range of the activation 

function used (for example 0, 1 for sigmoid function). Therefore, to meet this 

requirement, all input and output values are transformed to within the 

required range; this transformation is called normalization (Haykin, 1998). 

Normalization also helps to align data which are not in the same spatial 

and/or temporal state. 

In neural network data preprocessing, normalization is used to prepare raw 

data for training. It also helps in speeding up the training process for the 

Neural network.  

There are several types of data normalization. They are used in scaling the 

raw data so that it is in the same range of values to reduce the bias between 

input features within the Neural Network. They can also be used to speed up 

the training time by starting the training process for each feature within the 

same scale (Jayalakshmi & Santhakumaran, 2011). Its usefullness can also 

be found when the input features are different scales. Normalization 

techniques include Min-Max, Median, Statistical Column, Sigmoid and Z-

score normalization. 

Normalization Techniques 

1. Min-Max Normalization: Min-Max normalization involves the 

rescaling of raw data from one range of values to another range of values. 
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Common among the range of values used for min-max normalization is the 0 

to 1 ([0 1]) range or the -1 to 1 range ( [-1, 1] ). The transformation is 

performed using the following formula 

 𝑥𝑛𝑜𝑟𝑚 = (𝑥𝑚𝑎𝑥 −  𝑥𝑚𝑖𝑛 )  ∗  (𝑥𝑖 − 𝑥𝑚𝑖𝑛)
( 𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛)

+ 𝑥𝑚𝑖𝑛  (5.1) 

𝑥𝑛𝑜𝑟𝑚 is the normalised value of the raw data 

𝑥𝑚𝑎𝑥 is the maximum of the normalization range 

𝑥𝑚𝑖𝑛 is the minimum value of the normalization range and 

𝑥𝑖 is the input raw data 

The new normalized value, 𝑥𝑛𝑜𝑟𝑚 of each raw data will lie between the target 

range. One major advantage of the min-max normalization technique is that 

it preserves the relationship between data values (Jayalakshmi & 

Santhakumaran, 2011).  

2. Median Normalization: Median normalization is mainly used in 

situations where the raw data has extreme deviations. It is computed by 

finding the ratio between each raw datum and the median of all the raw data 

such that:  

 𝑥𝑛𝑜𝑟𝑚 =  𝑥𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 (𝑏𝑖)

       (5.2) 

𝑥𝑛𝑜𝑟𝑚 is the normalised value of the raw data and 

𝑥𝑖 is the input raw data 
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𝑚𝑒𝑑𝑖𝑎𝑛 (𝑥𝑖) is the median of the set of data xi 

3. Statistical Column Normalization: Statistical Column Normalization 

follows two basic steps. Given an N x M matrix, the first step calculates the 

normalization of each column Mi (i = 1,..M) by normalizing the columns to a 

unit length. In step 2, each raw data is now divided by the normalized column 

attribute and multiplied by a bias. The equation is shown below: 

  𝑥𝑛𝑜𝑟𝑚 = � 𝑥𝑖
𝑛(𝑐𝑎)

−  1� ∗  𝑏    (5.3) 

𝑥𝑛𝑜𝑟𝑚 is the normalised value of the raw data and 

𝑥𝑖 is the input raw data 

𝑛(𝑐𝑎) is the normalized attribute value and  

b is the bias 

4. Sigmoid Normalization: Sigmoid Nomalization like the min-max 

normalization, is used to scale the raw data to values between the range 0 

and 1 or -1 and 1.  It replaces each raw data with the non-linear sigmoid 

function. There are many available sigmoid functions including the logistic 

function (EQ. 5.4a) and the hyperbolic tangent function (EQ. 5.4b). 

    𝑥𝑛𝑜𝑟𝑚 =  1
1+ 𝑒−𝑥𝑖

   (5.4a) 

     𝑥𝑛𝑜𝑟𝑚 =  𝑒
𝑥𝑖− 𝑒−𝑥𝑖

𝑒𝑥𝑖+ 𝑒−𝑥𝑖
   (5.4b) 



112 
A. Akiwowo (2012) 
 

 

𝑥𝑛𝑜𝑟𝑚 is the normalised value of the raw data and 

𝑥𝑖 is the input raw data 

5. Z-score Normalization: in the z-score normalization technique, every 

input raw data is normalized by using the mean and standard deviation as 

shown in EQ.5.5 below. The normalized data produced by this method has 

zero mean and standard deviation of 1. This technique has the advantage of 

being able to reduce the effect of outliers (Jayalakshmi & Santhakumaran, 

2011). The key issue to be remembered when using the z-score 

normalization technique is that all data must be trained with the normalized 

data and the means and standard deviation calculated from the training data 

retained to be used later in the design process.  

   𝑥𝑛𝑜𝑟𝑚 = (𝑥𝑖 −  𝜇𝑖)/𝜎𝑖   (5.5) 

𝑥𝑛𝑜𝑟𝑚 is the normalised value of the raw data 

𝑥𝑖 is the input raw data 

𝜇𝑖 is the mean and  

𝜎𝑖 is the standard deviation 

For this thesis, the min max normalization technique was adopted. This 

technique has been selected due to its ability to retain the relationships 

between the data values without introducing any bias to the sets of data. In 

addition, the min-max technique easily transforms the raw data to fit into the 

[0 1] range (using EQ. 5.1) required for back propagation algorithm used  for 
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the network architecture. All normalization transformations where done using 

Microsoft Excel package and MatLAB® software. As can be seen in figure5.1, 

there is a dependence of intensity values on the concentration of the analyte. 

Normlization is performed to remove the effect of  the concentration 

dependent intensity changes.  
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Figure. 5.1 Raw data plot of intensity vs. wavelength for cocaine at different 
concentrations before normalization 

In calculating the features from the normalised plots for the compounds, 

each spectra was divided into six activity points. The activity points represent 

sections within the plots where a change in gradient occurs by visual 

inspection.  
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Cocaine 
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Figure.5.2 Normalised spectra for Cocaine at different concentrations 

Ketamine 
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Figure.5.3 Normalised spectra for Ketamine at different concentrations 

Codeine 
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Figure.5.4 Normalised spectra for Codeine at different concentrations 
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Amphetamine sulfate 
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Figure.5.5 Normalised spectra for Amphetamine sulfate at different concentrations 

Ecgonine methyl ester 
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Figure.5.6 Normalised spectra for Ecgonine methyl ester at different concentrations 

Buprenorphine HCl 
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Figure.5.7 Normalised spectra for Buprenorphine HCl at different concentrations 
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Figure 5.8 Normalised spectra for all comounds at 500uM concentration 

 

5.2 Feature Selection  

To adequately be able to discriminate between cocaine and non-cocaine 

spectra, it is desirable to be able to identify each spectrum by their unique 

characteristics. These unique characteristics also known as features of each 

spectrum asides from helping to uniquely identify the spectrum and thus the 

analyte, also serve as inputs to the neural network system. 

From Chapter 2, it was explained that data may be fused in different ways 

one of which is decision in/decision out (DIDO). The decisions may be final 

sensor decision or feature decision on identification of target. It is the norm to 

reduce data from its raw form into features describing the data as inputs to a 

data fusion system. Sometimes, the raw data may be too many for the 

system resulting in what is usually termed as the ‘curse of dimensionality’ – 

the increase or jump in computational complexity and classification error for 

data with high amount of dimensions (Bellman, 1961) (Pechenizkiy et al., 

n.d.).  
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In this case, the large amount of data may be reduced to a set of features 

which aims to represent the signal in the same way as the entire 

measurement data represents it. Feature selection is one of the 

dimensionality reduction techniques (Liu, 1998). In principle, feature 

selection involves the transformation of a d-dimensional feature space 

pattern y by a mapping f to a pattern x of m-dimensional projected space, 

where m<d (Lerner et al., 1996) in such a way that an optimizing condition J 

is fulfilled. 

   𝑥 = 𝑓(𝑦)    (5.6) 

Therefore, for a transformation g(y), f(y) is the mapping which satisfies the 

condition (Devijver & Kittler, 1982) (Lerner et al., 1996),  

   𝐽{𝑓(𝑦)} =   max𝑔 𝐽{𝑔(𝑦)}  (5.7) 

As described, the main aim of extracting features from a set of data can thus 

be narrowed down to reduction of the dimensionality since extraction of 

certain features from a wide variety implies reduction in the set of available 

features. Thus linear feature extraction can be described as locating a set of 

vectors which represent an observation and at the same time, reducing its 

dimensionality (Lee, et al., 1993). It is the process of mapping original 

measurements into a lower amount of features without excluding the key 

information describing the set of data (Guyon, et al., n.d) (Lerner, et al., n.d). 

Principal Component Analysis (PCA) is a popular method for selection of 

features from a multidimensional set of data especially in image recognition 
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(Sun et al., 2005). However, the PCA has limitations when it comes to 

spectral measurements as it only selects generalized features  (Skurichina et 

al., n.d.).  The aim of the feature selection process in this thesis is to find 

unique features which characterize the measurements into cocaine and non-

cocaine data.  The spectral band extraction technique is one feature 

selection technique which helps to identify these unique features.  

5.2.1 Spectral Band Extraction technique 

For many spectral measurements such as in this thesis, selection of features 

is done by finding unique disciminative band regions within a spectrum. 

Usually, these unique bands are identified via a study of the spectrum and 

physical background knowledge of the compound under study. 

Over the years, researchers have proposed different algorithms to divide a 

spectrum into bands (Kumar et al., 2001) (Verzakov et al., 2004) (Skurichina 

et al., 2004) although in some cases, it is sometimes difficult to identify 

unique spectral regions as the information required for discrimination may be 

spread over a wide area of spectral features (Skurichina et al., n.d.). In some 

cases, the spectrum is simply divided into equal wavelengths, thus 

generating a high amount of features (Lowry & Isenhour, 1975) (Sutter & 

Jurs, 1997) whilst in another, unique features are selected based on spectra 

characteristics (Kumar et al., 2001). The technique used in this thesis 

involves the identification of ‘activity points’ within each spectrum as 

explained in the following section.  
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The spectral band extraction technique has achieved success in many 

researches such as in Kumar, et al (2001) who used a top down and bottom 

up algorithm technique to classify hyperspectral data,  

5.2.2.1 Extraction of features from Fibre-Optic Sensor data 

The challenge presented by the fibre optic sensor for cocaine detection is 

that when prior knowledge of the concentration of the sample compound  is 

not available (as is most likely the case in real life), it will be impossible to 

classify correctly. However, if the concentration is known a priori, 

classification proceeds easily. Therefore, in the case of non available prior 

information, more analysis of the data will be necessary to determine what 

analyte is detected. The features extracted and calculated were selected with 

the aim of achieving the best representation for each fluorescence spectrum. 

Using the raw data as as a base, there are two thousand and fifty two (2052) 

raw data points corresponding to wavelengths vs intensity pairs. The high 

value of this dimensions implies that they cannot serve as input to a DF 

system without causing a dimensionality problem. It is thus imperative to 

select from these possible features a subset of features which also uniquely 

represent the compound. Rather than divide individual spectrum into equal 

bands using the wavelengths, this dissertation segments the spectrum using 

‘activity points’. 

From the raw data plots of intensity against wavelength of cocaine samples 

(figure 5.1), what is obvious are what the author has tagged as “activity 

points” common to all the plots. These activity points are segments within 
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the plots that show a change in gradient (activity). For example, in Appendix 

A(i), with wavelengths between points 450 and 470, the gradient of each 

spectrum remains somewhat uniform. However, this changes as the 

wavelength increases with the gradient becoming steeper thus moving past 

an activity point to another segment. The activity points are used in 

segmenting the spectrum into sections between 450nm and 750nm (raw 

data values). Key features from the segments are: Intensity changes and 

slopes. From the intensity changes, four features were extracted and two 

features were extracted from the slopes. In addition, the peaks of the spectra 

were added as an additional feature. 

These sections are then used in calculating the features as explained in the 

next section. Similar technique was used in (Sutter & Jurs, 1997), where the 

spectra were divided into ten equal time slice regions. However, in this 

thesis, using the systematic measure described, the spectra have been 

divided into six different sections.  

Overall, 12 unique features were extracted –  

• Peak 

• Steepest Slope 

• Maximum Negative Slope 

• Most Positive change in intensity 

• Average intensity in regions (there are six regions and therefore six 

values representing each spectrum) 

• Most negative change in intensity 
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• Average change in intensity 

The normalized values of these features were then used as inputs into neural 

network system to test their performance. 

Activity points (normalized) 

Table 5.1 Activity points for normalized data 

Wavelength 0 - 0.0624 0.06381 - 

0.14559 

0.1470 - 

0.2893 

0.2907 - 

0.5538 

0.5552 - 

0.8013 

0.8026 – 1.0 

 

Plots 

The plots below show the normalised plots for all compounds at 500𝜇M. 

Figure 5.9(a) shows all the plots on a single graph. In figure 5.9(b), cocaine at 

different concentrations is also plotted. It can be seen that when the concentration is 

the same, it is easy to identify individual compounds. There is no way to identify 

cocaine (at concentrations lower than 1000𝜇M) without further processing. I addition 

to providing a unique way to identify cocaine, this thesis also provides a means of 

improving th results from each feature decision by using data fusion techniques. 

 

Figure 5.9 (a) Cocaine at 500𝜇𝑀 concentration showing activity point  
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Figure 5.9 (b) Ketamine at 500𝜇𝑀 concentration 

 

Figure 5.9 (c) Codeine at 500𝜇𝑀 concentration 

 

Figure 5.9(d) Amphetamine sulphate at 500𝜇𝑀 concentration 

 

Figure 5.9 (e) Ecgonine methyl ester at 500𝜇𝑀 concentration 
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Figure 5.9 (f) Buprenorphine HCl at 500𝜇𝑀 concentration 

Figure 5.9 Plots of Intensity vs Wavelength(nm) for various compounds at 500𝜇𝑀. 

 

Figure 5.10(a) Plot of all compounds on same graph using raw data 

 

Figure 5.10(b) Plot of Intensity vs Wavelength(nm) for cocaine 

Figure 5.10 Plots of Intensity vs Wavelength(nm) got (a) all compounds at 500uM and (b) for 
cocaine at different concentrations after normalization 

5.3 Neural Network Validation 

The previous sections looked at the feature extraction process and the 

features extracted. This section aims to validate the features using a k-fold 
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validation neural network system. The validation criteria are the R-squared9, 

mse 10  and the correlation coefficient values. The results from the 

implementation of the ANN is shown and discussed.  

5.3.1 Pre-processing 

As in the case of sensors in general, in the extension of Fibre-Optic Sensor 

for cocaine detection, the main concerns is to ensure that the data collected 

is clean and devoid of noise (data pre-processing) and also to correct 

inconsistent values in the data (Ni, 2008). Correcting inconsistent values in 

data requires an understanding of the system and likely output of the sensor. 

For a fibre optic sensor, sources of inconsistent values include fluctuations in 

the optical source (Varghese et al., 2009). These can be corrected by using 

filtering techniques. Other pre-processing methods used in this dissertation 

will be discussed subsequently. 

5.3.2 Neural Network Implementation 

The multi layered feed forward neural network is one of the most successful 

and widely used artificial neural network architectures (Lyons, et al., 2000). 

There are three major sections: the input, hidden and output layers. The 

hidden layer can consist of one or more layers. The input layers receive input 

data which are usually characteristic features of the signal and sends out 

these inputs to the first hidden layer.  Each neuron in the hidden layer 

receives input from every neuron in the preceding input layer. The neuron 

                                                           
9 R-squared is a measure of how well the outcome of the network is described by the input variables  
10 mse is the  mean squared error 
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then adds up all the inputs received and then compared against a threshold. 

This comparison is in fact a transformation based on non-linear transfer 

function (figure 5.11 below shows various types of transfer functions). 

Depending on the number of layers in the hidden layer, the above is 

repeated until the final result reaches the output layer.  

The input to the output layer of the neural network is typically the output from 

the last hidden layer. This input for each neuron in the output layer (for layers 

with more than one neuron) is also then compared with a threshold and it 

then outputs a signal if it is greater than the threshold. If it is less than the 

threshold, no signal is output. 

 

Figure 5.11 Different types of transfer functions (a) Linear bipolar (b) Threshold (c) Signum 
(d) Log-sigmoid (e) tansig 
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5.3.2.1 Back Propagation 

The back propagation algorithm is one of the best known neural network 

algorithms (Patterson, 1996), (Fausett, 1994). It uses the gradient descent 

method to search for the minimum of the error function in weight space. 

Once the minimum error has been found, the set of weights which produce 

this minimization is the solution of the learning problem. One important rule 

for back propagation to work is that the error function must be continuous 

and differentiable (Rojas, 1996). The minimum error which is also the 

difference between the actual output and the desired output is represented 

by 

  𝑀𝑆𝐸 =  1
𝑛

(∑ ∑ 𝑂𝑝𝑖 −  𝑇𝑝𝑖)𝑖𝑝
2,  (5.12) 

where p and i encompass all training and output neurons of the network. Opi 

and Tpi represent the actual output and the desired output respectively. 

The non-linear relationship between the input and the output parameters 

requires that an activation function is needed to appropriately connect the 

parameters of these layers. For this thesis, the sigmoid function is adopted 

as the activation function. This function is defined mathematically as follows: 

   𝑠(𝑥) =  1
1+ 𝑒−𝑎𝑥

   (5.13) 

Where 𝑎 is the factor which determines the shape of the sigmoid function. As 

𝑎 tends towards infinity (𝑎 →  ∞), EQ5.13 converges towards a step function 
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at the origin. The sigmoid function has been discussed in detail in a previous 

section. 

Back propagation also requires that all data be normalized between zero and 

one [0,1]. The reason for this is because the output node signal is restricted 

to this range of values. The back propagation algorithm is a feed forward 

ANN and it adjusts weights by error propagation from the output to the input.  

Initially, the weights of the network are chosen randomly and the back 

propagation algorithm used to calculate the errors where necessary. In this 

report, the following steps were followed in implementing the back 

propagation algorithm: 

1. Initializing the weights and biases. 

a. The weights in the network are randomly initialized in the 

interval [0 1] 

b. The biases attached to each unit are also initialized within the 

same limits [0 1]. 

2. The training sample is then fed into the system together with matching 

target values. 

3. The inputs are then propagated forward and the net input-output 

values for each unit  of the hidden and output layers are calculated. 

4. The difference from step 3 which is the error is back propagated to the 

system. 

5. Based on the errors back propagated to the system, the weights and 

biases are updated 
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6. Steps 1 to 5 will then continue until the terminating conditions are met. 

One run of steps 1 through to 5 is known as an epoch. Several epochs are 

thus run until a performance criterium is met. A criterium may be a specific 

amount of epochs to be run or a minimum error set for the system to meet or 

a combination of both. Once a performance criterium is met, the algorithm is 

stopped. 

5.3.2.2 Updating of weights 

Step 5 above states that after the back propagation to the hidden layer 

stage, the weights of the network are updated. Everytime an input pattern is 

presented to a node, the weights attached to it are adjusted to match the 

desired response from that node. This process of pattern presentation and 

weight adjustment is repeated until the mean squared error is minimized and 

it is at that stage that the network is said to have learned the presented input 

patterns. To update the weights of the back propagation algorithm neural 

network, the iterative weight rule is (Amini, 2008): 

  ∆𝑊𝑖,𝑗(𝑛 + 1) =  𝜂(𝛿𝑖𝑂𝑖 +  𝛼Δ𝑊𝑖,𝑗(𝑛)) (5.14a) 

∆ is the learning factor, 

𝑊𝑖,𝑗 is the weight connecting node ito node j, 

𝛿𝑖 is the neuron error for output neuron i, 

𝛼 is the momentum factor 
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The neuron error 𝛿𝑖, is given by  

  𝛿𝑖 = (𝑇𝑖 −  𝑂𝑖) ∗ 𝑂𝑖 ∗ (1 −  𝑂𝑖)   (5.14b) 

A neural network system consists of three layers – the input layer, the hidden 

layer and the output layer. Each of these layers can have any number of 

neurons in the layer. In addition, the hidden layer can consist of more than 

one layer. A breakdown of a typical multilayer neural network has been 

discussed in chapter 2 of this thesis.  

Input Layer - The input layer of a multilayer neural network represents the 

features which are fed into the system. For this network, there is one input 

layer with 12 neurons. The neurons represent the features from the previous 

section. Each set of features for each compound is fed into the system at a 

time. The input to a neural network aside the input layer neurons for a back 

propagation neural network is (Pao, 1989) 

  𝑋𝑖 =  ∑𝑊𝑖,𝑗𝑂𝑗 +  𝑏𝑖    (5.15 a) 

and the output a neuron is (Pao, 1989), 

  𝑂𝑖 = 𝑓(𝑋𝑖)    (5.15b) 

where 𝑊𝑖,𝑗 is the weight of the connection from neuron i to j, 𝑏𝑖is the bias and 

f is the activation function. 

Output Layer - For this system, there is one neuron in the output layer. The 

output for the neuron can be either 1 or 0, corresponding to whether the 
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system is reporting the presence of cocaine or not respectively i.e. a “1” 

output implies that cocaine has been detected while a “0” implies otherwise.  

Hidden layer - The number of hidden layers is determined by the complexity 

of the system. For most problems, a single hidden layer will suffice. 

However, the number of neurons in the hidden layer is usually determined on 

a trial by error basis. In this thesis, fifteen (15) network architectures are 

developed (N1, N2 … N15) with same number of input and output neurons 

(12, 2) but a varying number of neurons in the single hidden layer.  The 

number of neurons in the hidden layer is varied from 5 to 20 increasing by a 

unit neuron for each network.  

5.3.2.3 k-fold validation 

The k fold cross validation was tested with various values of k. The k 

classifier partitions the data into k sets. At every k stage, one set in turn is 

used as the test data and the remaining set(s) used as the training data. So 

for instance, if k = 3, the data set is divided into three, A, B and C. In stage 1, 

data set A is used to test the network and sets B and C are used as training 

data. In stage 2, data set B is used as the test data and A and C used as 

training data. This is repeated for stage 3. To select an optimum value for k, 

different values of k were used for a NN system with 12 inputs, the k-fold 

cross validation has the advantage that all the data sets are used as both 

training and test data.  
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5.3.2.4 Training 

The training of the neural network in this study is by supervised learning. 

Some other training techniques are as discussed in previous sections. 

Training in this case involves presentation of the features and target output 

to the network. In this case, there are 115 sets of data representing 59 non-

cocaine data and 56 sets of cocaine data. In this report, the k-fold cross 

validation technique has been adopted where k = 5. This technique has the 

advantage of being superior to other algorithms especially for small data sets 

(Goutte, 1977). In using this technique, the entire 115 data was divided into 

five equal sets with twenty-three sets of data in each set. The data was then 

trained five times with four subsets of data and leaving out one subset each 

time to be used for validation and error computation. This is done for the 

different number of hidden units (between 5 and 20) and the mean squared 

error (mse) and regression (R2) calculated. The result is tabulated below. 

The ‘best’ values for R2 and mse values are the maximum and minimum 

values respectively for the number of neurons in the hidden layer. 

The output of the neural network is trained to output a result of [1 0] for 

detection and [0 1] for non-detection. 

5.3.2.5 Error estimate 

For every time the data is split into training and testing data, the error 

estimate (ei) is calculated. This error is difference between the correctly 
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classified test data and falsely classified false data and the total error 

estimate after 5-fold validation is  

  �̂� =  1
𝑁
∑ 𝑒𝑖𝑁
𝑖=1 ,    (5.16) 

where N = 5. A confusion matrix showing the performance of each validation 

stage is computed at each fold. 

5.4 Computation of feature values 

The features below were calculated after normalisation of the raw data. The 

features were selected based on features which would best represent each 

spectra. At the end, twelve features were selected as explained below. 

Peaks (PK) - After normalisation, the maximum (or peak value) intensity for 

all spectrum is unity. Therefore, the wavelength values at which these peaks 

occurred were selected as features as shown in the table below for one set 

of data (see Table 5.2). 

Table5.2 Table showing peaks of spectra at different concentrations 

Concentration Cocaine Ketamine Codeine Amphetamine 
sulfate 

Ecgonine 
methyl 
ester 

Buprenorphine 
HCl 

25 µM 0.2782 0.2784 0.2781 0.2576 0.2560 0.2574 

100 µM 0.2713 0.2713 0.2713 0.2505 0.2490 0.2504 

250 µM 0.2866 0.2864 0.2867 0.2658 0.2644 0.2658 

500 µM 0.2921 0.2921 0.2921 0.2713 0.2699 0.2713 

1000 µM 0.2921 0.2921 0.2922 0.2712 0.2700 0.2712 
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Average change in intensity (AVI) - The average change in intensity is the 

mean of the difference between intensity values corresponding to extreme 

wavelength values for each partition (see Table 5.3).  

Table 5.3 Table showing average change in intensity of spectra at different 
concentrations 

Concentration Cocaine Ketamine Codeine Amphetamine 
sulfate 

Ecgonine 
methyl 
ester 

Buprenorphine 
HCl 

25 µM -0.026 -0.0470 -0.0346 -0.0404 -0.0662 -0.0456 

100 µM -0.0101 -0.0293 -0.0169 -0.0229 -0.0487 -0.0281 

250 µM -0.0072 -0.0261 -0.0136 -0.0196 -0.0454 -0.0246 

500 µM -0.0054 -0.0250 -0.0125 -0.0186 -0.0443 -0.0236 

1000 µM -0.0067 -0.025 -0.0125 -0.0186 -0.0442 -0.0236 

 

Steepest Slope (SS) - The slope of a partition is the gradient at the mid-

points of the partition. When the slope for all artitions are calculated, the 

steepest slope is the highest value of all the slopes (see Table 5.4). 

Table5.4 Table showing the steepest slope of spectra at different concentrations 

Concentration Cocaine Ketamine Codeine Amphetamine 
sulfate 

Ecgonine 
methyl 
ester 

Buprenorphine 
HCl 

25 µM 4.5143 2.5034 3.9747 2.7483 1.4224 2.1871 

100 µM 5.4937 3.5715 5.0431 3.8165 2.4907 3.2552 

250 µM 5.9126 3.9903 5.4620 4.2352 2.9095 3.6740 

500 µM 6.1401 4.2178 5.6894 4.4627 3.1369 3.9014 

1000 µM 6.1950 4.2571 5.7286 4.5020 3.1763 3.9406 
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Maximum Negative Slope (MNS) - After the slopes have been calculated as 

in steepest slope above, the maximum negative slope is the highest of all 

negative gradients calculated (see Table 5.5). 

Table5.5 Table showing maximum negative slope of spectra at different 
concentrations 

Concentration Cocaine Ketamine Codeine Amphetamine 
sulfate 

Ecgonine 
methyl 
ester 

Buprenorphine 
HCl 

25 µM -2.2753 -1.6255 -2.1560 -1.9981 -1.7982 -1.9879 

100 µM -2.5228 -1.8732 -2.4034 -2.2457 -2.0458 -2.2353 

250 µM -2.6315 -1.9819 -2.5122 -2.3544 -2.1546 -2.3441 

500 µM -2.7310 -2.0813 -2.6118 -2.4539 -2.2541 -2.4435 

1000 µM -2.7478 -2.0914 -2.6218 -2.4640 -2.2642 -2.4537 

 

Most Positive Change in Intensity (MPCI) - The change in intensity is 

calculated for each partition as before to give both positive and negative 

intensity changes (depending on the side of the spectrum the partition is). 

The most positive change in intensity is the highest value of all positive 

change in intensities (see Table 5.6). 

Table 5.6 Table showing most positive change in intensity of spectra at different 
concentrations 

Concentration Cocaine Ketamine Codeine Amphetamine 
sulfate 

Ecgonine 
methyl 
ester 

Buprenorphine 
HCl 

25 µM 0.6300 0.3564 0.5660 0.3912 0.1945 0.3115 

100 µM 0.7821 0.5085 0.7178 0.5433 0.3466 0.4633 

250 µM 0.8417 0.5681 0.7773 0.6029 0.4062 0.5228 

500 µM 0.8744 0.6004 0.8099 0.6353 0.4388 0.5554 

1000 µM 0.8819 0.6112 0.8205 0.6459 0.4494 0.5661 
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Most Negative Change in Intensity (MNCI) - As in the case of most 

positive change in intensity, after the change in intensity has been calculated 

for each partition, the most negative change in intensity is the highest of all 

negative changes in intensity or the least of all the changes in intensity (see 

Table 5.7). 

Table 5.7 Table showing most negative change in intensity of spectra at different 
concentrations 

Concentration Cocaine Ketamine Codeine Amphetamine 
sulfate 

Ecgonine 
methyl 
ester 

Buprenorphine 
HCl 

25 µM -0.5986 -0.4278 -0.5673 -0.5256 -0.4730 -0.5231 

100 µM -0.6638 -0.4929 -0.6326 -0.5908 -0.5383 -0.5881 

250 µM -0.6924 -0.5214 -0.6609 -0.6195 -0.5670 -0.6166 

500 µM -0.7150 -0.5476 -0.6872 -0.6456 -0.5931 -0.6429 

1000 µM -0.7230 -0.552 -0.6917 -0.6500 -0.5975 -0.6473 

 

Average intensities in regions (AIR) - For all the regions (6 regions), the 

mean of the intensity values in each region is also calculated. The values for 

average intensity for region 1 are shown in table 5.8.  

Table 5.8 Table showing most negative change in intensity of spectra at different 
concentrations 

Concentration Cocaine Ketamine Codeine Amphetamine 
sulfate 

Ecgonine 
methyl 
ester 

Buprenorphine 
HCl 

25 µM 0.1484 0.2755 0.1857 0.2399 0.3838 0.2682 

100 µM 0.0568 0.1839 0.0941 0.1484 0.2921 0.1765 

250 µM 0.0350 0.1621 0.0724 0.1265 0.2701 0.1547 

500 µM 0.0261 0.1531 0.0634 0.1177 0.2612 0.1458 

1000 µM 0.0260 0.1544 0.0647 0.1191 0.2625 0.1473 
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The above show the features calculated for each spectrum and which served 

as inputs to the neural network. The values for one set of data are shown in 

tables 3.2 to 3.8. In all, there are twelve (12) features representing twelve 

inputs to the network. 

5.5 Determination of number of neurons in the hidden layer 

Once the features have been identified and processed, the next step 

involves the development of the neural network model. The hidden layer is 

the middle layer of a 3-layer NN. It is important to find the optimum number 

of neurons in the hidden layer of the NN model. This is done in this 

dissertation using the k-fold cross validation. 

 
Figure.5.12 (a) 1st fold cross validation plot for R2 and mse versus number of neurons in 

hidden layer 

 
The set of data was divided into 5 subsets (A, B, C, D and E) as described in 

the previous section. k-fold cross validation involves selecting k-1 subsets of 

data as training data and one set of data as validation data. For the first 
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stage of the 5-fold cross validation, subsets A, B, C and D were used as 

training data and E subset used as validation data. 

Figure 5.12 (a) shows the plot of R2 and mean squared error which are used 

as performance criteria in this report, versus the number of neurons in the 

hidden layer. The R2 values equivalent to 5, 12, 14, 17 and 19 hidden layers 

show the best values while hidden layer with 11 neurons is best in terms of 

the mse. 

 

 
Figure.5.12(b) 2nd fold cross validation plot for R2 and mse versus number of neurons in 

hidden layer 

 
For the second stage, A, B, C and E were used as training data and D used 

as validation data. The result for the second stage of the 5-fold cross 

validation is as shown above in figure 5.12(b). Hidden layer with 13 neurons 

represent the best R2 value while hidden layer with 14 neurons represent the 

best mse value with 0.0895 mean squared error. 
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Figure.5.12(c) 3rd fold cross validation plot for R2 and mse versus number of neurons in 
hidden layer 

 
For the third stage of the of the 5-fold cross validation, subsets A, B, D and E 

were used as training data while C was used as validation data. The results 

are as shown in 5.12 (c) above. In this case, the plot shows best R2 value 

when there are 13 neurons in the hidden layer and best mse value for when 

there are 14 neurons in the hidden layer. 

 

 
Figure.5.12(d) 4th fold cross validation plot for R2 and mse versus number of neurons in 

hidden layer 



139 
A. Akiwowo (2012) 
 

 

In stage 4, subsets A, C, D and E were used as training data while subset B 

was used as validation data. Figure 5.12(e) shows the R2 and mse plots 

against number of hidden layer neurons. The results show that hidden layer 

with 11 and 15 neurons give best R2 results while hidden layer with 13 

neurons give the best mse results.  

 

 
 

Figure.5.12(e) 5th fold cross validation plot for R2 and mse versus number of neurons in 
hidden layer 

 
The final stage of the validation process uses subsets B, C, D and E as 

training data and subset A as validation data. The results, shown in 

figure5.12(e) above shows that hidden layer with 5 neurons gives the best R2 

result while the lowest mse value is achieved when there are 16 neurons in 

the hidden layer. 

Once the 5 stages for the 5-fold cross validation is complete, the mean of the 

mse and R2 is calculated and plots against the number of neurons in the 

hidden layer is made. This plots are shown in figure 5.12 (f) and 5.12 (g).  
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Figure.5.12 (f) Mean value of regression square for 5-fold cross validation against number of 

neurons in hidden layer  

 
 
 

 
 

Figure.5.12(g). The average mse values for 5-fold cross validation against number of 
neurons in the hidden layer 

From the mean mse and R2 values as shown in figure5.12(f) and (g) above, it 

can be seen that the least mse occurs when there are 13 neurons in the 

hidden layer. In figure5.12, the highest R2 values occur when there are 13 

and 14 neurons in the hidden layer. As a result, 13 neurons are chosen as 

the ideal number of neurons in the hidden layer and the architecture for the 
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Output layer (1 
neuron) 

back propagation network is thus 12 – 13 – 1 representing 6 neurons in the 

input layer, 13 in the hidden layer and 1 in the output layer. 

In addition to the number of neurons in the hidden layer, other parameters 

required for back propagation neural network include the learning rate and 

momentum. These parameters were chosen based on a trial by error 

method.  

 

 

 

 

5.6 Neural Network output results 

Data Set: 59 instances of cocaine samples and 56 instances of non-cocaine 

for 12 features using the 5-fold cross validation. 

  

   

Figure.5.13 Final Neural Network architecture 12 – 13 - 2 

 

Input layer (12 
neurons) 

Hidden layer 
(13 neurons) 
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Test Mode: Five-fold cross validation 

Table 5.9 Confusion Matrix Representation for K-fold cross validation ANN 
for 1st and 2nd stages 

312 iterations  

 

 

 

 

 

 

332 iterations 

1st Fold cross validation 

Confusion Matrix 

2nd Fold cross validation 

Confusion Matrix 

a b Predicted as a b Predicted as 

12 1 a = cocaine 12 0 a = cocaine 

1 9 b = not cocaine 0 11 b = not cocaine 

(a) Confusion matrix for 1st fold cross 
validation 

 (b) Confusion matrix for 2nd fold 
cross validation 

 

The confusion matrix in table 5.9 shows the result of all 5 stages of the 5-fold 

cross validation process. The number of iterations which yield these results 

is also displayed. The values in the major diagonals show the correctly 

classified samples of both cocaine and not cocaine samples while the values 

off the diagonal indicate the confusion or incorrectly labelled samples. The 

false positive and true positive rates can be computed from the tables. For 

example, the true positive rate for the cocaine feature data is the ratio of 

correct cocaine prediction to total cocaine feature data in the data set. 

The confusion matrix in Table 5.9(a) shows the result of the first stage of the 

5-fold cross validation process. There are 23 test data consisting of 13 

cocaine samples and 10 non cocaine samples. The table shows that the 

classifier correctly classified 12 cocaine features as cocaine and 9 not 
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cocaine features as not cocaine representing a detection rate of 91.3% and 

an error of 0.087. 

In table 5.9(b), of the 23 sample feature data, 12 represent cocaine and 11 

not cocaine data. The classifier at this stage performed better than in the first 

case detecting all 12 cocaine data as cocaine and all 11 not cocaine data as 

not cocaine representing 100% detection rate and 0 error.  

Table 5.10 Confusion Matrix Representation for K-fold cross validation ANN 
for 3rd and 4th stages 

315 iterations  

 

 

 

 

 

 

433 iterations 

3rd Fold cross validation 

Confusion Matrix 

4th Fold cross validation 

Confusion Matrix 

a b Predicted as a b Predicted as 

7 0 a = cocaine 8 0 a = cocaine 

0 16 b = not cocaine 4 11 b = not cocaine 

(a) Confusion matrix for 3rd fold cross 
validation 

 (b) Confusion matrix for 4th fold 
cross validation 

Tables 5.10 (a) and (b) show the result of the third and fourth stages of the 

cross validation process. In 5.10(a) there is 100% classification rate for the 7 

and 16 cocaine and not cocaine feature samples which also implies a 0% 

error. The iterations yielding these results are 315 and 433 iterations 

respectively.  

The final stage, which is the fifth stage of the 5-fold cross validation process 

is shown in table 5.11 below. With 208 iterations at this stage, the ANN 

yields a classifier which detects 83.33% of the 12 cocaine samples and 
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correctly classifies 63.63% of the not cocaine samples. The error at this 

stage is thus 0.261. According to (5.17), the total error estimate is the 

average of all the error estimates. The error for the 5-fold cross validation is 

thus 0.104.  

Table 5.11 Confusion Matrix Representation for K-fold cross validation 
ANN for 5th stage 

208 iterations 

5th Fold cross validation 

Confusion Matrix 

a b Predicted as 

10 4 a = cocaine 

2 7 b = not cocaine 

Table 5.12 shows a summary of the results of the 5-fold cross validation. The 

summary table includes the True positive rates, the false positive rates, the 

precision and the area under the Receiver Operator Characteristics (ROC) 

curve.  

Table 5.12. Summary table of the results of the 5-fold cross validation ANN process. 

Correctly classified 
instances 103 89.57% 

   Incorrectly classified 
instances 12 10.43% 

   Detailed Accuracy by 
Class           

  
TP Rate 

(%) 
FP Rate 

(%) Precision 
ROC 
Area Class 

  87.5 8.5 90.72 0.881 Cocaine 
  91.5 12.5 88.52 0.881 Not Cocaine 

Weighted Avg (%) 89.55 10.55 0.961 0.933 
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As can be seen in table 5.12, the percentage of incorrectly classified data 

(cocaine and not cocaine samples) is 10.43%. A look at this percentage will 

indicate that the ANN system has performed well. Looking at the True 

Positive rate, the system detects 87.5% of the cocaine feature data correctly 

and 91.5% of the not cocaine feature data correctly while it incorrectly 

classified 8.5% and 12.5% of the not cocaine and cocaine data as cocaine 

and not cocaine respectively. The precision which is the ratio of the true 

positive rate to the sum of the true positive rate and false positive rate 

represents the probability that cocaine is detected given that the sample is 

actually cocaine feature data and in this case gives a 0.91 value. 

The correlation coefficient, cc, is sufficient to estimate the accuracy of the NN 

process (Matthews, 1975). This is given by: 

 𝑐𝑐 =  𝑃𝑁−𝑂𝑈
�(𝑁+𝑈)(𝑁+𝑂)(𝑃+𝑈)(𝑃+𝑂)

    (5.17) 

where P is the number of correctly predicted cocaine samples, N is the 

number of correctly predicted non-cocaine samples, O is the number of 

false-positives, and U is the number of false-negative predictions. The value 

of cc is in [-1, 1], where cc= 1 indicates perfect prediction. From the above, 

cc is calculated to be 0.8.  

5.7 Determination of feature threshold 

The twelve features selected and validated in previous sections are used as 

input into the data fusion system. Each of the features make decisions on 

cocaine detection or otherwise. The decisions are made based on an 
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empirically determined threshold. The process of determining the threshold is 

discussed in this section. It should be noted that every feature has its own 

unique threshold. 

The threshold determination is an important part of feature selection. This 

threshold is used to separate data received from the sensor into 

cocaine/non-cocaine data. To determine the threshold, key issues 

considered include: 

Low False alarm: The false alarm (also called false positive) refers to the 

features ability to correctly identify non-cocaine data. If it identifies non-

cocaine data as cocaine data, this is regarded as a false alarm. In general, 

false alarms are not ideal for any system as it tends to reduce operator 

confidence in the system. Therefore, it is important that each feature decision 

results in as low false alarms as possible. 

High true positive: This is also known as correct detection and is the features 

ability to correctly identify cocaine data and report them as such. Being able 

to correctly identify cocaine data that is, having a high true positive value is 

ideal and therefore a vital factor to be considered in selecting the threshold 

value. 

Prior to selection of the thresholds, the data measurements are pre-

processed as discussed in section 5.1. After pre-processing, using the 

MatLab software, a model was developed which accepts data measurements 

and extracts feature values from the incoming data thus separating data 
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measurements by their features. For each feature, sample thresholds are 

used to divide the data into cocaine and non-cocaine data. The true positive 

rate (TPR) and the false alarm rate (FAR) are then computed for each 

threshold. The ‘best’ threshold is the one which gives a balance of low false 

alarm and high true positive rates. In figure 5.14 below, a normal distribution 

curve is produced for cocaine and non-cocaine data. The outline in green is 

for cocaine data while the outline in red is for non-cocaine data. These 

curves give a visual aid towards determination of a threshold. As can be 

seen below, the curves overlap between data values of about -0.04 and 

about 0.01. The overlapping area suggests areas of conflict. Depending on 

where the threshold is located, this area will determine the false alarm rate 

and the false negative rate (false negative are data points which are truly 

cocaine but which the system detects as non-cocaine. They are also known 

as missed detections). 

Feature1 (Average change in intensity)   

 

Figure 5.14 Normal distribution curve for 
classification using feature 1 

Table 5.13 TPR and FAR for 
varying threshold 

Threshold TPR FAR 

-0.015 0.8 0.15 

-0.025 0.85 0.61 

-0.03 1 0.76 
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Taking the red outline (non-cocaine), if the threshold is set for example at 

say, -0.015, every data point detected to the left of the threshold, i.e. values 

below -0.015 will be correctly identified as non-cocaine. However, for the 

area under the curve but to the right of the threshold (i.e. above -0.015), 

values in this range will be false classified as cocaine and is the false alarm 

rate. Similarly, for the green outline, values to the right of the threshold value 

of -0.015 will be correctly identified as cocaine and measurements to the left 

of the threshold will be falsely identified as non-cocaine (missed detections). 

Threshold values must be maintained for both cocaine and non-cocaine data 

and cannot be changed in between. It is therefore imperative that a threshold 

value which gives optimum values of false alarm and true positive rates 

should be selected.  

With feature one (Average Change in Intensity), the selected thresholds and 

their corresponding TPR and FAR values are shown in table 5.13. it can be 

seen from this table that a threshold of -0.03 will give 100% true positive rate 

but a high false alarm rate of 76%. Although the TPR is acceptable, the FAR 

is not acceptable and so this threshold value is not acceptable. Using the 

threshold value of -0.025 again gives a ‘satisfactory’ TPR value of 85% but a 

non-satisfactory FAR value of 61%. Finally, using a threshold value gives a 

TPR/FAR pair of 0.8/0.15. Compared other threshold values, this is the best 

pair based on low FAR and high TPR values therefore, the threshold 

selected is -0.015.  
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The following thus represents an algorithm for selection of threshold for 

features for cocaine detection: 

Step 1: Collect set of data 

Step 2: Set a pre-determined TPR/FAR pair to serve as reference 

Step 3: Select a pseudo-random threshold value which would normally be a 

midpoint of the data collected in Step 1. 

Step 4: Calculate TPR and FAR values based on this threshold value 

  𝑇𝑃𝑅 = Number of cocaine data identified as cocaine
Total number of cocaine data

 

  𝐹𝐴𝑅 = Number of non−cocaine  data identified as cocaine
Total number of non−cocaine data

 

Step 5: Compare TPR/FAR values in Step 4 with values in Step 2. 

Step 6: If values above are satisfactory*, exit, if not repeat steps 3 and 4. 

* Satisfactory implies close enough to the pre-determined values within a 

specified range. 

The algorithm above was used in selecting thresholds for features 1 to 11 

and the data is presented in Appendix C. 

 5.8 Chapter Summary 

In Chapter 4, the raw data from the fibre optic sensor developed for the 

detection of cocaine was presented. This raw data was normalised in this 

chapter. The process of extracting twelve features used as inputs was 

analysed and the results also displayed. Once the features had been 

extracted, they were fed as inputs into a neural network system. We also 



150 
A. Akiwowo (2012) 
 

 

presented a method for deciding on the optimum number of neurons in the 

hidden layer and settled on a 12 – 13 – 1 network. Eventually, the result of 

this network on the input data using a 5-fold cross validation system has 

been displayed. The results show that the network gives a weighted true 

positive rate of 89.55% and a false positive rate of 10.55%. In addition, the 

probability of the system detecting cocaine from a cocaine sample is 90.72% 

and the probability of deciding not cocaine from a not cocaine feature sample 

is 88.52%. Finally, the correlation coefficient was calculated to be 0.8 which 

represents a good prediction. These probabilities show that the 5-fold cross 

validation system is a good classifier for cocaine using the fibre optic sensor.  

Feature extraction and selection is an important stage in the pre-processing 

of data for data fusion. It is at this stage that the raw data is investigated for 

unique features which will efficiently represent the structure of the data. 

There are different feature selection techniques. Their use however, is 

dependent on the model. This chapter looked at the overall pre-processing 

stage which involves data normalization and feature extraction. One 

challenge of the fibre optic sensor data is its inability to identify individual 

analyte if the concentration is not known a priori. For the purpose of this 

thesis, this is not suitable as real life application in cargo screening does not 

give the luxury of having this prior knowledge. To solve this issue, the data is 

first normalized and then features are extracted. Normalization of the data 

was performed to remove the effect of the concentration dependent intensity.    
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CHAPTER 6 

     6 
IMPLEMENTATION OF 

DATA FUSION TECHNIQUES 
 

This chapter presents implementation and results obtained in the detection of 

cocaine using both the Bayesian and Dempster-Shafer algorithms for data 

fusion. The model used is an adaptation of that developed in chapter 4. A 

step by step performance of each feature in the classification process is 

presented and an algorithm for the Bayesian and Dempster-Shafer fusion of 

multi feature data over a time period is then developed. The performance of 

each feature in the classification process is then compared with the 

performance of the fusion process and the results presented at the end of 

the chapter. 

6.1 Introduction 

This chapter is divided into three sections. The first section details the steps 

involved in Bayesian statistics and then discusses the parameters involved in 

Bayesian statistics. The next section then looks at the features selected from 
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the previous chapter and their performance in the classification of data into 

cocaine and non-cocaine data. The final section involves the fusion of the 

decisions at feature level with a presentation and analysis of the results.  

6.2. Bayesian Statistics 

An overview of the Bayesian technique has been discussed in chapter 2 of 

this thesis. In this section, we will take a detailed look at the Bayesian 

technique and how it can be applied to improving results of detection. 

The Bayesian fusion technique stems from the carried out by Thomas Bayes 

in 1760 and published in 1763 (Hall, 1992). He created a system of 

mathematical inference on how to predict the posterior probability distribution 

using the likelihood of an event happening and the prior probability. In simple 

terms, the ‘Bayesian Inference’ as it is called, uses what was previously 

known about and additional information to update/predict the likelihood of an 

event happening. It is the same way a blindfolded person may decide on the 

identity of a fruit he’s holding based on prior knowledge of what fruits have 

the same shape with that which he/she is holding. As more information is 

supplied to him as regards the colour, texture, etc. of the fruit, he is able to 

perform an update and eventually provide an intelligent guess on what fruit it 

may be based on prior information and additional data. 

Mathematically, the fusion of data using Bayesian inference can be 

represented as follows. If the aim is to detect the presence or absence of say 

‘E’ given “x1” and “x2” as data received from one sensor over two time 



153 
A. Akiwowo (2012) 
 

 

phases or simultaneously from two sensors and assuming that the data 

retrieved from independent sources, then according to Bayes, 

 𝑝(𝐸|𝑥1,𝑥2) =  𝑝(𝑥2|𝐸,𝑥1)∙𝑝(𝑥1|𝐸)∙𝑝(𝐸)
𝑝(𝑥1)∙𝑝(𝑥2)

  (6.1) 

where 

𝑝(𝐸|𝑥1, 𝑥2) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑙𝑠𝑜 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑛𝑑 

𝑝(𝑥𝑖)𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑖 = 1,2 

𝑝(𝑥2|𝐸)𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝐸 𝑤𝑖𝑙𝑙 𝑝𝑟𝑜𝑣𝑖𝑑𝑒 𝑥2 𝑑𝑎𝑡𝑎. 

where we have more than two sensors, the equation can be expanded as 

follows 

 𝑝(𝐸|𝑥1, … , 𝑥𝑛) = ∏ 𝑝(𝑥𝑖|𝐸)𝑛
𝑖=1
∏ 𝑝(𝑥𝑖)𝑛
𝑖=1

∗ 𝑝(𝐸)  (6.2) 

Suppose however, that there is more than one possible state. That is, the 

sensors can detect for more than one substance as in this case, cocaine and 

some other compounds therefore, say there are k numbers of possible 

compounds, then Bayes describes two rules to determine how to make a 

decision – Maximum a posteriori probability rule and Maximum likelihood 

Rule. 

6.2.1 Maximum A Posteriori Probability Rule 

The maximum a posterior rule for making decisions dictates that the event 

with the highest joint probability value is selected when there are multiple a 
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posteriori probabilities to choose from. In the case of EQ.6.2, assuming the 

sensors can detect more than one compound E, for all Eis, the highest value 

of 𝑝(𝐸𝑖|𝑥1, … , 𝑥𝑛) when all Es have been calculated for individual sensors is 

selected (Soriguera, 2011).  

 𝐸𝑘 =  𝑎𝑟𝑔 𝑚𝑎𝑥1<𝑖<𝑘{𝑝(𝐸𝑖|𝑥1, … , 𝑥𝑛)}  (6.3) 

6.2.1.2. Maximum Likelihood 

In the case of the maximum likelihood rule, like its name suggests, the 

decision is aligned towards the event with the highest likelihood function. i.e. 

 𝐸𝑘 = arg𝑚𝑎𝑥1<𝑖<𝑘  {∏ 𝑝(𝑥𝑗|𝐸𝑖)}𝑛
𝑗=1   (6.4) 

Accordingly, Soriguera (2011) maintains that both the maximum a posteriori 

and maximum likelihood rules converge to the same decision when the prior 

probabilities are equal i.e. when  p(E) = 1/k. This situation usually arises 

when there is no prior knowledge of the system and is also known as the 

principle of indifference. This will be explained further in the next section. 

The maximum a posteriori probability rule is utilised in this thesis. 

6.2.2. Assigning Probabilities 

Bayesian inference as explained in previous sections uses new 

evidence/data and prior probability to compute the posterior probability. From 

equations 6.1 and 6.2 above, it can be seen that the posterior is dependent 

on the conditional probabilities P(xi|E) that xi occurs given E and on the prior 
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probability p(E). Therefore, key to any Bayesian application is the ability to 

evaluate the conditional probability and the prior probability. The process of 

evaluating these probabilities in general and also as used in this dissertation 

is shown in subsequent sections. 

6.2.2.1 Conditional probability 

Let X be a random variable with discrete probability distribution p dependent 

on parameter theta. The likelihood function of theta given that x of X occurs 

is given as follows: 

  𝑝(𝑥|𝜃) =  𝑝𝜃(𝑥) =  𝑃𝜃(𝑋 = 𝑥)  (6.5) 

From equation 6.5, 𝑝(𝑥|𝜃) is the likelihood probability 

  

6.2.2.2 Prior Probability 

The difficulty in the selection of a prior is one of the ‘weaknesses’ ascribed to 

the Bayesian Inference (Hall, 1992). The prior probability or a priori 

information is the probability that expresses uncertainty about an event. It is 

the probability prior to the observation of new data. For example, if out of ten 

containers searched at a port, one contains a particular contraband, the 

probability of that a container drawn at random will contain that contraband is 

0.1. This probability is the prior probability.  

As shown in EQ.6.1, the product of the prior probability and the likelihood 

function before normalization gives the posterior probability. Thus the 

decision on what values to assign to the prior probability will greatly affect the 
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posterior probability. A biased prior will imply a non-correct posterior 

probability. The dependence of the prior probability on available information 

also then means that deciding on the correct value for a prior probability is a 

difficult task as prior information is usually not always available. Punska 

(Punska, 1999) suggests that where enough information is not available for 

the determination of a prior, the selected prior probability function should be 

a wide and flat function in comparison to the expected likelihood function. In 

general, depending on the situation, there are three ways of selecting a prior. 

These are: 

1. Subjective (the user using his/her personal degree of belief) 

2. Objective and Informative priors (the use of past data from 

experiments) which can be from statistical hypothesis tests such 

as the chi-squared (Osoba et al., 2011) 

3. Objective and Un-informative priors (assigning equal priors to the 

events e.g. Jefferys prior, uniform distribution). 

6.2.2.3 Informative Priors 

When there is enough information to determine the exact prior information 

about an event, the prior information determined from such is said to be 

informative.  Usually, a normal distribution is used to represent informative 

priors (Figure 6.1). In addition, where the form of the present model is 

identical to the form of the previous model, then the posterior probability from 

the previous model may be used as the prior probability for the present 

model. This has the effect of improving on the precision of the posterior 
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distribution with more update from previous models as long as the condition 

of similarity is maintained.  

 

Figure 6.1 Posterior, Likelihood and Prior probabilities for informative priors 

6.2.2.4 Non-Informative Priors 

In many common situations, little or nothing is known about the ‘past’ of the 

system. If nothing is known about the system, a non-informative prior 

distribution is used (Figure 6.2). The aim of non-informative priors is to 

reduce the effect of the prior on the final posterior probability thus allowing 

the posterior to be solely dependent on the data. 

Obviously, the prior describes the extent of one’s knowledge about the 

values of the parameter before examining the data. It is not in all situations 

where prior information is available and can be quantified. In cases where 

prior information is not available, it is advisable to choose a prior probability 

function which is flat relative to the expected likelihood function.In iterative 

fusion cases where the fusion process involves fusion of data over time, the 

effect of starting with a non-informative prior is balanced by updating each 
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step with the posterior from the previous iteration (k-1) serving as the new 

prior at the present step (k).  

 

Figure 6.2 Informative and non-informative priors 

 

The Bayesian detection architecture 

In this dissertation, an optical sensor developed in the Chemistry Department 

at City University London by Nguyen (Nguyen et al., 2010), is used to collect 

data and to test the data collected for the presence or otherwise of cocaine. 

Then, as described in previous chapters, the spectrum plotted by the data 

collected can only be interpreted to be from a cocaine sample or not if the 

concentration of the sample tested is known a priori. In the laboratory, this 

may not be a problem as samples are usually labelled with the respective 

concentrations. However, in real life, the concentration of the sample is not 

usually known and it is thus important that the sensor be able to tell if the 

sample is cocaine or not without knowing the concentration of the sample. In 

Chapter 6 of this dissertation, a neural network architecture was developed 

to work as a feature selection model. The network successfully detected the 

presence and otherwise of cocaine by extracting features from the data input 

into the network. 
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The concept of Data Fusion has already been explained in Chapters 1 and 2 

and Bayesian algorithm has been explained in previous sections of this 

chapter.  In the following sections, the Bayesian data fusion approach and 

algorithm (as explained in Chapter 4) will be implemented and results will be 

displayed. 

Table 6.1 Confusion matrix 
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Predicted Interaction 

 YES NO 

YES True Positive/True 

Detection 

False Negative/Missed 

detection 

NO False 

Positive/False 

Alarm 

True Negative/ 

 

6.2.3 Data Fusion using Bayesian Inference 

Data fusion is the combination of data from multiple sources with the aim of 

achieving results which will be more accurate in terms of lowering of false 

positives and/or improving on true positives compared to results obtained 

from individual sensors. In addition, data can also be fused from a single 

sensor over time. In this case, successive sets of information are added 

together over time. In this dissertation, we have employed two methods of 

fusion of data. One method analyses information from two similar sensors 

independently and fuses their information together while the second method 

involves analysing and combining information from a single sensor over time.  
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6.2.3.1 Sensor data fusion 

Also known as single sensor tracking or filtering (Koks & Challa, 2005), this 

implies the fusion of successive information or sensor measurements over 

time. The algorithm used for single sensor tracking in this dissertation is as 

follows: 

1. Sensor collects data (Xt) at time t 

2. Data is pre-processed (normalising and cleaning) 

3. Features (Yt) are extracted from pre-processed data and decision is 

made based on individual feature data 

4. Posterior probability at time t based on fusion of decision made by 

each feature is calculated 

5. Sensor collects (Xt+1) data at time t+1 

6. Data is pre-processed 

7. Features (Yt+1) are extracted from pre-processed data 

8. Posterior probability at time t+1 based on fusion of decisions made by 

each feature is calculated 

9.  Posterior probability at time t+1, P(Xt+1|Yt+1) that the analyte observed 

is cocaine given all previous probabilities (steps 4 and 8) is calculated.  

10.  The prior probability used at time t is the posterior probability from 

time t. 

The prior at the first stage of the fusion process is non-informative. This is 

because there is no prior information available. In the application of the 

sensor in cargo screening, future works should examine the possibility of the 
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operator determining a prior based on other information such as origin of 

cargo, history of shipper, etc. In addition, this information, if exhaustive, can 

be used to automatically generate a prior distribution based on the data 

described above. For this research though, the prior probability at the initial 

stage is non-informative. However, when the posterior is calculated and a 

decision made, there is still enough adequate ‘power’ at the disposal of the 

operator to decide if the container should be searched or not based on the 

decision of the sensor system. The posterior probability after the first stage is 

assigned as the prior probability in the second stage.  

The block diagram of figure 6.3 represents the fusion process used in this 

research. S1t and S1t+1 represents the same sensor but with data supplied at 

times t and t+1. Data is collected from the sensor at time t and a decision is 

made based on the fusion of individual decisions based on features 

extracted from the data. A probability matrix containing the true positive rate 

(TPR), false alarm rate (FAR), True negative and false negative rates is also 

created. Depending on the resulting probability matrix values, the operator 

decides if the decision made by the system is satisfactory. If it is, the process 

ends here however, if not satisfactory, the operator can then take another 

data sample running the process again (Steps 5 to 8) above and the result 

fused with the posterior probability resulting from the first data sample. The 

system thus uses this fusion process to provide a decision on the detection 

or otherwise of cocaine (see figure 6.3). 
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Figure 6.3 Block diagram for the data fusion model 

 

6.3 Classifier Output for each feature 

The results are displayed in forms of tables and figures (see Appendix C). 

The figures for each feature data show the discrete probability distribution for 

each feature data and both cocaine and not cocaine samples. From these, 

the spread of the data for each sample can be visualised.   

The result also shows a figure of the normal distribution approximation for 

the data. The central limit theory states that for a sufficiently large data set of 

independent random variables with finite mean and variance, the posterior 

probability distribution can be approximated by the normal distribution 

(Clarke & Barron, 1990). In this section, using the each of the twelve features 
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used in this dissertation, the author has plotted normal distribution plots for 

cocaine and non-cocaine data. In addition, the confusion matrices containing 

the false positive and true positive rates are presented on tables in addition 

to the varying true positive and false positive values for varying threshold. 

The ‘best’ threshold for each feature is then selected. This best is based on a 

balance between high true positive and low false alarm. It should be noted 

that the confusion matrix values are calculated directly from the data. The 

normal distribution figure shown is only displayed to ease the explanation on 

how the confusion matrix values are evaluated. 

 

Fig. 6.4 Normalised sample cocaine and non-cocaine data 

Figure 6.4 above represents the probability density function (pdf) for one of 

the twelve features extracted from the data supplied by the optical fibre 

sensor plotted using the Matlab software.  The green plot represents feature 

data from cocaine sample while the red plot represents feature data from 

non-cocaine sample. The black straight line that runs from 0.6 upwards is the 
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decision line or threshold. Values to the right of the decision line indicate 

presence of cocaine while values to the left indicate non presence of 

cocaine. Any value under the green plot to the right of the decision line 

interprets as true positives while any values under the green plot but to the 

left of the decision line indicates false negatives or missed detection. For 

the red plot, all values to the right of the threshold and under the red plot are 

feature data classified for cocaine detection but are apparently wrong 

decisions and are known as false positives or false alarms. The values to 

the left of the threshold under the red plot are decisions correctly classified 

as non-detections and are known as true negatives. 

From the above, depending on the position of the threshold, the posterior 

probability for all the 12 features is calculated. In addition, the receiver 

operator characteristic (ROC) curve which shows the relationship between 

the true positive and false positive rates is also developed.  Appendix B 

shows the ROC curve for all the selected features. 

To evaluate the performance of each feature in detection or non-detection of 

cocaine, we have divided the data into training and testing data in the ratio 

0.7:0.3 respectively. Of the 30% test data, 53% are not cocaine data while 

the remaining 47% are cocaine data. These were all ‘pseudo’ randomly 

selected (it was ensured that both sets of data contained at least one of each 

type). The training data is used to evaluate the threshold or cut-off point and 

using that threshold, the test data is inputted to assess the performance of 

threshold chosen and overall feature (see Appendices C and D). 
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6.3.1 Results 

Test Data 

The test data consists of data that were not used during training. There are a 

total of 39 sample data consisting of 18 cocaine data and 21 non cocaine 

data. The individual features were used in detecting for the presence or 

otherwise of cocaine and a summary of the results in terms of correctly and 

incorrectly classified data is shown in table 6.2 below. The confusion matrix 

performance for each feature is presented in Appendix D. 

Table 6.2 Percentage classification rates for all features 

Feature % correctly classified %wrongly classified 

AVI 90 10 

SS 87 13 

MNS 79 21 

MPCI 87 13 

MNCI 87 13 

PK 74 26 

AIR1 87 13 

AIR2 87 13 

AIR3 77 23 

AIR4 79 21 

AIR5 82 18 

AIR6 87 13 

 

While feature 12 aligns with previous performance rates for features 2,4 and 

5, feature 11’s 82% correct classification rate is third behind performances of 
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features 2, 4, 5, 7 and 8 with 87% and feature 1 with 90% correct 

classification rate. 

Overall, in terms of correctly identifying which samples are cocaine and 

which are not, feature 1 performs best with 90% correct classification rate. 

Features 2, 4, 5, 7 and 8 follow second with 87% correct classification rates 

while feature 11 follows in third position with82% correct classification rate.  

Table 6.3 Summary confusion matrix table for both training and test data 

Feature Training Data Test Data AUC (%) 
FAR TPR FAR TPR 

AVI 
0.15 0.80 0.05 0.83 87 

SS 
0.0976 0.70 0.095 0.83 91.46 

MNS 
0.1463 0.80 0.05 0.61 87.56 

MPCI 0.1463 0.80 0.095 0.83 90.49 

MNCI 0.1951 0.80 0.095 0.83 86.34 

PK 
0.2927 0.6250 0.05 0.61 73.96 

AIR1 
0.1951 0.80 0.095 0.83 91.22 

AIR2 
0.1707 0.80 0.095 0.83 90 

AIR3 
0.1463 0.60 0.095 0.61 86.83 

AIR4 
0.4390 0.80 0.24 0.83 79.02 

AIR5 
0.0976 0.60 0.05 0.67 82.44 

AIR6 
0.2927 0.80 0.095 0.83 83.51 

 
The tables above show the summary of results from the feature classification 

above. The false alarm and true positive values for each feature 
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classification is shown for both training and test data. All features have 

varying FAR/TPR pair performances. As stated earlier, the overall aim of this 

system is to reduce the FAR with as high as possible TPR value. A close 

look at the table will show that Features 1, 2, 4, 5, 7, 8, 10 and 12 perform 

well in terms of test data TPR values with approximately 83% success rate. 

However, of all the 7 features with good TPR rate, features 1 and 11 have 

the best FAR value of 0.05. Again, with a FAR value of 0.05, features 3 and 

6 provide low false alarm rates but their corresponding true positive rates of 

0.61 respectively make them poor classifiers. Finally, the area under the 

curve values represents the area under the receiver operator characteristics 

curve. This curve is the plot of false alarm rates against true positive rates 

with varying thresholds (Appendix C). The ideal curve has an area of 100% 

with a sharp corner on the far left. The farther away from the corner the curve 

tends, the lower the area of the ROC curve and thus the lower the TPR/FAR 

acceptable pair rates. 

Therefore, with a TPR/FAR pair of 83% and 5%, feature 1 is the best 

classifier from all 12 features. Overall, feature 1 gives a correct classification 

rate of 90%. In addition, feature 1 also gives a good AUC curve value of 

87%.  

6.4 Fusion of feature classification data 

The results above give the performance of individual features in the detection 

of cocaine. Although the feature values are calculated from a single sensor, 
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they could also be seen as extracted from different sensors. Each feature 

performs with varying results depending on the threshold set for the feature.  

From the two tables, we can see that features 1, 2, 4, 5, 7, 8, 10 and 12 give 

generally good TPR results for detection of cocaine while features 1 and 11 

give good FAR results. The best feature classification has been given as 

feature 1 with TPR-FAR rates of 0.83 and 0.05. In general individual features 

do not give satisfactory results for detection or non-detection. To achieve a 

higher accuracy, the results from the individual features are fused together 

and Bayesian inference is used in this chapter as the preferred method for 

fusing the data. 

6.4.1 Feature Fusion 

The system developed for this project involves a robot ferret carrying the 

sensor(s) and moving around in a container. The sensor(s) gathers data over 

time and analyses the data for detection of cocaine in real time.  

When the sensor is used to test an analyte, it generates a spectrum which is 

a plot of the wavelength versus intensity of the tested analyte. The spectrum 

then pre-processes the data and extracts features as explained in chapter 3. 

Using the steps described in the immediate previous section, the posterior 

probability of cocaine detection and non-detection for each feature is 

declared. The results declared by each feature are independent of each 

other as the only common factor between all features is the state. The data is 

analysed at every time t with the posterior probability from the previous 

iteration working as the new prior probability as given by EQ 6.6(a) below 

(Pangop et al., 2003). 
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Expanding on EQ.6.1, given an observation Pobs, the probability that it is a 

cocaine feature is given by 

  𝑃(𝐶|𝑋𝑜𝑏𝑠) = 𝑃(𝑋𝑜𝑏𝑠|𝐶)∗𝑃(𝐶)
𝑃(𝑋)

 and   (6.6a) 

 

  𝑃(~𝐶|𝑋𝑜𝑏𝑠) =  𝑃(𝑋𝑜𝑏𝑠|~𝐶)∗𝑃(𝐶)
𝑃(𝑋)

  (6.6b) 

The 𝑃(𝐶|𝑋𝑜𝑏𝑠) is the posterior probability of declaring for cocaine given 

the observation Xobs , P(X) is a normalizing factor that ensures that the sum 

of the a posteriori probabilities sum up to unity and is the sum of the products 

of likelihood probability P(Xobs|C) and the prior probability P(C). Equal prior 

probabilities has been assigned (assumption of no prior information) to avoid 

bias prediction results.  
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Table 6.4 Posterior probabilities of features 1 - 12 

Features P(T+|C) P(T+|~C) P(C|T+) P(~C|T-) 

AVI 0.71 0.16 0.8161 0.1839 

SS 0.59 0.05 0.9219 0.0781 

MNS 0.68 0.17 0.8000 0.2000 

MPCI 0.72 0.09 0.8889 0.1111 

MNCI 0.74 0.20 0.7872 0.2128 

PK 0.71 0.30 0.7030 0.2970 

AIR1 0.83 0.19 0.8137 0.1863 

AIR2 0.78 0.13 0.8571 0.1429 

AIR3 0.75 0.14 0.8427 0.1573 

AIR4 0.81 0.37 0.6864 0.3136 

AIR5 0.53 0.11 0.8281 0.1719 

AIR6 0.76 0.23 0.7677 0.2323 

 

When the sensor detects and takes sample data, the twelve features are 

evaluated from the spectrum. Using the threshold values introduced in 

section 6.3, each feature gives a declaration of cocaine or not cocaine with 

probability given in table 6.4 above at time t. For example, if the peak of a 

normalized data is greater than 0.28, feature 6 (PEAK) declares that the 

tested compound is cocaine with a probability of 0.71. The sensor then 

collects another set of data at time t+1 and analyses it giving a declaration of 

cocaine or not cocaine with likelihood probabilities. The new posterior is then 

calculated using this previous information. 
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For fused data, the process continues as before but at each stage, the fused 

decision based on combination of all feature decisions is extracted with 

corresponding posterior probability. 

Figures 6.5 and 6.6 show the performance of all 12 features over 18 cocaine 

test data samples. They also include the posterior probability of the fused 

feature level decisions (in black). The posterior probabilities are plotted 

against no of samples which may also represent temporal change. Posteriors 

are used to update new data to calculate new posteriors. The very good 

performance is indicated by values closest to the highest point (probability = 

1).  

 
 
 

Figure.6.5 Posterior probability of feature classification being correct after feature has 
declared for cocaine P(T+|C). 
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As can be seen, fused posteriors (in black) give the best results for cocaine 

detection. Even at points 3, 4 and 13 where the individual features declare 

non-presence of cocaine, the fused data gives a posterior of over 50% 

probability which will warrant at least further investigation of the container. If 

the threshold probability of giving an alarm when cocaine is detected is set at 

50%, then the fused decision will give a 100% true positive rate. 

 
 

Figure. 6.6 Posterior probability of feature making wrong decision based on positive 
declaration for cocaine P(T-|C) 

 
Figure 6.6 shows the posterior probability for each sensor feature making a 

wrong decision after declaring for cocaine P(T-|C). The model is tested with 

21 non-cocaine samples. Again, the probability of each of the sensors 

decreases to zero as time t increases. The ideal situation should be for each 

probability to tend to zero at every point in time. This is mirrored in the 

posterior probability for the fused data (shown in black). 
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Table 6.5 Confusion matrix for fused feature data 

a b Predicted as 
18 0 a = cocaine 
0 21 b = not cocaine 

Correct classification = 100% 
Incorrect classification = 0% 

 

The confusion matrix above represents results for fused feature test data 

using probability of 0.5 as threshold. As can be seen this yields in 100% 

prediction rate for cocaine. However, if a higher probability of 0.8 for instance 

is selected, the probability of a correct classification is reduced to 

approximately 89% with zero false alarms. Therefore, even when the prior 

threshold is increased from 0.5 to 0.8, there is no change in the false alarm 

rate even though the performance is slightly lower than the best feature 

classifier. Figure 6.7 shows the classification accuracies for individual 

features compared with the Bayesian Fusion. 

 

Figure 6.7 classification accuracies with features and Bayesian Fusion 
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6.5 Dempster-Shafer Implementation 

Following the methodology described in chapter 3, this section describes its 

implementation using the Dempster Shafer technique. The task is to be able 

to identify from a previously unknown analyte, the presence or otherwise of 

cocaine given the individual feature judgements (belief assignments). The 

chapter takes a cursory look at the Dempster-Shafer technique and its 

relation to the Bayesian technique. The chapter will then look at the 

weaknesses of the Dempster-Shafer combination rule and attempts by 

researchers to correct these weaknesses.  

6.5.1 Dempster-Shafer as a generalised Bayesian  

The Dempster-Shafer method is often termed as the generalized Bayesian 

theory of subjective probability and it is also known as the theory of belief 

functions. It solves some of the major issues faced by the Bayesian method 

as highlighted in chapter 3. The Dempster-Shafer (D-S) belief functions 

provide a new method for assigning probabilities to sets rather than to 

mutually exclusive singletons (Sentz, et al., 2002). As opposed to the 

classical Bayesian theory of subjective probability where evidence is usually 

attached to a single event, the D-S evidence is associated to a set of events 

(probability intervals). Obviously, when the available evidence suffices such 

that probabilities can be assigned to a singles event, the D-S will then 

transform back to the classical Bayesian Inference method. 
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6.5.2 Dempster-Shafer Modifications 

The steps to using the D-S technique have been dealt with in chapter 2. Key 

to these steps is the D-S combination rule. There are however, some 

weaknesses to this rule necessitating the introduction of modifications. The 

first weakness affects updating with new data (Seims, 2009). Due to the non-

associative properties of the basic probability assignment, the D-S 

combination rule makes it imperative to recalculate the basic probability 

assignments affected by the system update. The second weakness is the 

occurrence of counter intuitive results (Seims, 2009) when the bodies of 

evidence to be combined have a high degree of conflict. This is a direct 

implication of the renormalization constant in the D-S combination rule which 

occurs as a result of not properly dealing with conflicts (Kari, 2002).  

A classical medical example will suffice in explaining the second weakness 

(Sentz, et al., 2002): 

Given two diagnoses by two different physicians for a particular patient with 

neurological symptoms, the first physician believes that the patient has one 

of meningitis or a brain tumour (probability of 0.99 and 0.01 respectively). 

The second physician believes the patient actually suffers from a concussion 

with a probability of 0.99 but accepts that he may actually have a brain 

tumour (probability of 0.01).  

This implies that the patient may be suffering from one of meningitis, brain 

tumour or a concussion, i.e. 
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m(X) = {meningitis, brain tumour, concussion} 

m1(meningitis) = 0.99 

m1(tumour) = 0.01 

m2(concussion) = 0.99 

m2(tumour) = 0.01 

From the D-S combination rule, EQ.4.12,  

 𝑚1,2(𝐴𝑖) =  ∑ 𝑚1(𝐴𝑘)𝑚2(𝐴𝑗)
1− ∑ 𝑚1(𝐴𝑘)𝑚2(𝐴𝑗)𝐴𝑘∩𝐴𝑗=∅

𝐴=𝐴𝑘∩𝐴𝑗 ,  (6.7) 

The denominator of this equation is known as the renormalization constant, 

K and its ‘rationale’ is to ‘ignore’ all conflicts in the systems by assigning 

them to the null set.  

 1 −  ∑ 𝑚𝑖(𝐴𝑖)𝑚𝑗(𝐴𝑖) = 1 − 𝐾𝐴𝑖∩𝐴𝑗=∅    (6.8) 

Thus, continuing for the example above,  

1 - K = 1 – (m1(meningitis)m2(tumour) + m1(meningitis)m2(concussion) + 

m1(tumour)m2(concussion))  

 = 1 – (0.99 x 0.01 + 0.99 x 0.99 + 0.01 x 0.99) 

 = 1 - 0.9999 

 = 0.0001 
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Applying the combination rule (EQ.6.1) and normalizing with the value of 1 – 

K above will assign a value of 1 to m(tumour) in effect saying that the patient 

undoubtedly has a brain tumour. Clearly, this is a counter-intuitive result as it 

negates the possible diagnosis of both physicians. 

Over the years, researchers have come up with modifications to Dempster-

Shafer’s rule. The modifications focus on attempts to remove the 

weaknesses highlighted above. One of such modifications was introduced by 

Ronald Yager called the application of quasi-associative probability 

assignment to deal with the first weakness (Yager, et al., 1994).  

6.5.2.1 Yager’s Associative Operators and modified Dempster-

Shafer 

A data fusion system needs to continuously receive data from sensors and 

as such, requires that there is a consistent update of results depending on 

the information deduced from the newest set of data. As stated in the 

previous section, the D-S basic probability assignment (bpa) is non-

associative and thus the D-S combination rule has to constantly recalculate 

the bpas at every system update. To solve this problem, Yager (Yager, et al., 

1994) introduced the quasi-associative operators/operations. Yager argues 

that an important feature of combination rules is that it must be able to 

update its system when new data becomes available. Below is an 

explanation of system updates.  



178 
A. Akiwowo (2012) 
 

 

Suppose we have a set of elements W and * is a binary operator. If w1, 

w2…wn are elements in W, associativity and commutativity are important 

properties for combination rules and implies that 

 w1,* ( w2  * w3)  = (w1 * w2) * w3 ------- associative  (6.9) 

 w1 * w2 = w2 * w1 ------------------------ commutative  (6.10) 

Say the systems is to be updated with new data wn+1, such that we now have  

 w = w1 *  w2 …* wn       (6.11) 

and  𝑤� =  𝑤1 ∗  𝑤2 …𝑤𝑛 ∗  𝑤𝑛+1     (6.12) 

then              𝑤� =  𝑤 ∗  𝑤𝑛+1      (6.13) 

(6.13) shows as update of the ‘system’ W for every new additional set of data 

wn+1 and is only correct if the operator * is associative. 

A common combination rule which does not update is the arithmetic 

averaging rule. With the introduction of new data, finding the average of the 

new data and the average of the previous data will not yield in the correct 

average of the entire system. That is if we have a set of data  

 A = a1, a2, … an 

The arithmetic average is 

 E = 𝑎1+ 𝑎2+ … + 𝑎𝑛
𝑛

   = 1
𝑛

 ∑ 𝑎𝑖𝑛
𝑖=1     (6.14) 
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Introducing a new data point an+1, the new average  

 Enew ≠
𝐸 + 𝑎𝑛+1
𝑛+1

 i.e. ≠  [1
𝑛

 ∑ 𝑎𝑖]𝑛
𝑖=1 +  𝑎𝑛+1

𝑛+1
   (6.15) 

thus showing that the arithmetic average is not associative. To resolve this, 

Yager introduced a quasi-associative operator which responds to system 

update the same way an associative operator responds. To highlight this, 

suppose “∎ ” is a quasi-associative operator, then, according to Yager 

(Yager, et al., 1994),  

 𝑤1 ∎ 𝑤2 …∎𝑤𝑛 = 𝑇(𝑤1 ∗  𝑤2 … ∗ 𝑤𝑛)   (6.16) 

where T is a normalization mapping. 

Applying this to the arithmetic averaging rule, the new data point is added to 

the sum of the original set of data points and then divided by the total 

number of data. We thus have from (6.16) above, first we add the new data 

point an+1, 

   𝑆 =  𝑎1 +  𝑎2 +  … 𝑎𝑛 +  𝑎𝑛+1 

Then we divide by the total number of data points i.e. 

  Enew = 1
𝑛+1

∑ 𝑎𝑖𝑛+1
𝑖=1  

Introducing the normalization mapping, T, we then have 

  Enew = 𝑇(∑ 𝑎𝑖)𝑛
𝑖=1       (6.17)  
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Thus, using a sub-associative operator, the non-associative averaging 

operator has been converted to a quasi-associative operator. 

Finally, applying the quasi-associativity to Dempster’s combination rule, 

recall from (6.7) that the Dempster’s rule is 

   𝑚1,2(𝐴𝑖) =  ∑ 𝑚1(𝐴𝑘)𝑚2(𝐴𝑗)
1− ∑ 𝑚1(𝐴𝑘)𝑚2(𝐴𝑗)𝐴𝑘∩𝐴𝑗=∅

𝐴=𝐴𝑘∩𝐴𝑗  

Without the normalization, 1 – K, we have (Seims, 2009) 

  ∑ 𝑚1(𝐴𝑘)𝑚2(𝐴𝑗)𝐴=𝐴𝑘∩𝐴𝑗 = 𝑞(𝐴)     (6.18a) 

Yager’s combination rule or modified Dempster’s combination rule is thus 

now  

   m(A) = 𝑞(𝐴)
1−𝑞(∅)

       (6.18b) 

   𝑞(∅) =  ∑ 𝑚1(𝐴𝑘)𝑚2(𝐴𝑗)𝐴𝑘∩𝐴𝑗=0     (6.19) 

or 

  m(A) = T(q(A))      (6.20) 

where q(A) is known as the “ground probability assignment”, q(∅)  is the 

degree of conflict and the normalization mapping T is the normalization of 

conflict. 

The modified Dempster’s combination rule allows for update of data fusion 

systems using the Dempster’s combination rule which was not possible with 

the Dempster’s combination rule. 
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6.5.2.2 Dealing with counterintuitive results 

Another weakness of the Dempster’s combination rule is the occurrence of 

counter-intuitive results as shown in the medical example above. A critical 

look at the this weakness using the medical example above would show that 

intuitively, considering that two experts have agreed on a an hypothesis 

assuming that both experts have the same degree of reliability, one would 

expect that the result should be a confirmation of individual decisions 

(Campos, et al., 2005). Considering that they were two experts with a 

common low level of belief in a hypothesis but high level of belief in two 

disjoint hypotheses. A logical explanation would be that as more experts 

place a high level of belief in individually differing hypotheses and a low level 

of belief in a common hypothesis, the uncertainty of the common hypothesis 

will decrease since all the experts believe in it while the uncertainty of the 

individual hypotheses will increase as number of experts increase. 

The first step in trying to resolve this conflict as suggested by Yager is to 

replace the Dempster’s basic probability assignment with his ground 

probability assignment as shown in (6.18a). The ground probability 

assignment has the same property as the basic probability assignment in 

that it is constrained between values of 0 and 1 (Seims, 2009).  

With the ground probability mass q(A) obtained, the next step is to convert it 

to the basic probability mass. To do this, the ‘ignorant frame of discernment’ 

basic probability mass q(∅), is added to the non-ignorant null set ground 

probability mass K, to give (Wu, 2003) 
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With   m(𝜙) = 0 then     (6.21a) 

  𝑚𝑈(Θ) =  𝑞(Θ) + 𝑞(𝜙)    (6.21b) 

where Θ is the frame of discernment. 

Note that by adding the conflict to the frame of discernment as seen in 

(6.21b), Yager rather than ignoring the conflict like Dempster (EQ.6.1), 

increases the degree of ignorance in the system therefore, if there are no 

conflicts in the system, Yager and Dempster’s combination rules will yield the 

same results. If there are conflicts however, Yager’s combination rule will 

yield a more meaningful result. With the medical example given in the 

previous section, Yager’s combination rule yields that the belief that the 

patient is suffering from a tumour is 0.0001 and the degree of ignorance in 

the system is 0.9999 which is a more meaningful result (Yager, 1987). 

6.5.2.3 Inagaki’s Unified Combination Rule 

In his attempt to resolve the conflict issue and to have a single combination 

rule that can be used in every situation, Toshiyuki Inagaki created the Unified 

Combination Rule using Yager’s ground probability mass. The combination 

rule can be explained with the following: 

 m(A) = [1 + kq(𝜙)] q(A)  A≠ ∅, A≠ ∅              (6.22) 

 𝑚(Θ) = [1 + 𝑘𝑞(𝜙)] ∙ 𝑞(Θ) + [1 + 𝑘𝑞(𝜙)−  𝑘] ∙ 𝑞(𝜙)   (6.23) 

where k, lies within the range 
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 0 ≤ 𝑘 ≤  1
1−𝑞(∅) − 𝑞(Θ)

     (6.24) 

What Inagaki has done is to convert the ground probability mass as defined 

by Yager (6.21a) to a basic probability mass using equations (6.22) and 

(6.23) as against (6.21b) used by Yager. The implication of this is that 

depending on the value of k, at the highest possible value of k, i.e. k 

= 1
1−𝑞(∅) − 𝑞(Θ)

, Inagaki’s unified combination rule aligns with Dempster’s while 

at the lowest value of k, i.e. k = 0, it aligns with Yager’s rule (Wu, 2003). In 

between, Inagaki believes that the optimal value of k is open to research.  

The sections above have been able to highlight two main weaknesses in the 

D-S technique for data fusion. While alternate combination rules have been 

propounded by researchers to combat these weaknesses, two of them, 

developed by Yager have been discussed. Inagaki has gone ahead to 

propose a Unified combination rule with aims of aligning with both Yager and 

Dempster’s combination rules depending on values chosen for the 

normalization k. 

6.6 Application of Dempster-Shafer technique to cocaine detection 

The details of the experimental set up used in this thesis have been 

explained in chapter 4. Feature extracting techniques used has also been 

explained in chapter 5. Twelve features have been extracted for decision 

making when detecting for the presence or otherwise of cocaine from an 

unknown substance. As explained in the previous chapters, each feature will 
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make a decision on whether there is cocaine, not cocaine or unknown. 

Therefore, the three hypotheses represented by the frame of discernment Ω, 

 Ω = {h1 h2 h3}     (6.25) 

and the corresponding power set 

2Ω = {∅, {ℎ1}, {ℎ2}, {ℎ3}, {ℎ1,ℎ2}, {ℎ1,ℎ3}, {ℎ2ℎ3},Ω} (6.26) 

Where ℎ𝑖  are the possible hypotheses i.e. cocaine, not-cocaine and 

‘unknown’ (could be cocaine or not-cocaine) for i = 1, 2.  

The model used for the DST is adapted from the model developed in chapter 

 4 and is similar to the Bayesian adaptation (figure 6.8).  
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Figure.6.8 the DST model 

The aim of the DS approach is to improve on the result from each feature 

based classification technique. These features are known as the primary 

classifiers.  They assign probability masses to the propositions (i.e. cocaine, 

~cocaine) and the masses are then combined using combination rules 

(described in earlier sections) and evidential intervals are then defined.  

Basic Probability Assignment (bpa) 

The bpa has been explained in previous sections. It Is also known as the 

belief mass and is the weight attached to knowledge known about features. 

The features identified determine the presence or otherwise of cocaine that 

is C or ~C. Dempster Shafer gives the opportunity for the system to output 
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an ‘unknown’ event that is (C, ~C). The belief masses for the features are as 

defined below: 

Cocaine 

Cocaine belief mass is defined as correct cocaine prediction as given in 

equation 6.27  

  𝑚𝑖(𝐶) =  𝐴𝑐𝑐
𝑖

𝑁𝑡𝑐
𝑖     (6.27) 

where 𝑚𝑖(𝐶) is the cocaine belief mass from feature i; 𝑁𝑡𝑐𝑖  is the total number 

of correct cocaine data from feature i; 𝐴𝑐𝑐𝑖  is the correct cocaine decisions 

from feature i. 

Non-Cocaine  

Non-cocaine belief mass is defined in terms of non-cocaine prediction as 

given in equation 6.28 

  𝑚𝑖(~𝐶) =  𝐴𝑛𝑐
𝑖

𝑁𝑡𝑛
𝑖    (6.28) 

where 𝑚𝑖(~𝐶) is the non-cocaine belief mass from feature i; 𝑁𝑡𝑛𝑖  is the total 

number of correct non-cocaine data from feature i; 𝐴𝑛𝑐𝑖  is the correct non-

cocaine decisions from feature i. 

Unknown belief mass 

The unknown belief mass is defined as the wrong cocaine and non-cocaine 

decisions as shown in equation 6.29. 
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  𝑚𝑖(𝐶, ~𝐶) =  𝐴𝑐𝑤
𝑖 + 𝐴𝑛𝑤𝑖

𝑁𝑡𝑐
𝑖 + 𝑁𝑡𝑛

𝑖   (6.29) 

where mi(C’~C) is the unknown belief mass from feature i; Ai
cw is the number 

of wrongly classified cocaine data from feature i; Ai
nw is the number of 

wrongly classified non-cocaine data from feature i;  

D-S for tracking 

As previously mentioned, the fusion performed in this dissertation is in two 

stages – the first stage is the fusion of decisions across features while the 

second stage is the fusion of over time or tracking. Unlike the Bayes rule 

which accommodates time evolution, a first glimpse of the D-S rule will show 

that it does not accommodate evolution over time (Koks & Challa, 2005). 

However, this can be allowed for by extending the application of the D-S 

equation stated in (6.7) this time allowing the sets Ak and Aj to refer to new 

and old data rather than data from two different sensors (Zou et al., 2000) 

(Koks & Challa, 2005). 

6.7 Decision making and Results 

Using the individual feature classification estimates as baseline the 

Dempster-Shafer combination of feature probability estimates were tested on 

the same experimental test data for comparison. Equations 6.27 to 6.29 

show the equations used in calculating the belief masses.   

The bpa are used to assign mass values for each feature based on the 

feature’s decision. For every test data, all the mass values are combined to 
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obtain a total mass values for m(C), m(~C) and m(C,~C). The highest 

assigned mass value is chosen as the correct hypothesis. 
N

um
be

r o
f s

am
pl

es
 

 

Figure 6.9 D-S classification accuracy compared with features. 

 

The figure above shows the results of the classification accuracy of all 

features and that of the D-S. The result is an evaluation over two time 

periods. In the first time period, the masses are evaluated as explained 

earlier in this section with corresponding confidence interval. Time period two 

follows the same process as time period one and the confidence intervals of 

both periods are then combined. The accuracy in terms of number of 

correctly identified cocaine/non-cocaine samples are the same at both levels 

but with increased confidence intervals. 

In Figure 6.9, Feature1 (AVI) performs better than all other features in terms 

of correct classifications but the D-S performs even better than feature1. The 

results are based on the same 39 test data used for the Bayesian technique. 
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17 as cocaine and 20 as not cocaine. Interestingly, the non-identified cocaine 

and non-cocaine data were classified as non-cocaine and cocaine 

respectively while no data set classified as unknown. This will most likely be 

due to the fact that the hypotheses involved in this dissertation are mutually 

exclusive. This shows that  the D-S Technique’s theoretical advantage over 

the Bayes technique in making room for a value for ‘unknown’ situations 

does not come into play in this application. Moreover, in reality, an unknown 

decision will generally yield the same response as a positive response/false 

alarm which is a manual search of the container. This means that for the 

purpose of this dissertation, this ability of being able to decide for unknown 

situations does not mean an advantage. 

6.8 Comparison of results 

Once a justification for the technique adopted has been shown, the rest of 

the project involves the display of the results to the operator. This chapter will 

outline the development process for the interface built to display results in 

this dissertation with an overview of the ferret robot itself. 

As a reminder, the two techniques have been detailed earlier in this chapter. 

These are the, Bayesian and Dempster-Shafer techniques.  
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Table 6.6 Comparison of feature classifiers and fusion classifiers. 

 Performance 

% correctly classified % wrongly classified 

Feature 1 90 10 

Feature 2 87 13 

Feature 3 79 21 

Feature 4 87 13 

Feature 5 87 13 

Feature 6 74 26 

Feature 7 87 13 

Feature 8 87 13 

Feature 9 77 23 

Feature 10 79 21 

Feature 11 82 18 

Feature 12 87 13 

Bayes 100 0 

DST 95 5 

 
Table 6.6 shows the performance of both the Bayes and DS techniques on 

the test data. It also includes individual performance of each feature.  It can 

be seen that the Bayesian gives the best result given a 0.5 prior threshold. 

Even when this threshold is increased to represent little prior information 

about the container being investigated, the correctly classified data falls to 

about 89% which though is less than the D-S 95%, still performs better than 

the best feature value. In addition, achieving a zero false alarm rate at this 

threshold performs better than the 5% false alarm rate of the D-S technique. 
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In summary, Wu (2003) gives the following as situations where Bayesian or 

Dempster-Shafer technique may be more appropriate for sensor data fusion 

(see table 6.7): 

Table 6.7. Where to use Bayesian/Demspter-Shafer (Wu 2003) 

Use Bayesian Use Dempster-Shafer 

All hypotheses are mutually exclusive 
i.e. if P(A) = p, then P(B) = 1 – p where 
A and B are complements 

Hypotheses may have overlapping 
hypothesis 

Prior probability distributions are known. Prior probability distribution is unknown, 

Data measurements are easily 
evaluated by their probabilities 

Data measurements  partially 
correlate to probability distributions, 
ignorance needs to be accounted for 

Joint probability distribution is known, or 
data measurements are conditionally 
independent 

Joint probability is not known, 
observations are independent 
 

Direct evaluation of probabilities helps in 
maximizing expected utility 
 

Difficulty in relating evidence with 
probability distribution, thus weak in 
decision-making support 

 

6.9 Human Computer Interface 

The user interface is the interface between the operator and the DF system. 

The results are displayed for the user to interpret. This chapter will highlight 

issues to be considered in the HCI. It will also give a brief description of the 

ferret robot and its key features.  

6.9.1 The Human – Computer Interaction 

Displaying the results of a data fusion implementation is critical for the user. 

The human/computer interface (HCI) provides tools for the human operator 
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to control and guide the fusion process. It is also through the user interface 

that the results of the fusion process are presented to the operator.  

The role of the user in a data fusion system (level 5) is varied and dependent 

on the system. The user can play a very important role by being the one who 

determines what is of interest and what information is needed to support the 

data acquired (Blasch, 2009). However, in many cases, the User could just 

be the operator whose responsibilities are limited to interpreting information, 

facilitating and reporting information. In this thesis, the user assumes the 

latter role. Although in many cases, the operator is trained for the task and 

his role is well defined (Blasch, 2009), it is important that the user interface 

be well designed such that it is easy for the operator to use. The challenge 

therefore is how to present the complex data to the user in such a way that 

he will be easy to retrieve and manipulate information (Mandiak et al., 2005). 

In addition, for many fusion processes, post fusion reports may also be 

generated by the interface and stored or passed on to relevant authorities.  

In this thesis, the user interface serves two main purposes. The first purpose 

is to acquire and manipulate data from the sensor(s) and the second purpose 

is to provide a means to control the ferret robot which will serve as the 

platform which will carry the sensors. Figure 6.10 below shows the robot 

which was designed and built by the team at The University of Sheffield, UK. 

Development of the User interface was done using Microsoft Visual Basic.net 

– an object oriented software program implemented on the .NET framework. 

The approach used in the design of the interface allows a direct interaction 

between the operator and the robot. This direct interaction involves the 
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operator deciding when to move the robot, in what direction and when to stop 

the robot from moving. His decision will be based on a number of factors 

including visual information (the operator is able to see what the robot can 

see via two cameras placed in front and behind the robot) and sensor 

information (based on the decisions on the presence or non-presence of 

cocaine, the operator will decide whether to stop the robot or not). 

6.10 The Ferret Robot 

The ferret robot is shown in figure 6.10 below. Its main features are the body, 

its wheels and the sensors. 

The robot’s body is divided into three sections. The front and back sections 

contain the cameras which act as the robot’s ‘eyes’ and provide visual data 

for the operator via the user interface. The other cocaine detecting sensors 

are placed on the front panel of the robot. The middle section carries the 

control panel of the robot and it is this control panel that communicates 

directly with the computer where the user interface is installed.  

 

(a) 3D Model 

 
(b) Moving on 

level ground 

 

(c) Wall 
Climbing 

 

(d) Ceiling 
Climbing 

Figure.6.10 showing a 3D model of the robot and different moving positions 
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The wheels of the robot are made of magnetic material. This enables the 

robot to be able to mount on metallic surfaces and attach itself to the surface 

whilst moving around the container.  

The sensors are the camera and fibre optic sensors which are the parts of 

the robot that interacts with its environment. The cameras gather visual data 

for the operator while the sensors collect air sample data for further analysis. 

The extraction of features and eventual data fusion analysis is performed on 

the host computer.  

Communication between the host computer and the robot is by RS232 for 

now. There are plans to convert this to wireless technology in the nearest 

future. 

6.11 User Interface development 

Figure 6.11 shows the HCI designed for this project. The main controls for 

robot manipulation include the power button (1) and direction buttons (2). 

The power button turns the robot on and off while the direction buttons (left, 

right, up and down arrows) manipulate the motion of the robot. There is also 

a power switch on the robot which acts as the primary power switch. Visuals 

transmitted via the cameras on the robot can also be recorded and replayed 

via the buttons shown directly beneath the video screen.  

Once the robot is switched on (first by the main power switch on the robot 

and then via the power button on the interface), the video screen is also 

automatically turned on. It gives the operator the opportunity of seeing the 
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robot’s environment and then determining in what direction to move the 

robot. Once the robot begins to move, the operator can also activate data 

acquisition by the sensors by clicking on the ‘acquire data’ button. This gives 

the sensors attached to the robot to begin to acquire data. As data is 

acquired, the system also begins to process the data (feature extraction, 

detection decision, etc) as explained in previous chapters. If a substance is 

detected, the system gives an alarm in form of a red light beside the ‘cocaine 

meter’. The meter is a score of probability of positive detection of cocaine 

ranging from 0 to 100. The red circle in front of the meter changes colour 

from green (no cocaine) through yellow to red. The yellow and red colours 

are dependent on the probability value. Between 0 and 50, the colour flashes 

yellow but when this value exceeds 50, the colour changes to red. 

 

Figure 6.11 Human/Computer Interface 
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6.11.1 User Interface features 

Power Button 

The red power button at the bottom right of the interface will turn the robot on 

and off.  

Sensor Power Button 

The sensor start and stop button opens and closes the port connecting the 

sensor via the robot’s circuit board to the computer.  

Direction buttons 

The direction buttons are the four (up, down, right and left) buttons used in 

controlling the movement robot inside of the container. There is an auxiliary 

joy stick which can be used instead of the direction buttons. 

Visual Display Windows 

There are two visual display windows. Each one of them relays the feeds 

from the cameras placed in front and behind the robot real time. 

Report Screen 

The report screen displays the results of the fusion process when the 

operator demands for it. Basic information include, name of shipper, whether 

the container is cleared or not (determined by the operator), origin of 

container. 

Threshold Slider 

The threshold slider is available in steps of 0.2. The operator decides the 

threshold at the start of the process (before the sensor port is opened) and 

cannot be changed until the container is cleared (or otherwise).  The slider is 

designed in such a way that slider values are locked to 0.1. 
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Camera controls 

The camera controls are typical controls for a video feed. The record button 

allows for recording of feed, the play, pause, rewind and forward buttons 

allows for playing, pausing, rewinding and forwarding of recorded feed. 

Cocaine Detection Alarm – the cocaine detection alarm is a glowing yellow 

button which turns red when cocaine is detected. It works together with an 

horizontal display which moves based on the final posterior probability. The 

visual alarm is triggered once this probability exceeds the pre-set prior. 

In the design of the interface, the writer was guided by the nine usability 

criteria as given by Blasch (Blasch, 2000). These criteria are –  

Appropriate functionality – The interface must meet the aims for which it was 

designed.  

Visual Clarity - displayed information should clear and well organised, easy 

to read, unambiguous and should enable users to find required information, 

draw the user’s attention to important information and also to allow the user 

to see where information should be quickly and easily entered. 

Consistency – the looks and workability of the interface must be consistent to 

make it predictable by the operator. 

Compatibility – the user interface should meet existing user interface user 

conventions making it easier for operators to navigate, understand and 

interpret controls on the interface. 
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Informative feedback – the operator should be clear about the steps they are 

taking and steps they will be taking while operating the interface.  

Explicitness – the use of controls and overall way the system works should 

be clear to users. The interface is designed in such a way that the operator 

and anyone else can easily understand what the system does. The interface 

is also carefully labelled to guide operators. 

Error Prevention and correction – occurrence of operator’s errors should be 

minimised as much as possible and when they occur, operators should be 

able to check their inputs and thus correct potential errors before 

implementation. In the Ferret Robot User interface, the input required by the 

system includes data of the cargo being checked and the threshold set. For 

the former, there is an in built spell check system which suggests possible 

spelling corrections for the operator. The slider is used to select a threshold 

and has a ‘lock’ in system that locks to every 0.1 threshold value to reduce 

errors. 

User guidance, usability and support – operator must have an informative 

and easy to use guidance to help him understand the use of the system. A 

relevant easy to use help system is provided with this interface to help the 

operator manoeuvre around the system. Access to this help guide is via the 

tools menu – Tools --> Help. 

Flexibility and Control – the user interface must be flexible and easy to 

control. From the interface screenshot shown in figure 6.11, it would be 
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noted that the design is such that anyone can easily use it. The buttons are 

well labelled in clear plain language to enable easy interpretation. 

6.12 Chapter Summary 

In this chapter, the Bayesian and Dempster-Shafer techniques have been 

implemented into the model developed in chapter 4 accompanied by 

background explanations of the Bayes and DS theories and how they relate 

to data fusion. The chapter has also looked at the parameters involved in 

Bayesian statistics including likelihood, prior and posterior probabilities. The 

chapter then then went on to investigate the classification strengths of 

various features extracted from spectra to test for cocaine. A confusion 

matrix was extracted from the performance of each feature detailing its True 

positive, false positive, true negative and false negative values. In addition, a 

posterior probability for making correct and incorrect decisions based on the 

feature declaring for cocaine was also computed and the results displayed 

on a table. The posterior probabilities of the fused data was also compared 

with that of each of the features on a graph and again the fused data showed 

improved performance over performance of each of the features. Overall, 

using Bayesian algorithm, this dissertation has shown that fusion of data 

from multiple features presents a better result than each of the features 

respectively. 

The chapter also described the Dempster-Shafer technique for combination 

of data from multiple features and then going on to discuss the strengths and 

weaknesses of this technique and various extensions as described by Yager 
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and Inagaki’s modification of the combination rule. The implementation of the 

D-S technique gives an improved result compared to the individual feature 

accuracies. However, a comparison of both the Bayes and D-S shows that 

the Bayes accuracy is higher than that of the D-S at a certain threshold and 

even when the threshold is increased to make room for unavailable prior 

information, the false alarm rate of the Bayes still performs better than that of 

the D-S. 

In the concluding parts of this chapter, the HCI development process was 

described along with a brief description of the ferret robot and its features. 

The HCI development follows some guidelines or usability criteria as given in 

literature and these are also highlighted. 
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CHAPTER 7 

7 
 

CONCLUSION 
 

7.1 Summary 

In traditional sensor fusion systems, the focus is usually aimed towards how 

to detect or evaluate specific target parameters improving on reliability and 

accuracy. Looking at this directly, perhaps the cheapest way of achieving this 

improvement on accuracy and reliability is by adding measurement 

redundancy which in turn can be achieved in one of two ways (Wu, 2003); 

either increasing the number of sensors to measure the same parameters or 

using a single sensor to take multiple measurements over time. In other 

words, sensor fusion can be achieved either temporal that is taking 

measurements over time or spatially with the use of multiple sensors (Hall, 

1992). In addition to this, sensor fusion can be achieved by a combination 

both spatial and temporal data using of multiple sensors measuring similar 
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parameters over time. Usually before sensor fusion is performed, the raw 

data is pre-processed before fusion (Dey et al., 2000) (Wu, 2003). 

Commonly used fusion techniques include Bayesian fusion and Dempster-

Shafer techniques.  

Fibre Optic sensors are developed using optical fibres as the sensing 

element. Fibres can be Step index multimode, Graded Index Multimode or 

Single mode. Optical fibres have the advantage of being small in size and 

economical. Fidanboylu et al (2009) have categorised fibre optic sensors into 

three based on their applications – Physical (temperature, stress), Bio-

medical (measurement of blood flow, glucose content and so on) and 

Chemical sensors (usually used for spectroscopic, gas analysis and pH 

measurement). In addition, fibre optic sensors can be one of four types – 

Intensity based, Wavelength Modulated, Phase modulated and Polarization 

modulated fibre optic sensors. A kind of wavelength modulated fibre optic 

sensor called the UV multimode fibre-optic fluorescence sensor is used in 

this dissertation and is based on a MIP11 containing fluorescence in moiety 

as the detector which signals the presence of the analyte in the compound.  

The detection of cocaine using fibre optic sensors faces a major challenge. 

The challenge is that while the sensor can detect cocaine as required, it will 

simultaneously detect for multiple of other substances. When the 

concentration of the sample is known, it is possible to uniquely identify the 

                                                           
11 MIP – Molecularly Imprinted Polymers are synthetic receptors that can be synthesized for a 
variety of target molecules 
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individual compounds from the sample. However, in real life, this 

concentration is unknown and as such a means of detecting cocaine from 

sample compounds without a priori knowledge of concentration of compound 

is required.  

In this thesis, a methodology to address the challenges posed by the unique 

identification of cocaine when there is no a priori information on the 

concentration of the compound was recommended. The methodology uses a 

bottom up approach to meet the challenges.  

In the first instance, the raw data extracted by the sensors is pre-processed 

and then normalised to achieve a common spatial reference for the data. 

Cleaning the data involves removing outliers and noise generally from the 

raw data. This stage is the level one processing stage represented in the 

JDL model. 

The next step involves identifying unique characteristics which identify 

cocaine samples from non-cocaine samples. The identification of these 

unique features is a key process in the data fusion process. Features are 

basically a representation of the raw data and helps give a reduced data set. 

Features must however accurately and concisely represent the original 

information in the raw data (Hall, 1992). In addition to helping to reduce data, 

a feature extraction process also ensures that only a minimum data storage 

requirement is needed. For the feature extraction process in this dissertation, 

the raw data was analysed to find characteristics which will correctly model 

the raw data and aid the identification process. A number of features were 
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identified based on ‘activity points’ from the intensity count and wavelength 

graphs, plotted using the raw data. The features were tested and validated 

with real data taken from the fibre optic sensor tested in a laboratory at City 

University, London. The data was divided into two sets with training and test 

sets. The training set was used to train the features and the test set which 

was not part of the training set was used for validation. The results were 

positive and showed the features were a good fit to uniquely identify cocaine 

sample from non-cocaine samples. Once the features have been extracted, 

they are passed as inputs into the data fusion model. 

Sensor fusion is mainly seen as a method of transforming data from its raw 

state into a more intelligent state with some level of abstraction (Wu, 2003). 

There are three major types of fusion architectures (Hall & Llinas, 1997) – 

Centralised fusion with raw data which basically uses either raw data or 

derived data from multiple sensors to make a decision on the state of an 

entity, Centralized Fusion with feature vector data which fuses features 

extracted from raw data in a central fusion process and Autonomous fusion 

architecture where the extracted features from raw data make individual 

decisions which are then passed on to a fusion process and an identity is 

declared. The fusion process in this case can be implemented using a wide 

range of methods including Bayesian Fusion and the Dempster-Shafer fusion 

algorithm. The bottom up methodology adopted in this dissertation is an 

extension of the autonomous fusion architecture. Consideration of the goal to 

be achieved was the background focus in developing the architecture. The 
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overall goal is to detect the presence or otherwise of cocaine in a cargo 

using optical fibre sensors. The sensor is carried to the container using a 

ferret robot which is remotely controlled from a safe distance. The entire 

processing and fusion of the data received from the sensor is displayed on a 

user interface. In addition, the interface is used to control the ferret. 

Researchers have advised that the fusion process be as close to the raw 

data as possible to avoid information loss even though there is a cost of 

increased computation workload that comes with this as shown in Table 7.1 

(Hall, 1992): 

Table 7.1 Suggested proximity between raw data and fusion process 

 Relative 

Computational 

Requirement 

Required 

Communicati

on Bandwidth 

Estimation 

Accuracy 

Processing 

Complexity 

In
cr

ea
si

ng
 p

ro
xi

m
ity

 

fro
m

 ra
w

 d
at

a

 High High High High 

Medium Medium Medium Medium 

Low Low Medium Low 

Very High Very High High High 

  

The qualitative nature of the above table shows that the methodology chosen 

allows a sacrifice of estimation accuracy for improved bandwidth, 

computational requirements and processing complexity. Quantitatively 

however, as shown in the results in previous chapters, this method leads to 

very high result accuracy. 
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This methodology interacts with the database although it does not state how 

this interaction should be implemented. However, in the implementation 

programme designed for the thesis, the database is connected to the system 

via the ODBC interface. The database and user interface are all on the 

platform system. The user interface is designed using visual basic 

programming language which gives room for future development. The 

database of a fusion system is mainly required for data input (receiving raw 

and feature data), storage (a priori data), archiving.  

The user interface facilitates the display of information from the processing 

unit. This information must be received by the user on time and without 

complexities. As designed, it also gives the user the ability to manoeuvre the 

ferret robot via a joystick or direction buttons on the interface. The operator 

will also determine when to open ports to receive data from the sensors.  

Prior to opening the port, the operator can decide the sensitivity of the 

system by deciding a threshold for probability of detection for the DF system. 

As shown earlier, at 50% threshold, the system gave a 100% performance 

based on test data used. The lower the threshold, the higher the sensitivity of 

the system. Operators can base threshold values on a priori information on 

cargo being investigated. If the cargo is from a known shipper, the threshold 

can be set to a higher value (recommended value not higher than 60%). 

Unknown shippers should have a lower threshold and cargo from suspected 

shippers an even lower threshold. 
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Once the system starts receiving data, processing the data is done by the 

system without any input from the operator with the operator monitoring the 

movement of the robot via two screens on the interface showing visuals from 

the front and back cameras. The results are then displayed on the interface 

for the operator who can decide to produce a report detailing the process 

including shipper information as entered by the operator at the beginning of 

the process. 

 

7.2 Recommendation to industry 

7.2.1 Cocaine Detection Implementation Summary 

Using the methodology summarised in section 7.1, the raw data was tested 

with two data fusion techniques – Bayesian and Dempster-Shafer (DST).  

The results from the tests show that the Bayesian gives better results in 

terms of the parameters identified and defined in Appendix C - false 

positives, false negatives, true positives and true negatives than the DST.  

7.2.2 Successful Implementation 

This thesis addresses the challenges of a fibre optic sensor in the detection 

of cocaine from a sample. Specifically, a generalizable architecture for fusion 

is suggested using extracted features and a sensor fusion algorithm is 

implemented. Ideally, the methodology suggested is a bottom – up 

methodology which shows great promise in overcoming the sensor 

limitations and in addition, providing an opportunity for additional sensors to 

be used. The additional sensor could be a similar fibre optic sensor for 
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cocaine detection or another sensor for detection of contraband. In either 

case, the additional sensor(s) will work independent of other sensor(s). The 

results are fused based on a logical OR fusion node. The algorithm 

implemented uses the Bayesian theory as a fusion technique. The decision 

of the system is accompanied by a probability value which if it exceeds a 

threshold pre-set by the operator, decides for positive detection. This will let 

the operator have an input into the system. This input could be based on 

what is known as prior information.  

Artificial Neural Networks technique was also used in validating the features 

selected in this thesis. Thus introducing these techniques into cocaine 

detection analyte detection using a fibre optic sensor and the feature 

selection and validation are key contributions of this thesis. In addition, a 

user interface which gives the operator the ability to remotely control the 

robot and also visualize robot’s movements within the container while 

watching out for sensor results was also developed in this dissertation. 

7.3 Limitation of the Research 

In summary, this thesis has succeeded in developing a data fusion system 

for cocaine detection in a cargo container using a ferret robot which carries 

the sensor to the container. This system as it stands gives a high enough 

true positive rate and a low false positive rate to improve operator confidence. 

However, cocaine is not the only contraband which threatens UK borders 

(and other borders around the world). Heroin, and perhaps importantly, 

Improvised Explosive Devices (IEDs) are all threats. For some, there are 
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existing sensors which work in detecting these substances. In cases where 

sensors are not available, sensors could be developed to detect them. The 

model developed in this dissertation makes room for additional sensors to be 

added. The sensor may either detect for cocaine or other contrabands. In the 

case of the former, a fusion node working with a logical OR may be added to 

give the system flexibility of giving of a positive detection alarm when either 

of the sensors decides so. If an AND logic is used for the former, it will make 

the system more reliable in terms of lower false alarms but may affect the 

true positives since it needs the two sensors to decide positive to give a 

positive detection. However, for the latter, an OR logic fusion node will be 

added. Each of the sensors will have serial and independent processing 

units. A challenge may come up in terms of sensor data collection times. 

This is a factor that needs to be decided if additional sensors are used.  

 Another area for improvement is in the threshold set by the operator at the 

start of the process. This threshold for this system is set by the operator. 

However, in future, it could automated based on parameters such as origin of 

cargo, prior information on shipper’s integrity. A rating system may be 

developed for shippers whereby the system only needs the shipper’s rating 

to automatically determine a threshold. 

7.4 Conclusion 

In conclusion, this dissertation has developed a model to implement data 

fusion for single sensor detection of cocaine in cargo containers coming 

through the borders. The sensor output was analysed and processed and 
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then inputted into a data fusion model. This model has been developed in 

such a way that additional sensors for detecting other substances can be 

easily integrated in future. The Dempster Shafer and Bayesian techniques 

were investigated with the Bayesian technique showing better results in 

terms of correctly detected data. The overall result is thus an output which 

provides meaningful information and thus instils confidence in detection 

decision. This result is displayed in a visual user interface. The dissertation is 

an important part of a multi-disciplinary project tagged the Cargo Screening 

Ferret project sponsored by the UK Home Office and EPSRC12.  

 

 
 
 

 
 

 

  

                                                           
12 Engineering and Physical Sciences Research Council 
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APPENDIX 
Appendix A 

The figure below shows the intensity plots of raw data against wavelength for 

cocaine at five different concentrations. Cocaine at 1000uM has the highest 

wavelength peak followed by 500uM, 250uM, 100uM and 25uM respectively 

implying a proportional increase in concentration relative to wavelength peak. 

This trend is repeated for other compounds. 

 

 

Figure A (i) raw data plot of intensity vs wavelength for cocaine at different concentrations 
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Appendix B 

Normal and Receiver Operator Characteristics plot for features 

The Receiver-Operator Characteristics (ROC) curve is a plot of false alarm 

rates (specificity) versus true positive (sensitivity) for every possible 

threshold value. It is also a technique to select appropriate threshold value 

based on trade-offs between the specificity and selectivity. 

The area under the ROC curve (AUC) is used as a parameter to indicate the 

accuracy of the test. Ideally, the area under the curve should be 1 however, 

in real life, this is rarely so. Realistically, the closer to 1 the AUC is, the more 

accurate the result.  

Feature 1 

  

    FigureB(i) Normal Plot for feature 1 FigureB(ii) ROC curve for feature 1 
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 Feature 2 

  

FigureB(iii)Normal Plot for feature 2  FigureB(iv) ROC curve for feature 2 

Feature 3 

 
 

FigureB(v)Normal Plot for feature 3  FigureB(vi) ROC curve for feature 3 

Feature 4 

  

FigureB(vii)Normal Plot for feature 4  FigureB(viii) ROC curve for feature 4 
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 Feature 5 

 
 

FigureB(ix)Normal Plot for feature 5  FigureB(x) ROC curve for feature 5 

 Feature 6 

  

FigureB(xi)Normal Plot for feature 6  FigureB(xii) ROC curve for feature 6 

Feature 7 

  

FigureB(xiii)Normal Plot for feature 7  FigureB(xiv) ROC curve for feature 7 
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Feature 8 

 
 

FigureB(xv)Normal Plot for feature 8  FigureB(xvi) ROC curve for feature 8 

Feature 9 

  

FigureB(xvii) Normal Plot for feature 9  FigureB(xviii) ROC curve for feature 9 

Feature 10 

 
 

FigureB(xix) Normal Plot for feature 10  FigureB(xx) ROC curve for feature 10 
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Feature 11 

 
 

FigureB(xxi) Normal Plot for feature 11  FigureB(xxii) ROC curve for feature 11 

 

Feature 12 

  

FigureB(xxiii) Normal Plot for feature 12  Figure B(xxiv) ROC curve for feature 12 
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Appendix C 

Feature1 (Average change in intensity) 

 

Figure C(i) Normal distribution curve for 
classification using feature 1 

Table C(i) TPR and FAR for 
varying threshold 

Threshold TPR FAR 

-0.015 0.8 0.15 

-0.025 0.85 0.61 

-0.03 1 0.76 

 

 

Figure C(ii) Column chart showing relative frequency of data for feature 1 

Using -0.015 as the threshold, the feature misclassified 15% of the not-

cocaine test data as cocaine and 19% of the cocaine data as not-cocaine. 
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Feature 2 (Steepest Slope) 

AUC = 91.46% 

 

Figure C(iii) Normal distribution curve for classification 
using feature 2 

Table C (ii) TPR and FAR 
for varying threshold 

(Steepest slope) 

Threshold TPR FAR 

2.0 1 1 

2.5 1 0.9512 

3.0 1 0.8780 

3.5 1 0.7317 

5.0 0.80 0.1951 

5.5 0.70 0.0976 

 

 

Figure C(iv) Column chart showing relative frequency of data for feature 1 

Feature 2 involves classifying the analytes using the ‘steepest slope’ as the 

input. As can be seen from the table, the best threshold value is between 

threshold 4 and threshold 5 giving FAR and TPR pairs of (19.51%, 80%) and 
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(9.76%, 70%) respectively. The Area under the ROC curve is 91.46%. In this 

case, with a lower false alarm rate of about 9%, the threshold 5.5 is chosen.  

Using 5.50 as the threshold, the feature misclassified 5% of the not-cocaine 

test data as cocaine and approximately 31% of the cocaine test data as not-

cocaine. 

Feature 3 (Maximum negative slope) 

AUC = 87.56% 

 

Figure C(v) Normal distribution curve for classification 
using feature 3 

Table C (iii) TPR and 
FAR for varying 

threshold (maximum 
negative slope) 

Threshold TPR FAR 

-1.5 1 1 

-1.75 1 0.9756 

-2.00 1 0.8780 

-2.25 1 0.5854 

-2.50 0.8 0.1463 

-2.75 0.1 0 
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Figure C(vi) Column chart showing relative frequency of data for feature 3 

Using -2.50 as the threshold, the feature misclassified 15% of the not-

cocaine test data as cocaine and approximately 20% of the cocaine test data 

as not-cocaine. 

Classification by the maximum negative slope gives the above figure and 

table. From the table C(iii), classification is done by values less than the 

threshold and the TPR and FAR values are shown on the table. With a target 

FAR value less than 0.5, the chosen threshold in this case is -2.50. The -2.25 

threshold gives a good TPR but a poor FAR value compared to the target 

FAR value for all the features and is thus neglected. The area under the 

curve 88% is a good figure.  
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Feature 4 (Maximum change in intensity) 

AUC = 90.49% 

 

Figure C(vii) Normal distribution curve for 
classification using feature 4 

Table C (iv) TPR and FAR for varying 
threshold (maximum positive change 

in intensity) 

Threshold TPR FAR 

0.35 1.0000 0.9512 

0.55 1.0000 0.5854 

0.60 1.0000 0.4146 

0.75 0.8000 0.1463 

0.80 0.6000 0.0976 

 

 

Figure C(viii) Column chart showing relative frequency of data for feature 4 
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Using 0.75 as the threshold, the feature misclassified 11% of the not-cocaine 

test data as cocaine and 19% of the cocaine test data as non-cocaine. As 

can be seen from the table above, with a false alarm rate of 41.5%, this 

feature will give 100% true positive rate using 0.6 as the threshold. 

Increasing the threshold to 0.75, the false alarm rate reduces to 15% with 

about 80% detection. Thus the ‘best’ threshold lies between 0.6 and 0.75. 

Choosing the former assures that there will be no missed detection but a 

high false alarm compared to the later. We have thus selected 0.75 as the 

best threshold in this case. 

Feature 5 (Maximum negative change in intensity) 

AUC = 86.34% 

 

Figure C(ix) Normal distribution curve for 
classification using feature 5 

Table C (v) TPR and FAR for 
varying threshold (maximum 
negative change in intensity) 

Threshold TPR FAR 

-0.45 1 0.9756 

-0.50 1 0.9268 

-0.55 1 0.7805 

-0.60 0.90 0.4878 

-0.65 0.80 0.1951 

-0.70 0.40 0 
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Figure C(x) Column chart showing relative frequency of data for feature 5 

Using -0.65 as the threshold, the feature misclassified 10.5% of the not-

cocaine test data as cocaine and correctly classified 81% of the cocaine test 

data as cocaine. 

From observation of the normal distribution curve (table C(v), like feature 3, 

the positive detection are values to the left of the threshold. With this in mind, 

the threshold value of -0.6 and -0.65 act as the two possible thresholds with 

realistic TPR and FAR pairs. However, with a considerable lower FAR, the -

0.65 threshold is chosen.  

The AUC value of 86.34% confirms that this is a good test for detection of 

cocaine. 
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Feature 6 (Peak) 
 
AUC = 73.96% 

 
Figure C (xi) Normal distribution curve for 

classification using feature 6 (peak) 

 

Table C (vi) TPR and FAR for 
varying threshold 

Threshold TPR FAR 

0.24 1 1 

0.25 1 0.9512 

0.27 1 0.6341 

0.28 0.6250 0.2927 

0.29 0.45 0.1951 

0.30 0 0 

 

 

 

Figure C(xii) Column chart showing relative frequency of data for feature 6 

 

Using 0.75 as the threshold, the feature misclassified 16% of the test non-

cocaine data as cocaine and 44% of the test cocaine data as non-cocaine. 
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From table C(vi) above, we can infer that using the peak as classification 

feature, one can get as high as 100% true positive probability but with a 

corresponding poor false alarm rate of almost 63%. False alarm rates can be 

a nuisance to security agents and our aim is to have as low false alarms as 

possible within a satisfactory true positive rate. Therefore, a threshold with a 

lower false alarm is selected i.e. 0.28 with corresponding true positive and 

false positive rates of [0.6250 0.2927]. 

Feature 7 (Average value of Region 1) 
AUC = 91.22% 

 
Figure C(xiii) Normal distribution curve for 

classification using feature 7 

Table C (vii) TPR and FAR for 
varying threshold 

Threshold TPR FAR 

0.3 1 1 

0.2 1 0.7805 

0.1 0.80 0.1951 

0 0 0 

 

 
 

Figure C(xiv) Column chart showing relative frequency of data for feature 7 
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Using 0.1 as the threshold, the feature correctly classified 81% of the test 

cocaine data and 89% of the not-cocaine test data cocaine data and not- 

cocaine respectively. 

From table C(vii), it can be seen that this feature gives as high as 80% true 

positive probability but with a corresponding false alarm rate of almost 20%. 

The AUC value of 91.22% confirms that this is a good test. 

Feature 8 (Average value of Region 2) 
 
AUC = 90% 

 
Figure C(xv) Normal distribution curve for 

classification using feature 8 

Table C (viii) TPR and FAR for 
varying threshold 

Threshold TPR FAR 

0.45 1 1 

0.40 1 0.9268 

0.30 1 0.6829 

0.15 0.80 0.1707 

0.05 0 0 

 

 

Figure C(xvi) Column chart showing relative frequency of data for feature 8 
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With 0.15 as the threshold, the feature misclassified 19% of the test cocaine 

data and 11% of the not-cocaine test data as not-cocaine data and cocaine 

respectively. 

From table C(viii), for 0.15 threshold, the corresponding TPR is 0.8 and FAR 

is 0.17. The AUC value is 90%. 

Feature 9 (Average value of Region 3) 
AUC = 86.83% 
 

 
Figure C(xvii) Normal distribution curve for 

classification using feature 9 

Table C (xix) TPR and FAR for 
varying threshold 

Threshold TPR FAR 

0.6 1.0 0.8293 

0.7 0.60 0.1463 

0.8 0.40 0 

 

 

 

Figure C(xviii) Column chart showing relative frequency of data for feature 9 
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For feature 9, the AUC is 86.83% which represents a good value. For the 

selected threshold, i.e. 0.7, the TPR/FAR rates are 0.60 and 0.15 

respectively. The false alarm rate is good enough but the true positive rate of 

0.6 is just above average. However, for the test data, the feature 

misclassifies 10.53% of the test not-cocaine data as cocaine a high value of 

44% cocaine data as non-cocaine implying a high missed detection rate for 

the test data. 

Feature 10 (Average value of Region 4) 

AUC = 79.02% 

 

Figure C(xix) Normal distribution curve for 
classification using feature 10 

Table C (x) TPR and FAR 
for varying threshold 

Threshold TPR FAR 

0.85 1 0.9756 

0.75 1 0.7805 

0.70 0.80 0.4390 

0.65 0.40 0 
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Figure C(xx) Column chart showing relative frequency of data for feature 10 

With an AUC of 79.02% and high TPR value of 0.8 for the threshold of 0.7 

chosen, this feature may at first sight seem like a good classifier. However, 

the FAR value of 0.44 is high but fits well relative to other possible TPR/FAR 

values. For the test data, the feature classifies 26.32% of the not-cocaine 

data as cocaine and 18.75% of the cocaine data as not-cocaine. 

Feature 11 (Average value of Region 5) 

AUC = 82.44% 

 

Figure C(xxi) Normal distribution curve for 
classification using feature 11 

Table C (xi) TPR and FAR for 
varying threshold 

Threshold TPR FAR 

0.25 1.0 0.9268 

0.20 1.0 0.6341 

0.15 0.6 0.0976 

0.1 0 0 
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Figure C(xxii) Column chart showing relative frequency of data for feature 11 

For the feature characteristics shown above, the values to the left of the 

threshold represent detection of cocaine. As the threshold moves to the left, 

the TPR reduces and the FAR also reduces. The ‘best’ threshold chosen 

representing a TPR of 0.6 and FAR of 0.0976 is thus 0.15. The area under 

the ROC curve is 82.44%. 

The feature performs averagely when classifying the test cocaine data. It 

misclassifies 43.75% of the test cocaine data as not cocaine. It however 

improves on its classification when it correctly classifies approximately 95% 

of the not-cocaine data as not-cocaine. 
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Feature 12 (Average value of Region 6) 

AUC = 83.51% 

 

Figure C(xxiii) Normal distribution curve for 
classification using feature 12 

Table C (xii) TPR and FAR 
for varying threshold 

Threshold TPR FAR 

0.0375 1 0.9756 

0.0275 1 0.6829 

0.0225 0.8250 0.4146 

0.020 0.80 0.2927 

0.0175 0.55 0.0976 

0.015 0.3 0 

 

 

 

Figure C(xxiv) Column chart showing relative frequency of data for feature 12 
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The area under the ROC curve for feature 12 characteristics is 83.51%. The 

threshold chosen is 0.02 and it results in a TPR of 0.8 with a FAR value of 

0.2927. The feature performs well with data not used during training. It 

correctly classifies 75% cocaine data as cocaine and 95% of not-cocaine 

data as not-cocaine.  
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Appendix D 

The tables below are the confusion matrix showing the performance of test 

data based on thresholds set using the training data for all 12 features. 

Table D(i) Confusion matrix for feature 1 Table D(ii) Confusion matrix for feature 2 

a b Predicted as  a b Predicted as 
15 1 a = cocaine 15 2 a = cocaine 
3 20 b = not cocaine 3 19 b = not 

cocaine 
Correct classification = 90%% 
Incorrect classification = 10% 

 Correct classification = 87% 
Incorrect classification = 13% 

   

The tables above show the confusion matrices for features one and two. As 

shown, feature one’s performance on test data in terms of cocaine detection 

is same as that of feature two i.e. 83% true positive rate. However in terms of 

wrong classification of non-cocaine samples as cocaine, feature 1 performs 

better than feature two. Feature 1 wrongly classifies only 5%non-cocaine 

data as cocaine while feature 2 wrongly classifies approximately double that 

figure i.e.10%. 

Below, feature 4 performs exactly the same way as feature two but feature 

three has a poorer performance in terms of cocaine classification. It wrongly 

classifies 7 cocaine samples as non-cocaine equating to about 39% even 

though its ability to detect non-cocaine samples matches that of feature one. 

Table D(i) Confusion matrix for feature 3 Table D(ii) Confusion matrix for feature 4 

a b Predicted as  a b Predicted as 
11 1 a = cocaine 15 2 a = cocaine 
7 20 b = not cocaine 3 19 b = not 

cocaine 
Correct classification = 79% 

Incorrect classification = 21% 
 Correct classification = 87% 

Incorrect classification = 13% 
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So far, over all, feature 3 using the maximum negative slope has the worst 

performance in terms of cocaine detection. However, in terms of detecting for 

non-cocaine samples, the first four features have closely matching 

performances. 

Table D(i) Confusion matrix for feature 5 Table D(ii) Confusion matrix for feature 6 

a b Predicted as  a b Predicted as 
15 2 a = cocaine 11 3 a = cocaine 
3 19 b = not cocaine 7 18 b = not 

cocaine 
Correct classification = 87% 

Incorrect classification = 13% 
 Correct classification = 74% 

Incorrect classification = 26% 
   

Feature 5 above has the same performance with features 4 and 2 but a look 

at feature 6 shows an equally matching performance in terms of cocaine 

detection with feature 3 but a slightly poorer rate of classification of non-

cocaine samples classifying only 86% non-cocaine data correctly. 

Table D(i) Confusion matrix for feature 7 Table D(ii) Confusion matrix for feature 8 

a b Predicted as  a b Predicted as 
15 2 a = cocaine 15 2 a = cocaine 
3 19 b = not cocaine 3 19 b = not 

cocaine 
Correct classification = 87% 

Incorrect classification = 13% 
 Correct classification = 87% 

Incorrect classification = 13% 
   

Features 7 and 8 have identical performance rates as features 2, 4 and 5 

and feature 9 below performs equally with feature 3 in terms of cocaine 

detection but same as features 2, 4, 5 and 7 in terms non-cocaine 

classification. 
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Table D(i) Confusion matrix for feature 9 Table D(ii) Confusion matrix for feature 10 

a b Predicted as  a b Predicted as 
11 2 a = cocaine 15 5 a = cocaine 
7 19 b = not cocaine 3 16 b = not 

cocaine 
Correct classification = 77% 

Incorrect classification = 23% 
 Correct classification = 79% 

Incorrect classification = 21% 
   

Feature 10 correctly classifies 83% of the test data as cocaine and 76% as 

non-cocaine having an overall correct classification rate of 79% and an 

incorrect classification rate of 21%. 

Table D(i) Confusion matrix for feature 11 Table D(ii) Confusion matrix for feature 12 

a b Predicted as  a b Predicted as 
12 1 a = cocaine 15 2 a = cocaine 
6 20 b = not cocaine 3 19 b = not 

cocaine 
Correct classification = 82% 

Incorrect classification = 18% 
 Correct classification = 87% 

Incorrect classification = 13% 
   

The performances of features 11 and 12 are shown above. While feature 12 

aligns with previous performance rates for features 2,4 and 5, feature 11’s 

82% correct classification rate is third behind performances of features 2, 4, 

5, 7 and 8 with 87% and feature 1 with 90% correct classification rate. 
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