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Abstract 

Simulation models of human movement comprising pin-linked segments have a potential 
weakness for reproducing accurate ground reaction forces during high impact activities.   
While the human body contains many compliant structures such a model only has 
compliance in wobbling masses and in the foot-ground interface.  In order to determine 
whether accurate GRFs can be produced by allowing additional compliance in the foot-
ground interface, a subject-specific angle-driven computer simulation model of triple 
jumping with 13 pin-linked segments was developed, with wobbling masses included 
within the shank, thigh, and trunk segments.  The foot-ground interface was represented 
by spring-dampers at three points on each foot: the toe, ball, and heel.  The parameters 
of the spring-dampers were varied by a genetic algorithm in order to minimise the 
differences between simulated GRFs, and those measured from the three phases of a 
triple jump in three conditions: (a) foot spring compression limited to 20 mm; (b) this 
compression limited to 40 mm; (c) no restrictions. Differences of 47.9%, 15.7%, and 
12.4% between simulation and recorded forces were obtained for the 20 mm, 40 mm, and 
unrestricted conditions respectively.  In the unrestricted condition maximum 
compressions of between 43 mm and 56 mm were obtained in the three phases and the 
mass centre position was within 4 mm of the actual position at these times.  It is 
concluded that the unrestricted model is appropriate for simulating performance whereas 
the accurate calculation of internal forces would require a model that incorporates 
compliance elsewhere in the link system. 
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Introduction 

Ground reaction forces (GRFs) are amongst the most important measures in 
studies of human motion.  Aside from direct measurement, GRFs can be estimated 
using theoretical models.  In theory, inverse dynamics models can be used in order 
to calculate GRFs using whole body centre of mass (COM) accelerations but in 
practice GRFs are typically measured and used as input along with kinematic data 
for inverse dynamics calculations.  Forward dynamics models commonly calculate 
GRFs by simulating collisions between the feet and the floor (Otten, 2003).  When 
constructing simulation models of the human body, segments are often represented 
as rigid and pin-linked (Alexander, 1990; van Soest et al., 1993).  Realistic GRFs 
have been reproduced by rigid pin-linked simulation models using springs to model 
ground contact during walking (Anderson and Pandy, 2001) and running (Neptune et 
al., 2000).  Whilst this approach gives a reasonable approximation for activities which 
do not involve large impacts with the ground, it is unable to provide accurate 
representations of internal forces and torques when simulating high impact activities 
(Gruber et al., 1998).  In order to reproduce realistic ground reaction forces in pin-
linked simulation models of jumping, a requirement for a high level of compliance (70 
mm) at the foot-ground interface has been reported and attributed to a lack of 
wobbling masses (Seyfarth, 2000).  Wobbling masses have been incorporated within 
forward dynamics models in an attempt to account for the shock attenuation 
properties of soft tissue during impacts (Gruber et al., 1998; Pain and Challis, 2004).  
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Few studies using whole body simulation models incorporating wobbling masses 
have attempted to match recorded GRFs in high impact activities (King et al., 2006).   

In addition to soft tissue which has been represented by wobbling masses in 
simulation models, the human skeletal system also contains compliance in the form 
of tissues such as ligaments and cartilage, which attenuate shock in the joints of the 
leg and spine (Chu et al., 1986; Hoshino and Wallace, 1987), and possibly in the 
bending of the long bones of the leg (Radin and Paul, 1970).  As a consequence it 
might be expected that including wobbling masses within a pin-linked whole body 
model may not provide sufficient compliance for a high impact activity.   

With this in mind, this study will investigate whether permitting increased levels 
of compliance at the foot-ground interface will allow pin-linked whole body computer 
simulation models to reproduce accurate GRFs.  Simulating GRFs in the triple jump 
(Figure 1) represents a unique challenge, since it involves the highest measured 
vertical GRFs of any sporting activity (Hay, 1993; Perttunen et al., 2000).   

 

 

 
Figure 1.  Graphics sequence of a triple jump. 

 
Methods 

Kinematic and force data were gathered at the Loughborough University indoor 
High Performance Athletics Centre (HiPAC) from a male triple jumper of national 
standard (age 22 years; mass 72.6 kg; height 1.82 m; best performance 14.35 m).  
The study was carried out in accordance with the Loughborough University Ethical 
Advisory Committee guidelines.  Forty-five 25 mm retroreflective markers were 
placed in positions on the body of the subject in order that locations of joint centres 
could be calculated.  Eighteen Vicon MX cameras covered a volume of 18 m x 2 m x 
2.5 m spanning the last stride of the approach and the full triple jump.  The subject 
was asked to perform the ground contact of each phase of the triple jump from a 
single force plate, necessitating three trials.  Kinematic data were collected at 480 
Hz, and force data collected from an AMTI BP600900 force platform sampling at 
1000 Hz.  Orientation of the trunk in a global reference frame, and joint configuration 
angles were calculated by projecting the joint centre coordinates onto the sagittal 
plane.  The angle data were fitted with quintic splines (Wood and Jennings, 1979) for 
input to the simulation model using error estimates calculated as the difference 
between a data value and the mean of adjacent values as in Yeadon and King 
(2002).  Ninety-five anthropometric measurements were taken and used as input to 
the inertia model of Yeadon (1990) in order to calculate subject-specific segmental 
inertia parameters.  Centre of mass (COM) velocity at touchdown was calculated 
using COM position at takeoff and touchdown of the flight phases preceding each 
ground contact and was used as input to the model. 

A 13-segment planar angle-driven computer simulation model of the ground 
contact phases of triple jumping (Figure 2) was constructed using AutolevTM (Kane 
and Levinson, 1996).  The 13 segments represented: trunk + head, two upper arms, 
two forearms and hands, two thighs, two shanks, two 2-segment feet, with wobbling 

hop step jump 
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masses within the shanks, thighs, and trunk.  Each foot had three points of contact 
with the ground at the heel, ball (metatarsophalangeal joint), and toe. 

 

 
Figure 2.  Thirteen-segment simulation model with wobbling masses within the shank, thigh, and trunk 

segments, angle drivers at all joints (white circles), and spring-dampers at three points on 
each foot. 

 
The foot-ground interface was modelled using horizontal and vertical non-linear 

spring-dampers situated at the heel, ball, and toe of each foot: 

ܴ௭ ൌ෍െሺ݇ଵ௜ ∙ ௜ݖ ൅ ݇ଶ௜ ∙ ௜ݖ
ଶሻ െ ݇ଷ௜ ∙ పሶݖ ∙ |௜ݖ|

ଷ

௜ୀଵ

, 

ܴ௫ ൌ෍ሾെሺ݇ସ௜ ∙ ௜ݔ ൅ ݇ହ௜ ∙ ௜ݔ
ଶሻ െ ݇଺௜ ∙ ሶ௜ݔ ∙ ௜|ሿݔ| ∙ ܴ௭௜,

ଷ

௜ୀଵ

 

where ܴ௫ is the horizontal force, ܴ௭ is the vertical force, ݔ and ݖ are the horizontal 
and vertical displacements,	ݔሶ  and ݖሶ are the time derivatives of ݔ and ݖ; ݇ଵ, ݇ଶ, ݇ସ, ݇ହ 
are stiffness coefficients, ݇ଷ, 	݇଺ are damping coefficients, and ݅ represents the point 
of contact on the foot.  

The horizontal spring-damper expression was multiplied by the vertical force to 
ensure that the resulting horizontal force decayed to zero at takeoff.  Each damping 
term incorporated the magnitude of the displacement in order that a force due to 
damping could not exist without displacement.  The toe and ball spring-dampers 
shared the same parameters since both represented points on the spike plate of the 
athlete’s shoe, whilst the heel differed. 

Non-linear spring-dampers connected the ends of the wobbling and fixed 
elements of a segment (Pain and Challis, 2001): 

௜ࡾ ൌ ሺെ݇଻௜ ∙ ௜|ଷ࢘| െ ଼݇௜ ∙ పሶ࢘| |ሻ ∙ ,ො௜࢘ ݅	ݎ݋݂ ൌ 1, 3 

where ࡾ is a force vector,	࢘ is a vector defining the position of the point of attachment 
on the wobbling mass from that on the fixed link, ࢘ො is a unit vector in the direction of 
ሶ࢘| ,࢘ is the magnitude of |࢘| ,࢘ | is the derivative of  |࢘|, ݇଻ and ଼݇ are stiffness and 
damping coefficients respectively, and ݅ represents the segment containing the 
wobbling mass. 

A common set of viscoelastic parameters representing the attachments of the 
wobbling masses and the foot-ground interface was determined for the three phases 
of the triple jump using an adaptation of the method of Wilson et al. (2006).  The 
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simulation model was angle-driven using recorded kinematics and 27 parameters 
were varied using a genetic algorithm (GA) (Carroll, 1996) in order to minimise an 
objective function representing the difference between the simulation GRFs and 
measured GRFs horizontally ሺݔሻ and vertically ሺݖሻ.  These 27 parameters comprised: 
12 stiffness and damping coefficients at the foot, six stiffness and damping 
coefficients for the wobbling masses, and nine kinematic parameters specifying the 
three initial angular and linear velocities of the whole body in each of the three 
phases.  The objective function was composed of the percentage RMS differences 
between simulation and performance in: time to peak force, magnitude of peak force, 
and overall RMS difference between the force time histories.  The objective function 
value S was taken to be the average function value from each of the three ground 
contact phases of the triple jump in order that a robust common set of parameters 
was obtained (Wilson et al., 2006; Allen et al., 2010):   

ܵ ൌ
1
3
෍ܴܵܯ ൤݂ݔ௜, ,௜ݖ݂ ൬

௜ݔݐ ൅ ௜ݔ݉
2

൰ , ൬
௜ݖݐ ൅ ௜ݖ݉

2
൰൨ ,

ଷ

௜ୀଵ

 

where ݂ݔ and ݂ݖ are the RMS differences between the force time histories expressed 
as a percentage of peak force, ݔݐ and ݖݐ are the percentage differences in time to 
peak force,  ݉ݔ and ݉ݖ are the percentage differences in the magnitude of peak 
force, and ݅ represents the phase of the jump. 

Often GA-generated simulations with high stiffness values at the foot-ground 
interface would lead to the foot breaking and re-making contact with the ground.  To 
prevent this from happening, takeoff was considered to have occurred if all points on 
the foot broke contact with the ground at any time during the stance phase.  
Differences between experiment and simulation RMS of force time histories were 
calculated for the greater of either the recorded ground contact time or the ground 
contact time of the simulation. Therefore a simulation that took off prematurely would 
incur a large RMS difference between the force time histories.  This acted to 
encourage the GA to generate simulations with stiffness and damping parameters 
that led to ground contact times that were similar to recorded times. 

Penalties were incurred if wobbling mass COM displacement exceeded what 
were considered reasonable limits of 50 mm, 75 mm, and 100 mm at the shanks, 
thighs, and trunk respectively (Lafortune et al., 1992; Minetti and Belli, 1994).  
Penalties were added to the objective function value at a weighting of 1% for every 
10 mm that the maximum excursion of each wobbling mass COM exceeded the limit.  
No penalties were incurred for wobbling mass movement in the optimised solutions. 

Three matching optimisations were run: one where the compression in the 
springs representing the foot-ground interface was restricted in both the horizontal 
and vertical direction to 20 mm; one where it was restricted to 40 mm; and one where 
it was unrestricted.  20 mm was chosen as an estimate of realistic maximum vertical 
compression in the foot-ground interface; this comprised 10 mm compression in the 
heel pad calculated for an applied force of 10 kN (representing the maximum 
measured GRF in this study) using the equation of Pain and Challis (2001), and 10 
mm compression in the sole of the shoe and the ground (Alexander and Bennett, 
1989).  The total level of compression at the foot-ground interface in the actual 
performance was found to be 19 mm from the change in the vertical position of the 
ankle joint centre from the point of impact of the heel to the point at which the ankle 
joint centre was at its minimum vertical position.  Horizontally the same limits were 
applied, although it was not expected that they would be reached, since it was 
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imagined that the compression requirements were much greater vertically than 
horizontally. 

The movement of the feet was restricted by stringent ramped penalties which 
were added to the objective function value using the following weighting: 

ܲ ൌ෍10଼ ∙ ሺ݀௜ െ ݈ሻଶ,

ଶ

௜ୀଵ

௜݀	ݎ݋݂	 ൐ ݈ 

where ܲ is the percentage value added to the objective function, ݈ is the limit in 
metres, ݀ is the maximum displacement of any point on the foot in metres, and ݅ 
represents the direction (horizontal or vertical) of the displacement. 

The ability of the foot-ground interface representation to provide realistic centre 
of pressure locations is crucial since errors will result in a different moment of vertical 
force producing errors in whole body rotation.  In the matching simulations the trunk 
angle was one of the degrees of freedom and was not included in the objective 
difference function and so provided an independent measure of this aspect of model 
performance.  The RMS difference between recorded and simulated trunk angle was 
calculated.   

A comparison of mass centre vertical position between recorded performance 
and simulation at the time of maximum vertical depression was made by double 
integrating the vertical acceleration calculated from the recorded force to determine 
mass centre movement.   

 
Results 

When penalties restricting the depression of the foot-ground interface to 20 mm 
were employed, the optimisation process was unable to match recorded forces well 
(Figure 3), yielding objective function values representing differences of 44.3%, 
55.5%, and 43.9% between simulation and recorded GRFs for the hop, step, and 
jump phases respectively (Table 1).  Penalties restricting depression to 40 mm 
resulted in more realistic forces (Figure 4) with differences of 19.4%, 17.5%, and 
10.2% (Table 1).  Simulations were shown to best match recorded forces when there 
were no limitations on the compression of the springs representing the foot-ground 
interface (Figure 5) with differences of 15.2%, 13.2%, and 8.7% (Table 1).  In the 
unrestricted condition the maximum vertical depressions were 43 mm at the heel in 
the hop phase, 56 mm at the heel in the step phase and 48 mm at the ball joint in the 
jump phase.  In contrast, horizontal displacements in the unrestricted condition were 
small in the hop (9 mm at the ball joint) and step (8 mm at the ball joint) phases in 
which the forefoot contacted the ground first and large in the jump phase (29 mm at 
the heel) where the heel contacted the ground first (Table 2). 
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Figure 3.  Simulation (solid line) and recorded (broken line) forces for simulations where depression at 

the foot-ground interface was restricted to 20 mm. 
 

 

 
Figure 4.  Simulation (solid line) and recorded (broken line) forces for simulations where depression at 

the foot-ground interface was restricted to 40 mm. 
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Figure 5.  Simulation (solid line) and recorded (broken line) forces for simulations with no restrictions 

on depression at the foot-ground interface. 
 

Table 1.  Ground reaction force differences for optimisations of each  condition and phase  

phase condition fx(%) fz(%) tx(%) tz(%) mx(%) mz(%) total(%) 

hop 20 mm 27.4 44.6 33.3 45 49.8 71.3 44.3 

 40 mm 15.2 25.3 0 40 12.8 8.5 19.4 

 unrestricted 17.1 19.7 0 25 4.9 6.1 15.2 

step 20 mm 33.7 34.5 55.8 43 113.3 64 55.5 

 40 mm 17.1 21.4 22.7 28.3 2.7 7.1 17.5 

 unrestricted 14 15.7 22.7 18.8 2.4 0.5 13.2 

jump 20 mm 24.4 26.2 82.4 77.8 29.7 37.1 43.9 

 40 mm 9.5 15.4 11.6 0.1 1.6 12.8 10.2 

 unrestricted 9.1 14.3 0.1 5.4 3.7 2 8.7 

 are the RMS differences between the force time histories expressed as a percentage of ݖ݂ and ݔ݂
peak force, ݔݐ and ݖݐ are the percentage differences in time to peak force, and  ݉ݔ and ݉ݖ are the 
percentage differences in the magnitude of peak force 

 
Table 2. Maximum horizontal and vertical spring  compression for each condition and each phase 

of the triple jump 

phase condition horizontal 

compression  (mm) 

vertical 

compression  (mm) 

hop 20 mm 12 18 

 40 mm 20 31 

 unrestricted 9 43 

step 20 mm 13 20 

 40 mm 15 39 

 unrestricted 8 56 

jump 20 mm 19 20 

 40 mm 26 36 

 unrestricted 29 48 
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Simulations in which compression in the springs of the foot-ground interface 
were restricted to 20 mm showed a trend of greater coefficients governing stiffness 
and damping in the vertical direction when compared to the 40 mm and unrestricted 
conditions, whereas coefficients governing the horizontal springs showed no 
consistent changes (Tables 3-5).  The increased stiffness was manifested in larger 
force peaks that were reached sooner.  The only horizontal limit approached across 
all optimisations was in the jump phase (19 mm) in the 20 mm condition (Table 2).  
Vertically the limit was hit in the step and jump phases in the 20 mm condition, and 
approached in the step phase (39 mm) in the 40 mm condition (Table 2). 

 
Table 3. Viscoelastic parameters obtained from simulations with spring compression restricted to 20 mm 

parameter value 

linear vertical forefoot stiffness – k11 & k12 (Nm-1) 0.150 x 106   

linear vertical heel stiffness – k13 (Nm-1) 0.162 x 106   

quadratic vertical forefoot stiffness – k21 & k22 (Nm-2) 1.913 x 106   

quadratic vertical heel stiffness – k23 (Nm-2) 1.868 x 106   

vertical forefoot damping – k31 & k32 (Nsm-2) 0.125 x 106   

vertical heel damping – k33 (Nsm-2) 0.293 x 106   

linear horizontal forefoot stiffness – k41 & k42 (m
-1)* 8   

linear horizontal heel stiffness – k43 (m
-1)* 1   

quadratic horizontal forefoot stiffness – k51 & k52 (m
-2)* 3539   

quadratic horizontal heel stiffness – k53 (m
-2)* 459   

horizontal forefoot damping – k61 & k62 (sm-2)* 52   

horizontal heel damping – k63 (sm-2)* 100   

wobbling mass stiffness shank – k71 (Nm-3) 9.71 x 106 

wobbling mass stiffness thigh – k72 (Nm-3) 29.45 x 106   

wobbling mass stiffness trunk – k73 (Nm-3) 13.58 x 106   

wobbling mass damping  shank – k81 (Nsm-1) 337   

wobbling mass damping  thigh – k82 (Nsm-1) 239   

wobbling mass damping  trunk – k83 (Nsm-1) 64 

* horizontal coefficients have different dimensions since horizontal 
force is a function of vertical force 
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Table 4. Viscoelastic parameters obtained from simulations with spring compression restricted to 40 mm 

parameter value 

linear vertical forefoot stiffness – k11 & k12 (Nm-1) 55.96 x 103   

linear vertical heel stiffness – k13 (Nm-1) 6.11 x 103   

quadratic vertical forefoot stiffness – k21 & k22 (Nm-2) 1980 x 103   

quadratic vertical heel stiffness – k23 (Nm-2) 7.82 x 103   

vertical forefoot damping – k31 & k32 (Nsm-2) 38.32 x 103   

vertical heel damping – k33 (Nsm-2) 52.79 x 103   

linear horizontal forefoot stiffness – k41 & k42 (m
-1)* 8   

linear horizontal heel stiffness – k43 (m
-1)* 3   

quadratic horizontal forefoot stiffness – k51 & k52 (m
-2)* 2346   

quadratic horizontal heel stiffness – k53 (m
-2)* 166   

horizontal forefoot damping – k61 & k62 (sm-2)* 28   

horizontal heel damping – k63 (sm-2)* 62  

wobbling mass stiffness shank – k71 (Nm-3) 30.23 x 106   

wobbling mass stiffness thigh – k72 (Nm-3) 7.10 x 106  

wobbling mass stiffness trunk – k73 (Nm-3) 13.48 x 106   

wobbling mass damping  shank – k81 (Nsm-1) 24   

wobbling mass damping  thigh – k82 (Nsm-1) 298   

wobbling mass damping  trunk – k83 (Nsm-1) 288 

* horizontal coefficients have different dimensions since horizontal 
force is a function of vertical force 
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Table 5.  Viscoelastic parameters obtained from simulations with no restrictions on spring compression 

parameter value 

linear vertical forefoot stiffness – k11 & k12 (Nm-1) 52.05 x 103   

linear vertical heel stiffness – k13 (Nm-1) 7.09 x 103   

quadratic vertical forefoot stiffness – k21 & k22 (Nm-2) 15.64 x 103   

quadratic vertical heel stiffness – k23 (Nm-2) 414.47 x 103   

vertical forefoot damping – k31 & k32 (Nsm-2) 18.77 x 103   

vertical heel damping – k33 (Nsm-2) 7.82 x 103   

linear horizontal forefoot stiffness – k41 & k42 (m
-1)* 32   

linear horizontal heel stiffness – k43 (m
-1)* 1   

quadratic horizontal forefoot stiffness – k51 & k52 (m
-2)* 7126   

quadratic horizontal heel stiffness – k53 (m
-2)* 753   

horizontal forefoot damping – k61 & k62 (sm-2)* 48   

horizontal heel damping – k63 (sm-2)* 27  

wobbling mass stiffness shank – k71 (Nm-3) 95.94 x 106   

wobbling mass stiffness thigh – k72 (Nm-3) 6.32 x 106  

wobbling mass stiffness trunk – k73 (Nm-3) 36.52 x 106   

wobbling mass damping  shank – k81 (Nsm-1) 293   

wobbling mass damping  thigh – k82 (Nsm-1) 362   

wobbling mass damping  trunk – k83 (Nsm-1) 3089 

* horizontal coefficients have different dimensions since horizontal 
force is a function of vertical force 

 
Coefficients governing the stiffness of the wobbling masses showed a decrease 

from no restriction to the 20 mm restriction condition in the shank and trunk, with an 
increase in thigh stiffness (Tables 3-5).  Damping values for the trunk showed the 
opposite trend to the stiffness values; increasing from the 20 mm restriction to the 
unrestricted condition.  The reductions in stiffness led to increased displacement of 
the large mass representing the soft tissue of the trunk in the 20 mm condition 
(Figures 6-7).  However there were no consistent trends in wobbling mass 
displacement with increasing restrictions on spring compression. 
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Figure 6.  Displacement of trunk wobbling mass in each phase of the triple jump and in each condition.  
 

 
Figure 7.  Maximum displacements of wobbling masses in each phase of the triple jump and in each 

condition. 
 
Ground contact time in the unrestricted condition was the longest in each 

phase, with simulation values tending to underestimate ground contact time in all 
conditions for the first two phases (Table 6).  With one exception there was a trend 
towards increased ground contact times with increased bounds on spring 
compression, with the unrestricted condition being closest to recorded measures 
overall. 
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Table 6. Ground contact time in each condition and each phase versus measured performance 

phase condition time (ms) 

hop 20 mm 118 

 40 mm 119 

 unrestricted 120 

 performance 142 

step 20 mm 128 

 40 mm 125 

 unrestricted 140 

 performance 170 

jump 20 mm 153 

 40 mm 196 

 unrestricted 202 

 performance 198 

 
The RMS differences in trunk angle between simulation in the unrestricted 

condition and recorded performance were 0.6o, 0.7o and 0.8o in the hop, step and 
jump phases respectively.  The differences in vertical mass centre positions at the 
time of maximum depression in the unrestricted condition were 2 mm, 4 mm and 4 
mm in the hop, step and jump phases respectively.   

 
Discussion 

When high levels of compliance were allowed at the foot-ground interface, the 
pin-linked simulation model was able to match recorded GRFs well during an 
extremely high impact activity (Figure 5).  The unrestricted condition also led to 
ground contact times that best matched the performance measures, with the 20 mm 
condition underestimating ground contact times by the greatest amount in each 
phase.  The trunk angle in simulations lay within 1o (RMS) of recorded values 
indicating that the point of application of vertical force on the foot was accurate.  The 
viscoelastic parameters were determined using all three ground contact phases of 
the triple jump in order that it was robust to changes in kinematics.  This method has 
previously been shown to yield parameters that accurately reproduce performance 
measures in a separate trial by the same subject (Yeadon et al., 2006).  These 
results indicate that a pin-linked subject-specific simulation model would be sufficient 
for simulations aiming to match or optimise sporting technique, since GRF time 
histories are realistic and therefore performance variables such as net impulse and 
takeoff velocity will be realistic.   

In order to determine how closely the displacement of the whole body COM in 
the unrestricted simulation matched that of the recorded data, the recorded vertical 
GRF was used to double integrate the calculated acceleration to give the vertical 
position of the COM over time.  In each phase the position of the COM at the time of 
peak depression in the simulation differed by less than 4 mm between simulation and 
recorded data.  Thus the COM in the recorded performance descended to a 
comparable position as in the simulations for which the foot springs compressed 
more than 40 mm.  As a consequence there must be additional compliance in the 
real system beyond the 20 mm compression at the foot-ground interface.  It is 
hypothesised that the high level of compliance in the foot springs of the model in the 
unrestricted case (> 40 mm) is a consequence of not modelling compliance in the 
joints and bones of the legs and trunk.  

The model was not able to reproduce accurate GRFs when it was limited to 
realistic depressions (20 mm) at the foot-ground interface.  This is despite the 
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inclusion of wobbling masses representing the soft tissue of the legs and trunk.  The 
wobbling masses accounted for approximately two thirds of the total mass of the 
model, and so movement of this mass might have been expected to provide sufficient 
compliance in the system.  However the fact that there was no consistent trend in the 
parameters and displacement of the wobbling masses between the different 
conditions, and that no displacement bounds were reached during optimisation 
(Figure 7), indicates that the inability of the model to reproduce accurate GRFs in the 
20 mm condition was not a result of excessive strictures on wobbling mass 
displacement.  The fact that accurate GRFs could not be reproduced in this 
condition, despite the inclusion of wobbling masses in the model, indicates that other 
compliance in the human body will need to be represented if models are to 
accurately reproduce GRFs with realistic levels of depression at the foot-ground 
interface in the future. 

Mills et al. (2010) found extremely high bending moments of 377 Nm and 266 
Nm at the thigh and shank respectively in simulations of gymnastics landings.  The 
former value exceeded the maximum bending moment of the human femoral bones 
measured in vitro by Martens et al. (1986), which resulted in displacements of 17 mm 
of the ends of the bone relative to the centre.  Mills et al. stated that they used bone 
bending moments only as an indicator of relative injury risk, and the high reported 
values are likely to be a result of their model not incorporating the effects of muscles 
in mitigating bone bending moments (Duda et al., 1997).  Despite this, bone bending 
may make up a non-negligible component of the force-attenuating properties of the 
body during extremely high loading.  Rostedt et al. (1998) investigated the axial 
stiffness of functional spinal units (FSUs) from the lumbar region.  Although obtained 
from a lower range of loading levels, the stiffness relationship they observed predicts 
that, in order to compress the unit by 1 mm, a load of approximately 3500 N would 
have to be applied.  The high forces endured during triple jumping mean this level of 
compression is not out of the question, and an average of 1 mm compression in the 
lumbar and thoracic vertebrae could lead to overall spinal compressions of 16 mm.  
In addition to this, the joints of the leg also greatly attenuate forces: e.g. Hoshino and 
Wallace (1987) found an 80% increase in peak transmitted force through knee joints 
with knee replacements when compared to intact knee joints.  It has been shown that 
higher frequency accelerations (greater than 6 Hz) are attenuated by the body and 
are not transmitted to the head during running, irrespective of the magnitude of the 
shock measured at the shank (Shorten and Winslow, 1992).  The sum total of all the 
force attenuating properties in the skeletal system is undoubtedly high whereas in 
rigid pin-linked simulation models accelerations are transmitted instantaneously and 
undamped through the rigid link system.   

A number of choices were made in how various aspects were modelled.  The 
simulation model employed a single segment to represent the trunk whereas it might 
be expected that having an articulated spine could improve the biofidelity of the 
model.  However unless joint compliance were to be introduced into the 
representation of the spine, the vertical movement of the mass centre would not be 
replicated in a model with realistic foot compression.  Quadratic stiffness was used at 
the foot-ground interface since it gave a better match than linear stiffness.  The 
horizontal force was expressed as a function of the vertical force, in order that it 
would decay to zero with the vertical force.  This gave better results than making the 
horizontal force a function of the vertical displacement.  Three foot contact points 
were used since the foot was modelled as two segments.  This allowed the resultant 
vertical force to act at an appropriate point between heel and toe.  Increasing the 
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sophistication of the modelling choices would not have changed the conclusions of 
this study.   

It has been shown that a pin-linked simulation model can reproduce realistic 
GRFs if additional compliance is allowed at the foot-ground interface, therefore future 
simulation studies of sporting performance should allow a suitably high level of 
compliance in the springs of the feet in order that accurate GRFs can be obtained.  
On the other hand a lack of compliance in joints and bones will render a model 
unsuitable for investigations into internal joint loading.  In such investigations force 
attenuating properties need to be incorporated into the link structure of the simulation 
model. 
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