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Abstract 

With the increasing demand for more energy efficient buildings, the construction industry is faced with 
the challenge to ensure that the energy performance predicted during the design stage is achieved 
once a building is in use. There is, however, significant evidence to suggest that buildings are not 
performing as well as expected and initiatives such as PROBE and CarbonBuzz aim to illustrate the 
extent of this so called ‘performance gap’. This paper discusses the underlying causes of 
discrepancies between energy modelling predictions and in-use performance of occupied buildings 
(after the twelve month liability period). Many of the causal factors relate to the use of unrealistic input 
parameters regarding occupancy behaviour and facilities management in building energy models.  In 
turn, this is associated with the lack of feedback to designers once a building has been constructed 
and occupied.  

 

The paper aims to demonstrate how knowledge acquired from Post-Occupancy Evaluation (POE) can 
be used to produce more accurate energy performance models. A case study focused specifically on 
lighting, small power and catering equipment in a high density office building is analysed and 
presented. Results show that by combining monitoring data with predictive energy modelling, it was 
possible to increase the accuracy of the model to within 3% of actual electricity consumption values. 
Future work will seek to use detailed POE data to develop a set of evidence based benchmarks for 
energy consumption in office buildings. It is envisioned that these benchmarks will inform designers 
on the impact of occupancy and management on the actual energy consumption of buildings.  
Moreover, it should enable the use of more realistic input parameters in energy models, bringing the 
predicted figures closer to reality.   
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1.0  Introduction 

There is extensive evidence to suggest that 

buildings usually do not perform as well as 

predicted [1-4]. This is often attributed to the 

lack of feedback to designers after handover, 

inhibiting improvements both to existing 

buildings and future designs. The practice of 

Post-Occupancy Evaluation (POE) aims to 

address this issue by evaluating the 

performance of a building after it has been built 

and occupied to provide designers with 

valuable feedback on its actual performance in-

use. This paper aims to demonstrate how 

knowledge acquired from POE can be used to 

produce more accurate energy performance 

models. The study focuses on electricity 

consumption due to lighting, small power and 

catering equipment, rather than thermal loads.  

 

In recent years, Building Regulations in 

England and Wales have become increasingly 

stringent, demanding higher standards of 

energy performance. This can be linked to the 

implementation of the European Energy 

Performance of Buildings Directive (EBPD) as 

well as the Government’s legally binding 

commitment to reduce UK carbon dioxide 

emissions by 80% by 2050 in relation to the 



1990 baseline [5]. As a result, all new buildings 

must achieve a Building Energy Rating (BER) 

lower than the prescribed Target Energy Rating 

(TER) for the specific building type, calculated 

using a Simplified Building Energy Model 

(SBEM).  However, this methodology does not 

aim to predict the actual energy consumption of 

a building, as its purpose is solely to ensure 

compliance with Building Regulations. Instead, 

detailed Dynamic Simulation Models (DSMs) 

can be used to obtain predictions of in-use 

energy performance. DSMs are more suited to 

the functional and volumetric complexities of 

non-domestic buildings as they allow for more 

detailed input options whilst also containing 

extensive databases for materials and systems 

[6]. Despite these and many other added 

capabilities, there is still a significant gap 

between predicted and actual energy 

consumption in non-domestic buildings [2]. This 

discrepancy is commonly referred to as the 

‘performance gap’. 

 

1.1  The Performance Gap 

The PROBE studies (Post-occupancy Review 

of Buildings and their Engineering) investigated 

the performance of 23 buildings previously 

featured as ‘exemplar designs’ in the Building 

Services Journal (BSJ) [3,4]. The research 

project ran from 1995 to 2002, highlighting the 

lack in feedback regarding the actual 

performance of buildings.  It also brought to 

light the so called ‘performance gap’, 

suggesting that actual energy consumption in 

buildings will usually be twice as much as 

predicted [4].  More recently, initiatives such as 

the Low Carbon Buildings Accelerator and the 

Low Carbon Buildings Programme, have aimed 

to provide feedback regarding the performance 

of buildings in-use [7].  Findings from both 

these studies have been published by the 

Carbon Trust in a series of reports, with one 

dedicated solely to the performance gap [8]. 

The report entitled ‘Closing the Gap’ introduces 

the underlying causes of the performance gap, 

highlighting that design predictions for 

regulatory compliance do not account for all 

energy uses in buildings. Data from five case 

study buildings is used to illustrate the 

discrepancies between actual regulated energy 

consumption and modelling output used for 

compliance with building regulations.  Results 

demonstrate that the actual regulated 

consumption can be five times higher than 

predicted [8]. 

 

In 2008, the Royal Institute of British Architects 

(RIBA) and the Chartered Institution of Building 

Services Engineers (CIBSE) launched 

CarbonBuzz, a free online platform allowing 

practices to share and publish building energy 

consumption data anonymously [9]. It enables 

designers to compare predicted and actual 

energy use for their projects, whilst also 

allowing for comparison against benchmarks 

and data supplied by other participating 

practices. Figure 1 illustrates the predicted and 

actual electricity consumption in three building 

sectors: schools, general offices and university 

buildings [10].  The graph depicts the median 

predicted and median consumption for the 

buildings within the database, which are 

assumed to be broadly representative of each 

sector. As shown, the measured electricity 

demands are approximately 60% to 70% higher 

than predicted in both schools and general 

offices, and over 85% higher than predicted in 

university campuses. 

 

  

Figure 1: CarbonBuzz median electricity 

consumption per sector - predicted vs. actual 

[10]. 

 

1.2  Sources of Discrepancy 

Results from the PROBE studies suggest that 

such discrepancies transcend the expected 

shortcomings of current modelling programs; 

being a result of poor assumptions, as well as a 

lack of monitoring following construction [3,4].  

Table 1 summarises the main causes of 

discrepancies between predicted and actual 

energy performance in buildings.  

 

 



 
Table 1: Causes of discrepancies between predicted and actual energy performance. 

 

As shown, the causal factors relate to both 

predictive and in-use performance, implying 

that current predictions tend to be 

unrealistically low whilst actual energy 

performance is usually unnecessarily high. 

However, the overall problem could be 

interpreted as an inability of current modelling 

methods to represent realistic use and 

operation of buildings.  This in turn can be 

associated with the lack of feedback regarding 

actual use and operation of buildings as well 

as the resulting energy consumption.  

Currently, there is a significant lack of 

information concerning the actual energy 

performance of our existing building stock [11].  

A continued absence of such data is likely to 

lead to a progressive widening of the gap 

between theory and practice and a failure to 

achieve strategic goals [12]. 

 

Recent developments in the field of thermal 

modelling have resulted in increasingly 

complex simulation software based on 

calculations of dynamic heat transfer.  In 

addition, stringent procedures are being 

implemented to ensure the validity of a range 

of modelling programs [13].  As a result, the 

impact of modelling tools on the overall 

discrepancy between predicted and actual 

performance is consistently being diminished.  

Meanwhile, some issues with built quality are 

slowly being tackled by the construction 

industry, encouraging more airtight buildings 

and better construction techniques.  Extensive 

research on the actual performance of built 

elements is also being conducted, whilst most 

modelling software now allow for assumptions 

regarding the built quality of specific building 

elements. 

 

Despite these improvements, current 

simulation tools do not accurately model the 

impact of occupants and management on the 

energy performance of buildings.  This is 

usually attributed to the use of inadequate 

assumptions at design stage, more so than an 

inability of the modelling tools themselves. As 

such, there is scope for further investigation 

into the actual use of buildings, focusing on 

occupancy and management behaviour, as 

well as their impact on unregulated energy 

consumption.  This can be achieved through 

the practice of Post-Occupancy Evaluation 

(POE).   

 

1.3  Post-Occupancy Evaluation    

Post-Occupancy Evaluation (POE) is a 

structured process of evaluating the 

performance of a building after it has been built 

and occupied. This is achieved through 

systematic data collection, analysis and 

comparison with explicitly stated performance 

criteria, providing designers with valuable 

information regarding the in-use performance 

of their designs [16]. 



The scope of POE can be divided into three 

strands [17]: 

 

o Feedback: a management aid mechanism 

aimed at measuring building performance 

mostly as an indicator of business 

productivity and organisational efficiency. 

o Feed-forward: aims at improving building 

procurement through the use of acquired 

data as feedback to the design team and 

future briefings. 

o Benchmarking: aims at measuring progress 

striving towards increasingly sustainable 

construction and stricter targets of energy 

consumption. 

 

POE can take several approaches, varying 

from highly technological methodologies 

involving hard data, to socio-psychological 

interests where more subjective parameters 

are used to evaluate the performance of a 

building. Hence, the method to be undertaken 

in a POE is usually defined by the objectives 

being pursued and the areas of interest to the 

stakeholder. Seeing as POE concerns the 

analysis of individual buildings, the methods 

vary in scale, type, level of interactivity and 

suitability for specific projects [18].  As a 

consequence, a vast number of POE methods 

and techniques are available worldwide, 

allowing for an array of different evaluations to 

be performed in numerous types of buildings.   

 

One of the most widely recognised tools for 

evaluating the energy performance of buildings 

in the UK is the Energy Assessment and 

Reporting Methodology (EARM).  Originally 

developed for the PROBE studies, it was later 

published by CIBSE as a technical 

memorandum (CIBSE TM22). The document 

describes a method for assessing the energy 

performance of an occupied building based on 

metered energy use, and includes a software 

implementation of the method.  It can be used 

to identify poorly performing buildings and 

systems, indicating the causes of poor 

performance and benchmarking procedures 

[19].  Figure 2 illustrates the underlying 

structure of the TM22 methodology, depicting 

the breakdown of energy consumption by end-

uses (such as lighting and ventilation) whilst 

highlighting the impact of low-level factors such 

as hours of use and equipment efficiency.  

 

The first edition of TM22, published in 1999, 

consisted of 3 stages: 

 

o Stage 1: a quick assessment of the energy 

consumption, breaking it down into use per 

unit floor area and can be carried out by in-

house resources.  Information required 

includes description of the building, floor 

area and annual energy consumption 

records.  

o Stage 2: a more detailed assessment of the 

energy consumption including special 

energy uses or occupancy and can usually 

be carried out in-house.  Information 

required includes details of building 

occupancy and usage as well as any 

special or unusual uses.

 
Figure 2: TM22 ‘Energy Tree Diagram’ illustrating the breakdown of energy use [19]. 



o Stage 3: a full understanding of the 

performance of the building and its systems, 

and will usually require a specialist to carry 

out the assessment.  Required information 

includes building operation and maintenance 

manuals as well as details of building 

occupancy, use and cleaning, plant 

operation procedures and schedules.  

 

In 2006, a second edition of the TM22 was 

published, updating the previous edition by 

describing procedures for compliance with 

emerging energy performance legislation [20]. It 

also included treatment of on-site energy 

generation and renewable energy sources. 

Overall, it provided a simpler and more effective 

method for energy assessment and reporting, 

whilst keeping up to date with current 

developments in the construction industry.  An 

updated version of TM22 is currently being 

developed and will be used as a guidance 

framework for the Technology Strategy Board’s 

Building Performance Evaluation call [21].  This 

government-funded programme is anticipated 

to be the largest POE study ever to be 

conducted in the UK, evaluating the in-use 

performance of both domestic and non-

domestic buildings.  One of the key objectives 

of the programme is to assemble a substantial 

body of data for a variety of building types, 

aiming to draw conclusions on the in-use 

performance of various design strategies.  

These will be disseminated across the industry 

to enable improvements in the performance of 

new and refurbished buildings through better 

design, delivery and operation. 

 

2.0  Methodology 

Taking a case study approach, this paper 

analyses the energy performance of an office 

building in central London. The assessment 

was guided by the TM22 methodology, followed 

by in-depth monitoring of the electricity 

consumption for lighting, small power and 

catering equipment. Monitoring of occupancy 

patterns were also conducted via half-hourly 

walkthrough inspections. Results from the 

monitoring exercise were then fed into energy 

models, aiming to produce more accurate 

predictions of energy consumption. These 

focused solely on tenant electricity 

consumption, excluding all gas usage as well 

as electricity consumption for air conditioning, 

ventilation, lifts, water heating and circulation, 

as well as lighting in communal areas. 

 

2.1  Building Description 

The selected building accommodates the 

offices of four different companies throughout 

its seven floors and basement. It includes an 

atrium that extends to all floors (except the 

basement). Each floor comprises a main open-

plan office space with a treated floor area of 

approximately 2,000m2.  The ground floor 

houses a large reception area and the 

basement houses meeting rooms and cellular 

offices. The building is fully air-conditioned, 

three rooftop air-handling units (AHUs) provide 

heating/cooling as well as fresh air to all floors 

and atrium. A separate system provides heating 

for the basement, whilst fan coil units (FCUs) 

provide cooling to the meeting rooms and small 

individual offices. Two gas-fired boilers provide 

hot water to all toilets and kitchens throughout 

the building. 
 

Figure 3: Metering strategy for the supply of gas 

and electricity to the building. 

 

Figure 3 illustrates the metering strategy for the 

supply of electricity and gas to the building. As 

shown, the landlord is responsible for the 

electricity consumed by all air conditioning 

equipment including the AHUs, FCUs, chillers, 

pumps and fans as well as the Building 

Management System (BMS) and other control 

equipments.  The lighting throughout the 

common areas of the building as well as the 

toilets is also supplied and maintained by the 



landlord. As such, the energy supplied for the 

landlord services is metered together, with no 

sub-metering for individual end-uses. 

Meanwhile, the electricity supplied to the 

tenants for lighting, small power equipment and 

catering in each of the floors is metered 

separately.  A total of 31 sub-meters provide a 

further breakdown for each of the 4 zones in 

each floor: North-East (NE), Northwest (NW), 

Southeast (SE) and Southwest (SW).  

 

2.2  Monitoring Process 

Following a full TM22 assessment of the 

building, whereby the total energy consumption 

for both gas and electricity was analysed and 

broken down by individual end-use, a further 

analysis of the tenants’ consumption was 

undertaken.  This in-depth study focused on the 

electricity consumption for lighting, small power 

and catering within each of the tenant zones, 

relying on monthly meter readings for each of 

the sub-meters as well as half hourly profiles 

acquired through the use of 3-phase portable 

data loggers connected to the individual sub-

circuits.  Further data was acquired using 

combined plug monitor / loggers connected to 

individual small power office equipment such as 

laptops, computer screens and docking 

stations.  These were also used to monitor the 

electricity consumption of catering equipment 

such as fridges, microwave ovens and coffee 

machines.  Half hourly profiles for each of the 

pieces of equipment being monitored were 

reviewed in order to obtain an average daily 

consumption value.  Where different usage 

modes were present (such as stand-by mode), 

these were recorded separately and accounted 

for when calculating the average daily 

consumption for each equipment. Occupancy 

patterns were also monitored by manually 

recording the number of occupants within the 

office in half-hour intervals. 

 

 

3.0  Monitoring Results  

Figure 4 illustrates the annual tenant electricity 

consumption per floor (normalised by m2).  This 

includes lighting, small power and catering 

equipment loads. It is worth noting that the 

lighting specification and controls are consistent 

throughout the entire building and the catering 

facilities in each floor are of a similar size and 

nature (consisting mainly of an instant hot water 

heater, a microwave, a dishwasher and a full 

size fridge).  Some floors have additional coffee 

machines and/or vending machines, and the 

tenants on the ground floor have a large bar 

with multiple fridges.  In regards to small power, 

a fairly consistent volume of office equipment is 

present throughout the building.  Despite their 

different nature of work, all 4 tenant companies 

have similar occupation densities and office 

equipment specifications.  Most workstations 

consist of a computer screen, laptop and 

docking station as well as phone.  Some 

workstations have individual desk lamps, 

personal fans and/or desktop printers.  In 

addition, all floors have large printer/copiers 

(typically 6-8 per floor) as well as projectors 

and/or flat screen displays in meeting rooms. 

 Figure 4: Annual tenant electricity consumption 

per floor area. 

 

As seen, the 2nd floor consumes approximately 

60% more electricity per m2 than the lowest 

consumer (5th floor).  This is quite a significant 

variation considering the consistency in lighting 

specification and controls as well as the 

similarities in installed equipment and 

occupation density.  However, when relating the 

electricity consumption to the tenants occupying 

each of the floors, a clearer pattern can be 

observed. Figure 5 illustrates how the different 

tenant companies are located throughout the 

building.  As shown, the lowest consuming 

floors (5th and 6th) are wholly occupied by 

Tenant C.  Similarly, the 3rd and 4th floors are 

mainly occupied by Tenant B, presenting similar 

annual consumption values. 

  

Figure 6 illustrates the annual electricity 

consumption of each tenant per m2 of office 

space they occupy.  Not surprisingly, Tenant C 

has the lowest electricity consumption at 90 

kWh/m2.  Tenant A has the highest annual 

consumption at 155 kWh/m2, followed closely 

by Tenant D at 139 kWh/m2.  This might explain 



why the 2nd floor has the highest consumption 

seeing as it is occupied by both Tenants A and 

D.   

Figure 5: Location of tenant companies 

throughout the building. 

 

Figure 6: Annual electricity consumption per 

tenant (normalised by floor area). 

 

An informal interview was conducted with the 

facilities co-ordinator of each tenant to 

investigate the causes of such variations.  This 

revealed that the employees of Tenant A are 

instructed to leave their computers on overnight 

for IT upgrades.  As such, a large quantity of 

electricity is used outside the normal operating 

hours of the building, accounting for a 

significant portion of their overall consumption.  

Similarly, employees of Tenant D often leave 

their computers on at the end of the day so that 

time-consuming tasks, such as high quality 

rendering, can be performed overnight.  On the 

other hand, employees of Tenants B and C are 

heavily encouraged to save energy through 

internal communications to turn off their 

computers and screens at the end of the day.  

Tenant B has also instructed their facilities co-

ordinator to switch off printer/copiers and non-

essential catering equipment such as coffee 

machines at the end of each day. 

 

3.1  Detailed Analysis of Electricity 

Demand 

Following the analysis of annual electricity 

consumption data, an in-depth study was 

undertaken to examine the variation in 

electricity demand throughout a typical week. 

Figure 7 illustrates the half hourly electricity 

consumption for a single zone in the 4th floor of 

the building (occupied by Tenant B).    

 

As shown, the base load is approximately 3 

kWh/m2 outside working hours. The electricity 

demand starts to escalate around 06:00 

peaking at approximately 13 kWh/m2 by 10:00.  

This can be associated with the arrival of 

employees who trigger the motion sensors, 

turning on the lights.  This will usually be 

followed by office/catering equipment being 

turned on. From 10:00 to 17:00 the demand 

remains fairly high, varying between 11-14 

kWh/m2, eventually decreasing to 

approximately 8 kWh/m2 by 19:30.  This can be 

associated with equipment being turned off as 

employees leave the office.  A steep rise in the 

demand is then observed at approximately 

20:30, followed by a fairly quick decrease, 

bringing the demand down to the base load at 

around 22:00.  This late peak can be 

associated with the cleaning schedule of the 

building.  It is assumed that the rise in demand 

is due to the use of vacuum cleaners as well as 

the dishwasher being turned on.  The electricity 

demand during the weekend is fairly constant at 

a similar base load to the evenings.  The only 

deviation occurs on Saturday between 9:00 and 

15:00 when the electricity demand rises to 

approximately 5 kWh/m2.  This can be 

associated to individual employees going into 

the office to work extra hours.   

 

The analysis of half hourly electricity 

consumption has suggested a high correlation 

between occupancy hours and electricity 

consumption.  In order to determine the extent 

of this correlation, real occupancy levels were 

monitored and plotted against the half hourly 

electricity consumption.  Figure 8 illustrates the 

results of this monitoring showing occupancy 

patterns on a typical working day.  As shown, 

the electricity demand follows the monitored 

occupancy profile quite closely. The initial peak 

in demand is observed around 08:00 when 

occupancy numbers start to increase rapidly.  



Similarly, a steep decrease in electricity 

demand is observed after 17:30 when 

occupancy starts to decrease. However during 

lunchtime, the quick decrease in occupancy is 

not reflected in the electricity demand.  This is 

because most computers are kept on and 

lighting levels remain constant.  As previously 

mentioned, the sharp peak around 20:00 is 

associated with the cleaning.  

Figure 8 also illustrates the standard occupancy 

profile for offices used by SBEM for compliance 

predictions.  Despite its simplistic nature, 

standard profiles such as this are normally used 

in DSMs.  As shown, there is little correlation 

between the SBEM profile and the monitored 

electricity consumption.  The impact of using a 

standard occupancy profile in predictive models 

is discussed in further detail below.

 
Figure 7: Monitored electricity consumption for 4th floor – Northeast zone. 

 

 
Figure 8: Relationship between monitored electricity consumption and occupancy profiles. 

 

4.0  Predictive models 

Following the detailed analysis of electricity 

consumption in the 4th floor NE zone, the 

acquired data was used to produce 5 

predictive models of electricity consumption. 

These predictions refer to the annual electricity 

consumption for lighting, small power and 

catering for this specific zone, occupied by 

Tenant B.  An increasing level of detail was 

used in each subsequent model, replacing 

typical assumptions with monitored data.  The 

parameters used for each of the electricity 

demands are detailed in Table 2.  It is worth 



mentioning that due to increasing complexities 

in the input parameters of small power and 

catering equipment, a spreadsheet approach 

was taken to predict annual electricity 

consumption.  Although most DSMs will allow 

such detailed parameters to be used, the 

process of doing so can be quite onerous.  In 

addition, most DSMs rely on a ‘black box’ 

approach, meaning that the user has no 

control over how the calculations are carried 

out [22], making it difficult to visualise the 

impact of such detailed inputs in the overall 

electricity consumption of the building.  As 

such, a bottom-up approach to CIBSE TM22 

was used to produce the predictive models.  

This methodology (illustrated earlier in Figure 

2) has previously been used to predict 

electricity consumption [2, 23], allowing for 

detailed parameters such as load and usage 

factors to be used.  This approach was used in 

predictive models 1 and 2.  Alternatively, 

metered data can be used to replace 

assumptions, increasing the accuracy of the 

model.  This approach was used in models 3, 4 

and 5, where increasing amounts of data 

acquired from the monitoring study (mostly 

through the use of plug monitors) was used to 

replace standard assumptions regarding 

energy consumption of specific equipment.  

Information gathered through the monitoring of 

occupancy patterns was also used to 

substitute standard occupancy hours in model 

5.  

 

It is worth mentioning that the actual electricity 

consumption value displayed in Figure 9 was 

unknown at the time these predictive models 

were developed.  The author was aware of the 

average consumption per m2 for Tenant B but 

did not have access to the actual consumption 

value for the specific zone being modelled.  

 

Results from the predictive models are 

illustrated in Figure 9.  The predictions are 

labelled 1-5 accordingly and reflect the inputs 

specified in Table 2.  As seen, the predictions 

are compared against the actual electricity 

consumption, which is not subdivided into the 

specific end-uses due to the limitations of the 

sub-metering strategy of the building.  Two 

benchmark values are also illustrated in the 

graph for further comparison.  These were 

acquired from ‘Energy Consumption Guide 19’ 

(commonly referred to as ECON 19) and 

illustrate industry benchmarks for Typical 

(TYP) and Best Practice (BP) energy 

consumption for lighting, small power and 

catering in standard air conditioned office 

buildings with floor areas between 2000m2 and 

8000m2 (i.e. Type 3) [25]. 

 

 
Table 2: Input parameters used in each predictive model. 



 

 
Figure 9:  Comparison of benchmarks, predicted and actual electricity consumption. 

 

As shown in Figure 9, the increased detail in 

the input parameters of models 1-5 have 

resulted in incremental increases of the 

predicted annual electricity consumption.  By 

using a typical compliance model in prediction 

model 1, the calculated electricity consumption 

was shown to be less than 1/3 of the actual in-

use consumption.  The predicted value was 

then increased significantly in prediction model 

2 when ‘rules of thumb’ published by the 

Building Services Research and Information 

Association (BSRIA) for small power 

consumption were used to account for the 

electricity demand of office equipment [24].  It 

is worth mentioning such rules of thumb are 

commonly used in DSMs when trying to predict 

energy consumption of buildings in-use [26].  

In prediction model 3, design specifications 

and rules of thumb were replaced by 

monitoring data of installed lighting and 

equipment. At this point however, only basic 

equipment were considered and SBEM 

standard occupancy hours were assumed.  

This resulted in a similar total prediction of 

electricity consumption, yet this total consisted 

of higher lighting loads and lower small power 

loads.  This demonstrates that actual installed 

lighting loads were higher than specified at 

design stage. Meanwhile the small power 

prediction seems to have been fairly 

conservative by having considered only basic 

office and catering equipment.  In prediction 

model 4, all installed equipment were included, 

resulting in an increase of approximately 15% 

in the total electricity consumption. Finally, in 

prediction model 5, the SBEM standard 

occupancy hours were replaced by monitored 

occupancy hours.  By doing so, the predicted 

electricity consumption came within 3% of the 

actual consumption of the building in-use. This 

small discrepancy could be associated with the 

fact that the predictions were based on 

measurements from a single day.  As such, the 

model assumes a typical operation throughout 

the entire year, disregarding variations in both 

occupancy and energy use profiles that are 

bound to occur.   

 

When comparing the results from the 

predictive modelling against the ECON 19 

benchmarks, it is possible to conclude that the 

final prediction is only slightly higher than the 

typical benchmark for a Type 3 office building.  

However, when considering that Tenant B had 

the second lowest consumption per m2 in the 

building, one would expect it to be lower than 

the typical benchmark and perhaps closer to 

best practice.  Considering that the ECON 19 

benchmarks were compiled over 10 years ago, 

they might not be representative of current 

office buildings.  With the fast advancements in 

the design of low energy ICT equipment, 

energy consumption due to small power would 

be expected to have decreased in the last 

decade.  However, current offices are now run 

for longer hours and tend to contain more 



items of small power equipment.  The same 

would be expected for lighting and catering, 

resulting in similar proportions of electricity 

being consumed by each end use.  The lack of 

more up-to-date benchmarks makes it hard for 

further conclusions to be drawn. 

 

4.1  Methodology validation 

In order to validate the methodology used to 

generate the predictive models, the same 

approach was used to model another zone in 

the building occupied by a different tenant (i.e. 

2nd floor South-West zone occupied by Tenant 

D).  Once again a walk through inspection was 

undertaken to determine the quantities of 

installed equipment throughout the zone.  Plug 

monitors were then used to log the energy 

consumption of different small power and 

catering equipment, and variations in 

occupancy density were also monitored via 

half-hour inspections throughout the day.  

Acquired data was incrementally used to 

inform the input parameters for the predictive 

models, as detailed in Table 3. 

 

 
Table 3: Input parameters used in predictive 

models for methodology validation  

 

The previous investigation into the energy use 

of Tenant D had revealed that a significant 

proportion of employees routinely left their 

computer on overnight in order to run time 

consuming tasks. In order to account for this 

behaviour into the predictive models, an 

assumption was made that 20% of computers 

were constantly left on.  This assumption was 

made based on rough estimated provided by 

Tenant D’s IT technicians.  Figure 10 

compares the results of the predictive models 

with the actual electricity use for the zone 

being analysed.  It also illustrated the results 

from the previous predictive models for the 

zone occupied by Tenant B. 

 

As seen in Figure 10, the first two models are 

identical for both zones.  This is due to the fact 

that they are compliance models, which do not 

account for actual installed loads or any 

specific characteristics of the individual zones. 

Models 3 – 5 provide increasing levels of detail 

into the installed equipment within each of the 

zones, progressively increasing the accuracy 

of the models.  Once again it is the final step of 

adjusting the occupancy hours that seems to 

have the highest impact towards achieving an 

increasingly accurate prediction.    

 

During this validation exercise, the final model 

achieved a prediction within 6% of the actual 

electricity consumption of the zone, being 

slightly less accurate than the initial set of 

predictive models.  This could be related to the 

assumptions made regarding the proportion of 

employees who leave their computer on 

overnight, suggesting that more than 20% of 

computers are constantly left on overnight.  

This emphasises the importance of minimising 

the use of assumptions in order to achieve 

realistic predictions.  

 

 

5.0  Conclusion 

This paper has discussed the existence of a 

gap between predicted and actual energy 

consumption in non-domestic buildings.  It has 

highlighted the main causes of such 

discrepancies, identifying POE as a key tool for 

understanding this issue further.  It also 

identified the potential for using POE results to 

inform predictions, enabling better 

assumptions to be used in detailed energy 

modelling.  A case study revealed that by 



conducting basic monitoring exercises it is 

possible to feed results into energy models and 

gain a more accurate prediction of a building’s 

actual performance (within 3% of actual 

consumption for this specific study).  A 

validation exercise demonstrated that 

replicating the methodology within a different 

zone in the building produced results within 6% 

of the actual energy use for the zone.  Despite 

the limited applicability of this methodology to 

non-speculative buildings, the results are 

encouraging and demonstrate that reliable 

predictions can be obtained for lighting and 

small power loads by using realistic 

assumption in the modelling process. It is also 

worth mentioning that improved predictions for 

electricity consumption due to lighting and 

equipment can also inform better assumptions 

regarding internal loads, which can in turn 

improve the prediction of cooling and heating 

demand in a building. 

 

Key findings from this study highlight the need 

for better understanding of occupancy patterns 

and behaviour in office buildings. Variations in 

the electricity consumption of different tenants 

occupying the same building have 

demonstrated that modelling software should 

account for different occupancy patterns and 

behaviours if realistic predictions are to be 

achieved.  In addition, a clear correlation was 

observed between monitored occupancy 

profiles and tenant electricity consumption. It 

should be noted however, that energy demand 

can vary largely with tenant behaviour 

throughout the day (not only when they arrive 

or leave).   The impact of management was not 

analysed in this study due to its focus on 

tenant consumption.  It is important to 

highlight, however, that management 

decisions, such as the running of ICT updates 

outside of occupancy hours, were observed to 

have a significant impact on the tenant 

consumption.  Inconsistencies between design 

specification and installed lighting loads were 

also observed to have a considerable impact 

on the discrepancy between predicted and 

actual electricity use. 

 

If the UK is to experience real reductions in its 

CO2 emissions, it is imperative that we start 

achieving energy efficiency in practice.  With 

Building Regulations relying heavily on 

predictive indicators of performance, it is vital 

that we understand the limitations of the 

current compliance modelling and aim to 

predict realistic energy consumption levels by 

using detailed DSMs that account for realistic 

occupancy and management behaviours.  The 

widespread practice of POE can help us 

understand how occupants and facilities 

managers interact with the built environment.  

It can also provide valuable information 

regarding the performance of the current 

building stock.   

 

 
Figure 10: Predictive model results and actual electricity consumption in both zones investigated. 



6.0  Future work 

Future work will seek to use detailed POE data 

to develop a set of evidence based 

benchmarks for energy consumption in office 

buildings. It is envisioned that these 

benchmarks will inform designers regarding 

the impact of occupancy and management on 

the actual energy consumption of offices.  

Moreover, it should enable the use of more 

realistic input parameters in energy models, 

bringing the predicted figures closer to reality.   
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